
Backtracking

Backtracking is a technique used to solve problems with a

large search space, that systematically tries and eliminates

possibilities.

A standard example of backtracking would be going through a

maze. At some point in a maze, you might have two options of

which direction to go:

 Junction

 ------------------------ portion A

 |

 |

 |

 portion B

One strategy would be to try going through portion A of the

maze. If you get stuck before you find your way out, then you

"backtrack" to the junction. At this point in time you know

that portion A will NOT lead you out of the maze, so you then

start searching in portion B.

Clearly, at a single junction you could have even more than

two choices. The backtracking strategy says to try each choice,

one after the other, if you ever get stuck, "backtrack" to the

junction and try the next choice. If you try all choices and

never found a way out, then there IS no solution to the maze.

Eight Queens Problem

The problem is specified as follows:

Find an arrangement of eight queens on a single chess board

such that no two queens are attacking one another.

In chess, queens can move all the way down any row, column

or diagonal (so long as no pieces are in the way).

Due to the first two restrictions, it's clear that each row and

column of the board will have exactly one queen.

The backtracking strategy is as follows:

1) Place a queen on the first available square in row 1.

2) Move onto the next row, placing a queen on the first

available square there (that doesn't conflict with the previously

placed queens).

3) Continue in this fashion until either (a) you have solved the

problem, or (b) you get stuck. When you get stuck, remove the

queens that got you there, until you get to a row where there is

another valid square to try.

When we carry out backtracking, an easy way to visualize

what is going on is a tree that shows all the different

possibilities that have been tried.

Consider the following page with a visual representation of

solving the 4 Queens problem (placing 4 queens on a 4x4 board

where no two attack one another).

 _ _ _ _

 _ _ _ _

 _ _ _ _

 _ _ _ _

 / \

 Q _ _ _ _ _ _ _

 _ _ _ _ Q_ _ _

 _ _ _ _ _ _ _ _

 _ _ _ _ _ _ _ _

 / | \ /

 Q _ _ _ Q _ _ _ STUCK _ _ _ _

 _ _ _ _ _ _ _ _ (NO MORE Q_ _ _

 _ Q_ _ _ _ _ _ OPTIONS _ _ _ _

 _ _ _ _ _ Q _ _ ON COL 2) _ Q_ _

 / / |

STUCK(1) Q _ _ _ _ _ Q _

 _ _ Q_ Q_ _ _

 _ _ _ _ _ _ _ _

 _ Q_ _ _ Q_ _

 |

 STUCK(2) |

 _ _ Q _

 Q_ _ _

 _ _ _ Q

 _ Q_ _

 DONE!(3)

The neat thing about coding up backtracking, is that it can be

done recursively, without having to do all the bookkeeping at

once.

Instead, the stack or recursive calls does most of the

bookkeeping (ie, keeping track of which queens we've placed,

and which combinations we've tried so far, etc.)

Here is some code that is at the heart of the eight queens

solution:

void solveItRec(int perm[], int location, int usedList[]) {

 int i;

 // We've found a solution to the problem, so print it!

 if (location == SIZE)

 printSol(perm);

 // Loop through possible locations for the next queen

 for (i=0; i<SIZE; i++) {

 // Only try this row if it hasn't been used.

 if (usedList[i] == 0) {

 // We can actually place this particular queen

 if (!conflict(perm, location, i)) {

 // Place the new queen!

 perm[location] = i;

 // We've used this row now, so mark that.

 usedList[i] = 1;

 // Recursively solve this board.

 solveItRec(perm, location+1, usedList);

 // Unselect this square, so that we can

 // fill it with the next possible choice.

 usedList[i] = 0;

 }

 }

 }

}

Sudoku and Backtracking

Another common puzzle that can be solved by backtracking is

a Sudoku puzzle. The basic idea behind the solution is as

follows:

1) Scan the board to look for an empty square that could take

on the fewest possible values based on the simple game

constraints.

2) If you find a square that can only be one possible value, fill it

in with that one value and continue the algorithm.

3) If no such square exists, place one of the possible numbers

for that square in the number and repeat the process.

4) If you ever get stuck, erase the last number placed and see if

there are other possible choices for that slot and try those next.

Mazes and Backtracking

A final example of something that can be solved using

backtracking is a maze. From your start point, you will iterate

through each possible starting move. From there, you

recursively move forward. If you ever get stuck, the recursion

takes you back to where you were, and you try the next

possible move.

In dealing with a maze, to make sure you don't try too many

possibilities, one should mark which locations in the maze have

been visited already so that no location in the maze gets visited

twice. (If a place has already been visited, there is no point in

trying to reach the end of the maze from there again.

