
Sorted List Matching Problem 

 
Given two sorted lists of distinct names, output the names common 

to both lists. 

 

Perhaps the standard way to attack this problem is the following: 

 

For each name on list #1, do the following: 

 a) Search for the current name in list #2. 

 b) If the name is found, output it. 

 

If a list is unsorted, steps a and b may take n steps, where n is the 

size of the second list. Can you tell me why? 

 

If we don’t use the information that either list is sorted, then we can 

do a brute force solution as follows: 

 
void printMatches(char list1[][SIZE],  

                  char list2[][SIZE], 

                  int len1, int len2) { 

 

  int i,j; 

 

  for (i=0; i<len1; i++) { 

 

    for (j=0; j<len2; j++) { 

 

      if (strcmp(list1[i],list2[j]) == 0) { 

        printf(“%s\n”, list1[i]); 

        break; 

      } 

    } 

  } 

} 

 



BUT, we know that both lists are already sorted. Thus we can use a 

binary search in step a. Assuming that both lists are of the same size 

(n), then the binary search takes about log n steps, which we have to 

repeat n times each, for a total number of steps around nlogn, which 

is must better than our old solution of n2 steps. 

 

Roughly speaking, our code would look like this: 

 
void printMatches(char list1[][SIZE],  

                  char list2[][SIZE], 

                  int len1, int len2) { 

  int i; 

  for (i=0; i<len1; i++) { 

    if (binSearch(list2, len2, list1[i])) 

      printf(“%s\n”, list1[i]); 

  } 

} 

 

int binSearch(char list[][SIZE], int len, 

              char name[]) { 

 

  int low = 0, high = len-1; 

 

  while (low <= high) { 

    int mid = (low+high)/2; 

    int cmp = strcmp(name, list[mid]); 

    if (cmp < 0) 

      high = mid-1; 

    else if (cmp > 0) 

      low = mid+1; 

    else 

      return 1; 

  } 

  return 0; 

} 



A natural question becomes:  Can we do better?  The answer is yes. 

What is one piece of information we have that our first algorithm 

does NOT assume? 

 

That list #1 is sorted. You’ll notice that our previous algorithm will 

work regardless of the order of the names in list #1. But, we KNOW 

that this list is sorted also. Can we exploit this fact so that we don’t 

have to do a full binary search for each name?  

 

Consider how you’d probably do this task in real life... 

 

List #1   List #2 

Adams   Boston 

Bell    Davis 

Davis   Duncan 

Harding   Francis 

Jenkins   Gamble 

Lincoln   Harding 

Simpson   Mason 

Zoeller   Simpson 

 

You’d read that Adams and Boston are the first names on the list. 

Immediately you’d know that Adams wasn’t a match, and neither 

would any name on the list #1 alphabetically before Boston. So, 

you’d read Bell and go on to Davis. At this point you’d deduce that 

Boston wasn’t on the list either, so you’d read the next name on list 

#2 – voila!!! A match! You’d output this name and simply repeat the 

same idea. In particular, what we see here is that you ONLY go 

forward on your list of names. And for every “step” so to speak, you 

will read a new name off one of the two lists. Here is a more 

formalized version of the algorithm: 

 



1) Start two “markers”, one for each list, at the beginning of both 

lists. 

2) Repeat the following steps until one marker has reached the end 

of its list. 

    a) Compare the two names that the markers are pointing at. 

    b) If they are equal, output the name and advance BOTH 

markers one spot. 

         If they are NOT equal, simply advance the marker pointing to 

the name that comes earlier alphabetically one spot. 

 

Note: No code is shown here so that you can practice writing this 

code on your own. 

 

Algorithm Run-Time Analysis 

 

For each loop iteration, we advance at least one marker. 

The maximum number of iterations then, would be the total number 

of names on both lists, which is n, the length of both lists. 

 

For each iteration, we are doing a constant amount of work. 

(Essentially a comparison, and/or outputting a name.) 

 

Thus, our algorithm runs in about 2n steps – an improvement over 

our previous algorithm. 

 
 


