
Inserting a Node into a Binary Tree

As you might imagine, inserting a node into a binary search

tree is somewhat similar to searching for a node. In some sense,

you "trace out" the same path. Thus, if we are to insert a node

recursively, here is our basic strategy:

1) If the tree is empty, just return a pointer to a node

containing the new value.

2) Otherwise, see which subtree the node should be inserted by

comparing the value to insert with the value stored at the root.

3) Based on this comparison, recursively either insert into the

left subtree, or into the right subtree.

This basic plan is just fine, but we'll have to slightly modify it

to account for a couple details:

Just like the linked list code, we will be returning a pointer to

the root of the tree. (This is necessary in the cases where the

root of the tree changes. If we don't do this, we must pass in a

double pointer.)

We should not attempt to directly insert into an "empty tree"

unless the initial tree is empty. This may sound strange, but

essentially, we don't want to "lose" our link to the tree through

a recursive call on a NULL node.

To do this, once we decide to go right or left, we have one more

decision to make:

Is that link NULL? If so, attach the node w/o a recursive call.

If not, make the recursive call.

Arup
Typewritten Text

Arup
Typewritten Text
typo: current_ptr->right

Summing the nodes in a binary tree

We can really use any of the traversals to implement this. All

we need to do add the values from the three portions of the

three together and return this answer. Notice how succinct this

code is!

int add(tree_node *current_ptr) {

 if (current_ptr == NULL) return 0;

 return current_ptr->data+Add(current_ptr->left)+

 Add(current_prt->right);

}

Search of an arbitrary binary tree

We have already looked at searching for a node in a binary

search tree. Now consider the problem if the tree is NOT a

binary search tree. This time, we must recursively search both

subtrees after looking at the root node. (Also, a traversal could

be very easily adapted for this task!)

int search(tree_node *current_ptr, int val) {

 if (current_ptr == NULL) return 0;

 if (current_ptr->data == val) return 1;

 return search(current_ptr->left, val) ||

 search(current_ptr->right, val));

}

Height of an arbitrary binary tree

The height of a binary tree is defined as the longest path from

the root to any leaf node. An empty tree has height -1 and a

tree with 1 node has height 0. When we view it recursively, we

want the heights of both the left and right subtrees, and

between those, we only care about the taller one.

int height(tree_node *current_ptr) {

 if (current_ptr == NULL) return -1;

 int leftH = height(current_ptr->left);

 int rightH = height(current_ptr->right);

 if (leftH > rightH)

 return 1 + leftH;

 return 1 + rightH;

}

Class Exercise

Write a function that prints out all the values in a binary tree

that are greater than or equal to a value passed to the function.

(The tree may not be a binary search tree.) Here is the

prototype:

void PrintBig(tree_node *current_ptr, int value);

