How to use Prewritten C functions

You've already been using a couple prewritten C functions (printf and scanf in the stdio library.) In general, each C function has a specification for how it is supposed to be called. The important parts of the specification are:

1) Name of the function

2) The type and order of each parameter the function takes

3) The return type of the function.

For printf, the first parameter is a string, and the other parameters are optional parameters who's types correspond to the variables designated to print out by the printf statement. The return type is void, which means that the function returns nothing. Void functions are generally called on a line by themselves, as printf is.

An useful function from the stdlib library is the rand function. This function takes in 0 parameters and returns a single integer. In particular, the integer returned is a random integer in between 0 and 32767 (215 - 1).

For example, if you want to pick a random integer in between 1 and 100, you could do the following:

int x = 1 + rand()%100;

Any non-negative integer mod 100 will return a value in between 0 and 99 inclusive. Adding 1 to this yields an integer in between 1 and 100 inclusive.

How to use C math library functions

The rules for calling functions are the same regardless of which library they are in. Here are some common functions from the math library:

// Returns the absolute value of x.

int abs(int x);

// Returns xy.

double pow(double x, double y);

// Returns the square root of x.

double sqrt(double x);

These functions can be called in the middle of arithmetic expressions, or be an arithmetic expression on their own. To call a function, substitute each parameter with an expression of the proper type, but do NOT actually type out that type. For example, if we wanted to assign a variable difference to the absolute value of the difference between to variables price and cost, we could do the following:

difference = abs(price-cost);

Here is an example that sets a double variable phi to
[image: image1.wmf]2

5

1

+

.

phi = (1+sqrt(5))/2;

Here is another example that calculates the distance from the origin to a point (x,y). Assume x, y and distance are doubles:

distance = sqrt(pow(x,2)+pow(y,2));

More about Using Math Functions

Whenever you call a math function, just remember that each parameter can be ANY expression of the proper type. Most of the examples of the previous page are either variables or very simple expressions, but there's no reason a more complicated expression isn't possible. Also, do NOT put "int" or "double" in the parameter list when you CALL a function.

Also, you can call a math function in any location it would be valid to place a numeric expression. It does NOT make sense to call a math function on a line by itself like so:

sqrt(pow(b,2)-4*a*c);

If you use Dev C++ to compile your programs, then to use math functions you must add the following include:

#include <math.h>
Style

Even though you can combine several C statements into one, sometimes doing so makes your code more difficult to read. The example given in the text shows that

x = (y = 2) + (z = 3);

is correct, but difficult to read. A better way to code this segment is as follows:

y = 2;

z = 3;

x = y + z;

In general, you will find that C gives the programmer many opportunities to concisely represent multiple statements. Your goal as a programmer is to balance the desire to shorten your code with the goal of making your code readable to others. In some instances you'll find that combining statements together makes your code easier to read.

Common Programming Errors

The C compiler must know the definition of every token you use. If you write something other than a keyword or defined symbol in C, the compiler expects to either find a variable declaration or a defined function to match the token. Two common errors are forgetting to initialize variables and forgetting to include the file that contains the definition for a predefined C function. The error message for both of these is something to the effect, "Undefined symbol 'x'."

Conditional Expressions

Boolean Expressions: An expression that evaluates to either TRUE or FALSE.

The most common types of boolean expressions are those that use relational operators. The general syntax of a conditional statement (which is a type of boolean expression) is this:

<expression> <relational operator> <expression>

(Note: The two expressions MUST match in type!!!)

Here are the 6 relational operators we will use:

1) Equal to (==)

2) Not equal to (!=)

3) Greater than (>)

4) Greater than or equal to (>=)

5) Less than (<)

6) Less than or equal to (<=)

We will typically only compare numerical expressions. You may compare characters with these operators as well, since they are stored internally as integers. However, you can NOT accurately compare strings with these operators.

We compare characters in alphabetical order, so for example, ‘a’ < ‘b’.

Here are some examples of boolean expressions. See if you can figure out if they are true or not:

Note: Assume that we have these beginning declarations:

char ch;

int x,y;

ch = ‘j’;

x = 6*2;

y = 3*x – 10% x;

Expression

Value

1) x + y > 40
2) ch == ‘k’

3) (x – y) != (7*(3 – x % 7))
Boolean Operators are operators that take boolean expressions as operands. The following are boolean operators available to us in C: AND(&&), OR(||) and NOT(!).

The first two are take two boolean expressions as operands, and the last takes only a single boolean expression as an operand.

Let b1 and b2 be boolean expressions. Here is the syntax for complex boolean expressions put together with the boolean operators mentioned above:

(b1) &&(b2)

(b1) || (b2)

!(b1)

In particular these complex boolean expressions evaluate to boolean values as well. Here are truth tables to show how to evaluate these:

	&&
	T
	F

	T
	T
	F

	F
	F
	F

	||
	T
	F

	T
	T
	T

	F
	T
	F

In English, for b1 && b2 to be true, both expressions must be true.

For b1 || b2 to be true, at least one of b1 and b2 has to be true.

! simply negates the value of the original boolean expression.

If-else Construct

if (<boolean expression>)

 stmt1;

else

 stmt2;

stmtA;

stmtB;

The way this is executed is as follows:

1) Check if the boolean expression is true.

2) If so, go ahead and execute stmt1, then skip to the end of the if.

3) Otherwise, go ahead and execute stmt2, and go to the end of the if.

4) Continue on, executing stmtA, stmtB, etc.

A natural question to ask at this point is, "What if I want to execute MORE than one statement inside of either the if clause or the else clause?"

In order to deal with that case, C allows us to use a block of statements. A block of statements are statements surrounded by curly braces({}) on both sides. The compiler treats this entire group of statements as a single statement, syntactically.

So, using the information above, here is an adjusted & generalized template for an if-else statement:

if (<boolean expression>) {

 stmt11;

 stmt12;

 .

 .

 stmt1n;

}

else {

 stmt21;

 stmt22;

 .

 stmt2m;

}

stmtA;

stmtB;
The way this is executed is as follows:

1) Check if the boolean expression is true.

2) If so, go ahead and execute stmt11 through stmt1n in order.

3) Otherwise, go ahead and execute stmt21 through stmt2m in order.

4) Continue on, executing stmtA, stmtB, etc.

Use of else if

if (<boolean expression1>)

 <stmts1>

else if (<boolean expression2>)

 <stmts2>

else if (<boolean expression3>)

 <stmts3>

else

 <stmtsn>

stmtA

1) Check if boolean expression1 is true.

2) If so, go ahead and execute the first block of statements, <stmts1>

3) If not, go check if boolean expression2 is true.

4) If so, go ahead and execute the second block of statements, <stmts2>

5) Continue in this fashion if no until one of the boolean expressions is true.

6) Now, skip over the rest of the blocks, and continue executing statements with stmtA.

Note: In none of these clauses is an else clause necessary. There may be cases you do not want to execute any statements based on a particular decision.

Couple other notes about boolean operators and the if statement

Nested if statements

It is possible to have an if statement inside of an if statement. One of the statements inside of an if clause or an else clause can be another if statement.

Matching else problem

If you do not specify using curly braces{}, an else clause always matches the nearest possible if clause.

Here is a small example:

if (month == 4)

 if (day > 15)

 printf("Your taxes are late.\n");

 else

 printf("File your taxes by 4/15.\n");

If the variable month was 7 at the start of this code, then nothing would get printed out.

If you want the else to match the first if, here is how you would have to do it:

if (wage >= 5.25) {

 if (hours >= 30)

 printf("You make over $150 a week.\n");

}

else

 printf("You get below minimum wage.\n");

Now, the computer treats everything inside of {}s as a single statement inside of the outside if clause.

Order of Operations

The order of precendence of && and || is lower than any arithmetic operator. If you ever have any doubt how the computer will interpret your expressions, use parentheses to explicitly dictate how your expression gets evaluated. (Incidentally, the precedence of && is higher than ||.)

(x > 7) || (y<6) && (z = 3)

is interpreted as:

(x > 7) || ((y<6) && (z = 3))

I suggest you write it with ()s.

Determining the slope of a line

// Arup Guha

// 9/8/03

// Program Description: This program asks the user for the

// constants A, B, and C in the equation Ax+By = C for a line.

// Based on this information, the algorithm will output if the

// slope is positive, negative, zero, or undefined (as is the case

// with a vertical line.)
#include <stdio.h>

int main() {

 // Obtain values for a, b and c from user.

 double a, b, c;
 printf(“Enter a, b, and c.\n”)

 scanf("%lf%lf%lf",&a,&b,&c)

 // Take care of the invalid line case.

 if ((a == 0) && (b == 0))

 printf(“Invalid equation.\n”);

 else {

 // Handle each case (vertical, horizontal, positive

 // slope and negative slope) separately.
 if (b == 0)

 printf(“Vertical line.\n”);

 else if (a == 0)

 printf(“Slope = 0\n”);

 else if (-a/b > 0)

 printf(“Slope is positive.”);

 else

 printf(“Slope is negative.\n”);

 }

}

_1199696791.unknown

