
Solutions to Practice Problem

int numOnes(int n) {

 // one digit base case

 if (n < 2)

 return n;

 else

 return n%2 + numOnes(n/2);

}

Printing a String in Reverse Order

The code should explain itself:

void printReverse(char word[], int length) {

 if (length > 0) {

 printf(“%c”, word[length-1]);

 printReverse(word, length-1);

 }

}

Roughly speaking, if we want to print a string, say “HELLO”, in

reverse order, we must first print the O. Once we do that, the

remaining task is to print “HELL” backwards.

In the if statement, we first print the last letter of the string, and

follow that up by reversing the portion of the original string from

the first letter to the second to last letter.

Decimal to Binary Conversion

Consider writing a function that takes in a number in decimal, and

prints out the equivalent value in binary. We can utilize what we

learned about base conversion. The key is as follows:

If we are converting 78 from base 10 to base 2, we calculate 78%2 =

0. This is the LAST digit we want to print, since it’s the units digit of

our answer.

Preceding that zero, we must take the decimal number 78/2 = 39,

and convert THAT to binary. But, this is a recursive task!!!

The code follows:

void dectobin(int n) {

 if (n < 2)

 printf("%d", n);

 else {

 dectobin(n/2);

 printf("%d", n%2);

 }

}

By taking a base-case of n < 2, we ensure that a 0 gets printed out if

it is the original number passed to the function.

What changes would have to be made so that this function prints out

n in any arbitrary base (less than 10)?

Fast Exponentiation

The first recursive version of exponentiation shown works fine, but

is very slow for very large exponents. It turns out that one prevalent

method for encryption of data (such as credit card numbers)

involves modular exponentiation, with very big exponents. Using the

original recursive algorithm with current computation speeds, it

would take thousands of years just to do a single calculation.

Luckily, with one very simply observation and tweak, the algorithm

can take a second or two with these large numbers.

The key idea is that IF the exponent is even, we can exploit the

following mathematical formula:

be = (be/2) x (be/2).

The key here is that we calculate be/2 only ONCE and can reuse the

value that we get to do the multiplication.

But, even in this situation, the problem is that the sheer size of be/2

for very large e would make that one multiplication very slow.

But, consider the situation, were instead of calculating be, we were

calculating be % n, for some relatively large value of n, maybe 20-

100 digits. In this situation, the answer and any intermediate answer

that is necessary, never exceeds n2, which is relatively few digits.

In this case, reusing the value of be/2 % n accrues a HUGE benefit.

Note: When we test the following function (with mod) in C, it’s

important to choose a base that is smaller than 215 to avoid overflow

errors. The exponent may be any positive allowable int.

Fast Exponentiation Code (without mod)

The following code is not practical (since overflows would happen

very quickly), but is shown to illustrate the key idea behind fast

exponentiation:

int powerB(int base, int exp) {

 if (exp == 0)

 return 1;

 else if (exp == 1)

 return base;

 else if (exp%2 == 0)

 return powerB(base*base, exp/2);

 else

 return base*powerB(base, exp-1);

}

In the following lecture we will analyze the huge gain in efficiency

made by this algorithm, in terms of the value of the exponent.

Fast Modular Exponentiation

The key changes here are adding a parameter, n, representing the

number by which we mod and then adding that mod to each

relevant calculation. Note that no intermediate result will exceed n2.

Thus, to ensure this code does not overflow, we must make sure that

n2 < 231.

int modPow(int base, int exp, int n) {

 base = base%n;

 if (exp == 0)

 return 1;

 else if (exp == 1)

 return base;

 else if (exp%2 == 0)

 return modPow(base*base%n, exp/2, n);

 else

 return base*modPow(base, exp-1, n)%n;

}

In order to test this function and show that is saves time over the

regular version, an iterative version is used because the recursive

version of modPow (slowModPow in recursion.c) would overflow

the call stack with a relatively small value of exp.

This is clearly shown in the file recursion.c.

