
Bitwise Operators 

 
We commonly use the binary operators && and ||, which take the 

logical and and logical or of two boolean expressions. 

 

Since boolean logic can work with single bits, C provides operators 

that work on individual bits within a variable. 

 

As we learned earlier in the semester, if we store an int in binary with 

the value 47, its last eight binary bits are as follows: 

 

00101111 

 

Similarly, 72 in binary is 

 

01001000. 

 

Bitwise operators would take each corresponding bit in the two input 

numbers and calculate the output of the same operation on each set 

of bits. 

 

For example, a bitwise AND is represented with a single ampersand 

sign: &. This operation is carried out by taking the and of two bits. If 

both bits are one, the answer is one. Otherwise, the answer is zero. 

 

Here is the bitwise and operation on 47 and 72: 

 

    0 0 1 0 1 1 1 1 

& 0 1 0 0 1 0 0 0 

--------------------- 

    0 0 0 0 1 0 0 0 (which has a value of 8.) 

 

 

 



Thus, the following code segment has the output 8: 

 
int x = 47, y = 72; 

int z = x & y; 

printf(“%d”, z); 

 

 

Here is a chart of the other bitwise operators: 

 

Function Operator Meaning 

and & 1&1 = 1, rest = 0 

or | 0 | 0 = 0, rest = 1 

xor ^ 1 ^ 0 = 0 ^ 1 = 1 

0 ^ 0 = 1 ^ 1 = 0 

Not (unary operator) ~ ~0 = 1, ~1 = 0 

 

Now, let’s calculate the other bitwise operations between 47 and 72: 

 

    0 0 1 0 1 1 1 1 

|   0 1 0 0 1 0 0 0 

--------------------- 

    0 1 1 0 1 1 1 1 (which has a value of 111.) 

 

    0 0 1 0 1 1 1 1 

^  0 1 0 0 1 0 0 0 

--------------------- 

    0 1 1 0 0 1 1 1 (which has a value of 103.) 



Two’s Complement 

 
In order to understand exactly how the bitwise not operator works on 

integers, we must understand exactly how a signed integer is stored 

inside the computer. Regular binary notation, which we learned 

earlier, is used to store unsigned integers (these don’t allow for 

negative values and are used less frequently than regular ints). 

 

Two’s Complement is used to store regular ints. The storage scheme 

is almost identical to regular binary, except for the meaning of the 

most significant bit. An int is stored using 32 bits. For an unsigned 

number, each of these bits are place-holders with value 231, 230, 229, 

…, 22, 21, and 20. Essentially, if the bit at location i is 1, then we 

contribute 2i to the value of the number. (If it’s 0, nothing changes.) 

In two’s complement, we only change the most significant bit to mean 

-231. 

 

For example, if all of the bits were 1 in a regular int: 

 

11111111 11111111 11111111 11111111 

 

Then, the value of this number would be: 

 

-231 + 230 + 229 + 228 + … + 22 + 21 + 20 = -1. 

 

From here, we can get to other negative values by turning some of the 

bits off. For example, it’s fairly easy to see that -5 would be 

represented as follows: 

 

11111111 11111111 11111111 11111011 

 

Taking into account two’s complement, we can calculate the effect of 

the bitwise not operator. 

 



Consider calculating ~x, where x = 47, from our previous example. 

 

Here is all 32 bits of x: 

 

00000000 00000000 00000000 00101111 

 

Flipping each bit, we get: 

 

11111111 11111111 11111111 11010000 

 

Using a bit of logic, we can see that if we were to have all 1’s the value 

would be -1. But, now that we’ve turned off the bits that add up to 47, 

our new value will be -48. 

 

In essence, we see that in the typical case, when x is positive, ~x is 

equal to –x-1.  

 

Hopefully you can see that if x is negative, then ~x is ALSO –x-1. 

(Thus, ~~x always equals x, as you might imagine.) 



Left and Right Shift Operators 
 

The left-shift operator is <<. 

The right-shift operator is >>. 

 

When we left-shift a value, we must specify how many bits to left-shift 

it. What a left-shift does is move each bit in the number to the left a 

certain number of places. In essence, so long as there is no overflow, 

a left-shift of one bit multiplies a number by two (since each bit will 

be worth twice as much). 

 

It follows that a left shift of 2 bits multiplies a number by 4 and a left 

shift of 3 bits multiples a number by 8. In general, a left-shift of k bits 

multiplies a number by 2k. 



Using bitwise operators to iterate through subsets 

 
Imagine solving the following problem with brute force: 

 

Given an array of values, such as {9, 3, 4, 5, 12}, does there exist a 

subset of values in the array that adds up to a target, say 22? 

 

Our goal would be simply to try EACH possible subset of the array, 

add the values and see if we get the target. If we think about binary 

and look at the binary values from 0 to 31, we have: 

 

00000  01000  10000  11000 

00001  01001  10001  11001 

00010  01010  10010  11010 

00011  01011  10011  11011 

00100  01100  10100  11100 

00101  01101  10101  11101 

00110  01110  10110  11110 

00111  01111  10111  11111 

 

If we assume that 0 means, “don’t put this number in the set” and 1 

means, “put this number in the set, then these 32 listings represent all 

possible subsets of a set of 5 values. 

 

Thus, our idea is as follows: 

 

Loop from 0 to 31, for each value and calculate the sum of the 

corresponding subset. For example, since 13 is 01101, this means that 

the subset we want to add up is array[3], array[2] and array[0]. We 

are using the most significant bit in the number to correspond to the 

last array slot and the least significant bit in the number to 

correspond to index 0 in the array. In this example, when we are 

considering 13, the values we add are 9, 4 and 5 to obtain 18. 

 



Here is the code that does this: 

 

int i, j; 

    int n = 5; 

    int array[] = {9, 3, 4, 5, 12}; 

    int target = 22; 

     

    for (i=0; i < (1 << n); i++) { 

         

        int sum = 0; 

        for (j=0; j < n; j++) 

            if ( (i & (1 << j)) != 0 ) 

                sum += array[j]; 

                 

        if (sum == target) 

            printf(“Can add up to the target!\n”);     

    } 

 

Notes: 

 

1) Remember that a left-shift of n bits multiplies by 2n, so the value of 

1 << n for this example is 25 = 32, as desired. 

 

2) The j loop is going through each array element, trying to decide 

whether or not to add it. The value 1 << j has only one bit set to 1, it’s 

the bit at location j. 

 

3) If we do a bitwise and with a number of the form 000…001000…, 

then our answer will either be all 0s OR it will be the number itself. 

Basically, all of the 0s cancel out the other 31 bits. The one 1 isolates 

that particular bit, which is exactly what we want. 

 

 

 

 



Knapsack Problem and Bitwise Operators 

 

In general, bitwise operators are good with dealing with subsets. The 

knapsack problem is a more general version of the subset sum 

problem. In this problem, you are given items which have both 

weights and values, as well as a target total weight. The goal is to find 

the subset of values that, in total, weighs the target total weight (or in 

some cases is less than or equal to the target), that has maximal value. 

Thus, we can adjust the solution above somewhat. Instead of 

returning whether or not we can achieve a particular target, we could 

simply return the maximal value achieved of any subset equal (or less 

than or equal to that target). This is exactly what is done in the posted 

problem, Knapsack. Here is heart of that code: 

 
int n, i, maxWeight; 

int weights[MAXSIZE]; 

int values[MAXSIZE]; 

 

scanf("%d%d", &n, &maxWeight); 

for (i=0; i<n; i++) scanf("%d%d", &weights[i], &values[i]); 

 

int bestValue = 0, bestSubset = 0, subset; 

 

for (subset=1; subset<(1<<n); subset++) { 

 

    int thisValue = 0, thisWeight = 0; 

 

    for (i=0; i<n; i++) { 

        if ((subset & (1<<i)) != 0) { 

            thisValue += values[i]; 

            thisWeight += weights[i]; 

        } 

    } 

 

    if (thisWeight > maxWeight) continue; 

 

    if (thisValue > bestValue) { 

        bestValue = thisValue; 

        bestSubset = subset; 

    } 

} // end for subset 

 



Correct Answer Recovery Problem and Bitwise Operators 

 

This was a neat problem I made up for a high school programming 

contest. In the problem you are given the test results of a T/F exam of 

your students. (Namely, just a frequency chart of how many students 

got each number of problems correct.) In addition, you know what 

each student answered on each question. The only issue is that you 

lost the correct answers for the exams and don't know which students 

got which grades. Based on the data you have, you want to calculate 

the number of different correct test answers that are possible. 

 

The way to solve this problem is to try each possible answer key. For 

each potential answer key, grade each student's exam. Then, check if 

this set of frequencies matches the overall results of the students. If 

so, we count that potential answer key, otherwise we don't. 

 

The cool thing about this problem is grading the exam. We can store 

the student's answers (the exam had 15 or fewer questions) as a single 

integer. So, for example, the integer 

 

011101010101111 

 

Represents an answer of true on questions 0-3, 5, 7, 9, and 11-13 and 

an answer of false on questions 4, 6, 8, 10 and 14. (Recall that bit 0 is 

all the way over to the right.) 

 

Now, imagine if the answer key was: 

 

110110110001101 

 

To do the grading, take the bitwise xor of these two: 

 

011101010101111 

110110110001101 ⊕ 

---------------------- 



101011100100010 (1 is an incorrect response!) 

So, all we have to do is count the number of bits equal to 1 in the 

binary representation of the xor of the two values and that equals the 

total number of questions the student got wrong. Finally subtract this 

from the total number of questions and we get how many questions 

the student got correct!!! 

 

Here is the heart of the code to the solution to that problem: 

 
for (i=0; i<(1<<numQuestions); i++) { 

 

     int thisFreq[MAXQUESTIONS+1]; 

     for (j=0; j<=MAXQUESTIONS; j++) thisFreq[j] = 0; 

 

     for (j=0; j<numStudents; j++) 

         thisFreq[numQuestions-numBitsOn(i^answers[j])]++; 

 

     res += possible(thisFreq, freq, numQuestions+1); 

} 

 

int numBitsOn(int n) { 

 

    int res = 0; 

 

    while (n > 0) { 

        if ((n&1) != 0) res++; 

        n >>= 1; 

    } 

    return res; 

} 

 

int possible(int* freq1, int* freq2, int length) { 

 

    int i; 

    for (i=0; i<length; i++) 

        if (freq1[i] != freq2[i]) 

            return 0; 

 

    return 1; 

} 
 

 

  



Babysitter Problem and Bitwise Operators 

 

In this problem you are given several possible jobs to take. Each job 

occurs on some set of days and has some payment for the full job. You 

would like to choose a set of jobs such that they do NOT conflict (no 

two jobs scheduled for the same day) that maximizes your payment. 

 

What we'll do for this problem is a bit of overkill, but it will calculate 

every subset of jobs we can do and the payment for each of those 

subsets. 

 

The key idea is as follows: 

 

Let a bitmask stand for a subset of jobs we've done. So, something 

like 0001011, represents that we've done jobs 0, 1 and 3, the bits that 

are on, in this number. These jobs must correspond to a non-

overlapping set of days, let's say this is 111000111, so between the 

three jobs, you would have to work on days 0, 1, 2, 6, 7 and 8. Let's 

assume the payment for this subset of jobs is $500. 

 

Now, consider job 4. Bit 4 is off in 0001011, so we could maybe add it 

to this subset. Let's say this job is on days 3 and 5 and pays $300. The 

bitmask of days for this job is 000101000. To see if we can add this 

job or not, we would take the bitwise and of this number and our 

current set of days we're working: 

 

111000111 & 000101000 = 000000000 

 

This means, if we were to add this job, there would be no day we 

would be working two jobs!!! 

 

If we were to add this job, then our new set of days we are working is 

just the bitwise or of the two: 

 

111000111 | 000101000 = 111101111 



 

And the total amount of money we would make is $500 + $300. Finally 

the corresponding subset of jobs we would be working is: 

 

0011011, since we added job 4 to our old set of jobs 0, 1 and 3. 

 

In the posted code, the bitmask of the subset of jobs is used as an array 

index, and both the corresponding amount for that subset of jobs and 

the bitmask for the days worked are stored in two different arrays: 

money and dayList, respectively. 

 


