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Abstract

This paper investigates the robustness of a genetic algo-
rithm (GA) in feature selection across a dataset with in-
creasing imputed missing values. Feature selection can
be beneficial in predictive modeling to reduce compu-
tational costs and potentially improve performance. Be-
yond these benefits, it also enables a clearer understand-
ing of the algorithm’s decision-making processes. In the
context of real-world datasets that can contain miss-
ing values, feature selection becomes more challeng-
ing. A robust feature selection algorithm should be able
to identify the key features despite missing data values.
We investigate the effectiveness of this approach against
two other feature selection algorithms on a dataset with
increasingly imputed values to determine whether it can
sustain good performance with only the selected fea-
tures. Our results reveal that compared to the other two
methods, the features selected by GA resulted in bet-
ter classification performance across different imputa-
tion rates and methods.

We explore a genetic algorithm (GA) for feature selec-
tion in predictive modeling, demonstrating its effectiveness
and robustness against increasing amounts of missing data.
This approach enhances the speed and accuracy of clas-
sification algorithms by effectively selecting relevant fea-
tures despite incomplete datasets, addressing the challenge
of working with real, often incomplete data. Previous re-
search showed this GA method also maintains robust fea-
ture selection with smaller training sets (Norat, Wu, and Liu
2023). In this work, we examine the impact of data imputa-
tion method and the amount of data imputed on the ability
of this GA approach to perform feature selection. Questions
that we ask include: How does increasing amounts of im-
puted data affect the set of features selected? How does data
imputation method affect the set of features selected? We
examine the GA’s performance relative to these two ques-
tions and compare our observations with the feature selec-
tion performance of two methods (selected from two other
categories of feature selection algorithms). We will exam-
ine what are the features selected and how data imputation
affects consistency. In addition, we will compare the per-
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formance of a neural network using the selected features to
build a predictive model.

Methodology and Experimental setup

We examine six different data imputation methods.
Mean/Mode/Median, KNN(Pedregosa et al. 2011; Troy-
anskaya et al. 2001), Linear Regression (Pedregosa et
al. 2011), Bayesian Ridge(Pedregosa et al. 2011), and
MICE(Van Buuren and Groothuis-Oudshoorn 2011).

The GA we use belongs to the wrapper feature selection
category. To ensure a thorough study, we compare it to two
additional methods the Chi-squared method from the filter
category and the LASSO method from the embedded cate-
gory. Our dataset consists of 40,662 data points. Each data
point has 25 features, and a binary label indicating whether it
represents a PT office receiving more than the median stan-
dardized payment amount (target class).

To compare the performance of different feature selec-
tion methods, we perform classification using data contain-
ing only the selected features and compare the results with
those obtained using all features in the dataset.

To test the effectiveness of the selected features, we use
a feedforward neural network model with three layers: two
hidden layers with ReLU activation and one output layer
with a softmax activation function. The model is trained us-
ing categorical cross-entropy as the loss function and the
Adam optimizer.

For every data imputation method and each feature selec-
tion technique, we conduct experiments with varying per-
centages of missing data, ranging from 0.20% to 0.80%. The
missing data is generated by randomly removing data point
values.

Results

We assess classification performance across various data re-
moval levels (0, 40%, 80%) and imputation methods, ex-
amining the impact of feature selection on Accuracy, Preci-
sion, Recall, F1-score, and ROC-AUC score. Performance
ratios, depicted in heatmaps from Figure 1 to Figure 5,
compare outcomes using selected features against using the
entire dataset. These heatmaps illustrate ratios with color
intensity, where numbers above one, highlighted in yel-
low, signify improved performance with feature selection.
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Figure 1: Heatmaps of Various Imputation Methods (Accu-
racy)
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Figure 2: Heatmaps of Various Imputation Methods (Preci-
sion)
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Figure 3: Heatmaps of Various Imputation Methods (Recall)

Accuracy, precision, recall, F1-score, and ROC-AUC met-
rics all show similar trends as detailed in Figures 1, 2,
3, 4, and 5, respectively. Performance typically decreases
with more data removal, especially using simple imputa-
tion methods. However, GA maintains strong results across
metrics, particularly with complex imputations like LR and
MICE, demonstrating high robustness. LASSO’s perfor-
mance varies, closely matching GA initially then dropping,
while chi-squared’s performance is inconsistent, improving
with complex imputations. Overall, GA exhibits exceptional
stability and high scores, even with significant data removal.
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Figure 4: Heatmaps of Various Imputation Methods (F1-
Score)
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Figure 5: Heatmaps of Various Imputation Methods (ROC-

GA’s performance declines more with simpler univariate im-
putation methods as data removal increases, but remains sta-
ble with complex multivariate strategies, closely mirroring
performance with all features intact. Conversely, LASSO oc-
casionally matches GA but is notably inconsistent, with ef-
fectiveness varying significantly with dataset completeness.
We look at examples from GA to understand the results bet-
ter. In Figure6 to Figure 8, the x — axis represents the differ-
ent features. We have ten lines in each feature group. Each
line indicates a single run. The y — axis represents the corre-
sponding feature weights. In Figure 6, we see the GA feature
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Figure 6: GA feature weights with No imputation
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Figure 7: GA feature weights imputed via MICE
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(b) GA feature weights 80% missing, imputed via Median

Figure 8: GA feature weights imputed via Median

weights of the ten runs with 0% missing values. It selects
features 4, 5, and 9 as the best features. In Figure 7a and
8a, GA can identify the same key features in both, although
in the Median method, the weight of the constant value in-
creases. When the data removal percentage goes up to 80%,
GA can still identify the key features with the MICE method;
however, when using the Median method, GA’s ability to
find the features diminishes.

Conclusion

This paper examines the robustness of GA based feature se-
lection with increasing amounts of imputed data in predic-
tive models. Feature selection, crucial for reducing compu-
tational costs and improving model performance, becomes
challenging with incomplete data, often addressed through
imputation. The study tests GA feature selection on datasets
with various imputation methods, comparing its perfor-
mance against methods like Chi-squared and LASSO. Re-
sults show GA maintains strong performance across various
imputation scenarios and metrics (accuracy, precision, re-
call, F1, and ROC-AUC), even with significant data removal,
particularly with complex imputation techniques like MICE,
underscoring its robustness with heavily imputed data.
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