
Dynamically Allocated Memory in C

All throughout the C course (COP 3223), all examples of

variable declarations were statically allocated memory. The

word “static” means “not changing” while the word

“dynamic” means “changeable,” roughly speaking.

In regards to memory, what this means is as follows:

(1) static – the memory requirements are known at compile-

time. Namely, after a program compiles, we can perfectly

predict how much memory will be needed and when for

statically allocated variables. The input the program may

receive on different executions of the code will NOT affect how

much memory is allocated. One serious consequence of this is

that any statically allocated variable can only have its memory

reserved while the function within which it was declared is

running. For example, if you declare an int x in function A, if

function A has completed, no memory is reserved to store x

anymore.

(2) dynamic – the memory requirements are NOT known (for

sure) at compile-time. It may be the case that on different

executions of the program, different amounts of memory are

allocated; thus, the input may affect memory allocation.

If you want to allocate memory in one function, and have that

memory available after the function is completed, you HAVE to

allocate memory dynamically in that function!!!

Secondly, since dynamically allocated memory isn’t “freed”

automatically at the end of the function within which it’s

declared, this shifts the responsibility of freeing the memory to

the user. This can be done with the free function.

malloc, calloc functions

Here are the formal descriptions of the two functions we will

typically use to allocate memory dynamically:

// Allocates unused space for an object

// whose size in bytes is specified by size

// and whose value is unspecified, and

// returns a pointer to the beginning of the

// memory allocated. If the memory can’t be

// found, NULL is returned.

void *malloc(size_t size);

// Allocates an array of size nelem with

// each element of size elsize, and returns

// a pointer to the beginning of the memory

// allocated. The space shall be initialized

// to all bits 0. If the memory can't be

// found, NULL is returned.

void *calloc(size_t nelem, size_t elsize);

Although these specifications seem confusing, they basically

say that you need to tell the function how many bytes to

allocate (how you specify this to the two functions is different)

and then, if the function successfully finds this memory, a

pointer to the beginning of the block of memory is returned. If

unsuccessful, NULL is returned.

Dynamically Allocated Arrays

Sometimes you won't know how big an array you will need for

a program until run-time. In these cases, you can dynamically

allocated space for an array using a pointer. Consider the

following program that reads from a file of numbers. We will

assume that the first integer in the file stores how many

integers are in the rest of the file.

The program on the following page only reads in all the values

into the dynamically allocated array and then print these

values out in reverse order.

Note that actual parameter passed to the malloc function. We

must specify the total number of bytes we need for the array.

This number is the product of the number of array elements

and the size (in bytes) of each array element.

It should be fairly easy to see how we can change the code

below to utilize calloc instead of malloc. In this particular

example, since there is no need to initialize the whole block of

memory to 0, there’s no obvious advantage to using calloc. But,

when you want to initialize all the memory locations to 0, it

makes sense to use calloc, since this function takes care of that

task.

#include <stdio.h>

int main() {

 int *p, size, i;

 FILE *fp;

 // Open the input file.

 fp = fopen("input.txt", "r");

 // Read in all the numbers into the array.

 fscanf(fp, "%d", &size);

 p = (int *)malloc(size*sizeof(int));

 for (i = 0; i<size; i++)

 fscanf(fp, "%d", &p[i]);

 // Print out the array elements backwards.

 for (i = size-1; i>=0; i++)

 printf("%d\n", p[i]);

 // Close the file and free memory.

 free(p);

 fclose(fp);

 return 0;

}

A couple notes about pointers and dynamic arrays

The return type of malloc is void*. This means that the return

type for malloc must be casted to the type of the pointer that

will be pointing to the allocated memory.

The reason for this is so that malloc can be used to allocate

memory for all types of structures. If malloc returned an int *,

then we couldn't use it to allocate space for a character array,

for example.

Instead, all malloc does is return a memory location w/o any

specification as to what is going to be stored in that memory.

Thus, the programmer should (the book says it isn't necessary,

but the gcc compiler will give you a warning if you don't do

this) cast the return value from malloc to the type they want.

All this cast really does is specify the memory to be broken into

"chunks" in a particular way. (Once we know what we are

pointing to, we know how many contiguous memory locations

stores a piece of data of the array.)

Although I haven't specified above, it is possible for malloc to

fail to find the necessary memory in the heap. If this occurs,

malloc returns NULL. A good programming practice is to

check for this after each malloc call.

I've never had a malloc call fail. But, the potential is there if

you do NOT free memory when possible. Once you are done

using a dynamic data structure, use the free function to free

that memory so that it can be used for other purposes.

realloc
Sometimes, what may occur is that an array gets filled, but you

want to "extend" it because more elements must be stored.

Based on the method of dynamic memory allocation already

discussed, this could be solved in the following manner:

1) Allocate new memory larger than the old memory.

2) Copy over all the values from the old memory to the new.

3) Free the old memory.

4) Now we can add new values to the new memory.

We can avoid this extra work through a function that does it

for us, realloc.

void *realloc(void *ptr, size_t size);

Here's the description from the IEEE standards web page

about this function:

The realloc() function shall change the size of the memory

object pointed to by ptr to the size specified by size. The

contents of the object shall remain unchanged up to the lesser

of the new and old sizes. If the new size of the memory object

would require movement of the object, the space for the

previous instantiation of the object is freed. If the new size is

larger, the contents of the newly allocated portion of the object

are unspecified. If size is 0 and ptr is not a null pointer, the

object pointed to is freed. If the space cannot be allocated, the

object shall remain unchanged.

Roughly speaking, in most cases, realloc, when called

appropriately, simply extends the size of an existing array. The

description basically describes the various contingencies of

what occurs in atypical situations.

Short Example of realloc

#include <stdio.h>

#include <time.h>

#define EXTRA 10

int main() {

 int numVals;

 srand(time(0));

 printf("How many numbers do you want to pick?\n");

 scanf("%d", &numVals);

 int* values = (int*)malloc(numVals*sizeof(int));

 int i;

 for (i=0; i<numVals; i++)

 values[i] = rand()%100;

 for (i=0; i<numVals; i++)

 printf("%d ", values[i]);

 printf("\n");

values = (int*)realloc(values,(numVals+EXTRA)*sizeof(int));

 for (i=0; i<EXTRA; i++)

 values[i+numVals] = rand()%100;

 numVals += EXTRA;

 for (i=0; i<numVals; i++)

 printf("%d ", values[i]);

 printf("\n");

 free(values);

 return 0;

}

How to create a dynamically allocated array in a

function

The key idea is very similar to doing this task in main, but you

have to return a pointer to the array created.

Here is an example of how we can take the first example and

separate out the array allocation into a function:

int* readArray(FILE* fp, int size) {

 int* p = (int *)malloc(size*sizeof(int));

 for (i = 0; i<size; i++)

 fscanf(fp, "%d", &p[i]);

 return p;

}

Here is how we can call this function from main (or any other

function):

fp = fopen("input.txt", "r");

fscanf(fp, "%d", &size);

int* numbers = readArray(fp, size);

Picture-wise, the array gets created while readArray is

running, a pointer to the beginning of the array is returned,

and numbers (from main), is set to point to this newly allocated

memory. To free this memory, do the following in main later:

free(numbers);

How to create a dynamically allocated structure from a

function

We will create the following struct and return a pointer to it

from a function:

struct integer {

 int* digits;

 int size;

};

The following function creates a random struct integer

dynamically and returns a pointer to it:

struct integer* createRandBigInt(int numDigits) {

 struct integer* temp;

 temp = malloc(sizeof(struct integer));

 temp->digits = malloc(numDigits*sizeof(int));

 temp->size = numDigits;

 temp->digits[numDigits-1] = 1 + rand()%9;

 int i;

 for (i=0; i<numDigits-1; i++)

 temp->digits[i] = rand()%10;

 return temp;

}

Notice the that there are two mallocs. The first allocates space

for the struct itself. This space is just enough for one integer

pointer (small amount of space) and one integer.

The second malloc allocates space for the array (this is

potentially a large amount of space).

To properly free the memory from this whole structure,

imagine we had a variable p of type struct integer* pointing to

a struct integer. These two lines would be necessary to free all

the memory for the structure:

free(p->digits);

free(p);

How to create a dynamically allocated array of structs

from a function

This works very, very similar to allocating an int array

dynamically. The only difference is that instead of using int,

you use the struct, appropriately in those locations. We will be

using the following struct in this example:

struct point {

 int x;

 int y;

};

Here is a function that creates an array of struct point

dynamically (filled with random points) and returns a pointer

to the front of the array:

struct point* createRandPoints(int size, int maxVal) {

 struct point* temp;

 temp = (struct point*)malloc(size*sizeof(struct point));

 int i;

 for (i=0; i<size; i++) {

 temp[i].x = 1 + rand()%maxVal;

 temp[i].y = 1 + rand()%maxVal;

 }

 return temp;

}

Notice that we only have one malloc, for the array itself. This

allocates all of the space we need in one step.

Once the space is allocated, we treat each array location as an

individual struct, using . to access its components. To free this

array, if we had a pointer my_pts pointing to the array, do the

following: free(my_pts);

How to create a dynamically allocated array of pointers

to structs

Effectively, we will accomplish the same general task as the

previous example, but this time, our array elements will only

store a POINTER to the struct instead of the struct itself.

Here is the function:

struct point** createRandPoints(int size, int maxVal) {

 struct point** temp;

 temp = (struct point**)malloc(size*sizeof(struct point*));

 int i;

 for (i=0; i<size; i++) {

 temp[i] = (struct point*)malloc(sizeof(struct point));

 temp[i]->x = 1 + rand()%maxVal;

 temp[i]->y = 1 + rand()%maxVal;

 }

 return temp;

}

First, notice the double pointer – the first is for the array, the

second is for the contents of each array element. (Note: This

same declaration could be used for a 2-D array…)

Our first allocation is for the array. From there, for each array

element, we must allocate space for each individual struct.

Finally, notice the use of the -> since temp[i] is a pointer.

We must free everything in the same fashion (each element

first, then the array). Here is some code to show this process:

struct point** my_pts = createRandPoints(100, 1000);

// Do something with my_pts.

// Frees each individual point pointer.

int i;

for (i=0; i<100; i++)

 free(my_pts->temp[i]);

// Frees the memory that stores the main array.

free(my_pts);

How to create a dynamically allocate a two dimensional

array

Here is some code that allocates a two dimensional array of

integers (or rather, an array of an array of integers) with n

rows and m columns. Assume that n and m are integer

variables that have already been given meaningful values.

int** array = (int**)malloc(sizeof(int*)*n);

int i;

for (i=0; i<n; i++)

 array[i] = (int*)malloc(sizeof(int)*m);

Notice that the first cast is to int** and second set of casts are

to int*. These are the types of array and array[i], respectively.

Also note that we need sizeof(int*) in the first malloc, since

array will be an array of int*, but we need sizeof(int) for the

second set of mallocs, since each array[i] will be an array of

integers.

Now, here is how we free this memory:

for (i=0; i<n; i++)

 free(array[i]);

free(array);

