
Sorted List Matching Problem

Given two sorted lists of distinct names, output the names common

to both lists.

Perhaps the standard way to attack this problem is the following:

For each name on list #1, do the following:

 a) Search for the current name in list #2.

 b) If the name is found, output it.

If a list is unsorted, steps a and b may take n steps, where n is the

size of the second list. Can you tell me why?

If we don’t use the information that either list is sorted, then we can

do a brute force solution as follows:

void printMatches(char list1[][SIZE],

 char list2[][SIZE],

 int len1, int len2) {

 int i,j;

 for (i=0; i<len1; i++) {

 for (j=0; j<len2; j++) {

 if (strcmp(list1[i],list2[j]) == 0) {

 printf(“%s\n”, list1[i]);

 break;

 }

 }

 }

}

BUT, we know that both lists are already sorted. Thus we can use a

binary search in step a. Assuming that both lists are of the same size

(n), then the binary search takes about log n steps, which we have to

repeat n times each, for a total number of steps around nlogn, which

is must better than our old solution of n2 steps.

Roughly speaking, our code would look like this:

void printMatches(char list1[][SIZE],

 char list2[][SIZE],

 int len1, int len2) {

 int i;

 for (i=0; i<len1; i++) {

 if (binSearch(list2, len2, list1[i]))

 printf(“%s\n”, list1[i]);

 }

}

int binSearch(char list[][SIZE], int len,

 char name[]) {

 int low = 0, high = len-1;

 while (low <= high) {

 int mid = (low+high)/2;

 int cmp = strcmp(name, list[mid]);

 if (cmp < 0)

 high = mid-1;

 else if (cmp > 0)

 low = mid+1;

 else

 return 1;

 }

 return 0;

}

A natural question becomes: Can we do better? The answer is yes.

What is one piece of information we have that our first algorithm

does NOT assume?

That list #1 is sorted. You’ll notice that our previous algorithm will

work regardless of the order of the names in list #1. But, we KNOW

that this list is sorted also. Can we exploit this fact so that we don’t

have to do a full binary search for each name?

Consider how you’d probably do this task in real life...

List #1 List #2

Adams Boston

Bell Davis

Davis Duncan

Harding Francis

Jenkins Gamble

Lincoln Harding

Simpson Mason

Zoeller Simpson

You’d read that Adams and Boston are the first names on the list.

Immediately you’d know that Adams wasn’t a match, and neither

would any name on the list #1 alphabetically before Boston. So,

you’d read Bell and go on to Davis. At this point you’d deduce that

Boston wasn’t on the list either, so you’d read the next name on list

#2 – voila!!! A match! You’d output this name and simply repeat the

same idea. In particular, what we see here is that you ONLY go

forward on your list of names. And for every “step” so to speak, you

will read a new name off one of the two lists. Here is a more

formalized version of the algorithm:

1) Start two “markers”, one for each list, at the beginning of both

lists.

2) Repeat the following steps until one marker has reached the end

of its list.

 a) Compare the two names that the markers are pointing at.

 b) If they are equal, output the name and advance BOTH

markers one spot.

 If they are NOT equal, simply advance the marker pointing to

the name that comes earlier alphabetically one spot.

Note: No code is shown here so that you can practice writing this

code on your own.

Algorithm Run-Time Analysis

For each loop iteration, we advance at least one marker.

The maximum number of iterations then, would be the total number

of names on both lists, which is n, the length of both lists.

For each iteration, we are doing a constant amount of work.

(Essentially a comparison, and/or outputting a name.)

Thus, our algorithm runs in about 2n steps – an improvement over

our previous algorithm.

