Min-Max Trees

One other use of recursion is a technique called backtracking.
Backtracking essentially involves a recursive exhaustive search
that tries to maximize a particular choice. A popular use of
backtracking is in computer players of games, such as chess.

The basic idea is as follows: when the computer is moving, it
"tries' out all of its possible moves. It wants to pick the move
which gives it the best advantage. One way to do this would be
to look at each "answering" move the human player could
make. Imagine that each of these moves had a score such that
the higher the score, the more favorable the move is for the
human player. Our goal as the computer of course, would be to
minimize the score achieved by the human. We would naturally
assume that the human makes its best possible move, ie. the
maximum valued move of all of its possibilities. Thus, as the
computer, we should pick the minimum of all of these
maximums. Thus, the term mini-max tree is given to this sort of
search.

Consider the following diagram:
Coorent boor 0
anf)omm‘}' = X

X
]
Sa !
opp SCélrt‘,’i'- | ﬁfﬁjﬁi— r; :2:-2
O Myseore = -

{ : nrarm2ed
I S%Dolg ClrooCe —(’L,,‘"g ove Since ! T mia
my Opponeat’s bes+ Scor,

Rather than just search two levels of this tree however, we can
recursively search to the bottom of the tree for simple games
like Tic-Tac-Toe. Let's analyze this pseudocode:

public Best chooseMove (int side) ({

Best reply;
int opp, dc, simpleEval, value;
int bestRow=0, bestCol=0;

// Base case: Board is already done!
if ((simpleEval = positionValue()) !=
UNCLEAR)

return new Best (simpleEval) ;

// Set up the opponent variable.
if (side == COMPUTER) {
opp = HUMAN; value = HUMAN WIN;
}
else
opp = COMPUTER; value = COMPUTER WIN;
}

// Loop through each possible move.
for (int row=0; row<3; row++)
for (int col=0; col<3; col++)

if (squareIsEmpty(row, col)) {

// Try out this move.
place (row, col, side);

// Recursively get this move's score
reply = chooseMove (opp) ;

// Undo the temporary move.
place (row, col, EMPTY) ;

// If this move improves our
// position, update the appropriate
// variables.

if ((side == COMPUTER &&
reply.val > value) ||
(side == HUMAN &&

reply.val < value)) {

value = reply.val;
bestRow = row; bestCol = col;

}

// Return the best move found.
return new Best(value, bestRow, bestCol) ;

