
Base Conversion 

 
Our regular counting system is the decimal (base 10) system. This is 

because we use 10 distinct digits, zero through nine. In general, the 

numerical value of a number is what you were taught in elementary 

school. For example, 

 

2713 = 2 x 103 + 7 x 102 + 1 x 101 + 3 x 100 

 

Each digit’s value is determined by which place it’s in. Each place is 

a perfect power of the base, with the least significant at the end, 

counting up by one as you go through the number from right to left. 

 

Although this seems to be the only possible number system, it turns 

out that the number of digits used is arbitrary. We could have just 

as easily chose to use 5 digits (0 – 4), in which case the value of a 

number would be as follows: 

 

3145 = 3 x 52 + 1 x 51 + 4 x 50 = 8410. 

 

Thus, this is how we convert from a different base to base 10. In 

general, we can write our conversion as follows: 

 

dn-1dn-2…d2d1d0 (in base b) = dn-1xbn-1 + dn-2xbn-2 + … + d2xb2 + d1xb + d0 

 

(Note, b raised to the 1 and 0 powers were simplified above.) 

 

Let’s look at a couple quick examples: 

 

7819 = 7x92 + 8x91 + 1x90 = 64010 

 

11101012 = 1x26 + 1x25 + 1x24 + 0x23 + 1x22 + 0x21 + 1x20 = 11710 

 

(Note: Base 2 is so common, it has a name: binary.) 



Hexadecimal and conversion from Hexadecimal to Binary 

 
The most common base with more than 10 digits is base 16, or 

hexadecimal. The sixteen digits used in this base are 

0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F, with A = 10, B = 11, C = 12, D = 13, 

E = 14 and F = 15. 

 

Although everything internally in a computer is stored in base 2 

(binary), often times when we view the contents of memory or are 

assigning values (such as RGB values for colors), we actually view 

numbers in hexadecimal. This is one reason why it’s important to be 

familiar with and be able to convert to and from hexadecimal to 

other bases. In particular, the easiest conversions are to and from 

other bases that are also perfect powers to 2.  

 

Note that converting from base 16 to base 10 is done exactly as 

shown on the previous page. Consider the following example: 

 

A3D16 = Ax162 + 3x161 + D = 10x162 + 3x16 + 13 = 262110. 

 

Since 16 is a perfect power of two, converting to base 2 is relatively 

easy, because each hexadecimal digit is perfectly represented by 4 

binary digits (since 16 = 24.) Here’s a chart with the conversions 

between each hexadecimal digit and base two: 

 

Hex 0 1 2 3 4 5 6 7 

Bin 0000 0001 0010 0011 0100 0101 0110 0111 

Hex 8 9 A B C D E F 

Bin 1000 1001 1010 1011 1100 1101 1110 1111 

 

Thus, A3D16 = 1010 0011 11012. 

 



Converting from Decimal to Another Base 

 
Now, let’s consider the problem of being given a number in decimal 

and having to convert it to another base, say binary. Let’s use the 

example of converting 117. We know that 

 

11710 = d6x26
 + d5x25 + d4x24 + d3x23 + d2x22 + d1x21 + d0x20  

 

where each digit is either a 0 or a 1. (Technically we don’t yet know 

how many digits the final answer will be in base two.) 

 

But, with very little calculation, here is what we CAN determine: 

 

All of the terms on the right-hand side are divisible by 2 except for 

the last. Notice that 117%2 = 1. Now, consider calculating the 

remainder when you divide the right-hand side by 2. All of the terms 

except for the last leave a remainder of 0 since 2 divides evenly into 

these terms. Thus, we know that d0 = 117%2. 

 

Now, consider dividing the right-hand side by 2, using int. division: 

 

  d6x25
 + d5x24 + d4x23 + d3x22 + d2x21 + d1x20  

 

This number must equal 117/2 = 58. From this point on, we can 

repeat the process to determine d1, which is 58%2 = 0, then d2, etc. 

Here is the whole example worked out: 

 

117 % 2 = 1 (d0) 117/2 = 58  Now, read the answer from the 

58   % 2 = 0 (d1) 58/2   = 29  bottom up: 1110101. 

29   % 2 = 1 (d2) 29/2   = 14 

14   % 2 = 0 (d3) 14/2    =  7 

7     % 2 = 1 (d4) 7/2      = 3 

3     % 2 = 1 (d5) 3/2      = 1 

1     % 2 = 1 (d6) 1/2      = 0 (we can stop) 



Although the example above was worked out for base 2, none of the 

logic used was specific to base 2. The same logic would apply any 

other base. When you mod by the base on the right-hand side, all 

terms drop out except for the last digit. Thus, repeated mod and 

dividing operations by the value of the base will extract each digit in 

the converted number, in reverse order. 

 

Let’s look at a couple more examples: 

 

38110 = ____ 16 

 

381 % 16 = 13 (D) 381/16 = 23 

23   % 16 =   7   23/16    = 1 

1     % 16  =  1  1/16      = 0, so 38110 = 17D16. 

 

17510 = ____ 3 

 

175 % 3 = 1  175/3 = 58 

58   % 3 = 1  58/3   = 19 

19   % 3 = 1  19/3   = 6 

6     % 3 = 0                6/3    = 2 

2     % 3 = 2  2/3     = 0, so 17510 = 201113. 

 



Converting from any base (B1) to any other base (B2) where 

neither base is base 10 

 

To convert from any base (B1) to any other base (B2, except for base 

10), use a two step process: 

 

1) Convert from base B1 to base 10. 

2) Convert from base 10 to base B2. 

 

This should be fairly clear and straight-forward since it’s literally 

putting together the two algorithms shown in this lecture. 

 

If you are converting between two bases that are perfect powers of 

2, the following procedure works more quickly: 

 

1) Convert from base B1 to base 2. 

2) Convert from base 2 to base B2. 

 

Consider the following example: 

 

A3D16 = ____ 8 

 

We have already done step 1 previously, and found that 

 

A3D16 = 1010 0011 11012. 

 

Now, we must convert the right-hand side to base 8. Remember that 

8 = 23, so that three binary digits perfectly represent one octal (term 

for base 8) digit. Group the binary digits in sets of three, from right 

to left, and then convert each set of three binary digits to its octal 

equivalent. 

 

101   000   111   1012 = 50758 



 

Why the base conversion between bases of powers of 2 works 

 
This example, drawn out should clarify why the base conversion 

works: 

 

A3D16 = 10x162 + 3x161 + 13x160 

            = (1x23 + 0x22 + 1x21 + 0x20)x162 + 

       (0x23 + 0x22 + 1x21 + 1x20)x161 + 

      (1x23 + 1x22 + 0x21 + 1x20) 

 

            =(1x23 + 0x22 + 1x21 + 0x20)x28 + 

       (0x23 + 0x22 + 1x21 + 1x20)x24 + 

      (1x23 + 1x22 + 0x21 + 1x20), by rewriting 16 as a power of 2. 

 

          =  1x211 + 0x210 + 1x29 + 0x28  + 

      0x27 + 0x26 + 1x25 + 1x24    + 

     1x23 + 1x22 + 0x21 + 1x20 

= 1010001111012. 

 

Note that this only works when one base is a perfect power of the 

second base. 

 

The reverse transformation, grouping three binary digits at a time 

and replacing them with one octal digit is very similar to the one 

above. (The same issue is true for this transformation; it only works 

when the second base is a perfect power of the first.) 

 


