

Traversal of a Binary Tree

To analyze traversing a binary tree, we will assume that we

already have a binary tree that is filled. (Inserting nodes into a

binary tree is no easy task.)

Also, traversing a binary tree itself isn’t trivial. In a linked list

it was clear that the nodes were in some sort of order and we

could go to each node in that order. With a binary tree, that

order is suddenly not so clear.

Once again, we will have to think about this problem

recursively. (Even though you can do linked list traversals

iteratively without much pain, the same can not be said of

traversing a binary tree, take my word for it!)

Consider the three components of a binary tree:

1) A node, (the root node)

2) A left subtree

3) A right subtree

We can traverse these 3 components in any order that we want.

(Typically however, the left subtree is traversed before the

right subtree, which leaves us three options to traverse a

binary tree.)

Inorder Binary Tree Traversal

An inorder tree traversal visits the three parts of the tree in

this order:

1) left subtree

2) root node

3) right subtree

This traversal is the most common because it is typically used

to go through a sorted list in order stored in a binary tree.

Here is a function that prints out all the data values stored in a

binary tree, using an inorder traversal. The code is going to

look simple, but what is going on is quite complex.

// Performs inorder tree traversal on binary tree, and prints

// out data values in each node in that order.
void inorder(tree_node *current_ptr)

 if (current_ptr != NULL) {

 inorder(current_ptr->left);

 printf("%d ", current_ptr->data);

 inorder(current_ptr->right);

 }

}

Preorder Binary Tree Traversal

// Performs preorder tree traversal on binary tree, and prints

// out data values in each node in that order.
void preorder(tree_node *current_ptr)

 if (current_ptr != NULL) {

 printf("%d ", current_ptr->data);

 preorder(current_ptr->left);

 prerder(current_ptr->right);

 }

}

Postorder Binary Tree Traversal

// Performs inorder tree traversal on binary tree, and prints

// out data values in each node in that order.
void postorder(tree_node *current_ptr)

 if (current_ptr != NULL) {

 postorder(current_ptr->left);

 postorder(current_ptr->right);

 printf("%d ", current_ptr->data);

 }

}

Searching a valid Binary Search Tree

Here's the algorithm:

1) If the tree is NULL, return false.

2) Check the root node. If the value is there, return true!

3) If not, if the value is less than that stored in the root node,

recursively search in the left subtree.

4) Otherwise, recursively search in the right subtree.

Here is the corresponding code:

int search(struct tree_node *current_ptr,

int val) {

 if (current_ptr == NULL) return 0;

 if (val < current_prt->data)

 return Find(current_ptr->left, val);

 else if (val > current_ptr->data)

 return Find(current_ptr->right, val);

 return 1;

}

