Verifying an Algorithmic Analysis through running actual code

Let's assume that $T(N)$ is the experimental running time of a piece of code and we'd like to see if $\mathbf{T}(\mathbf{N}) \in \mathbf{O}(\mathbf{F}(\mathbf{N})$).

One way to do this is by computing $\mathrm{T}(\mathrm{N}) / \mathrm{F}(\mathrm{N})$ for a range of different values for \mathbf{N} (commonly spaced out by a factors of two). Depending upon these values of $T(N) / F(N)$ we can determine how accurate our estimation for $\mathrm{F}(\mathbf{N})$ is.

If these values stay relatively constant, then our guess for the running time is good. We have a close upper bound.

If these values diverge to infinity, then our run-time is a function BIGGER than $\mathrm{F}(\mathbf{N})$.

Otherwise, if these values converge to 0 , then our run-time is more accurately described by a function smaller than $\mathrm{F}(\mathbf{N})$.

Examples

Example 1
Consider the following table of data obtained from running an instance of an algorithm assumed to be cubic. Decide if the Big-Oh estimate, $O\left(\mathbf{N}^{3}\right)$ is accurate.

Run	N	$\mathrm{T}(\mathrm{N})$
1	100	0.017058 ms
2	1000	17.058 ms
3	5000	2132.2464 ms
4	10000	17057.971 ms
5	50000	2132246.375 ms

$\mathrm{T}(\mathrm{N}) / \mathrm{F}(\mathrm{N})=0.017058 /(100 * 100 * 100)=1.0758 \times 10^{-8}$
$\mathrm{T}(\mathrm{N}) / \mathrm{F}(\mathrm{N})=17.058 /(1000 * 1000 * 1000)=1.0758 \times 10^{-8}$
$T(N) / F(N)=2132.2464 /(5000 * 5000 * 5000)=1.0757 \times 10^{-8}$
$T(N) / F(N)=17057.971 /(10000 * 10000 * 10000)=1.0757 \times$ 10^{-8}
$T(N) / F(N)=2132246.375 /(50000 * 50000 * 50000)=1.0757 \times$ 10^{-8}

The calculated values converge to a positive constant $\left(1.0757 \times 10^{-8}\right)$ - so the estimate of $O\left(n^{3}\right)$ is a good estimate.

Example 2

Consider the following table of data obtained from running an instance of an algorithm assumed to be quadratic. Decide if the Big-Oh estimate, $\mathrm{O}\left(\mathrm{N}^{2}\right)$ is accurate.

Run	\mathbf{N}	$\mathbf{T}(\mathbf{N})$
1	100	0.00012 ms
2	1000	0.03389 ms
3	10000	10.6478 ms
4	100000	2970.0177 ms
5	1000000	938521.971 ms

$$
\begin{aligned}
& T(N) / F(N)=0.00012 /(100 * 100)=1.6 \times 10^{-8} \\
& T(N) / F(N)=0.03389 /(1000 * 1000)=3.389 \times 10^{-8} \\
& T(N) / F(N)=10.6478 /(10000 * 10000)=1.064 \times 10^{-7} \\
& T(N) / F(N)=2970.0177 /(100000 * 100000)=2.970 \times 10^{-7} \\
& T(N) / F(N)=938521.971 /(1000000 * 1000000)=9.385 \times 10^{-7}
\end{aligned}
$$

The values diverge, so $O\left(n^{2}\right)$ is an underestimate.

Limitations of Big-Oh Notation

1) not useful for small sizes of input sets
2) omission of the constants can be misleading - example $2 \mathrm{~N} \log \mathrm{~N}$ and 1000 N , even though its growth rate is larger the first function is probably better. Constants also reflect things like memory access and disk access.
3) assumes an infinite amount of memory - not trivial when using large data sets
4) accurate analysis relies on clever observations to optimize the algorithm.

Growth Rates of Various Functions

The table below illustrates how various functions grow with the size of the input n.

Assume that the functions shown in this table are to be executed on a machine which will execute a million instructions per second. A linear function which consists of one million instructions will require one second to execute. This same linear function will require only 4×10^{-5} seconds (40 microseconds) if the number of instructions (a function of input size) is 40. Now consider an exponential function.

\log n	V_{n}	n	$n \log n$	n^{2}	n^{3}	2^{n}
0	1	1	0	1	1	2
1	1.4	2	2	4	8	4
2	2	4	8	16	64	16
3	2.8	8	24	64	512	256
4	4	16	64	256	4096	65,536
5	5.7	32	160	1024	32,768	$4.294 \times \mathbf{1 0}^{9}$
≈ 5.	6.3	40	≈ 212	1600	64000	1.099×10^{12}
3		64	384	4096	262,144	1.844×10^{19}
6	8	64	10^{9}	$\mathrm{NaN}=)$		
~ 10	31.6	1000	9966	10^{6}	$\mathbf{1 0}^{9}$	

The Growth Rate of Functions (in terms of steps in the algorithm)

When the input size is 32 approximately 4.3×10^{9} steps will be required (since $2^{32}=4.29 \times 10^{9}$). Given our system performance this algorithm will require a running time of approximately 71.58 minutes. Now consider the effect of increasing the input size to 40 , which will require approximately 1.1×10^{12} steps (since $2^{40}=1.09 \times 10^{12}$). Given our conditions this function will require about 18325 minutes (12.7 days) to compute. If n is increased to 50 the time required will increase to about 35.7 years. If n increases to 60 the time increases to 36558 years and if \mathbf{n} increases to 100 a total of 4×10^{16} years will be needed!

Suppose that an algorithm takes $T(N)$ time to run for a problem of size N - the question becomes - how long will it take to solve a larger problem? As an example, assume that the algorithm is an $\mathbf{O}\left(\mathbf{N}^{3}\right)$ algorithm. This implies:
$\mathbf{T}(\mathbf{N})=\mathbf{c} \mathbf{N}^{\mathbf{3}}$.

If we increase the size of the problem by a factor of 10 we have: $T(10 N)=c(10 N)^{3}$. This gives us:
$T(10 N)=1000 c N^{3}=1000 T(N)\left(\right.$ since $\left.T(N)=c N^{3}\right)$
Therefore, the running time of a cubic algorithm will increase by a factor of 1000 if the size of the problem is increased by a factor of 10. Similarly, increasing the problem size by another factor of 10 (increasing \mathbf{N} to 100) will result in another 1000 fold increase in the running time of the algorithm (from 1000 to 1×10^{6}).

$$
T(100 N)=c(100 N)^{3}=1 \times 10^{6} c N^{3}=1 \times 10^{6} T(N)
$$

A similar argument will hold for quadratic and linear algorithms, but a slightly different approach is required for logarithmic algorithms. These are shown below.

For a quadratic algorithm, we have $\mathbf{T}(\mathbf{N})=\mathrm{cN}^{2}$. This implies: $T(10 N)=\mathbf{c}(10 N)^{2}$. Expanding produces the form: $T(10 N)=$ $100 \mathrm{cN}^{2}=100 \mathrm{~T}(\mathrm{~N})$. Therefore, when the input size increases by a factor of $\mathbf{1 0}$ the running time of the quadratic algorithm will increase by a factor of $\mathbf{1 0 0}$.

For a linear algorithm, we have $\mathbf{T}(\mathbf{N})=\mathbf{c N}$. This implies:
$T(10 N)=c(10 N)$. Expanding produces the form: $T(10 N)=$
$10 \mathrm{cN}=10 \mathrm{~T}(\mathrm{~N})$. Therefore, when the input size increases by a
factor of 10 the running time of the linear algorithm will
increase by the same factor of $\mathbf{1 0}$.
In general, an f-fold increase in input size will yield an f^{3}-fold increase in the running time of a cubic algorithm, an f^{2}-fold increase in the running time of a quadratic algorithm, and an f-fold increase in the running time of a linear algorithm.

The analysis for the linear, quadratic, cubic (and in general polynomial) algorithms does not work when in the presence of logarithmic terms.

When an $O(N \log N)$ algorithm experiences a 10 -fold increase in input size, the running time increases by a factor which is only slightly larger than 10 . For example, increasing the input by a factor of 10 for an $\mathrm{O}(\mathrm{N} \operatorname{logN})$ algorithm produces: $\mathrm{T}(10 \mathrm{~N})$ $=c(10 N) \log (10 N)$. Expanding this yields: $T(10 N)=10 c N$ $\log (10 N)=10 c N \log 10+10 c N \log N=10 T(N)+c^{\prime} N \quad\left(\right.$ where $c^{\prime}=$ 10clog10). As N gets very large, the ratio $T(10 N) / T(N)$ gets closer to $10\left(\right.$ since $c^{\prime} N / T(N) \approx(10 \log 10) / \log N$ gets smaller and smaller as \mathbf{N} increases.

The above analysis implies, for a logarithmic algorithm, if the algorithm is competitive with a linear algorithm for a sufficiently large value of \mathbf{N}, it will remain so for slightly larger N.

