
Summations 

 

In many instances, analyzing an algorithm to determine its efficiency 

requires adding up many numbers. This amounts to completing a 

summation. Sums are so common, that mathematicians have developed 

some short-hand notation, so that it’s easier to unambiguously represent 

a long sum that might otherwise take a long time to write out fully.  

 

Here is an example of a sum written out: 

 

5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 + 21 + 23 + 25 + 27 + 29 

 

Here is how that sum is written out in summation notation: 

   ∑ (2k + 1)
14

𝑘=2
 

 

Given a summation, to determine what it represents, do the following: 

1) Create a running total set to 0. 

2) Set the variable in the bottom of the sum equal to the initial value 

given, (in this case, 2). 

3) Plug this value into the expression. (In this case, 2k+1). 

4) Add this to your running “total”. 

5) If your variable equals the last value listed, in this case, 14, stop 

and your answer is what is stored in total. Otherwise, plug in the 

next integer value for the variable and go to step 3. 



In code, we would have something like this: 

int total = 0; 

for (k=2; k<=14; k++) 

  total += (2*k+1); 

 

In general, we would say the following: 

 ∑ f(k) = f(a) + f(a + 1) + f(a + 2) … + f(b)
𝑏

𝑘=𝑎
 

where a is less than or equal to b and both are integers. 

 

The very first sum for which we can get a formula is as follows: 

 ∑ c𝑏
𝑘=𝑎 = (b − a + 1)c 

because we are adding c exactly b – a + 1 times and repeated addition is 

multiplication. 

 

Now, let’s consider a more difficult sum: 

 

S = 1 + 2 + 3 + 4 + … + (n-1) + n 

 

  



Our answer will be in terms of n. A nifty trick that will help us is 

pretending that we want to add the numbers backwards. Now, if we add 

up both of these equations, we notice a peculiar simplification for the 

sum of each column: 

S = 1 +   2    + 3 + 4 + … + (n-1) + n 

S = n +(n-1) + …                 + 2    + 1 

---------------------------------------------- 

2S = (n+1) + (n+1) + …   +(n+1) + (n+1) 

2S = n(n+1) 

S = n(n+1)/2 

 

What we notice is that each column adds up to the same exact thing! The 

reason for this is that to move from column to column, we add 1 on the 

top row, and subtract 1 from the bottom row. This net movement (+1, -

1) amounts to no net gain or loss. So, if the sum of the values in the first 

column is n+1, the sum of the values in the second column must be as 

well. Since there are n columns, we get n(n+1) when we add up all of 

these numbers. We get the final result when we divide by 2. In 

summation notation we have: 

 

     ∑ k𝑛
𝑘=1 =

n(n+1)

2
 

  



Now, let’s look at a few quick uses of this formula: 

∑ k

100

𝑘=1

=
100(100 + 1)

2
= 5050 

∑ k

2𝑛

𝑘=1

=
(2n)(2n + 1)

2
= n(2n + 1) 

∑ k

4𝑛−1

𝑘=1

=
(4n − 1)(4n − 1 + 1)

2
= 2n(4n − 1) 

The next formulas that we will examine are 

∑ cf(k)
𝑏

𝑘=𝑎
= c ∑ f(k)b

k=a , where c is constant with respect to k. 

∑(f(k) + g(k))

𝑏

𝑘=𝑎

= ∑ f(k)

b

k=a

+ ∑ g(k)

b

k=a

 

The reason this is true is because we can always factor out a constant in 

all terms of a sum. For example, 3(4) + 3(5) + 3(6) = 3(4 + 5 + 6), using 

factoring. The first is a sum with the 3 inside each term, while the sum is 

a sum that is then multiplied by 3.  

Here are quick examples that use these rules: 

∑ 4k

2𝑛

𝑘=1

= 4 ∑ k

2n

k=1

=  
4(2n)(2n + 1)

2
= 4n(2n + 1) 

∑(k + 3)

𝑛

𝑘=1

= ∑ k

n

k=1

+ ∑ 3 =
n(n + 1)

2
+ 3n =

n2 + 7n

2

n

k=1

 

 



Another situation that might occur is that a sum might not start at 1. 

Consider the following situation: 

 

∑ f(k)

40

𝑘=20

= f(20) + f(21) + ⋯ + f(40) 

 

This can be re-expressed as: 

∑ f(k)

40

𝑘=20

=  ∑ f(k)

40

k=1

−  ∑ f(k)

19

k=1

  

 

The reason this works is that the first sum has every term in it, from f(1) 

to f(40). But, this is too much!!! We don’t WANT to add f(1), f(2), …, 

f(19). We can offset this problem by subtracting these terms out! 

 

More generally, the formula we have is as follows (notice the a-1…): 

∑ f(k)

𝑏

𝑘=𝑎

=  ∑ f(k)

b

k=1

−  ∑ f(k)

a−1

k=1

  

 

Consider the following example: 

∑ k

40

𝑘=20

=  ∑ k

40

k=1

−  ∑ k

19

k=1

=
40(41)

2
−

19(20)

2
= 820 − 190 = 630 



Here is a final example that puts together all of the ideas: 

 

∑ (3k − 4)

2𝑛+1

𝑘=𝑛−1

=  ∑ (3k − 4)

2n+1

k=1

−  ∑(3k − 4)

n−2

k=1

  

=  ∑ 3k −

2n+1

k=1

∑ 4

2n+1

k=1

−  (∑ 3k − ∑ 4

n−2

k=1

)

n−2

k=1

  

= 3( ∑ k) −

2n+1

k=1

4(2n + 1) −  (3 ∑ k − (4(n − 2)))

n−2

k=1

 

=
3(2n + 1)(2n + 2)

2
−  4(2n + 1) −  

3(n − 2)(n − 1)

2
+ 4(n − 2) 

=
3[(2n + 1)(2n + 2) − (n − 2)(n − 1)]

2
−  4(2n + 1 − (n − 2)) 

=
3[4n2 + 6n + 2 − (n2 − 3n + 2)]

2
−  4(n + 3) 

=
3[3n2 + 9n]

2
−  4n − 12 

=
9

2
𝑛2 +

19

2
𝑛 − 12 

  



Index Shift Idea 

Another idea to tackle the previous sum is realizing that something like 

∑ f(k)
40

𝑘=20
 can also be written as ∑ f(k + 19)

21

𝑘=1
. If you plug into 

both of these summations, it's fairly easy to see that they are adding up 

the terms f(20) + f(21) + f(22) + … + f(40). This is called an index shift. 

In general, we can express an index shift as follows, assuming that 1 ≤ a 

≤ b: 

∑ f(k)

𝑏

𝑘=𝑎

= ∑ 𝑓(𝑘 + 𝑎 − 1)

𝑏−𝑎+1

𝑘=1

= ∑ 𝑓(𝑘 + 𝑎)

𝑏−𝑎

𝑖=0

 

The latter two are included just to show an equivalent sum that starts at 1 

or another one that starts at 0. Here is the index shift applied to the 

previous example: 

∑ (3k − 4)

2𝑛+1

𝑘=𝑛−1

= ∑(3(𝑘 + 𝑛 − 1) − 4)

𝑛+2

𝑘=0

 

= ∑(3𝑘 + 3𝑛 − 3 − 4)

𝑛+2

𝑘=0

 

= ∑(3𝑘 + 3𝑛 − 7)

𝑛+2

𝑘=0

 

= ∑(3𝑘) + ∑(3𝑛 − 7)

𝑛+2

𝑘=0

𝑛+2

𝑘=0

 

=
3(𝑛 + 2)(𝑛 + 3)

2
+

2(𝑛 + 3)(3𝑛 − 7)

2
 



=
(𝑛 + 3)

2
(3𝑛 + 6 + 6𝑛 − 14) 

=
(𝑛 + 3)(9𝑛 − 8)

2
 

=
9

2
𝑛2 +

19

2
𝑛 − 12 

 

Arithmetic Series Application 

A third way to handle the sum above is to realize that any sum of the 

form ak + b, where a and b are constants and k is the summation index is 

an arithmetic sequence, since the difference between each pair of 

successive terms is the same (it's a). The sum of an arithmetic sequence 

(taught in Algebra II) is 
𝑛(𝑎1+𝑎𝑛)

2
, where n is the number of terms, a1 is 

the first term and an is the nth term. Here is this formula applied to the 

previous summation: 

∑ (3k − 4)

2𝑛+1

𝑘=𝑛−1

 

is an arithmetic summation of n+3 terms with the first term 3(n-1)-4 and 

the last term 3(2n+1) - 4. These simplify to 3n-7 and 6n-1, respectively. 

The corresponding sum is 
(𝑛+3)(3𝑛−7+6𝑛−1)

2
=

(𝑛+3)(9𝑛−8)

2
. 

  



Infinite Geometric Series Sum 

Another type of series is an infinite geometric series, such as 6, 2, 2/3, 

2/9, etc. The first term of this sequence is 6 and the common ratio 

between successive terms is 1/3. More generally, consider the sum of an 

arbitrary infinite geometric sequence with first term a1 and common 

ratio r: 

S = a1 + a1r + … 

S = a1 + r(a1 + a1r + …) 

Notice that if we factor out an r from each term from the second term on, 

what's left is the infinite geometric sequence itself, so in the parentheses, 

we can substitute S: 

S = a1 + rS 

S - rS = a1 

S(1 - r) = a1 

𝑆 =
𝑎1

1 − 𝑟
 

Finite Geometric Sum 

We can't use the same trick to determine the sum of a finite geometric 

sequence, but we can come close. Consider an arbitrary finite geometric 

sequence with first term a1, common ratio r, and n terms, the last of 

which is a1rn-1. Let S be the sum, write this down and multiply S by r and 

write those terms below, shifted over by one spot. Then subtract: 

S   = a1 + a1r + ar2 + … + arn-2 + arn-1 

rS =       a1r + ar2 + … + arn-2 + arn-1 + a1rn 

S - rS = a1                                            - a1rn 

S(1-r) = a1 - a1rn, so it follows that S = 
𝑎1(1−𝑟𝑛)

1−𝑟
. 



Hybrid Sum 

 

Now, let's look at a sum that is neither arithmetic nor geometric: 

 

𝑆 =  ∑ 𝑖2𝑖−1

𝑛

𝑖=1

= 1(20) + 2(21) + 3(22) + ⋯ + 𝑛2𝑛−1 

 

Let this sum be S. Now, multiply S by two and we get: 

 

2𝑆 =  2 ∑ 𝑖2𝑖−1

𝑛

𝑖=1

= 1(21) + 2(22) + 3(23) + ⋯ + 𝑛2𝑛 

 

Now, subtract the second equation from the first: 

 

𝑆 − 2𝑆 = 1(20) + 1(21) + 1(22) + ⋯ + 1(2𝑛−1) − 𝑛2𝑛 

 

Notice that for each term of the form 2i, the coefficients differ by 1 in 

the two sums, so what we have left is largely a regular geometric sum: 

 

−𝑆 =
1 − 2𝑛

1 − 2
− 𝑛2𝑛 

𝑆 = 𝑛2𝑛 −
2𝑛 − 1

2 − 1
 

     = 𝑛2𝑛 − (2𝑛 − 1) = 𝑛2𝑛 − 2𝑛 + 1 = (𝑛 − 1)2𝑛 + 1 

 

 

 


