While Loop

Purpose of a Loop: Often times we will want to repeat a particular group of statements multiple times. A loop gives us a control structure to do so, without having to write out the steps multiple times.

Here is the general syntax of a while loop:

while (<boolean expression>)

 stmt;

Remember that just as we can use a block of statements in an if statement, we can do the same with a while. In fact, the body of most while loops is more than a single statement. Thus, most while loops look like:

while (<boolean expression>) {

 stmt1;

 stmt2;

 ...

 stmtn;

}

stmtA;

Here is how this executes:

1) Evaluate the boolean condition.

2) If it's true, execute statements 1 through n in order.

3) If it's false, skip to after the end of the while loop and

 execute stmtA.

4) After you execute stmtn, you have complete a loop iteration. How, go back to step #1 in these directions and repeat.

Algorithm to figure out all the money you have for a booze run

#include <stdio.h>

int main() {

 double value, total = 0;
 char answer, dummy;

 printf("Does anyone have any money?\n");
 scanf("%c",&answer);

 while (answer == 'y' || answer == 'Y') {

 printf("Enter the amount of your donation.\n");
 scanf("%lf",&value);
 total += value;

 printf("Does anyone have any money?\n");
 scanf("%c%c",&dummy,&answer);
 }

 printf("As a group, you have collected $%lf for beer.\n",

total);

 return 0;

}

Class Exercise: Write a program that computes 1+3+...+99

#include <stdio.h>

int main() {

 int val = 1;

 int sum = 0;

 while (val < 100) {

 sum = sum + val;

 val = val + 2;

 }

 printf("1+3+5+...+99=%d\n",sum);

 return 0;

}

A second approach to the problem:

#include <stdio.h>

int main() {

 int val = 1;

 int sum = 0;

 while (val < 100) {

 if (val%2 == 1)

 sum = sum + val;

 val = val + 1;

 }

 printf("1+3+5+...+99=%d\n",sum);

 return 0;

}

Here is a program that prints out a tip chart:

#include <stdio.h>

#define TIP_RATE
0.15

#define MAX_PRICE 100

int main() {

 int meal_value;

 double tip_amt;

 meal_value = 1; // Starting meal value.
 // Print out all tips until the maximum meal value.
 while (meal_value <= MAX_PRICE) {

 tip_amt = meal_value*TIP_RATE;

 printf("On a meal of $%d, you should tip $%.2lf\n",

 meal_value, tip_amt);

 meal_value++;

 }

 return 0;

}

Menu driven program set-up

int main() {

 int choice;

 // Print out the menu.

 scanf("%d",&choice);

 while (choice != <quitting choice>) {

 if (choice == 1) {

 // Execute this option

 }

 else if (choice == 2) {

 // Execute this option

 }

 ...

 else if (choice != <quitting choice>) {

 //Sorry that's not a valid menu choice!

 }

 // Print out the menu.

 scanf("%d",&choice);

 }

 return 0;

}

For Loop

C contains loop constructs other than the while loop. One of these constructs is the for loop. Here is the general syntax:

for (<init stmt>; <boolean expression>; <increment stmt>)

 stmt;

As mentioned with the while loop, usually, there is more than one statement in the body of a for loop, thus, we will usually have a block of statements:

for (<init stmt>; <boolean expression>; <increment stmt>) {

 stmt1;

 stmt2;

 ...

 stmtn;

}

stmtA;

Here is how the computer executes the for statement:

1) Execute the initial statement.

2) Evaluate the boolean expression.

3) If it's true, execute statements 1 through n.

4) Do the increment statement.

5) Then go back to step #2

6) If it's false, skip over the loop body and continue

execution with stmt A.

Same Examples Using a For Loop

#include <stdio.h>

int main() {

 int val ;

 int sum = 0;

 for (val = 1; val < 100; val = val+2) {

 sum = sum + val;

 }

 printf("1+3+5+...+99=%d\n",sum);

 return 0;

}

#include <stdio.h>

#define TIP_RATE
0.15

#define MAX_PRICE 100

int main() {

 int m_value;

 double tip_amt;

 // Print out all tips until the maximum meal value.
 for (m_value=1; m_value <= MAX_PRICE; m_value++) {

 tip_amt = m_value*TIP_RATE;

 printf("On a meal of $%d, you should tip $%.2lf\n",

 m_value, tip_amt);

 }

 return 0;

}

How to choose between a for and while loop

First, it should be noted that anything you can do with a for loop, you can also do with a while loop. But, in certain situations, a for loop is more succinct and easier to read than a while loop that would do the same thing. In the example from the last page:

 for (val = 1; val < 100; val = val+2) {

 sum = sum + val;

 }
from that first line, we can immediately see the structure of the loop (in particular how many times it's going to run.) All information that determines all the loop iterations are neatly placed in one place. In the corresponding while loop, you have to look at three different places to get that information.

Thus, based on this example, it can be seen that loops that run a particular number of iterations based on the value of a variable translate well into for loops. Especially if the task you are completing uses the index variable for some calculation.

Here is an example of such a situation:

Let's assume we are trying to print out a triangle to the screen that looks like this:

*

**

...

Notice that when we print out ith line, we also want to print i stars on that line. (Assume that row is declared at the beginning of the function.) That gives us this skeleton of code:

for (row=1; row<=10; row++) {

 //print row stars on one line

}

Now, the question becomes, how do we print a line with row stars. Well, can't we just do a for loop? (Assume that col is also declared at the beginning of the function.)

for (col=1; col<=row; col++)

 printf("*");

So, we have the following:

for (row=1; row<=10; row++) {

 for (col=1; col<=row; col++)

 printf("*");

}

Is there a problem with this?

Since we never print out a newline character, all of our stars will print out in the same row. Instead, when we print a row, we need to finish by also printing a newline character. Here is the fix:

for (row=1; row<=10; row++) {

 for (row=1; col<=row; col++) {

 printf("*");

 }

 printf("\n");

}

(Incidentally, note that the inner set of parentheses aren't necessary, but the outer ones are. Why?)

