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Abstract— The goal of this research is to explore the effects
of social interactions between individual autonomous vehicles
(AVs) in various problem scenarios. We will take a look at
one way to construct the social relationships and generate data
from computer simulations to compare the behaviors of each.
A difference can be noticed when Synthetic Social Structures
(SSS) are used to control the interactions between neighboring
AVs. Our experiments show that SSSs can be used to improve
team performance on a problem in which a team of AVs must
maneuver through a narrow corridor to reach a goal.

I. INTRODUCTION

Various algorithms have been constructed to manage the
behavior of groups of autonomous agents. Some methods
use global data as the main source of information when
planning a robot’s course (Bayazit, Lien, and Amato 2004),
while others try to develop complex systems with emergent
behavior using simple local interactions between neighboring
robots (McLurkin and Smith 2004; Payton, Estkowski, and
Howard 2004; Spears, Spears, Heil, Kerr, and Hettiarachchi
2004). Biologically inspired work, such as artificial insect
swarms and ant colony optimization, has shown that global
information is not required in order to obtain complex
behavior in robot swarms (Payton, Estkowski, and Howard
2004). A few of the goals of these previous experiments has
been to coordinate groups of agents to solve problems such
as surveillance (Seyfried, Szymanski, Bender, Estaña, Thiel,
and Wörn 2004; Spears, Spears, Heil, Kerr, and Hettiarachchi
2004), navigating difficult terrain (Bayazit, Lien, and Amato
2004), and even herding sheep (Blumenthal and Parker
2004).

The goal of our work is to study the effects of Synthetic
Social Structures (SSS) on the ability of a team of distributed
agents cooperating to accomplish a mutual goal. Our test
problem can best be described by the following real world
examples. Imagine leaving an opera house after the show’s
completion, and as you exit the building, you notice another
person attempting to leave through the same exit. This
situation occurs frequently in our lives, and we normally
solve it by being polite and letting the other person go first.
Sometimes, we even change the speed of our walk to reach
the door at a different time than the other person. But, what
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if you were a simple, autonomous robot with no concept
of politeness, and because you and the neighboring robot
have both been “trained” to avoid collisions with oncoming
robots, you each decide to stop before exiting the building?
You and the other robot would remain there indefinitely,
causing a blockage at the exit. This problem would never be
resolved, resulting in the robots behind you to never leave
the building either. Another example of this type of problem
would be an encounter at a four-way stop sign, when two
cars approach the intersection simultaneously. Depending on
your local customs or laws, the drivers of the two cars
should know that the person on the left (or the right) has
the right of way. This would be simple enough to program
into the robots’ control systems, but what happens when four
cars approach the intersection simultaneously? Obviously, the
person on the right (or left) method would not be applicable
to this situation. Humans are able to resolve such deadlocks
by following accepted social rules of engagement, such as a
polite driver motioning for the others to go first. We believe
that such rules of interactions can also benefit teams of
interacting autonomous agents. In this paper, we investigate
the impact of introducing a social dominance hierarchy into
a team of cooperating agents.

II. IMPLEMENTATION DETAILS

The simulated agents that we will be studying are au-
tonomous vehicles (AVs) deployed in a flat-world environ-
ment. For ease of collision detection, the AVs are modeled
as discs. Individual agents have limited sensor range and can
only obtain the information about their immediate environ-
ment. This piece of information is what the agent’s control
system uses to steer its movement. Decisions are made by
all of the AVs simultaneously and the individual decisions
made will control the AVs movement until the next decision
is made. The time between consecutive decisions remains
constant throughout a particular run.

The basic components of the agents in our simulation are
their control system, sensors, and decision making system.
In the remainder of this section, each of these items will be
discussed in detail.

A. Control System

Creating a control system for a group of autonomous
agents that will perform well in various problem scenarios
is no simple task, and because our goal is to observe the
effects of social interactions on group behavior, we decided
to create a control system that is simple to implement,
yet robust enough to manage the AVs in simple problem



scenarios. Avoiding obstacles, other agents and reaching a
specified goal-point comprise the set of goals that an AV
attempts to satisfy when it comes time for it to make a
decision. Using its sensors, an AV picks up data from its
surrounding environment and sends the data to its decision
making “brain”, which in turn instructs the AV where to go.
These three basic steps are repeated until the simulation has
ended.

B. Sensors

Using the information about its local environment and
the location of the goal point, AVs make decisions that
control their movement. Movement of the AVs is contained in
two variables; currentBearing and a boolean flag isMoving.
Notice that in these experiments, there is no speed variable,
because the magnitude of each moving AV’s velocity is
identical. The number of possible values for currentBearing
is a finite value equal to the number of sensors it has. The
reason for this restriction is explained later.

Sensors can detect other AVs and environment obstacles,
the number of sensors that all AVs have is constant during
each run of the simulation, and each AV has the same number
of sensors. Each sensor is responsible for detecting objects
in only a small portion of the total viewing area of the AV.
The output of a sensor consists of a simple boolean value
indicating whether or not it detected an object in this small
viewing area. Note that individual sensors are not able to
determine whether or not there are multiple objects in its
viewing area, but they are able to differentiate between the
detection of terrain obstacles and AVs. The amount of area
that each sensor is responsible for is dependent upon the
viewing distance of the sensor and the number of sensors
available to an AV. Thus, if an AV had eight sensors, each
would be responsible for a separate, mutually exclusive, �����
“slice” of the area around the AV. As stated before, sensors
can only see a finite distance, which will be referred to as
sensorDistance. It is obvious to see that at any moment in
time, an AV can detect an area of size

�	� sensorDist 
 (1)

Figure 1 shows the viewing area of the AV, the segments that
can be seen by the individual sensors, and the numbering of
the sensors, which will be discussed in the next section. The
small portion of the environment observed by the sensors
will be a large part of the total information used by AVs
during the decision making process.

C. Decision Making

Decisions are made by the AVs during each simulation
time step. The AV can choose to become (or remain) sta-
tionary, turn in the direction of one of its sensors, or remain
heading in its current direction. As stated before, the number
of possible directions that an AV can move is equal to the
number of sensors that an AV has.

The decision making process begins by creating an array,
possibleMoves, of size numSensors. Each item in this array
can contain one of three values: badMove, neutralMove,

Fig. 1. In this image, the agent is depicted as a black circle, with a viewing
area equal to that enclosed by the larger, grey circle. The viewing area, and
numbering, of the eight sensors is also shown.

or goodMove. There exists a one-to-one correspondence
between the array locations, the directions that an AV can
head, and the number of sensors an AV has (see Figure 1).
The value at location n in possibleMoves indicates whether
or not the AV should move towards the sensor at location n;��

n � numSensors. For simplicity, we have denoted sensor
zero as being responsible for the rightmost viewing area of an
AV, with the other sensors placed in counter-clockwise order
around the AV. Thus, in the eight sensor example, sensor
one would be located ����� counter-clockwise from sensor
zero, sensor two would be � � � counter-clockwise from sensor
zero, and so on. Note that even after the AV has rotated, we
still consider sensor zero to be on the right most side of the
vehicle, as this makes for easiest implementation. Next, the
procedure used to update the possibleMoves array will be
discussed.

The values in possibleMoves are updated based on the
sensor data that is gathered, and if the AV has not yet reached
the goal point, the direction to the goal point is also used.
Reaching the goal point is the main objective of the AVs,
so the primary function of the control system is to guide
the AV towards this point. The control system achieves this
by first determining which direction the AV must head to
reach the goal. Using this information, the control system
then figures out which locations in possibleMoves should
be updated to goodMove. To illustrate this, imagine the AV
being at location (0, 0) on an x-y grid and the goal point
being located at (300, 0). The AV must head along a straight
line in the positive x-direction. (In the simulation, one would
observe the AV heading towards the right of the screen.)
Earlier, it was defined that the value at possibleMoves[0]
corresponded to the right-most direction, therefore the value
at possibleMoves[0] would now equal goodMove. To make



the control system more robust, the two values to the left
and the two values to the right of possibleMoves[0] would
also contain the goodMove value. Because sensor zero is
adjacent to sensor numSensors-1, possibleMoves[0] is con-
sidered adjacent to possibleMoves[numSensors-1]. The AV
now has the information of where it wants to go, but to avoid
collisions, the AV must also know where not to go. When the
control system finds that sensor n has detected an obstacle or
oncoming AV, it places badMove values in the array locations
possibleMoves[n - numSensors/4] through possibleMoves[n
+ numSensors/4], looping from numSensors - 1 to 0 if
necessary and overwriting the goodMove values if they exist.
This removes half of the possible moves the AV can take,
to ensure that the AV will not be any where closer to the
obstacle that it has detected. After possibleMoves has been
updated using the data from the sensors, the control system
tries to find all of the goodMove values in the array. If
any are found, the AV will change its direction towards the
goodMove direction that minimizes its angle of turn. If no
goodMove values are found in possibleMoves, the control
system will try to turn towards a neutralMove direction that
minimizes its angle of turn. Finally, if no neutralMoves are
found, the AV simply halts and will have to wait for the
neighboring AVs to leave its viewing area before it can
continue moving again. If two AVs happen to collide during
the simulation, the currentBearing values of each AV are
simply reversed. In our simulations, we set numSensors to
72 as this seemed to provide a sufficient number of possible
values for currentBearing. The mechanisms described here
define the movement algorithm of the AVs.

III. SYNTHETIC SOCIAL STRUCTURES

To learn about how Simulated Social Structures affect
the overall behavior of a group of individuals, we will be
studying the behavioral differences of the AVs when a social
dominance hierarchy is introduced into the system. For this
social structure to work, communication is required between
the agents. The communication is simple, as the AVs are only
required to broadcast their dominance level to neighboring
AVs. Only after an AV has discovered the dominance level
of its neighbors can it decide whether or not to ignore them.

An AV’s level of dominance is based on the group it
belongs to. Groups are numbered sequentially from

�
to

numGroups ��� , each AV is in exactly one group, and the
number of AVs in any particular group is greater than or
equal to one. An AV in group i ignores all other AVs in
groups less than i, while avoiding all AVs in groups greater
than or equal to i. The maximum number of groups that
are possible with this scheme is numAVs, and the number of
possible groupings is �������������! #" . Because the number of
groupings increases exponentially with respect to numAVs,
all possible groupings cannot be enumerated. To get an
understanding of this SSS, we chose to study the dynamics
of three completely different groupings. We hope that by
studying these three groupings, one will obtain a deeper
understanding of the emergent behavior created by the local
social interactions.

Fig. 2. The four different terrain topologies. Each hallway is just wide
enough for an AV with a sensorRadius of 30 to fit through.

IV. EXPERIMENTAL METHOD

Our experiments are set in a flat-world, square environ-
ment with side lengths of 1,000 simulation units. For each
run, 50 AVs are packed in to the top of the environment
in evenly spaced rows and columns. Initially, the distance
between each AV is equal to 2 * sensorRadius, where
sensorRadius is equal to 30 units. Also, the initial direction
an AV is facing is random. Four different terrain topologies
are used and shown in Figure 2, and the vertical passageways
in each of the four terrains are just wide enough for the AVs
to pass through. The goal point that the AVs are trying to
reach is set in the center of the hallway’s end. If a terrain
has multiple hallways, we set goal points at the end of each
of the hallways, and for the complex terrain, with multiple
layers, the goal points are set at the end of the bottommost
set of hallways. For each of the following SSS parameter
configurations, 20 runs of the simulation were conducted,
with each run lasting 10,000 time steps.

The following four experiments were run on each one of
the terrains pictured in Figure 2, giving a total of sixteen
experiments. To determine the impact of social rules on the
group behavior of the system, we set up baseline experiments
with no social interactions between AVs. These experiments
were compared to experiments in which three different types
of dominance structures exist in the team of AVs. Throughout
the rest of the paper, we will refer to the individual experi-
ments by their numbers below, along with a reference to the
particular terrain used.

1) No SSS
2) SSS experiment with one dominant AV
3) SSS experiment where each AV is in a different group
4) SSS experiment consisting of five dominance groups,

with each group containing ten AVs

V. EXPERIMENTAL RESULTS

Initial experiments found that the double, triple and com-
plex hallway tests were too easy for the AVs, even without
social structures. The ease of these three terrains can be
attributed to the fact that blockages at a hallway can be



Fig. 3. This example illustrates the deadlock problem, in the single hallway
experiments with no SSS. The AVs are trying to go through the hallway
opening, but because they sense the corners of the hallways and neighboring
AVs, they cannot move, which forces the AVs behind them to also pile up.
Lines between AVs and terrain show the sensor detections, and the circle
around the AVs shows where the AV can and cannot go.
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Experiment 1, single hallway, averaged over 20 runs

Fig. 4. This image shows the number of AVs to make it through the single
hallway. Notice that some AVs never make it to the goal after the 10,000
time steps.

reduced by the AVs going through one of the other, less
crowded hallways. The single hallway terrain was more
difficult for the AVs to traverse because AVs in the center
of a deadlock have nowhere to go (see Figure 3). As shown
in Figure 4, many of the baseline experiments are unable to
reach the goal of moving the entire team through the hallway
in the 10,000 time steps. Because the other three terrains
were simple for the AVs without social interactions, the rest
of the paper will focus only on the single hall experiments.

Three different SSS experiments were conducted. In the
first experiment, one AV was randomly selected from the
population of agents and set to be completely dominant.
The remaining 49 AVs were left unchanged. Because the
dominant AV will ignore all other AVs, it will make its way
through the hallway opening, regardless of whether or not
AVs are in the area. We hope that this dominant AV will
be able to break up deadlocks around the hall opening by

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0  2000  4000  6000  8000  10000

N
um

be
r o

f A
V

s 
to

 re
ac

h 
go

al

Time steps

Experiment 2, single hallway, averaged over 20 runs

 0

 5

 10

 15

 20

 25

 0  2000  4000  6000  8000  10000

N
um

be
r o

f c
ol

lis
io

ns

Time steps

Experiment 2, single hallway, averaged over 20 runs

Fig. 5. Here we show the graphs for our first set of SSS experiments. We
had hoped that having one dominant AV would break up deadlocks around
the hallway entrance, but this did not occur. Notice that there is not a big
difference between the top graph here and the graph in Figure 4.

forcing the other AVs to get out of its way.
In our first set of SSS experiments, we expected to see

a slight increase in the number of collisions, along with an
increase in the rate at which the AVs reach the goal. The
dominant AV is always going to reach the goal quickly, as it
ignores all other AVs and may even break up the deadlock
formed at the hallway. When AVs hit an obstacle, whether it
be the environment boundary, another AV, or the terrain, it
simply reverses its direction. Therefore, the dominant AV will
pass through the hallway, reach the environment boundary
and begin heading back up through the hall again. As the
dominant AV passes through the hall on its way up, it has
the chance to force the deadlocked AVs to move slightly,
thus helping to break up the deadlock. Unfortunately, this
is not what happened. The dominant AV does pass back
through the hallway, but because the deadlocked AVs have
other AVs surrounding them, their possibleMoves array is
full of badMove values and thus, they have nowhere to
go. The dominant AV eventually collides with one of the
stationary, deadlocked AVs and then heads back down the
hallway again, not freeing up any of the less dominant AVs.
An increase in collisions is observed, but an increase in the
number of AVs to reach the goal is not noticed (see Figure 5).
Additional tests were conducted to determine whether or not
having two dominant AVs would increase the rate at which
the AVs passed through the halls. These tests yielded similar
results to the one-dominant tests.

Making one AV completely dominant was not a large
enough change to affect the overall behavior of the system
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Fig. 6. Here we see the graphs for Experiment 3. The AVs make it through
the hallway very fast, but with a huge number of collisions when compared
to the bottom graph in Figure 5.

significantly, so in our second set of experiments, we studied
the behavioral changes when every single AV is in a different
dominance group. We predict that every AV should get
through the hallway fast but with many collisions. In these
experiments, the number of groups is set to be equal to the
number of AVs. At the beginning of each of the 20 runs, the
AVs are randomly placed into a different dominance group.
AVs in the more dominant groups should push through and
reach the goal first, while the less dominant AVs will have
to wait until almost no AVs are near the hallway opening
in order to get through. Figure 6 shows the increase in
the rate at which the AVs pass through the hallway, but
as predicted, this does not come free, because the number
of collisions increases drastically. What is interesting, and
unexpected about these experiments is how the AVs are able
to align themselves based on their groupings. This example
of emergent behavior can be seen in Figure 7. No central
coordinator is present to force the AVs to create such a well
structured alignment, yet due to the local social interactions
at the hallway opening, this behavior emerges. Because of
the high number of collisions, this approach would not be
practical if the AVs are fragile, as they would get damaged,
but if the AVs are durable, an approach similar to this one
could be used. This type of SSS might also be useful when
one wishes to get the AVs through certain openings in a
particular order.

So far, two vastly different SSSs have been studied. The
results of the first experiment did not differ significantly, if
at all, with the non-SSS experiments, whereas the second

Fig. 7. This picture shows the order in which AVs with all different
dominance ranks pass through the hallway. To illustrate this scenario better,
we simply represent the AVs by their grouping. Less dominant AVs (lower
numbers) have yet to pass through the hallway, whereas the more dominant
AVs have already gone through and reached the goal.

experiment took full advantage of the dominance hierarchical
system and created a completely heterogeneous group of
AVs. Is there a balance between these two extremes? We
believe so, and we test this by breaking the AVs into five
groups of ten. One group will be more dominant than the
other four, the second group will be more dominant than
three of the groups, and so on. We expect that, on average,
the most dominant group will reach the goal first, with the
least dominant group having to wait until all the others pass
through the hall before proceeding. Figure 8 shows that the
AVs do pass through the doorway almost as fast as the
AVs with all different dominance levels, but the average
number of collisions is not as low as we had hoped. This
configuration is still too chaotic, and shows that dividing the
AVs into optimal groupings is no simple task and may require
some sort of learning algorithm.

VI. CONCLUSION

In this paper, we investigate the impact of introducing a
Synthetic Social Structure into a multi-agent system. With the
addition of the SSS, we hope to witness emergent behavior
that is not present when no SSS is included. Our Synthetic
Social Structure is based on a linear dominance hierarchy.
AVs are given a dominance level, and it is this dominance
level that determines which AVs avoid or ignore which other
AVs. We test three different types of dominance structures
in this work.

In our first experiment, we make one random AV ex-
tremely dominant while the other 49 have equal lower
dominance. This dominance structure increases the collisions
slightly over not having a social structure at all; however, the
average number of AVs through the goal does not change.
In our second experiment, a more drastic approach is taken,
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Fig. 8. When compared to Figure 6, we see that both the rate at which the
AVs pass through the hallway and the number of collisions are decreased.

where each AV is given a different dominance level. This
approach creates a choatic scene where an extremely large
amount of collisions take place in the first 2,000 time steps.
After the 2,000 time steps, most of the AVs have passed
through the hallway, and the ones who have made it through
arrange themselves in what appears to be a priority queue
(see Figure 7). As a third experiment, we want a structure that
is not as simple as the first but not as chaotic as the second,
so we divide the 50 AVs into five groups of ten. This strategy
reduces collisions as compared to the second experiment, and
increases the average number of AVs through the hallway as
compared to the first experiment.

An extremely large number of possible experiments exist
using this Synthetic Social Structure, and in no way did we
cover them all. Our future work will examine the application
of learning algorithms to learning the parameters that define
these social structures. The learning algorithm could, for
example, determine the optimal groupings for a particular
problem. We believe that no one set of parameters will per-
form optimally in every scenario, and that the performance
of the system will be based on the problem at hand. If the
AVs are fragile or expensive, then it would not be beneficial
to use settings that cause many collisions, but if the AVs are
durable, and the focus is on getting them through the hallway
as fast as possible, an appropriate set of parameters should
be used.
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