
Quick Sort

This is probably the most common sort used in practice, since

it is usually the quickest in practice. It utilizes the idea of a

partition (that can be done without an auxiliary array) with

recursion to achieve this efficiency.

Quick sort relies on the partition. Basically, a partition works

like this:

Given an array of n values, you must randomly pick an

element in the array to partition by. Once you have picked this

value, you must compare all of the rest of the elements to this

value. If they are greater, put them to the “right” of the

partition element, and if they are less, put them to the “left” of

the partition element.

When you are done with the partition, you KNOW that the

partition element is in its CORRECTLY sorted location.

In fact, after you partition an array, you are left with all the

elements to the left of the partition element in the array, that

still need to be sorted, and all of the elements to the right of the

partition element in the array that also need to be sorted. And

if you sort those two sides, the entire array will be sorted!

Thus, we have a situation where we can use a partition to

break down the sorting problem into two smaller sorting

problems. Thus, the code for quick sort, at a real general level

looks like:

1) Partition the array with respect to a random element.
2) Sort the left part of the array, using Quick Sort

3) Sort the right part of the array, using Quick Sort.

Once again, since this is a recursive algorithm, we need a base

case, that does not make recursive calls. (A terminating

condition...) Our terminating condition will be sorting an array

of one element. We know that array is already sorted.

Note: the full code for this lecture is posted in the file

quicksort.c.

How to Partition in Place

Consider the following list of values to be partitioned:

5 3 6 9 2 4 7 8

 ^ ^

Let us assume for the time being that we are partition based on

the first element in this array, 5.

Here is how we will partition:

Start two counters, one at array index 1 and the other at array

index 7, (which is the last element in the array.)

Advance the left counter forward until a value greater than the

pivot is encountered.

Advance the right counter backwards until a value less than

the pivot is encountered.

After these two steps have been performed, we have:

5 3 6 9 2 4 7 8

^ ^

Now, swap these two elements, since we know that they are

both on the "wrong" side:

5 3 4 9 2 6 7 8

^ ^

Now, continue to advance the counters as before:

5 3 4 9 2 6 7 8

^ ^

Then swap as before:

5 3 4 2 9 6 7 8

^ ^

 L R

When both counters cross over each other, swap the value

stored in the original right counter with the pivot element.

5 3 4 2 9 6 7 8

^ ^

 R L

Now, swap the 2 and 5 to yield:

2 3 4 5 9 6 7 8

^ ^

 R L

Return the index the 5 is stored in to indicate where the

partition element ended up in the array.

Let's take a look at some code that implements this algorithm:

// Arup Guha

// 2/3/04

// Code to demonstrate the Partition algorithm.

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

void create(int *values, int n);

int partition(int *values, int start, int end);

void swap(int *a, int *b);

void print(int *values, int n);

int main() {

 int *nums, mid;

 srand(time(0));

 create(nums, 30);

 mid = partition(nums, 0, 29);

 printf("The index of part elem is %d\n", mid);

 print(nums, 30);

}

void create(int *values, int n) {

 int i;

 values = malloc(n*sizeof(int));

 for (int i=0; i<n; i++)

 values[i] = rand()%100;

 }

}

int partition(int *values, int start, int end) {

 // Line up left and right counters.

 int i = start;

 int j = end;

 while (i <= j) {

 // Move left counter, then the right counter.

 while (i <= end && values[i] <=

values[start])

 i++;

 while (values[j] > values[start])

 j--;

 // Swap out of place values.

 if (i < j)

 swap(values+i, values+j);

 }

 swap(values+start, values+j); // Swap in

partition element.

 return j;

}

void swap(int *a, int *b) {

 int temp = *a;

 *a = *b;

 *b = temp;

}

void print(int *values, int n) {

 int i;

 for (i=0; i<n; i++) printf("%d ", values[i]));

 printf("\n");

}

Full Quick Sort Algorithm

Once you have a partition written, the sketch previously

presented can be turned into code:

void quickSort(int *values, int start, int end) {

 if (start >= end) return;

 int mid = partition(values, start, end);

 quickSort(values, start, mid-1);

 quickSort(values, mid+1, end);

}

The first step splits the array into two parts, the left of index

mid will store all the values less than or equal to values[mid]

and the right of index mid will store all the values greater than

values[mid].

From, here the two recursive sort calls will sort the left side

and the right side of the array, respectively, leaving a sorted

array.

Special Case: Repeated Values

The code shown above is guaranteed to perform poorly on an

integer array where all the values are the same, since no matter

which partition element is randomly chosen, all the values will

go to the left of it. To avoid this, add a function that checks to

see if the current array is already sorted. If so, don't recurse!

void quickSort(int *values, int start, int end) {

 if (start >= end) return;

 if (isSorted(values, start, end)) return;

 int mid = partition(values, start, end);

 quickSort(values, start, mid-1);

 quickSort(values, mid+1, end);

}

Median of 3 and 5 Idea for Partition

Finally, since it's important to get a reasonable "split" when

doing a quicksort, it's worth going over a couple ideas that

ensure a reasonable split of values in the partition step. (I

won't show you the code, just the idea. But, you should be able

to implement these ideas in code if you ever had to.)

One idea is to randomly pick three elements in the array to be

sorted as candidates for the partition element. Then, choose the

middle value of these three elements to be the partition. There

is some extra expense here - picking three elements and then

doing three comparisons to determine the median of the values,

but hopefully, if the array being sorted is large enough, this

extra expense will be small enough compared to the gains of a

better partition element.

Clearly, you would not want to do this if you were only sorting

10 or 20 values. In fact, quicksort is most efficient if you

implement some simple sort such as insertion sort when you

get down to a few elements, say 10 or 20. (This would be your

terminating condition in the recursive method.)

Also, if you wanted to, you could pick 5 random elements to

find the median of, and then pick that as the partition element.

This can be done in a maximum of 7 comparisons. This will

generally give you a better partition element than the median

of 3 technique. Depending on the size of the array being sorted,

this extra cost may be worth it.

Quick Sort Analysis

This is more difficult than Merge Sort. The reason is that in

Merge Sort we always knew we were getting recursive calls

with equal sized inputs. But in Quick Sort, each recursive call

could have a different sized set of numbers to sort. Here are

the three analyses we must do:

1) Best case

2) Average case

3) Worst case

In the best case, we get a perfect partition every time. If we let

T(n) be the running time of Quick Sorting n elements, then we

get:

T(n) = 2T(n/2) + O(n), since partition runs in O(n) time.

This is the same exact recurrence relation as we got from

analyzing Merge Sort. Just like that situation, here we find that

in the ideal case, QuickSort runs in O(nlogn) time.

Now, consider how bad Quick Sort would be if the partition

element were always the greatest value of the one remaining to

sort. In this situation, we have to run partition n-1 times, the

first time comparing n-1 values, then n-2, followed by n-3, etc.

This points to the sum 1+2+3+...+(n-1) which is (n-1)n/2. Thus,

the worst case running time is O(n2).

The average case analysis is included in the following pages,

but isn't required for COP 3502.

Average Case Quick Sort Analysis

Now, to the average case running time. This is certainly

difficult to ascertain because we could get any sort of partition.

We will assume that each possible partition (0 and n-1, 1 and

n-2, 2 and n-3, etc.) is equally likely. One way to work out the

math is as follows:

Assume that you run Quick Sort n times. In doing so, since

there are n possible partitions, each equally likely, on average,

we have each partition occur once. So we have the following

recurrence relation:

nT(n) = T(0)+T(n-1)+T(1)+T(n-2)+...+T(n-1)+T(0) + n*n

nT(n) = 2[T(1)+T(2)+...T(n-1)] + n2

(The n is for the work done by the partition method, simplified

from O(n) to make the analysis easier.)

Now, plug in n-1 in the equation above to get the following one:

(n-1)T(n-1) = 2[T(1)+T(2)+...T(n-2)] + (n-1)2

Subtracting these two equations we get:

nT(n) - (n-1)T(n-1) = 2T(n-1) + 2n - 1

nT(n) = (n+1)T(n-1) + (2n - 1)

T(n) = [(n+1)/n]T(n-1) + (2n - 1)/n

Since we are only trying to do an approximate analysis, we will

drop the -1 at the end of this equation. Dividing by n+1 yields:

T(n)/(n+1) = T(n-1)/n + 2/(n+1)

Now, plug in different values of n into this recurrence to form

several equations:

T(n)/(n+1) = T(n-1)/n + 2/(n+1)

T(n-1)/(n) = T(n-2)/(n-1) + 2/(n)

T(n-2)/(n-1) = T(n-3)/(n-2) + 2/(n-1)

...

T(2)/3 = T(1)/2 + 2/1

Now, adding all of these equations up reveals many identical

terms on both sides. In fact, after cancelling identical terms, we

are left with:

T(n)/(n+1) = T(1)/2 + 2[1/1 + 1/2 + 1/3 + ... + 1/(n+1)]

The sum on the right hand side of the equation is a harmonic

number. The nth harmonic number(Hn) is defined as 1 + 1/2 +

1/3 + ... 1/n.

Through some calculus, it can be shown that Hn ~ ln n. (ln is

the natural log. It is a logarithm with the base e. e ~ 2.718282.)

Now, we have:

T(n)/(n+1) ~ 1/2 + 2ln n

T(n) ~ n(ln n), simplifying a bit.

Thus, even in the average case for Quick Sort, we find that

T(n) = O(n log n).

Note, in order analysis, any function of the form logbn =

O(logcn), for all positive constants b and c, greater than 1.

