
Recurrence Relations 

 
In analyzing the Towers of Hanoi, we might want to know how 

many moves it will take. Let T(n) stand for the number of moves it 

takes to solve the Towers problem for n disks. Then, we have the 

following formula: 

 

 T(n) = T(n-1) + 1 + T(n-1) 

This is because in order to move a tower of n disks, we first move a 

tower of n-1 disks, which takes T(n-1) moves. Then we move the 

bottom disk (this is the +1 above), and then we move a tower of n-1 

disks again, which takes us T(n-1) moves again. 

Simplifying, we get: 

 T(n) = 2T(n-1) + 1 

Unfortunately, this isn’t terribly helpful to us, because it’s not a 

formula in terms of n. 

To get a formula in terms of n, we will use the iteration technique, 

which simply utilizes the fact that the formula above is true for all 

positive integers n. We will also use the fact that T(1) = 1, since it 

takes one move to move a tower of one disk. 

 

 

  



Iterating to Solve the Recurrence 

 

T(n) = 2T(n-1) + 1 

         = 2[2T(n-2) + 1] + 1, because T(n-1) = 2T(n-2) + 1. 

         = 4T(n-2) + 2 + 1 

 = 4T(n-2) + 3 

 = 4[2T(n-3) + 1] + 3, because T(n-2) = 2T(n-3) + 1 

 = 8T(n-3) + 4 + 3 

 = 8T(n-3) + 7 

 

The three underlined steps indicate the three iterations in our work. 

A pattern should emerge from these three steps. The numbers in 

front of T(…) are successive powers of two. The number inside the T 

is n – k, where k is which power of k. Finally the number at the end 

is one less than the same power of two. Thus, we can conjecture that 

 

 = 2kT(n – k) + 2k – 1. 

Finally, we want to plug in a value of k into this expression so that 

we can evaluate T(n – k). This we know T(1), we want n – k = 1. 

Equivalently, k = n – 1. 

Plug in k = n – 1 into our formula: 

 = 2n-1T(1) + 2n-1 – 1 = 2n-1 + 2n-1 – 1 = 2n – 1. 

This solution is exact because we made no simplifications with 

respect to order notation. It's also true that T(n) = O(2n). 

 



Binary Search Recurrence Relation 

Another recurrence that arises from the analysis of a recursive 

program is the following recurrence from binary search: 

T(n) = T(n/2) + 1, since a binary search over n elements uses a  

       comparison, and then a recursive call to an array 

       of size n/2. 

 

We use iteration: 

T(n) = T(n/2) + 1 

         = (T(n/4) + 1) + 1 

 = T(n/4) + 2 

 = (T(n/8) + 1) + 1 

 = T(n/8) + 3 

We should see the pattern here and conjecture: 

 = T(n/2k) + k. 

We want a value of k that makes n/2k = 1. This means that n = 2k. By 

the definition of the logarithm, we have k = log2n. Plugging in, we 

get: 

 = T(1) + log2n 

 = 1 + log2n, since a binary search of 1 element takes 1 step. 

Thus the worst case run time of binary search is O(lg n). 

 



Merge Sort Recurrence Relation 

Let’s analyze one last recurrence using this technique, the 

recurrence relation we derived for Merge Sort in a prior lecture: 

T(n) = 2T(n/2) + O(n), T(1) = 1. 

For now, we'll write n in place of O(n), but keep in our minds that n 

really means some constant times n. 

 

T(n) = 2T(n/2) + n 

 = 2[ 2T(n/4) + n/2 ] + n, since T(n/2) = 2T(n/4) + n/2 

 = 4T(n/4) + n + n 

 = 4T(n/4) + 2n 

 = 4[ 2T(n/8) + n/4 ] + 2n, since T(n/4) = 2T(n/8) + n/4 

 = 8T(n/8) + n + 2n 

 = 8T(n/8) + 3n 

 = 2kT(n/2k) + kn. 

Once again we want to set k = log2n. 

 = nT(1) + n(log2n) 

 = nlog2n + n 

Thus, the solution to this recurrence is O(nlgn), since the n in front 

of the lg n wasn't literally n but just O(n). 

 

 



Example Recurrence Relations 

1. (Aug 2018 Foundation Exam) Use the iteration technique to solve the following recurrence 

relation in terms of n: 

 

𝑇(𝑛) = 3𝑇(𝑛 − 1) + 1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 𝑛 > 1 

𝑇(1) = 1 
 

Please give an exact closed-form answer in terms of n, instead of a Big-Oh answer. 

 

(Note: A useful summation formula to solve this question is ∑ 𝑥𝑖 =
𝑥𝑛+1−1

𝑥−1

𝑛
𝑖=0 .) 

 

 

𝑻(𝒏) = 𝟑𝑻(𝒏 − 𝟏) + 𝟏 

 

= 𝟑(𝟑𝑻(𝒏 − 𝟐) + 𝟏) + 𝟏 

 

= 𝟗𝑻(𝒏 − 𝟐) + 𝟑 + 𝟏 

 

= 𝟗(𝟑𝑻(𝒏 − 𝟑) + 𝟏) + 𝟑 + 𝟏 

 

= 𝟐𝟕𝑻(𝒏 − 𝟑) + 𝟗 + 𝟑 + 𝟏 

 

After k steps, we have:                            = 𝟑𝒌𝑻(𝒏 − 𝒌) + ∑ 𝟑𝒊𝒌−𝟏
𝒊=𝟎  

 

Let k = n-1, then we have that     𝑻(𝒏) = 𝟑𝒏−𝟏𝑻(𝒏 − (𝒏 − 𝟏)) + ∑ 𝟑𝒊𝒏−𝟐
𝒊=𝟎  

 

= 𝟑𝒏−𝟏𝑻(𝟏) + ∑ 𝟑𝒊

𝒏−𝟐

𝒊=𝟎

 

 

= 𝟑𝒏−𝟏 + ∑ 𝟑𝒊

𝒏−𝟐

𝒊=𝟎

 

= ∑ 𝟑𝒊

𝒏−𝟏

𝒊=𝟎

 

 

=
𝟑𝒏 − 𝟏

𝟑 − 𝟏
=

𝟑𝒏 − 𝟏

𝟐
 

 

 

 



2. (Jan 2018 Foundation Exam)  Using the iteration technique, find a tight Big-Oh bound for the 

recurrence relation defined below: 

 

     𝑇(𝑛) = 3𝑇 (
𝑛

2
) + 𝑛2, for n > 1 

𝑇(1) = 1 

Hint: You may use the fact that ∑ (
3

4
)𝑖∞

𝑖=0 = 4 and that 3𝑙𝑜𝑔2𝑛 = 𝑛𝑙𝑜𝑔23, and that 𝑙𝑜𝑔23 < 2. 

 

Iterate the given recurrence two more times: 

 

𝑻(𝒏) = 𝟑𝑻 (
𝒏

𝟐
) + 𝒏𝟐 

𝑻(𝒏) = 𝟑(𝟑𝑻 (
𝒏

𝟒
) + (

𝒏

𝟐
)𝟐) + 𝒏𝟐 

𝑻(𝒏) = 𝟗𝑻 (
𝒏

𝟒
) +

𝟑𝒏𝟐

𝟒
+ 𝒏𝟐 

𝑻(𝒏) = 𝟗𝑻 (
𝒏

𝟒
) + 𝒏𝟐(𝟏 +

𝟑

𝟒
) 

𝑻(𝒏) = 𝟗(𝟑𝑻 (
𝒏

𝟖
) + (

𝒏

𝟒
)𝟐) + 𝒏𝟐(𝟏 +

𝟑

𝟒
) 

𝑻(𝒏) = 𝟐𝟕𝑻 (
𝒏

𝟖
) +

𝟗𝒏𝟐

𝟏𝟔
+ 𝒏𝟐(𝟏 +

𝟑

𝟒
) 

𝑻(𝒏) = 𝟐𝟕𝑻 (
𝒏

𝟖
) + 𝒏𝟐(𝟏 +

𝟑

𝟒
+

𝟗

𝟏𝟔
) 

 

In general, after the kth iteration, we get the recurrence 

 

𝑻(𝒏) = 𝟑𝒌𝑻 (
𝒏

𝟐𝒌
) + 𝒏𝟐(∑(

𝟑

𝟒
)𝒊

𝒌−𝟏

𝒊=𝟎

) 

 

To solve the recurrence, find k such that 
𝒏

𝟐𝒌 = 𝟏. This occurs when 𝒏 = 𝟐𝒌 and 𝒌 = 𝒍𝒐𝒈𝟐𝒏. 

Plug into the equation above for this value of k to get: 

 

𝑻(𝒏) = 𝟑𝒍𝒐𝒈𝒏𝑻(𝟏) + 𝒏𝟐 (∑ (
𝟑

𝟒
)

𝒊𝒌−𝟏

𝒊=𝟎

) ≤ 𝟑𝒍𝒐𝒈𝒏 + 𝒏𝟐 (∑ (
𝟑

𝟒
)

𝒊∞

𝒊=𝟎

) = 𝒏𝒍𝒐𝒈𝟐𝟑 + 𝟒𝒏𝟐 = 𝑶(𝒏𝟐) 

  



3. (May 2017 Foundation Exam) Find the Big-Oh solution to the following recurrence relation 

using the iteration technique. Please show all of your work, including 3 iterations, followed by 

guessing the general form of an iteration and completing the solution. Full credit will only be 

given if all of the work is accurate (and not just for arriving at the correct answer.) 

 

     𝑇(𝑛) = 2𝑇 (
𝑛

2
) + 𝑛2, 𝑇(1) = 1 

 

First, iterate three times: 

 

𝑻(𝒏) = 𝟐𝑻 (
𝒏

𝟐
) + 𝒏𝟐 

= 𝟐 [𝟐𝑻 (
𝒏

𝟒
) + (

𝒏

𝟐
)

𝟐

] + 𝒏𝟐 

= 𝟐 [𝟐𝑻 (
𝒏

𝟒
) +

𝒏𝟐

𝟒
] + 𝒏𝟐 

= 𝟒𝑻 (
𝒏

𝟒
) +

𝒏𝟐

𝟐
+ 𝒏𝟐 

= 𝟒𝑻 (
𝒏

𝟒
) +

𝟑𝒏𝟐

𝟐
 

= 𝟒[𝟐𝑻 (
𝒏

𝟖
) + (

𝒏

𝟒
)𝟐] +

𝟑𝒏𝟐

𝟐
 

= 𝟒[𝟐𝑻 (
𝒏

𝟖
) +

𝒏𝟐

𝟏𝟔
] +

𝟑𝒏𝟐

𝟐
 

= 𝟖𝑻 (
𝒏

𝟖
) +

𝒏𝟐

𝟒
+

𝟑𝒏𝟐

𝟐
 

= 𝟖𝑻 (
𝒏

𝟖
) +

𝟕𝒏𝟐

𝟒
 

 

In general, after k iterations we will have 𝑻(𝒏) = 𝟐𝒌𝑻 (
𝒏

𝟐𝒌) +
(𝟐𝒌−𝟏)𝒏𝟐

𝟐𝒌−𝟏 . We want to plug in 

the value of k for which 
𝒏

𝟐𝒌 = 𝟏,which is when 𝒏 = 𝟐𝒌. Note that for this value of k, 2k-1 = 

n/2, since 2 x 2k-1  = 2k: 

 

𝑻(𝒏) = 𝒏𝑻(𝟏) +
(𝒏 − 𝟏)𝒏𝟐

𝒏
𝟐

= 𝒏(𝟏) + 𝟐𝒏(𝒏 − 𝟏) = 𝟐𝒏𝟐 − 𝒏 = 𝑶(𝒏𝟐) 

  



4. (Jan 2017 Foundation Exam) Find the Big-Oh solution to the following recurrence relation 

using the iteration technique. Please show all of your work, including 3 iterations, followed by 

guessing the general form of an iteration and completing the solution. Full credit will only be 

given if all of the work is accurate (and not just for arriving at the correct answer.) 

 

     𝑇(𝑛) = 4𝑇 (
𝑛

2
) + 𝑛, 𝑇(1) = 1 

 

First, iterate three times: 

 

𝑻(𝒏) = 𝟒𝑻 (
𝒏

𝟐
) + 𝒏 

= 𝟒 [𝟒𝑻 (
𝒏

𝟒
) +

𝒏

𝟐
] + 𝒏 

= 𝟏𝟔𝑻 (
𝒏

𝟒
) + 𝟐𝒏 + 𝒏 

= 𝟏𝟔𝑻 (
𝒏

𝟒
) + 𝟑𝒏 

= 𝟏𝟔 [𝟒𝑻 (
𝒏

𝟖
) +

𝒏

𝟒
] + 𝟑𝒏 

= 𝟔𝟒𝑻 (
𝒏

𝟖
) + 𝟒𝒏 + 𝟑𝒏 

= 𝟔𝟒𝑻 (
𝒏

𝟖
) + 𝟕𝒏 

 

In general, after k iterations, we will have 𝑻(𝒏) = 𝟒𝒌𝑻 (
𝒏

𝟐𝒌) + (𝟐𝒌 − 𝟏)𝒏. We want to plug 

in the value of k for which 
𝒏

𝟐𝒌 = 𝟏,which is when 𝒏 = 𝟐𝒌. In this case, note that 𝒏𝟐 =

(𝟐𝒌)𝟐 = 𝟐𝟐𝒌 = 𝟒𝒌. Plugging in, we find: 

 

𝑻(𝒏) = 𝒏𝟐𝑻(𝟏) + (𝒏 − 𝟏)𝒏 

= 𝒏𝟐 + 𝒏𝟐 − 𝒏 

= 𝟐𝒏𝟐 − 𝒏 

= 𝑶(𝒏𝟐) 

 


