
Selection Sort

The algorithm to sort n numbers is as follows:

For the ith element (as i ranges from 0 to n-1)

 1) Determine the smallest element in the rest of the array to

 the right of the ith element.

 2) Swap the current ith element with the element identified

 in step 1.

In essence, the algorithm first picks the smallest element and

swaps it into the first location, then it picks the next smallest

element and swaps it into the next location, etc. In order to do

#1, iterate through the array keeping track of the index that is

currently storing the minimum value.

Let's look at an example of selection sort on the list:

8, 3, 1, 9, 5, 2

We iterate through this list starting at the first element all the

way through until we determine that the smallest element is

stored in index 2. We then swap this with the element at index

0 to yield:

1, 3, 8, 9, 5, 2. Similarly, we find the last element and swap it:

1, 2, 8, 9, 5, 3. Then,

1, 2, 3, 9, 5, 8. Followed by

1, 2, 3, 5, 9, 8, and finally

1, 2, 3, 4, 8, 9

The code for this (and all three sorts in this lecture is included

in sort.c. Note that some printed versions of the algorithm

select for the maximum first, not the minimum. This is a pretty

minor modification to the overall idea.

In order to do this analysis, we see that the first time through,

we will "go through" and compare every element in the array

once. This is approximately n simple steps. The next time, we

will only do n-1 simple steps because we no longer need to

account for the first element because it is in the correct

location.

After that, the next loop does n-2 steps, then n-3 steps, etc. The

total number of simple steps (within a constant factor) that this

algorithm executes is:

n+(n-1)+(n-2)+...+1

There is a formula for adding up the first n positive integers:

1+2+3+4+...+n = 2

)1(

1






nn
k

n

k

Consider the following derivation that Gauss supposedly came

up with at the ripe old age of 7. (Note: This was known to

people before Gauss, it's just amazing that he figured this out

at such a young age...)

S = 1 + 2 + 3 + 4 + ... + n

S = n + (n-1) + (n-2) + (n-3) + 1

2S = (n+1)+(n+1)+... +(n+1)

2S = n(n+1), since (n+1) appears exactly n times above.

S = n(n+1)/2.

Thus, using order notation, we find that this algorithm runs in

O(n2) time.

Insertion Sort

In this sort, we take each element one by one, starting with the

second, and "insert" it into a sorted list. The way we insert the

element is by continually swapping it with the previous element

until it has found its correct spot in the already sorted list.

Here is the algorithm for sorting n elements:

For the ith element (as i ranges from 1 to n-1)

 1) As long as the current element is greater than the

 previous one, swap the two elements. Stop if there's no

 previous element.

Consider using this algorithm to sort the following list:

3, 7, 2, 1, 5

Here are all the passes of the algorithm:

3, 7, 2, 1, 5, since 7 > 3, so the list 3, 7 is sorted.

3, 2, 7, 1, 5, since 2 < 7

2, 3, 7, 1, 5, since 2 < 3, so the list 2, 3, 7 is sorted.

2, 3, 1, 7, 5, since 1 < 7,

2, 1, 3, 7, 5, since 1 < 3,

1, 2, 3, 7, 5, since 1 < 2, so the list 1, 2, 3, 7 is sorted.

1, 2, 3, 5, 7, since 5 < 7 and now we can stop since 5 > 3.

You'll notice that the number of steps in this algorithm

VARIES depending on the input...

Bubble Sort

The basic idea behind bubble sort is that you always compare

consecutive elements, going left to right. Whenever two

elements are out of place, swap them. At the end of a single

iteration, the maximum element will be in the last spot. Now,

just repeat this n times, where n is the number of elements

being sorted. On each pass, one more maximal element will be

put in place.

Consider the following trace through:

Original list:

6, 2, 5, 7, 3, 8, 4, 1

On a single pass of the algorithm, here is the state of the array:

2, 6, 5, 7, 3, 8, 4, 1 (The swapped elements are underlined)

2, 5, 6, 7, 3, 8, 4, 1

2, 5, 6, 7, 3, 8, 4, 1 (No swap occurs here, since the are in order)

2, 5, 6, 3, 7, 8, 4, 1

2, 5, 6, 3, 7, 8, 4, 1 (No swap)

2, 5, 6, 3, 7, 4, 8, 1

2, 5, 6, 3, 7, 4, 1, 8 (8 is now in place!)

On the next iteration, we can stop before we get to 8. Each

subsequent iteration can stop one spot earlier on the list.

In some printed versions of the description of the algorithm, it

stops if a whole iteration results on no swaps. Though this

changes the best case run time to O(n), overall, it does not

change either the average or worst case run times, in terms of

order notation.

Limitation of Sorts that only swap adjacent elements

A sorting algorithm that only swaps adjacent elements can

only run so fast.

In order to see this, we must first define an inversion:

An inversion is a pair of numbers in a list that is out of order.

In the following list: 3, 1, 8, 4, 5 the inversions are the following

pairs of numbers: (3, 1), (8, 4), and (8, 5).

When we swap adjacent elements in an array, we can remove

at most one inversion from that array.

Note that if we swap non-adjacent elements in an array, we can

remove multiple inversions. Consider the following:

8 2 3 4 5 6 7 1

Swapping 1 and 8 in ths situation above removes every

inversion in this array (there are 13 of them total).

Thus, the run-time of an algorithm that swaps adjacent

elements only is constrained by the total number of inversions

in an array.

Let's consider the average case. There are
2

)1(

2

nnn 









 pairs of

numbers in a list of n numbers. Of these pairs, on average, half

of them will be inverted. Thus, on average, an unsorted array

will have)(
4

)1(2n
nn




 number of inversions, and any sorting

algorithm that swaps adjacent elements only will have a)(2n

run-time.

