
Bitwise Operators

We commonly use the binary operators && and ||, which take the

logical and and logical or of two boolean expressions.

Since boolean logic can work with single bits, C provides operators

that work on individual bits within a variable.

As we learned earlier in the semester, if we store an int in binary with

the value 47, its last eight binary bits are as follows:

00101111

Similarly, 72 in binary is

01001000.

Bitwise operators would take each corresponding bit in the two input

numbers and calculate the output of the same operation on each set

of bits.

For example, a bitwise AND is represented with a single ampersand

sign: &. This operation is carried out by taking the and of two bits. If

both bits are one, the answer is one. Otherwise, the answer is zero.

Here is the bitwise and operation on 47 and 72:

 0 0 1 0 1 1 1 1

& 0 1 0 0 1 0 0 0

 0 0 0 0 1 0 0 0 (which has a value of 8.)

Thus, the following code segment has the output 8:

int x = 47, y = 72;

int z = x & y;

printf(“%d”, z);

Here is a chart of the other bitwise operators:

Function Operator Meaning

and & 1&1 = 1, rest = 0

or | 0 | 0 = 0, rest = 1

xor ^ 1 ^ 0 = 0 ^ 1 = 1

0 ^ 0 = 1 ^ 1 = 0

Not (unary operator) ~ ~0 = 1, ~1 = 0

Now, let’s calculate the other bitwise operations between 47 and 72:

 0 0 1 0 1 1 1 1

| 0 1 0 0 1 0 0 0

 0 1 1 0 1 1 1 1 (which has a value of 111.)

 0 0 1 0 1 1 1 1

^ 0 1 0 0 1 0 0 0

 0 1 1 0 0 1 1 1 (which has a value of 103.)

Two’s Complement

In order to understand exactly how the bitwise not operator works on

integers, we must understand exactly how a signed integer is stored

inside the computer. Regular binary notation, which we learned

earlier, is used to store unsigned integers (these don’t allow for

negative values and are used less frequently than regular ints).

Two’s Complement is used to store regular ints. The storage scheme

is almost identical to regular binary, except for the meaning of the

most significant bit. An int is stored using 32 bits. For an unsigned

number, each of these bits are place-holders with value 231, 230, 229,

…, 22, 21, and 20. Essentially, if the bit at location i is 1, then we

contribute 2i to the value of the number. (If it’s 0, nothing changes.)

In two’s complement, we only change the most significant bit to mean

-231.

For example, if all of the bits were 1 in a regular int:

11111111 11111111 11111111 11111111

Then, the value of this number would be:

-231 + 230 + 229 + 228 + … + 22 + 21 + 20 = -1.

From here, we can get to other negative values by turning some of the

bits off. For example, it’s fairly easy to see that -5 would be

represented as follows:

11111111 11111111 11111111 11111011

Taking into account two’s complement, we can calculate the effect of

the bitwise not operator.

Consider calculating ~x, where x = 47, from our previous example.

Here is all 32 bits of x:

00000000 00000000 00000000 00101111

Flipping each bit, we get:

11111111 11111111 11111111 11010000

Using a bit of logic, we can see that if we were to have all 1’s the value

would be -1. But, now that we’ve turned off the bits that add up to 47,

our new value will be -48.

In essence, we see that in the typical case, when x is positive, ~x is

equal to –x-1.

Hopefully you can see that if x is negative, then ~x is ALSO –x-1.

(Thus, ~~x always equals x, as you might imagine.)

Left and Right Shift Operators

The left-shift operator is <<.

The right-shift operator is >>.

When we left-shift a value, we must specify how many bits to left-shift

it. What a left-shift does is move each bit in the number to the left a

certain number of places. In essence, so long as there is no overflow,

a left-shift of one bit multiplies a number by two (since each bit will

be worth twice as much).

It follows that a left shift of 2 bits multiplies a number by 4 and a left

shift of 3 bits multiples a number by 8. In general, a left-shift of k bits

multiplies a number by 2k.

Using bitwise operators to iterate through subsets

Imagine solving the following problem with brute force:

Given an array of values, such as {9, 3, 4, 5, 12}, does there exist a

subset of values in the array that adds up to a target, say 22?

Our goal would be simply to try EACH possible subset of the array,

add the values and see if we get the target. If we think about binary

and look at the binary values from 0 to 31, we have:

00000 01000 10000 11000

00001 01001 10001 11001

00010 01010 10010 11010

00011 01011 10011 11011

00100 01100 10100 11100

00101 01101 10101 11101

00110 01110 10110 11110

00111 01111 10111 11111

If we assume that 0 means, “don’t put this number in the set” and 1

means, “put this number in the set, then these 32 listings represent all

possible subsets of a set of 5 values.

Thus, our idea is as follows:

Loop from 0 to 31, for each value and calculate the sum of the

corresponding subset. For example, since 13 is 01101, this means that

the subset we want to add up is array[3], array[2] and array[0]. We

are using the most significant bit in the number to correspond to the

last array slot and the least significant bit in the number to

correspond to index 0 in the array. In this example, when we are

considering 13, the values we add are 9, 4 and 5 to obtain 18.

Here is the code that does this:

int i, j;

 int n = 5;

 int array[] = {9, 3, 4, 5, 12};

 int target = 22;

 for (i=0; i < (1 << n); i++) {

 int sum = 0;

 for (j=0; j < n; j++)

 if ((i & (1 << j)) != 0)

 sum += array[j];

 if (sum == target)

 printf(“Can add up to the target!\n”);

 }

Notes:

1) Remember that a left-shift of n bits multiplies by 2n, so the value of

1 << n for this example is 25 = 32, as desired.

2) The j loop is going through each array element, trying to decide

whether or not to add it. The value 1 << j has only one bit set to 1, it’s

the bit at location j.

3) If we do a bitwise and with a number of the form 000…001000…,

then our answer will either be all 0s OR it will be the number itself.

Basically, all of the 0s cancel out the other 31 bits. The one 1 isolates

that particular bit, which is exactly what we want.

Knapsack Problem and Bitwise Operators

In general, bitwise operators are good with dealing with subsets. The

knapsack problem is a more general version of the subset sum

problem. In this problem, you are given items which have both

weights and values, as well as a target total weight. The goal is to find

the subset of values that, in total, weighs the target total weight (or in

some cases is less than or equal to the target), that has maximal value.

Thus, we can adjust the solution above somewhat. Instead of

returning whether or not we can achieve a particular target, we could

simply return the maximal value achieved of any subset equal (or less

than or equal to that target). This is exactly what is done in the posted

problem, Knapsack. Here is heart of that code:

int n, i, maxWeight;

int weights[MAXSIZE];

int values[MAXSIZE];

scanf("%d%d", &n, &maxWeight);

for (i=0; i<n; i++) scanf("%d%d", &weights[i], &values[i]);

int bestValue = 0, bestSubset = 0, subset;

for (subset=1; subset<(1<<n); subset++) {

 int thisValue = 0, thisWeight = 0;

 for (i=0; i<n; i++) {

 if ((subset & (1<<i)) != 0) {

 thisValue += values[i];

 thisWeight += weights[i];

 }

 }

 if (thisWeight > maxWeight) continue;

 if (thisValue > bestValue) {

 bestValue = thisValue;

 bestSubset = subset;

 }

} // end for subset

Correct Answer Recovery Problem and Bitwise Operators

This was a neat problem I made up for a high school programming

contest. In the problem you are given the test results of a T/F exam of

your students. (Namely, just a frequency chart of how many students

got each number of problems correct.) In addition, you know what

each student answered on each question. The only issue is that you

lost the correct answers for the exams and don't know which students

got which grades. Based on the data you have, you want to calculate

the number of different correct test answers that are possible.

The way to solve this problem is to try each possible answer key. For

each potential answer key, grade each student's exam. Then, check if

this set of frequencies matches the overall results of the students. If

so, we count that potential answer key, otherwise we don't.

The cool thing about this problem is grading the exam. We can store

the student's answers (the exam had 15 or fewer questions) as a single

integer. So, for example, the integer

011101010101111

Represents an answer of true on questions 0-3, 5, 7, 9, and 11-13 and

an answer of false on questions 4, 6, 8, 10 and 14. (Recall that bit 0 is

all the way over to the right.)

Now, imagine if the answer key was:

110110110001101

To do the grading, take the bitwise xor of these two:

011101010101111

110110110001101 ⊕

101011100100010 (1 is an incorrect response!)

So, all we have to do is count the number of bits equal to 1 in the

binary representation of the xor of the two values and that equals the

total number of questions the student got wrong. Finally subtract this

from the total number of questions and we get how many questions

the student got correct!!!

Here is the heart of the code to the solution to that problem:

for (i=0; i<(1<<numQuestions); i++) {

 int thisFreq[MAXQUESTIONS+1];

 for (j=0; j<=MAXQUESTIONS; j++) thisFreq[j] = 0;

 for (j=0; j<numStudents; j++)

 thisFreq[numQuestions-numBitsOn(i^answers[j])]++;

 res += possible(thisFreq, freq, numQuestions+1);

}

int numBitsOn(int n) {

 int res = 0;

 while (n > 0) {

 if ((n&1) != 0) res++;

 n >>= 1;

 }

 return res;

}

int possible(int* freq1, int* freq2, int length) {

 int i;

 for (i=0; i<length; i++)

 if (freq1[i] != freq2[i])

 return 0;

 return 1;

}

Babysitter Problem and Bitwise Operators

In this problem you are given several possible jobs to take. Each job

occurs on some set of days and has some payment for the full job. You

would like to choose a set of jobs such that they do NOT conflict (no

two jobs scheduled for the same day) that maximizes your payment.

What we'll do for this problem is a bit of overkill, but it will calculate

every subset of jobs we can do and the payment for each of those

subsets.

The key idea is as follows:

Let a bitmask stand for a subset of jobs we've done. So, something

like 0001011, represents that we've done jobs 0, 1 and 3, the bits that

are on, in this number. These jobs must correspond to a non-

overlapping set of days, let's say this is 111000111, so between the

three jobs, you would have to work on days 0, 1, 2, 6, 7 and 8. Let's

assume the payment for this subset of jobs is $500.

Now, consider job 4. Bit 4 is off in 0001011, so we could maybe add it

to this subset. Let's say this job is on days 3 and 5 and pays $300. The

bitmask of days for this job is 000101000. To see if we can add this

job or not, we would take the bitwise and of this number and our

current set of days we're working:

111000111 & 000101000 = 000000000

This means, if we were to add this job, there would be no day we

would be working two jobs!!!

If we were to add this job, then our new set of days we are working is

just the bitwise or of the two:

111000111 | 000101000 = 111101111

And the total amount of money we would make is $500 + $300. Finally

the corresponding subset of jobs we would be working is:

0011011, since we added job 4 to our old set of jobs 0, 1 and 3.

In the posted code, the bitmask of the subset of jobs is used as an array

index, and both the corresponding amount for that subset of jobs and

the bitmask for the days worked are stored in two different arrays:

money and dayList, respectively.

