
Quick Sort 

 
This is probably the most common sort used in practice, since 

it is usually the quickest in practice. It utilizes the idea of a 

partition (that can be done without an auxiliary array) with 

recursion to achieve this efficiency. 

 

Quick sort relies on the partition. Basically, a partition works 

like this: 

 

Given an array of n values, you must randomly pick an 

element in the array to partition by. Once you have picked this 

value, you must compare all of the rest of the elements to this 

value. If they are greater, put them to the “right” of the 

partition element, and if they are less, put them to the “left” of 

the partition element.  

 

When you are done with the partition, you KNOW that the 

partition element is in its CORRECTLY sorted location. 

 

In fact, after you partition an array, you are left with all the 

elements to the left of the partition element in the array, that 

still need to be sorted, and all of the elements to the right of the 

partition element in the array that also need to be sorted. And 

if you sort those two sides, the entire array will be sorted! 

 



Thus, we have a situation where we can use a partition to 

break down the sorting problem into two smaller sorting 

problems. Thus, the code for quick sort, at a real general level 

looks like: 

 

1) Partition the array with respect to a random element. 
2) Sort the left part of the array, using Quick Sort 

3) Sort the right part of the array, using Quick Sort. 

 

Once again, since this is a recursive algorithm, we need a base 

case, that does not make recursive calls. (A terminating 

condition...) Our terminating condition will be sorting an array 

of one element. We know that array is already sorted. 

 

Note: the full code for this lecture is posted in the file 

quicksort.c. 

 

 

 

 

 

 

 

 

 



How to Partition in Place 

 
Consider the following list of values to be partitioned: 

 

5  3 6 9 2 4 7 8 

         ^              ^ 

Let us assume for the time being that we are partition based on 

the first element in this array, 5. 

 

Here is how we will partition: 

 

Start two counters, one at array index 1 and the other at array 

index 7, (which is the last element in the array.) 

 

Advance the left counter forward until a value greater than the 

pivot is encountered. 

 

Advance the right counter backwards until a value less than 

the pivot is encountered. 

 

After these two steps have been performed, we have: 

 

5  3 6 9 2 4 7 8 

^   ^ 

 

Now, swap these two elements, since we know that they are 

both on the "wrong" side: 

 

5  3 4 9 2 6 7 8 

^   ^ 

Now, continue to advance the counters as before: 

 

5  3 4 9 2 6 7 8 

^ ^ 



Then swap as before: 

 

5  3 4 2 9 6 7 8 

^ ^ 

                           L  R 

 

When both counters cross over each other, swap the value 

stored in the original right counter with the pivot element. 

 

5  3 4 2 9 6 7 8 

^ ^ 

                           R  L 

 

Now, swap the 2 and 5 to yield: 

 

2  3 4 5 9 6 7 8 

^ ^ 

                           R  L 

 

Return the index the 5 is stored in to indicate where the 

partition element ended up in the array. 

 



Let's take a look at some code that implements this algorithm: 

 
// Arup Guha 

// 2/3/04 

// Code to demonstrate the Partition algorithm. 

 

#include <stdio.h> 

#include <stdlib.h> 

#include <time.h> 

 

void create(int *values, int n ); 

int partition(int *values, int start, int end); 

void swap(int *a, int *b); 

void print(int *values, int n); 

 

int main() { 

 

     int *nums, mid; 

 

     srand(time(0)); 

     create(nums, 30); 

     mid = partition(nums, 0, 29); 

 

     printf("The index of part elem is %d\n", mid); 

     print(nums, 30); 

} 

 

void create(int *values, int n ) { 

     int i; 

     values = malloc(n*sizeof(int)); 

     for (int i=0; i<n; i++) 

          values[i] = rand()%100; 

     } 

} 

 

int partition(int *values, int start, int end) { 

 

    // Line up left and right counters. 

    int i = start; 

    int j = end; 



    

    while (i <= j) { 

 

 // Move left counter, then the right counter. 

         while (i <= end && values[i] <= 

values[start]) 

              i++; 

         while (values[j] > values[start]) 

              j--; 

 

         // Swap out of place values. 

         if (i < j)  

              swap(values+i, values+j); 

    } 

 

    swap(values+start, values+j); // Swap in 

partition element. 

    return j; 

} 

 

void swap(int *a, int *b) { 

     int temp = *a; 

     *a = *b; 

     *b = temp; 

}   

 

void print(int *values, int n) { 

     int i; 

     for (i=0; i<n; i++) printf("%d ", values[i])); 

     printf("\n"); 

} 

 



Full Quick Sort Algorithm 

 
Once you have a partition written, the sketch previously 

presented can be turned into code: 

 
void quickSort(int *values, int start, int end) { 

    if (start >= end) return; 

    int mid = partition(values, start, end); 

    quickSort(values, start, mid-1); 

    quickSort(values, mid+1, end); 

} 

 

The first step splits the array into two parts, the left of index 

mid will store all the values less than or equal to values[mid] 

and the right of index mid will store all the values greater than 

values[mid]. 

 

From, here the two recursive sort calls will sort the left side 

and the right side of the array, respectively, leaving a sorted 

array. 

Special Case: Repeated Values 

 
The code shown above is guaranteed to perform poorly on an 

integer array where all the values are the same, since no matter 

which partition element is randomly chosen, all the values will 

go to the left of it. To avoid this, add a function that checks to 

see if the current array is already sorted. If so, don't recurse! 

 
void quickSort(int *values, int start, int end) { 

    if (start >= end) return; 

    if (isSorted(values, start, end)) return; 

    int mid = partition(values, start, end); 

    quickSort(values, start, mid-1); 

    quickSort(values, mid+1, end); 

} 



Median of 3 and 5 Idea for Partition 
 

Finally, since it's important to get a reasonable "split" when 

doing a quicksort, it's worth going over a couple ideas that 

ensure a reasonable split of values in the partition step. (I 

won't show you the code, just the idea. But, you should be able 

to implement these ideas in code if you ever had to.) 

 

One idea is to randomly pick three elements in the array to be 

sorted as candidates for the partition element. Then, choose the 

middle value of these three elements to be the partition. There 

is some extra expense here - picking three elements and then 

doing three comparisons to determine the median of the values, 

but hopefully, if the array being sorted is large enough, this 

extra expense will be small enough compared to the gains of a 

better partition element.  

 

Clearly, you would not want to do this if you were only sorting 

10 or 20 values. In fact, quicksort is most efficient if you 

implement some simple sort such as insertion sort when you 

get down to a few elements, say 10 or 20. (This would be your 

terminating condition in the recursive method.) 

 

Also, if you wanted to, you could pick 5 random elements to 

find the median of, and then pick that as the partition element. 

This can be done in a maximum of 7 comparisons. This will 

generally give you a better partition element than the median 

of 3 technique. Depending on the size of the array being sorted, 

this extra cost may be worth it. 

 

 

 

 

 



Quick Sort Analysis 

 
This is more difficult than Merge Sort. The reason is that in 

Merge Sort we always knew we were getting recursive calls 

with equal sized inputs. But in Quick Sort, each recursive call 

could have a different sized set of numbers to sort. Here are 

the three analyses we must do: 

 

1) Best case 

2) Average case 

3) Worst case 

 

In the best case, we get a perfect partition every time. If we let 

T(n) be the running time of Quick Sorting n elements, then we 

get: 

 

T(n) = 2T(n/2) + O(n), since partition runs in O(n) time. 

 

This is the same exact recurrence relation as we got from 

analyzing Merge Sort. Just like that situation, here we find that 

in the ideal case, QuickSort runs in O(nlogn) time. 

 

Now, consider how bad Quick Sort would be if the partition 

element were always the greatest value of the one remaining to 

sort. In this situation, we have to run partition n-1 times, the 

first time comparing n-1 values, then n-2, followed by n-3, etc. 

 

This points to the sum 1+2+3+...+(n-1) which is (n-1)n/2. Thus, 

the worst case running time is O(n2). 

 

The average case analysis is included in the following pages, 

but isn't required for COP 3502. 

 

 



Average Case Quick Sort Analysis 
 

Now, to the average case running time. This is certainly 

difficult to ascertain because we could get any sort of partition. 

We will assume that each possible partition (0 and n-1, 1 and 

n-2, 2 and n-3, etc.) is equally likely. One way to work out the 

math is as follows: 

 

Assume that you run Quick Sort n times. In doing so, since 

there are n possible partitions, each equally likely, on average, 

we have each partition occur once. So we have the following 

recurrence relation: 

 

nT(n) = T(0)+T(n-1)+T(1)+T(n-2)+...+T(n-1)+T(0) + n*n 

nT(n) = 2[T(1)+T(2)+...T(n-1)] + n2 

 

(The n is for the work done by the partition method, simplified 

from O(n) to make the analysis easier.) 

 

Now, plug in n-1 in the equation above to get the following one: 

 

(n-1)T(n-1) = 2[T(1)+T(2)+...T(n-2)] + (n-1)2 

 

Subtracting these two equations we get: 

 

nT(n) - (n-1)T(n-1) = 2T(n-1) + 2n - 1 

nT(n) = (n+1)T(n-1) + (2n - 1) 

T(n) = [(n+1)/n]T(n-1) + (2n - 1)/n 

 

Since we are only trying to do an approximate analysis, we will 

drop the -1 at the end of this equation. Dividing by n+1 yields: 

 

T(n)/(n+1) = T(n-1)/n + 2/(n+1) 

 



Now, plug in different values of n into this recurrence to form 

several equations: 

 

T(n)/(n+1) = T(n-1)/n + 2/(n+1) 

T(n-1)/(n) = T(n-2)/(n-1) + 2/(n) 

T(n-2)/(n-1) = T(n-3)/(n-2) + 2/(n-1) 

... 

T(2)/3 = T(1)/2 + 2/1 

 

Now, adding all of these equations up reveals many identical 

terms on both sides. In fact, after cancelling identical terms, we 

are left with: 

 

T(n)/(n+1) = T(1)/2 + 2[1/1 + 1/2 + 1/3 + ... + 1/(n+1)] 

 

The sum on the right hand side of the equation is a harmonic 

number. The nth harmonic number(Hn) is defined as 1 + 1/2 + 

1/3 + ... 1/n. 

 

Through some calculus, it can be shown that Hn ~ ln n. (ln is 

the natural log. It is a logarithm with the base e. e ~ 2.718282.) 

 

Now, we have: 

 

T(n)/(n+1) ~ 1/2 + 2ln n 

T(n) ~ n(ln n), simplifying a bit. 

 

Thus, even in the average case for Quick Sort, we find that 

T(n) = O(n log n). 

 

Note, in order analysis, any function of the form logbn = 

O(logcn), for all positive constants b and c, greater than 1. 
 


