
The Binary Heap 

 
A binary heap looks similar to a binary search tree, but has a 

different property/invariant that each node in the tree satisfies. 

In a binary heap, all the values stored in the subtree rooted at a 

node are greater than or equal to the value stored at the node.  

 

We can use a binary heap for a couple of things: maintaining a 

priority queue, and performing a heapsort. 

 

To maintain a priority queue, we need efficient findMin and 

deleteMin operations. A priority queue is a queue where you 

always extract the item with the highest priority next. Our 

implementation will achieve O(log n) time for the deleteMin 

and Insert operations. (In a normal queue with just insert 

items and delete them.) 

 

When we maintain a binary heap, we will do so as a complete 

binary tree. (A tree where all levels are filled in completely but 

the last and the last has nodes from left to right.) Interestingly 

enough, we can even store a binary heap in an array instead of 

an actual binary tree. Basically, the children of node i are 

nodes 2i and 2i+1. Consider the picture below, where the first 

item is the node number and the second is the value stored in 

the node: 

 

     1-15 

       /                 \ 

            2-22             3-17 

                                   /       \           /       \ 

                                4-40   5-25   6-18   7-99 

                                /    \     

                            8-88 9-41 

 



Heap Operation: Insert 

 
To do an insertion, consider an existing heap. Since we want to 

keep the heap balanced, we must insert into the following spot 

in the heap. (This would be the next array location if you are 

storing the heap in an array.) 

 

However, the problem is in all likelihood, if the insertion is 

done in this location, the heap property will not be maintained. 

Thus, you must do the following "Percolate Up" procedure: 

 

If the parent of the newly inserted node is greater than the 

inserted value, swap the two of them. This is a single 

"Percolate Up" step. Now, continue this process until the 

inserted node 's parent stores a number lower than it. 

 

One way I like to think about this is consider a new employee 

to a company. Naturally, he/she will be placed at the bottom of 

the totem pole, ie. the last slot in the heap. But then, when 

he/she reports to their boss, they may recognize that the person 

ordering them around is less capable then them. Thus, 

rightfully so, they swap spots with their immediate boss (the 

parent node.) Why doesn't the new employee have to look at 

his "co-worker" who used to have the same boss? Continue 

this until the new employee finds a boss that is indeed his/her 

superior. 

 

Since the height of the tree is O(lg n), this is an O(lg n) 

operation.  

 



Consider inserting 19 into the heap previously shown, first 

place it in index 10, as the left child of 25: 

 

     1-15 

       /                     \ 

            2-22                 3-17 

                               /            \               /       \ 

                             4-40       5-25      6-18   7-99 

                             /     \       /     

                      8-88   9-41 10-19 

 

Now, we can just compare 19 with 25, its parent. (In the array 

representation, we just look at index i/2, where i is the newly 

inserted index.) Since 19 is smaller, we swap: 

 

     1-15 

       /                     \ 

            2-22                 3-17 

                               /            \               /       \ 

                             4-40       5-19      6-18   7-99 

                             /     \       /     

                      8-88   9-41 10-25 

 

Now, we just repeat…compare 19 with its parent, 22, and since 

19 < 22, we swap again: 

 

     1-15 

       /                     \ 

            2-19                 3-17 

                               /            \               /       \ 

                             4-40       5-22      6-18   7-99 

                             /     \       /     

                      8-88   9-41 10-25 

 

Now, comparing 19 to its parent 15, we see 19 is in a valid spot. 



Heap Operation: deleteMin 
 

The first part of a deleteMin operation is quite easy. All you 

have to do is return the value stored in the root. BUT, after you 

find this value, you must also, fix up the heap. This means 

deleting the "last" node of the heap and finding a new spot for 

it in the tree. 

 

Temporarily place this "last" node in the vacated root of the 

tree. But, this is almost definitely not going to be the correct 

location for this value. Chances are one of its two children will 

be storing a value lower than it. If so, swap this value with the 

minimum of the two child values. This is a single "Percolate 

Down" step. Continue these steps until this "last" node has 

children both with larger values than it. 

 

Here's how I like to look at this operation: Imagine that the 

CEO of the company as retired.  So some hotshot upstart 

thinks they can take their place. But, quickly, the two most 

senior officers realize what has happened and try to rectify the 

situation. The higher ranking of the two takes the CEO 

position, relegating the hotshot upstart to their position. But 

soon again, someone realizes what has happened, once again 

demoting the hotshot upstart. This continues until the upstart 

has found a position in the company that he rightfully 

deserves. 

 

 

 

 

 

 

 

 

 



Consider deleting the minimum of the previous heap: 

 

     1-15 

       /                     \ 

            2-19                 3-17 

                               /            \               /       \ 

                             4-40       5-22      6-18   7-99 

                             /     \       /     

                      8-88   9-41 10-25 

 

We store 15 to return, and then we must copy 25 into its 

position (index 1): 

 

     1-25 

       /                     \ 

            2-19                 3-17 

                               /            \               /       \ 

                             4-40       5-22      6-18   7-99 

                             /     \            

                      8-88   9-41 

 

Now, we must compare 25 to both children, 19 and 17. Since 17 

is smallest, it "wins." This means that we swap 17 and 25: 

 

      1-17 

       /                     \ 

            2-19                 3-25 

                               /            \               /       \ 

                             4-40       5-22      6-18   7-99 

                             /     \            

                      8-88   9-41 

 

Now, we repeat: compare 25 to its new children 18 and 99, and 

we see that 18 is the smallest. So, we swap 25 and 18: 

 



     1-17 

       /                     \ 

            2-19                 3-18 

                               /            \               /       \ 

                             4-40       5-22      6-25   7-99 

                             /     \            

                      8-88   9-41 

 

Now, there are no more children of 25, so we are done. It's also 

possible that this node that percolated down would have, at 

some step, been the smallest between itself and its two children 

(or possibly one child). In this case, the node has found its 

proper spot and we can return the minimum and complete the 

operation. 

 



Heap Operation: Bottom-Up Heap Construction 

 
We will show how to construct a heap out of unsorted 

elements. 

 

The basic idea is as follows: 

 

1) Place all the unsorted elements in a complete binary tree. 

 

2) Go through the nodes of the tree in backwards order (of how 

they are stored in an array implementation of a heap), running 

Percolate Down on each of these nodes. (Skip over all leaf 

nodes.) As this is done, one invariant we see is that each 

subtree below any node for which Percolate Down has already 

executed is a heap. Thus, when we run Percolate Down on the 

root at the end of this algorithm, the whole tree is one heap. 

 

Here is a small example (Percolate Down is abbreviated PD): 

 

  12           12 

             /          \                                             /              \ 

           3           15       (PD 6)                       3             15   (PD 15) 

        /     \       /     \                                 /    \          /    \     

       6     1     17    8                                  6     1      17    8 

     /    \                                                    /   \ 

   11  19                                                 11 19 

 

  12           12 

             /          \                                             /              \ 

           3            8       (PD 3)                       1               8   (PD 12) 

        /     \       /     \                                 /    \          /    \     

       6     1     17    15                                6     3      17    15 

     /    \                                                    /   \ 

   11  19                                                 11 19 



   1            

             /          \                                              

            3           8        

        /     \       /     \                                 

       6     12   17    15                                   

     /    \                                                     

   11  19                        

 

In this last percolate down, first 12 swapped with 1, and then 

since 12 was greater than 3, it was also swapped with 3. (Note, 

we swap with 3 since 3 < 6.)                           

 

 

Can you see why we can NOT go through the nodes in forward 

order? Give an example where doing so produces a tree that is 

not a heap. 

 



Now, let's analyze the running time of the algorithm to create a 

heap: 

 

In a heap with n nodes, we end up running the "Percolate 

Down" on n/2 of those nodes. A very simple analysis would 

note that the maximum number of steps any of the Percolate 

Down's would take is O(log n). Thus, an upper bound for the 

running time of this Make-Heap function is O(nlogn). 

 

However, a more careful analysis will yield a tighter upper 

bound for running time. 

 

For the sake of simplifying the mathematics, let's assume we 

are dealing with a value of n such that n=2k - 1, for some 

positive integer k. (This is the number of nodes in any complete 

binary tree of height k-1.)  

 

In this tree, there are 2k-1 leaf nodes and 2k-2 parents of those 

leaf nodes.  For each of these 2k-2 nodes, the Percolate Down 

can only traverse one step of the tree. For the 2k-3 nodes above 

those nodes, the Percolate Down can only traverse two steps of 

the tree. This argument continues until the last node, which 

can only traverse k-1 steps of the tree. 

 

Let's make a chart with these numbers: 

 

Number of Nodes Depth of Percolate Down 

2k-2 1 

2k-3 2 

2k-4 3 

... ... 

2 k-2 

1 k-1 

 

 



Using this chart, we can write a summation that represents the 

run-time of the Make Heap function: 
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Written-out, we have 

 

1(k-1) + 2(k-2) + 4(k-3) + .... + 2k-2(1). 

 

Let this sum be S. Now, multiply each term by 2 to get 2S: 

 

2S =           2(k-1) + 4(k-2) + 8(k-3) + .... + 2k-2(2) + 2k-1(2) 

 

Subtract S from this: 

 

2S =           2(k-1) + 4(k-2) + 8(k-3) + .... + 2k-2(2) + 2k-1(2) 

  S =1(k-1)+2(k-2)+ 4(k-3) +8(k-4) + ...   +2k-2(1) 

 

Subtracting, we get: 

 

S = -(k-1) + 2 + 4 + 8 + 16 + ... + 2k-2 + 2k-1. 

S = -k + 1 + 2 + 4 + 8 + 16 + ... + 2k-2 + 2k-1. 

 

The latter terms in this sum form a geometric sequence with 

the sum 2k - 1. So, we have: 

 

S = -k + 2k - 1 

S = -k + n, since we set n=2k - 1 at the beginning. 

S = n - k = O(n). 

 

Thus, Make-Heap runs in O(n) time. 

 



Heap Sort 

 
Now that we have determined how to execute several 

operations on a heap, we can use these to sort values using a 

heap. Here is the idea: 

 

1) Insert all items into a heap 

2) Extract the minimum item n times in a row, storing the 

values sequentially in an array. 

 

Since each inserting and extraction take O(lg n) time, this sort 

works in O(n lg n) time. Let's trace through an example: 

 
 


