
Solutions to Practice Problems

To compute Lucas numbers

int Lucas(int n) {

 if (n == 1)

 return 1;

 else if (n == 2)

 return 3;

 else

 return Lucas(n-1)+Lucas(n-2);

}

 To compute binomial coefficients

int bin_coeff(int n, int k) {

 if ((k == 0) || (n == k))

 return 1;

 else

 return bin_coeff(n-1, k-1) + bin_coeff(n-1, k);

}

Binary Search

One algorithm where recursion may seem more natural than

iteration is with a binary search. Consider the following

problem:

You are given a sorted array A, and a value to find in that

array, val. You must determine whether or not val is in the

array A.

One way we could look at this problem is by adding a couple

pieces of information:

Rather than just being given A and val, consider also being

given a low and high index value to the array as the bounds for

the search. Thus, rather than searching for val in the whole

array, your task is slightly more specific: you must decide

whether or not val is in A, in between index low and index

high.

Let's think about how we can break this problem down:

We are search for val in the array A in between indexes low

and high.

1) We want to compare val to the "middle" value in the array.

Why would we want to do this?

What is the middle value?

Generally speaking, we want to minimize the worst case

behavior of the algorithm. If we compare val to the 10th value

out of 19 total values, then no matter what our answer is (val is

smaller than this value, equal to it, or greater than it),

We make sure that after we make the comparison, the

maximum number of values we have to search is 9. We really

can't do any better than that. Basically, after one comparison,

either I nail the value I am searching for, OR I have

guaranteed to reduce my search space to 1/2 of what it was.

To determine the middle value with which to do the

comparison, simply average the low and high indexes which

are the bounds of your search.

Since we are writing this function recursively, we need to

specify the terminating condition(s):

1) When the number is found!

2) When the search range is nothing (when low > high).

Now, we are ready to write the function:

int binSearch(int *values, int low, int high, int searchval)

 int mid;

 if (low <= high) {

 mid = (low+high)/2;

 if (searchval < values[mid])

 return binSearch(values, low, mid-1, searchval);

 else if (searchval > values[mid])

 return binSearch(values, mid+1, high, searchval);

 else

 return 1;

 }

 return 0;

}

Digital Root Problem (Programming Exercise #7)

To take the digital root of a number, you add up all of its

digits, and then repeat the process until you get a single digit

number. Consider the following example:

1729

Step 1: Add up 1+7+2+9 = 19, not a single digit

Step 2: Add up 1+9 = 10, not a single digit

Step 3: Add up 1+0 = 1, this is the digital root of 1729.

What task do we have to be able to accomplish?

We must be able to add up the digits of a number. Let's write a

function (I'll make mine recursive) to do this.

When adding up the digits of a number, we can do one of the

following:

1) Add the last digit to the sum of the rest of the number.

2) Add the first digit to the sum of the rest of the number.

Both are recursive characterizations of the problem. To decide

between which one, we need to make the following key

observation:

1) It is easy to isolate the units digit of an integer. (x%10)

2) It is more difficult to isolate the most significant digit of an

integer.

Furthermore, it is also easy to create an integer with the same

digits as the original number without the last digit. How can

we do this?

Once we can do these two things, the recursive function to sum

up the digits in a non-negative integer follows:

// Precondition : n >= 0

// Postcondition : The sum of the digits of n is returned.

int DigitSum(int n) {

 if (n > 0)

 return n%10 + DigitSum(n/10);

 return 0;

}

Let's trace through an example:

DigitSum(8345) returns 5 + DigitSum(834)

DigitSum(834) returns 4 + DigitSum(83)

DigitSum(83) returns 3 + DigitSum(8)

DigitSum(8) returns 8 + DigitSum(0)

DigitSum(0) returns 0, so now

DigitSum(8) returns 8, and

DigitSum(83) returns 11, and

DigitSum(834) returns 15, and finally

DigitSum(8345) returns 20.

Now we return to the problem calculating the digital root.

Basically we see the following:

If the sum of the digits is greater than 10, go find the digital

root of that new number.

Otherwise, we have the digital root - return it!

Here is a C function that calculates a digital root:

int DigitalRoot(int n) {

 int sumd = DigitSum(n);

 if (sumd > 9)

 return DigitalRoot(sumd);

 return sumd;

}

Introduction to Towers of Hanoi

The story goes as follows: Some guy has this daunting task of

moving this set of golden disks from one pole to another pole.

There are three poles total and he can only move a single disk

at a time. Furthermore, he can not place a larger disk on top of

a smaller disk. Our guy, (some monk or something), has 64

disks to transfer. After playing this game for a while, you

realize that he's got quite a task. In fact, he will have to make

264 - 1 moves total, at least. (I have no idea what this number is,

but it's pretty big...)

Although this won't directly help you code, it is instructive to

determine the smallest number of moves possible to move these

disks. First we notice the following:

It takes one move to move a tower of one disk.

For larger towers, one way we can solve the problem is as

follows:

1) Move the subtower of n-1 disks from pole 1 to pole 3.

2) Move the bottom disk to pole 2.

3) Move the subtower of n-1 disks from pole 3 to pole 2.

We can now use this method of solution to write a method that

will print out all the moves necessary to transfer the contents

of one pole to another. Here is the prototype for our method:

void towers(int n, int start, int end);

n is the number of disks being moved, start is the number of

the pole the disks start on, and end is the number of the pole

that the disks will get moved to. The poles are numbered 1 to 3.

Here is the method:

void towers(int n, int start, int end) {

 int mid;

 if (n > 0) {

 mid = 6 - start - end;

 towers(n-1, start, mid);

 printf("Move disk %d from tower ", n);

 printf("%d to tower %d.", start, end);

 towers(n-1,mid,end);

 }

}

Recursive Problem to Solve

Write a recursive method to determine the number of 1s in the

binary representation of a positive integer n. You should

attempt to do this after recitation tomorrow, where you will

discuss binary numbers. Here is the prototype:

// Precondition: n > 0.

int numOnes(int n);

