
Stacks

A stack is a data structure that stores information, arranged

like a stack. We have seen stacks before when we used the

stack model to trace through recursive programs. The essential

idea is that the last item placed into the stack is the first item

removed from the stack, or LIFO(Last In, First Out) for short.

Here are the two operations that are used to modify stack

contents:

push – This pushes an item onto the top of the stack

pop – This pops off the top item in the stack and returns it.

Here are other operations that access information from a

stack, but do not modify it:

empty – typically implemented as a boolean function that

 returns true if no items are in the stack.

full – returns true if no more items can be added to the stack.

 In theory a stack should never become full, but any

 actual implementation of a stack has a limit on the

 number of elements in can store.

top – Simply returns the value stored at the top of the stack

 without popping it off the stack.

Note: Each of these would take in the data representation of a

stack as a parameter, if these three were implemented as

functions.

Keep in mind that a push can only be done if the stack isn’t

full, and a pop can only be done on a non-empty stack.

A stack is essentially an abstraction. It is easy to follow a stack

model with these basic instructions. Let’s take a look at an

example. Consider tracing the contents of a stack through

these operations:

push(7)

push(3)

push(2)

pop

pop

push(5)

pop

So, you might ask what a stack is useful for. There are many

examples outside of the scope of this class, but for now, the

main problem we will show you to solve by use of stacks is

evaluating post-fix expressions, or as they are often known

(and I have NO IDEA WHY!), expressions in reverse polish

notation.

As the term post-fix indicates, the operator in a post-fix

expression comes last instead of in the middle, thus, the

expression we know as 3 + 5 is really 3 5 + in post-fix. Initially,

this notation seems odd to people, but consider that our typical

notation is in-fix, which is analogous to in some ways to the

inorder tree traversal I spoke of last time.

In a similar manner, post-fix notation is analogous to a

postorder tree traversal. Thus, the difference between infix and

postfix notation is similar to the difference between an inorder

and postorder tree traversal. Let me illustrate this with a

simple example.

Practice Problems

Use a stack to evaluate these post-fix expressions. Are each of

these valid? If not, what is left on the stack at the end of

evaluating the expression, or is an illegal operation attempted?

1) 1 2 3 + - 2 1 * 7 + +

2) 8 7 + * 2 3 6 1 / * +

3) 8 2 – 7 + 5 4 *

Converting an Infix Expression to Postfix

Consider the following infix (the notation you are used to)

expression:

(7*(6+3) + (2-3) + 1) / 7

We can use a stack to convert this expression into its postfix

equivalent. Here are the steps:

Process each token one by one doing the following with the token

as you process it. (Note that you will have an output expression

you are forming as you go along.)

1) For all operands, automatically place them in the output

expression.

2) For an operator (+, -, *, /, or a parenthesis)

 If the operator is an open parenthesis, push it onto the stack.

 Else if the operator is an arithmetic one, then do this:

 Continue popping off items off the stack and placing

them in the output expression until you hit

 an operator with lower precedence than the current

 operator or until you hit an open parenthesis. At this

 point, push the current operator onto the stack.

 Else

 Pop off all operators off the stack one by one, placing

 them in the output expression until you hit the

 first(matching) open parenthesis. When this occurs,

 pop off the open parenthesis and discard both ()s.

Practice Problems

Use a stack to convert the following expressions in infix

notation into postfix notation:

1) ((4 + 6) / (2 * 3 - 1* 4) + 3 / (2 - 1 % 2)) / 4

2) 9 + 3*4 - 36 / (((1 + 2) + 3*4) / 7 + 7)

