
Permutations

The permutation problem is as follows: Given a list of items,

list all the possible orderings of those items.

Generically, we list permutations as all the orderings of the

integers from 0 to n-1, inclusive. For example, if we wanted to

list all the permutations for n = 3, in lexicographical ordering,

these would be:

0, 1, 2

0, 2, 1

1, 0, 2

1, 2, 0

2, 0, 1

2, 1, 0.

There are several different permutation algorithms, but since

recursion an emphasis of the course, a recursive algorithm to

solve this problem will be presented. (Feel free to come up with

an iterative algorithm on your own.)

We utilize recursion as follows, using the following parameters

to our recursive function:

1) An array with a partially filled in permutation.

2) A used array, storing which items have already been

partially filled in

3) An integer, k, representing how many items have already

been filled in.

Technically, one could have all of this information with just

item number 1, but in C, it makes life easier to pass in items 2

and 3.

The job of our function will be to list all permutations of the

given partially filled in permutation that have their first k

values fixed.

Thus, for example, if k = 1 and our partially filled in array

looked like:

2

Then the goal of the algorithm would be to print out (or

process in some way) the following two permutations:

2, 0, 1

2, 1, 0

in that order.

As a second example, imagine the following partially filled in

array with k = 4 (for permutations with n = 7):

3 6 0 4

The algorithm should print out the following permutations:

3, 6, 0, 4, 1, 2, 5

3, 6, 0, 4, 1, 5, 2

3, 6, 0, 4, 2, 1, 5

3, 6, 0, 4, 2, 5, 1

3, 6, 0, 4, 5, 1, 2

3, 6, 0, 4, 5, 2, 1

Recursively, our code ought to do the following:

1) Check if k is equal to n, the length of our permutation array.

If so, just print out the fully filled in permutation.

2) If not, iterate through each un-used item, placing it in slot k

(in numerical order), and recursively calling the function,

noting that now, k+1 items are fixed.

In code, we have the following (assume that the appropriate

functions and variables are declared):

void printperms(int* perm, int* used, int k,

int n) {

 if (k == n) print(perm, n);

 int i;

 for (i=0; i<n; i++) {

 if (!used[i]) {

 used[i] = 1;

 perm[k] = i;

 printperms(perm, used, k+1, n);

 used[i] = 0;

 }

 }

}

Applying Permutation Algorithm to Objects

Say we wanted to go through all the permutations of some

array of objects, call it items. Then we can just do the

following:

void printperms(int* perm, int* used, type*

items, int k, int n) {

 if (k == n) process(perm, items, n);

 int i;

 for (i=0; i<n; i++) {

 if (!used[i]) {

 used[i] = 1;

 perm[k] = i;

 printperms(perm, used, k+1, n);

 used[i] = 0;

 }

 }

}

The process function we do whatever it needs to do with the

items in the following order:

items[perm[0]],

items[perm[1]],

items[perm[2]], …,

items[perm[n-1]]

Iterative Permutation Algorithm - Background

Another algorithm that cycles through permutations goes

through each of them in lexicographical ordering. Roughly

speaking, lexicographical ordering is the same as

alphabetical ordering. To determine which of two

permutations should appear first in a lexicographical

ordering, start comparing individual items from the left

until you hit a difference. The permutation that should

come first is the one with the item that comes earlier

when comparing the two different items from the two

different permutations.

For example, when comparing permutations of ACT,

we find that CAT comes before CTA, because A comes

before C. For a numerical example, the permutation

4,6,2,8,3,7,5,1 comes before 4,6,2,8,5,1,3,7, since 3 is

smaller than 5 at the spot of the first discrepancy.

Given this definition for comparing two permutations of

a set of items, a complete natural ordering is imposed

on all the permutations on the list. For example, for the

letters A, C, and T, the natural ordering of the

permutations, using this definition is as follows:

ACT

ATC

CAT

CTA

TAC

TCA

Similarly, the ordering of the permutations of 1, 2, 3

and 4 are as follows:

1234 2134 3124 4123

1243 2143 3142 4132

1324 2314 3214 4213

1342 2341 3241 4231

1423 2413 3412 4312

1432 2431 3421 4321

In order to come up with an algorithm that iterates

through all of the permutations of a set of items in this

order, we need to have a successor function. Namely, we

need a function that advances an array storing one

permutation to the following permutation.

Once we write this successor function, we simply need

to start with the first permutation (in this case, 1234 or

ACT), and call the successor function the correct

number of times. Since there are n! (read, “n factorial”)

orderings of n items, we must call the successor function

n!-1 times.

Note: We can derive the total number of permutations

of n distinct objects as follows:

For the first object, we have n choices.

For the second object, we have n-1 choices (all but what

we chose for the first object.)

For the third object, we have n-2 choices, etc.

Since each of these choices is independent of the rest, to

calculate the number of different permutations, we

simply need to multiply each of these numbers:

n x (n-1) x (n-2) x … x 1

This product is so common in mathematics, that it has a

special name (factorial) and symbol (!). Symbolically,

we have:

n x (n-1) x (n-2) x … x 1 = n!

Next Permutation Function

Let’s examine an example of finding the next

permutation of

4,6,2,8,3,7,5,1

and utilize it to come up with a general algorithm.

We know that the fewer items we change on the right

the better. The reason is that if we change the 4 to a 5,

for example, then we are definitely missing other

permutations that might start with 4 that come after the

current one. In essence, our goal is to maximize the

number of items, starting from the right, that stay fixed.

A real quick inspection will reveal that we can keep 4, 6,

2, and 8 fixed.

The reason is that 3, 7, 5, and 1 can be rearranged to

form a “higher” permutation.

BUT, notice that 3 CAN NOT be fixed because it is

IMPOSSIBLE to rearrange

7, 5, 1

to create a higher permutation. (This is the highest one

since all the values are in descending order.)

Thus, the key to our successor algorithm is to determine

the first item, from the left, that has to be changed.

Simply put, all of the items after this item have to be

arranged in descending order.

So, here is step #1 of the algorithm:

Scan from the right side of the permutation, going

backwards, continue scanning until you find the first

pair of values in ascending order. The first value in this

pair is the item that will be switched out.

Thus, if our input was 4,6,2,8,3,7,5,1,

We note that (5,1) is descending.

We note that (7,5) is descending.

But, we find that (3,7) is ascending.

Now that we’ve identified this value, our key is to

determine WHICH value to switch into its place.

First, we know that all the values to its left will stay

fixed, so we are NOT switching with any of these values.

(In our example, that means we won’t switch 3 with 4, 6,

2 or 8.)

With this analysis, we have determined the following

about the next permutation of 4,6,2,8,3,7,5,1:

1) The values, 4, 6, 2, and 8 will be fixed.

2) The value 3 must be changed.

3) It must be changed to 1, 5, or 7

Next, we know we must switch it with a higher value,

otherwise our permutation won’t be a higher one. This

reduces our list of possible values in our example to 7

and 5. (More generally, these are all the items that

appear AFTER our designated item and are larger than

it.)

Now, of the possibilities left, we MUST switch it with

the lowest value left (5,7 in our example). The reason for

this is that any permutation that starts with 5 precedes

any permutation that starts with 7. In general, we want

the lowest permutation possible of the ones left, and we

can achieve this by minimizing our next choice.

Thus, we know that our permutation must start:

4, 6, 2, 8, 5

In doing so, we have exchanged the 3 for the 5, so our

array currently looks like this:

4, 6, 2, 8, 5, 7, 3, 1

Now, we can state step #2 of the algorithm:

Determine the smallest value larger than the value to be

exchanged in the permutation that comes AFTER the

value to be exchanged, and swap these two values.

In our example, 3 was the value that needed to be

exchanged and 5 was the smallest value listed after 3

that was also larger than 3.

Now, that we have made that change, we would like to

“minimize” the rest of the permutation. For any

permutation, we can minimize it by listing the items in

ascending order. Currently, however, our items are

listed in descending order:

4, 6, 2, 8, 5, 7, 3, 1

In a nutshell, we must simply take all the values that

come after our original swapped location in the array,

and reverse these values to obtain:

4, 6, 2, 8, 5, 1, 3, 7.

This is the next permutation.

Now, let’s look at the steps of the algorithm all together:

Iterative Permutation Algorithm

1. Scan from the right side of the permutation, going

backwards, continue scanning until you find the first

pair of values in ascending order. The first value in this

pair is the item that will be switched out.

2. Scan to the right of the item identified in step 1,

looking for the smallest item that is greater than the

item identified in step 1. Swap these two items.

3. Reverse the part of the permutation that starts from

the original location first identified in the array and

ends at the end of the array.

A function that implements this algorithm is located on

the next page.

void nextPerm(int perm[], int length) {

 // Find the spot that needs to change.

 int i = length-1;

 while (i>0 && perm[i] < perm[i-1]) i--;

 i--; // Advance to swap location.

 // So last perm doesn't cause a problem.

 if (i == -1) return;

 // Find the spot with which to swap.

 int j=length-1;

 while (j>i && perm[j]<perm[i]) j--;

 // Swap it.

 int temp = perm[i];

 perm[i] = perm[j];

 perm[j] = temp;

 // reverse from index i+1 to length-1.

 int k,m;

 for (k=i+1,m=length-1; k<m; k++,m--) {

 temp = perm[k];

 perm[k] = perm[m];

 perm[m] = temp;

 }

}

