
Cross-Modal Retrieval Using Deep De-correlated Subspace
Ranking Hashing

Kevin Joslyn
University of Central Florida

Orlando, Florida
KevinJoslyn@knights.ucf.edu

Kai Li
University of Central Florida

Orlando, Florida
kaili@cs.ucf.edu

Kien A. Hua
University of Central Florida

Orlando, Florida
kienhua@cs.ucf.edu

ABSTRACT
Cross-modal hashing has become a popular research topic in re-
cent years due to the efficiency of storing and retrieving high-
dimensional multimodal data represented by compact binary codes.
While most cross-modal hash functions use binary space partition-
ing functions (e.g. the sign function), ourmethod uses ranking-based
hashing, which is based on numerically stable and scale-invariant
rank correlation measures. In this paper, we propose a novel deep
learning architecture called Deep De-correlated Subspace Ranking
Hashing (DDSRH) that uses feature-ranking methods to determine
the hash codes for the image and text modalities in a common
hamming space. Specifically, DDSRH learns a set of de-correlated
nonlinear subspaces on which to project the original features, so
that the hash code can be determined by the relative ordering of
projected feature values in a given optimized subspace. The net-
work relies upon a pre-trained deep feature learning network for
each modality, and a hashing network responsible for optimizing
the hash codes based on the known similarity of the training image-
text pairs. Our proposed method includes both architectural and
mathematical techniques designed specifically for ranking-based
hashing in order to achieve de-correlation between the bits, bit
balancing, and quantization. Finally, through extensive experimen-
tal studies on two widely-used multimodal datasets, we show that
the combination of these techniques can achieve state-of the-art
performance on several benchmarks.

CCS CONCEPTS
• Information systems → Multimedia and multimodal re-
trieval; Learning to rank; Top-k retrieval in databases; •Computing
methodologies → Neural networks;

KEYWORDS
Multimodal retrieval; cross-modal hashing; image and text retrieval
ACM Reference Format:
Kevin Joslyn, Kai Li, and Kien A. Hua. 2018. Cross-Modal Retrieval Using
Deep De-correlated Subspace Ranking Hashing. In ICMR ’18: 2018 Interna-
tional Conference onMultimedia Retrieval, June 11–14, 2018, Yokohama, Japan.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3206025.3206066

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICMR ’18, June 11–14, 2018, Yokohama, Japan
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5046-4/18/06. . . $15.00
https://doi.org/10.1145/3206025.3206066

1 INTRODUCTION
The prevalence of digital and social media in modern society has
created a world that is dominated by multimedia. For billions of
people around the globe, images, stories, social posts and even
videos are just a query and a click away. A relatively new but
already popular research area inspired by the fresh abundance of
multimedia is cross-modal hashing for multimodal retrieval. The
problem is defined as follows: given a query from a certain modality
(such as image or text), the goal is to retrieve relevant results from
a database of another modality. Typical examples of cross-modal
retrieval are using text to retrieve relevant images or vice versa (e.g.
Google image search).

The K-nearest neighbors (kNN) problem is a classic problem that
involves retrieving the k database items that are most similar to the
query. The main issue with kNN is the high computational costs
that can be attributed to the curse of dimensionality, especially
when dealing with multimedia such as high-dimensional images
and videos. In order to avoid making costly comparisons among
examples in the original feature space, hashing for similarity search
has become a popular dimensionality reduction technique. Through
hashing, examples can be compared much more efficiently in a
discrete (rather than continuous) hamming space of a much lower
dimensionality.

Locality Sensitive Hashing (LSH) [10] introduced the concept of
hashing for similarity search. Initially, methods in the LSH family
relied on choosing random hyperplanes to separate the data points,
where each hyperplane accounts for one hash bit and the hash bit
is determined according to which side of the hyperplane the data
point belongs. LSH is an example of a data-independent hashing
method, since the hash function depends on randomization rather
than the actual data. Data-dependent hashing methods are now the
more common variety- these methods use either supervised or un-
supervised learning algorithms to learn meaningful hash functions
that are tailored to the data.

The problem of cross-modal retrieval is especially complex be-
cause it requires the comparison of two objects that exist in entirely
different feature spaces. Thus, cross-modal hashing solutions must
either determine an effective mapping from one modality to the
other modalities, or a mapping from each modality to a common
hamming space. In this work, we focus on the latter approach. Most
cross-modal hashing methods generate hash codes by discretizing
a continuous output space, most commonly by using the sign func-
tion to create a binary code. Instead, this work is motivated by the
ideas introduced in [16], called Linear Subspace Ranking Hashing
(LSRH). The idea is to learn a uniqueK-dimensional linear subspace
for each hash "bit", such that we may generate a K-ary hash code.
To determine each hash bit, the original data point is projected onto

https://doi.org/10.1145/3206025.3206066
https://doi.org/10.1145/3206025.3206066

the corresponding K-dimensional subspace, and the hash bit is set
equal to the index of the dimension with the maximum projection.

Although LSRH has achieved competitive performance on a
number of cross-modal retrieval benchmarks, there are several lim-
itations that need to be addressed. First, the use of strictly linear
subspaces prevents the optimality that may be achieved by exploit-
ing the nonlinearities of deep neural networks. Second, there is
no explicit way for LSRH to make sure that multiple hash bits are
uncorrelated, and it has to rely on boosting to implicitly reduce the
code redundancy. Third, the hash codes generated by LSRH are not
balanced, which can cause an underutilization of the available infor-
mation capacity of an L- bit hash code. Finally, LSRH has no unified
method for feature representation across modalities or datasets.
The use of hand-crafted features (1) undermines the generalizabil-
ity of the model, and (2) neglects the potential of supervised deep
learning for feature representation that has proven to be powerful
in many recent hierarchical deep learning methods [3–5, 12, 24].

In this paper, we introduce a novel deep neural network architec-
ture for cross-modal hashing called Deep De-correlated Subspace
Ranking Hashing (DDSRH) that addresses the above limitations
of LSRH. First, by making use of deep neural networks, DDSRH is
able to learn ranking subspaces that are more optimal due to their
nonlinearity. We address correlation between the bits (i.e. bit redun-
dancy) by abandoning the typical fully-connected model in favor of
fully-connected sub-layers, with one sub-layer for eachK−ary hash
bit. Next, we counter the effects of unbalanced bit distributions by
introducing a regularization term designed to encourage bit bal-
ance. A second regularization term is also added to improve the
quantization performance of the model, which actually competes
with the bit balance term in an effort to achieve an optimal balance
of the terms. Finally, we create a unified feature representation by
employing pre-trained image and text feature extractors to precede
the hashing network and feed it with meaningful features that have
benefited from supervised deep learning.

In this paper, we describe each of the aforementioned compo-
nents in detail and evaluate the effectiveness of each technique by
using each one in isolation and in combination with the others (see
Section 4.3, Ablation Study.) We show that the overall model not
only greatly outperforms LSRH, but furthermore achieves state-of-
the-art results on twowidely used datasets for cross-modal retrieval.

In summary, the major contributions of this paper are as follows:

• We propose a novel deep neural network architecture that
is the first to use de-correlated nonlinear subspace ranking
hashing for cross-modal retrieval.

• We introduce novel de-correlation, bit balancing, and quanti-
zation techniques that are specifically designed for hashing
using subspace ranking, and evaluate the performance gains
obtained by using each technique.

• We demonstrate through several experiments that DDSRH
obtains state-of-the-art performance on two widely used
datasets for cross-modal retrieval.

The remainder of the paper is organized in the following manner.
Section 2 discusses related work, including both linear and non-
linear/deep cross-modal hashing methods. Section 3 describes our
method in detail, including the architecture of the neural network

and loss function formulation. Section 4 discusses the experiments
and results, and Section 5 concludes the work.

2 RELATEDWORK
The earliest work on cross-modal hashing was Cross-Modal Sim-
ilarity Sensitive Hashing (CMSSH) [2], which uses boosting to
sequentially learn linear hash functions for each modality. Other
early cross-modal hashing methods include Cross-View Hashing
(CVH) [15] and Co-Regularized Hashing (CRH) [28]. Since these pi-
oneering works, cross-modal hashing research has split into several
directions, summarized here.

Some methods, including Collective Matrix Factorization Hash-
ing (CMFH) [8] and Latent Semantic Sparse Hashing (LSSH) [29] use
matrix factorization methods to learn hash functions that bridge the
modalities. Other methods were designed with scalability consider-
ations at the forefront, including Inter-media hashing (IMH) [22],
Semantic CorrelationMaximization (SCM) [27], and Semantic Topic
Multimodal Hashing (STMH) [23]. Quantized Correlation Hash-
ing (QCH) [25] and Composite Correlation Quantization (CCQ)
[19] are examples of methods that use quantization techniques for
cross-modal hashing.

An emerging category of cross-modal hashing algorithms uses a
two-stage learning framework that separates binary code learning
from hash function learning. In the first stage, the binary codes for
each training instance are discretely optimized by minimizing a
loss function based on the similarity of the instances. In the second
stage, the hash functions are learned for each modality by treating
each of the optimized bits as a classification problem. Semantics-
Preserving Hashing (SePH) [18] is a well-known approach that first
learns the hash codes by minimizing the KL-divergence between
the cross-modal similarity distribution and the hash code distribu-
tion. SePH then uses logistic regression to learn the hash functions
for each modality. Label Preserving Multimedia Hashing (LPMH)
[17] introduces a general loss function and optional bit balancing
term to be used for the hash code learning, and it makes use of
boosted decision trees for the hash function learning stage. Seman-
tic Neighbor Graph Hashing (SNGH) [13] introduces a semantic
neighbor graph to guide the hash code learning by introducing a
fine-grained similarity metric based on the neighborhood structure
of the graph and the semantic similarity of the instances.

Another increasingly popular direction for cross-modal hashing
algorithms involves deep learning. Masci et al. [20] were the first to
use parallel neural networks for cross-modal hashing. The general
structure, involving one neural network for the text modality and
a parallel network for the image modality, has been imitated and
modified by more recent works, including the proposed DDSRH.
Of these similar works, Deep Cross-Modal Hashing [12] was the
first method to use deep neural networks to learn features and
hash codes simultaneously. During each training iteration, similar
image-text pairs are given the same hash code while just the image
or the text feature parameters are learned. In the third step of each
iteration, the image and text feature parameters are held constant
while the hash codes are learned. Correlation Hashing Network
(CHN) [3] was the first network to consider cosine max-margin
loss for deep hashing methods, as well as quantization max-margin
loss, which acts as a regularizer. Note that rather than learning

feature and hash codes simultaneously, CHN pre-trains an image
feature extractor and a text feature extractor, both of which become
components of the final model. Our proposed method follows this
same approach. Collective Deep Quantization (CDQ) [4] is the
successor to CHN. The main difference is the use of a collective
quantization "codebook" that is shared across modalities, which
was seen to improve the quantizability of the deep representations
and quality of the resulting hash codes.

One drawback of all of the aforementioned methods is that they
are all dependent on exact feature values, which makes them ar-
guably more susceptible to noise and variations. By contrast, our
method belongs to a relatively new class of hash functions based
on ranking operations, which are closely related to rank corre-
lation measures. These techniques in particular are known to be
robust against noise and variations [16, 26]. Even so, ranking-based
hashing for cross-modal retrieval remains a very understudied area.
Linear Subspace Ranking Hashing (LSRH) [16] was the first method
to use ranking-based hash functions for the cross-modal retrieval
problem. Inspired by Winner-Take-All (WTA) Hash [26] and Min-
wise Hash [1], LSRH generates K-ary hash bits that correspond to
the maximum feature dimension for each feature subspace. Rather
than using randomized subspaces in the original feature space like
WTA and MinHash, LSRH learns optimal subspaces in a new fea-
ture space by using boosting for each linear hash function. To date,
LSRH remains the only work of its kind to use ranking-based meth-
ods for cross-modal hashing, and it serves as the basis for this
work.

In summary, the proposed DDSRH bridges the gap between
the deep learning and ranking-based categories of cross-modal
hashing algorithms, incorporating the core advantages of both. The
following section explains the proposed method in detail.

3 DEEP DE-CORRELATED SUBSPACE
RANKING HASHING

3.1 Problem Definition
Let DX = X = {xi }

NX

i=1 and DY = Y = {yj }
NY

j=1 be datasets of
the image and text modalities, respectively, where xi ∈ DX is a
dX-dimensional image and yj ∈ DY is a dY -dimensional text (set
of tags). We also define S = {si j } ∈ {0, 1}NX×NY to be a set of
similarity labels, where si j = 1 if xi is similar to yj (by belonging to
the same concept), and 0 otherwise. The goal is to learn two sets of
hash functions H∗ = {h

(l)
∗ }Ll=1, one for each modality, to transform

the input images and texts into a common K-ary Hamming space,
such that similar image-text pairs are hashed to codes that are close
together in Hamming space while dissimilar image-text pairs are
hashed to codes that are far apart. In this paper, * is a placeholder for
the modality when we need not refer to one modality specifically
(thus it can refer to modality X or Y), and likewise Z∗ refers to
either datasetX or Y. Finally,W∗ represents the learned parameters
for the given modality.

In the following sections, K refers to the number of subspace
dimensions we seek to optimize, resulting in a K-ary hash code. L
refers to the number of K-ary digits in a hash code, while LB =
L × ⌈log2 K⌉ is the number of binary bits used to represent the

code. N refers to the number of examples in question (for example,
training instances) The softmax function is denoted by σ (x).

3.2 Ranking-Based Hashing
We consider a different category of ranking-based hash functions
other than the well-studied sign or thresholding-based functions.
Formally, the ranking-based hash function is defined as follows:

h(z∗;W∗) = argmax
h

hTϕ(z∗;W∗)

s.t. h ∈ {0, 1}K , 1T h = 1
(1)

where z∗ ∈ D∗ is the input sample (text or image) and ϕ(z∗) is an
embedding of the input. Note that the 1-of-K constraint ensures that
there is only a single 1 in the output hash code corresponding to the
maximum entry of the embedded data point, while the remaining
entries are 0s. Therefore, one instance of the above hash function
encodes a K-ary hash code corresponding to the maximum index
of data embeddings. To obtain a length-L hash code, one needs to
apply the hash function to L different embeddings.

Hash functions based on ranking operations are closely related
to rank correlation measures which are known to be robust against
noise and variations [16, 26]. In fact, as long as the implicit ordering
of embedded features remains the same, the hash code will not
change.

Note that the hash functions used in LSRH and WTA are special
cases of the above hash function. LSRH defines each embedding
function as ϕ(z∗;W∗) = WT

∗ z∗, where W∗ ∈ RK×d∗ defines a K-
dimensional linear subspace used to rank the projected features.
On the other hand, WTA’s embedding function can be realized by
using the same embedding function but setting the columns of W∗

equal to columns randomly selected from a d∗ × d∗ identity matrix
[16].

3.3 DDSRH
From (1), note that both LSRH and WTA use linear embedding
functions for ϕ. DDSRH instead uses a nonlinear embedding func-
tion ϕ that can be used to reveal more discriminative nonlinear
ranking structures that cannot be exposed in linear subspaces. We
accomplish this by designing a deep neural network architecture
to learn the nonlinear ranking subspaces. Such a design allows
us to take advantage of both rank correlation measures and deep
learning structures to learn the most discriminative ranking-based
hash functions.

DDSRH also makes use of novel de-correlation, bit balancing and
quantization approaches that are designed specifically for theK-ary
encoding scheme and the subspace ranking problem. By compari-
son, LSRH does not consider bit balancing or quantization loss, and
it has to rely upon boosting for bit de-correlation rather than ex-
plicit bit de-correlation which is made possible with DDSRH. In the
following subsection, we introduce the objective function and its
components, which are responsible for ensuring cross-modal simi-
larity, bit balancing, and quantization. We leave bit de-correlation
to section 3.8 because it is an architectural modification rather than
a term in the objective function.

Figure 1: Full Network structure for deep cross-modal hashing. The network consists of three segments: the feature learning
segment, the hashing segment, and the loss segment. Inputs to the network are given by the wide arrows, while solid black
arrows indicate fully-connected layers or groups. Layers are given a label (e.g. h1X) and a dimension. The softmax function is
given by σ , and is applied to groups of neurons of size K . Neuron values are depicted in grayscale, with black indicating low
values and white indicating high values (relative to the group). Assuming that the first neuron in each group is at index 0, the
corresponding hash code for both the image and the text would be the quaternary code 21.

3.4 Objective Function
The objective function has three components: a cross-modal simi-
larity loss term, a bit balancing term, and a quantization loss term.

3.4.1 Cross-Modal Similarity. Each cross-modal training pair is
given a binary similarity label si j that defines whether the pair is
similar or not similar. Incorporating the ranking hash function h
from (1), we define the loss term for a single training pair as

l(xi , yj) =
(1
L
bTiXbjY − si j

)2
, (2)

where biX , bjY ∈ {0, 1}LK = [h1(·)T h2(·)T .. hL(·)T]T are the vec-
torized hash codes for image xi and text yj respectively, and hl (·)
denotes hl (xi ;WX) for images and hl (yj ;WY) for texts respec-
tively. Note that although the length of the hash code is represented
as L × K bits only for mathematical convenience, the actual binary
code length is only L × log2 K .

We can interpret (2) as follows. First, it is easy to see that the
result of the subtraction operation is a scalar between [−1, 1], due to
the constraints placed on h in (1). If the image-text pair are similar,
we would like the result of bTiXbjY to be very close to L so that the
loss goes to 0. For this to occur, the positions of the ’1’ values in biX
and bjY should be the same, indicating an agreement on the indices
of the maximum embedded feature dimensions across modalities.
Otherwise, if the image-text pair are dissimilar, we would like the
result of bTiXbjY to be very close to 0, indicating a difference in the
positions of the ’1’ values in biX and bjY . Ultimately, this criterion

accomplishes the goal of pushing the hash codes for similar image-
text pairs close together, and pulling the hash codes of dissimilar
image-text pairs far apart.

The overall similarity loss term S is the aggregate similarity loss
for all si j ∈ S and is given as follows:

S(WX ,WY) =
���� 1
L
BX

T BY − S
����2
F , (3)

where S ∈ {0, 1}N×N is the similarity matrix with si j defined as in
3.1, and B∗ ∈ {0, 1}LK×N is the matrix of vectorized hash codes for
all samples. Note that S is a function of WX and WY due to the
use of the hash function h(z∗;W∗).

3.4.2 Bit Balancer. In addition to the similarity term S, we will
introduce a bit balancing term B to balance the distribution of the
K-ary digits in the hash code and thus prevent underutilization
of the information capacity of the code. Since most hashing algo-
rithms deal with binary hash codes, they need only to balance the
occurrence of 1’s and 0’s (or 1’s and -1’s) in the code. Thus one can
achieve balance simply by minimizing

��B ·1��, where B ∈ {−1, 1}L×N
is the matrix of binary codes and 1 is is a vector of 1’s of size N .

Binary codes are actually a special case for our algorithm, which
must attempt to balance the occurrence of all {0, 1, ..,K − 1} in a K-
ary hash code. Then, for each bit position l ∈ {1, 2, ..L} in the hash
code, we would like each d ∈ {0, 1, ..,K − 1} to occur roughly N /K
times across the N instances. We can achieve this by minimizing
(4):

B(WX ,WY) = ������BX · 1 −
N

K
· 1′

������2
F
+

������BY · 1 −
N

K
· 1′

������2
F
, (4)

where B∗ ∈ {0, 1}LK×N , 1 is a vector of 1’s of size N , and 1′ is a
vector of 1’s of size LK . For further explanation, let C = B∗ · 1 ∈

RLK×1 ≥ 0. ThenCi counts the number of occurrences of theK-ary
digit d = i mod K in bit position l = i/L across all N instances.

3.4.3 Quantization. For binary hash functions, quantization loss
terms aim to achieve a maximum margin between instances classi-
fied on either side of the threshold value. Given the classical hash
function h(X) = sign(WT

X
X), a good quantizer would encourage

WT
X
X to be far from 0 to minimize the risk of similar instances

being on either side of the threshold value and obtaining different
hash codes. Of course, our algorithm does not use a threshold value
to quantize the bits; rather, each hash code bit is assigned by using
the argmax function over K values. Accordingly, our quantization
loss term aims to maximize the gap between the maximum value
and the other K − 1 values. Note that although the implementa-
tion of our quantization loss term differs from the classical binary
thresholding case, the motivation is the same: we wish to minimize
the risk of similar instances obtaining different bit values by a nar-
row margin, while also minimizing the risk of dissimilar instances
obtaining the same bit values by a narrow margin.

Because the formal equation is best explained after the network
structure has been introduced, in (5) we simply refer to the quanti-
zation loss term as Q(WX ,WY). It is formally defined in (7).

3.4.4 Overall Objective Function. The overall objective is to
learn parameters WX and WY that minimize

min S(WX ,WY) + αB(WX ,WY) + λQ(WX ,WY), (5)

where S is the similarity loss term defined in (3), B is the bit
balancing term defined in (4), Q is the quantization loss term to be
defined in (7), and α and λ are hyperparameters of the algorithm.
The following section describes how to optimize this equation.

3.5 Optimization
Unfortunately, due to the discontinuous and non-convex nature
of the argmax term in (1), the objective function in (5) is difficult
to optimize. Thus, we will reformulate (1) by using the softmax
function to create a continuous probabilistic approximation to the
ranking hash function:

h(z;W) ≈ σ (ϕ(z;W)), (6)
where σ represents the softmax function, and ∗’s are omitted to
remove notational clutter. Now h still outputs a vector of size K ,
but the output values are continuous values between [0, 1] that sum
to 1. Importantly, the smoothness of the softmax approximation
can be tuned such that its output converges to the binary indicator
vector h in (1).

In order to achieve a good set of nonlinear embedding functions
{ϕ

(l)
∗ }Ll=1 for each modality, we propose the following hierarchical

deep neural networkwhich is the first to use de-correlated nonlinear

subspace ranking hashing for cross-modal retrieval. We optimize
the embeddings outputted by the neural network by combining the
proposed similarity and bit balancing terms with novel adaptations
of de-correlation and quantization measures for subspace ranking
hashing, described in the following sections.

3.6 Network Architecture
Our deep neural network consists of two independently pre-trained
feature learning networks, one for each modality, each followed by
a hashing segment and connected by a cross-modal loss segment.
A depiction of the full network during the cross-modal training
stage is given in Fig. 1. In the figure, image-text pairs are shown
being fed into the network along with a similarity label (inputs are
given by wide arrows). A detailed explanation of each segment of
the network is given in the following sections.

3.7 Feature Learning Segment
The feature learning segment is constructed by pre-training two
independent classifier networks, one for each data modality. The
structure of the image classifier is an AlexNet [14] convolutional
neural network (CNN) with 5 convolutional layers and 3 fully-
connected layers. The text classifier is a deep neural network with
three hidden layers, each of size 2048. A rectifying linear unit (ReLU)
and dropout are employed after each hidden layer.

Each classifier is trained on the appropriate modality of the
dataset using binary cross entropy loss. After the classifiers have
been trained, the features of the second-to-last fully-connected layer
(denoted in Fig. 1 as layer c1∗) are useful as input to the hashing
segment of the network. Thus, we effectively remove the output
layer of the classifiers (the third fully-connected layer), resulting
in the feature learning segment shown in Fig. 1. Layer c1∗ is then
connected to the hashing segment, described in the next section.

3.8 Hashing Segment
The hashing segment’s purpose is to determine the hash value
of the input image or text. It does this by learning L distinct K-
dimensional subspaces, where L is the length of the K-ary hash
code to be determined. Thus the output of the hashing segment
is effectively the projection of the input onto each of the L latent
subspaces.

Fig. 1 shows that the layers in the hashing segment can each be
divided into L equally-sized groups, where each group corresponds
to one subspace being learned and thus one hash bit. (In Fig. 1 we
only show two such groups to conserve space). Thus layer h1∗ is
divided into L groups of size 4096/L, while layers h2∗ and h3∗ are
each divided into L groups of size K . Note that for each of the L
groups of neurons in layer h2∗, we use the softmax function to
transform the values such that for each group in layer h3∗, the sum
of the outputs in that group is 1. To obtain the hash value of the
input image/text, each group of neurons in layer h3∗ reports the
index of the neuron with the maximum output (shown by the white
neurons in Fig. 1.) Assuming that the first neuron in each group
is at index 0, the corresponding hash code for both the image and
the text in Fig. 1 would be the quaternary code 21 (in practice the
code would be longer for a network with more than two groups of
neurons.)

3.8.1 De-correlation. It is important for each hash bit to contain
information that is de-correlated, or independent from, the other
hash bits in order to utilize the full information capacity of the
hash code. This requirement motivates an important design charac-
teristic of our deep network. Looking again at Fig. 1, observe that
while layers c1∗ and h1∗ are fully-connected, only corresponding
groups of neurons are fully- connected between layers h1∗ and h2∗.
Since each group is responsible for one hash bit, the lack of inter-
connections between the groups should greatly reduce information
redundancy and correlation between the hash bits.

3.8.2 Quantization Loss Term. In section 3.4.3, we explained
in non-mathematical terms the motivation and reasoning behind
our quantization approach. In order to design a quantization loss
term to suit our method, notice that each group of K outputs in
layer h3∗ sums to exactly 1. In the ideal case, we would like one
output to be exactly 1, and the rest to be 0. To see how this relates
to sign-thresholding in the binary quantization case, note that we
can essentially reduce our approach to the binary case when we
set K = 2. Then, the quantized value is determined by thresholding
either output at 0.5 rather than 0.

Regardless of the subspace dimension K , we can encourage one
output in h3∗ to be close to 1 and the rest to be close to 0 by mini-
mizing the following equation:

Q(WX ,WY) = −

������BX − 0.5
������
1
−

������BY − 0.5
������
1

(7)

where B∗ = σ (WT
∗ Z∗) ∈ [0, 1]LK×N is the output of the final

hashing layer h3∗. Since Q subtracts the distance from 0.5 for all
elements of BX and BY , the quantization term is minimized when
all of the outputs of h3∗ are exactly 0 or 1.

3.9 Training the Network
Training consists of two stages: classifier pre-training, and cross-
modal training. For the image classifier, we use a replica of AlexNet
that has been pre-trained by The Berkeley Vision and Learning
Center 1on the ImageNet [21] dataset using Caffe [11], and fine-
tune the weights for each of the experimental datasets. The text
classifier weights are randomly initialized and trained only on each
of the experimental datasets.

The proposed DDSRH model is implemented using Torch [7].
In the cross-modal training stage, the weights learned during the
classifier pre-training stage are kept relatively constant by setting a
low learning rate of 10-6 to all of the weights in the feature learning
segment. Learning rates for the weights in the hashing segment
begin at .05. After 10 epochs, this learning rate for these weights is
decreased to .01 and after 50 epochs it is decreased to .005.

The cross-modal training stage is accomplished by feeding image-
text pairs into the network, along with a similarity indicator (1 or
0). Note that the same validation and test sets that are used for
the classifier pre-training phase are also used for the cross-modal
training phase. In this work, we use stochastic gradient descent
(SGD) to optimize the weights for our model. All models are trained
using a momentum coefficient of 0.9 and without weight decay.
We use a batch size of 200 training pairs during training, where 50

1Pretrained model is publicly available for download at https://github.com/BVLC/
caffe/tree/master/models/bvlc_alexnet

pairs are similar pairs and 150 pairs are dissimilar pairs. Using a
validation set, we have selected α to be .015 and λ to be .25.

4 EXPERIMENTS
4.1 Datasets
Brief descriptions of the datasets are given in the following sub-
sections. Please note that the terms label (or class label) and concept
are interchangeable. Also, note that the term image-text couplet
specifically refers to an image from the database and its associated
textual tags, while the term training pair instead refers to a image
and a set of tags that are not necessarily associated.

4.1.1 MIRFLICKR. The MIRFLICKR-25000 dataset [9] consists
of 25,000 image-text couplets, each of which is annotated with one
or more of 24 semantic labels. Textual tags that occur less than 20
times are removed, and then couplets without tags are removed, re-
sulting in 18,159 image-text couplets. Each set of tags is represented
by a 1,075-dimensional bag-of-words vector, representing the 1,075
most common tags across the dataset. Following the experimental
setup in CHN and CDQ [3, 4], we randomly select 1,000 image-text
couplets for the query set, 1,000 couplets for the validation set, and
4,000 couplets for the training set.

4.1.2 NUS-WIDE. TheNUS-WIDE dataset [6] consists of 269,648
image-text couplets, each of which is annotated with one or more
of 81 concepts. Following the experimental setup in CHN and CDQ
[3, 4], we use the 195,834 image-text couplets that belong to the
21 largest concepts. Tags are represented by a 1,000 bag-of-words
vector that corresponds to the 1,000 most frequent tags. Again,
following CHN and CDQ, we randomly select 500 couplets per
concept for the training set, 100 couplets per concept for the query
set, and 50 couplets per concept for the validation set. Couplets are
only selected once to avoid duplicates.

4.1.3 Training Pairs. For the single-modality classifier pre-training
phase, all images and texts except those that exist in the query set or
validation set are used for training. During the cross-modal training
phase, a training pair consists of any one image and any one text
from the training set.Dissimilar training pairs are chosen at random
by choosing pairs of images and texts that share no class labels.
Rather than choosing the similar training pairs at random, we em-
ploy a similarity threshold function that is based on the following
notion: similar training pairs whose image and text component
share multiple class labels are more likely to be useful for training
the network than similar pairs that share only one or two of many
class labels. Thus we choose the similar training pairs by using the
following similarity threshold function:

τ (xi , yj) =
CTi Cj

0.5 ∗ (sum(Ci) + sum(Cj))
, (8)

where Ci and Cj are the binary class label vectors for image xi
and text yj respectively, and sum(Ci) is the number of classes to
which example xi belongs. Higher values of τ then indicate that xi
and yj share a large fraction of the classes to which they belong.
Since such pairs with high τ values are likely to be more useful for
training the network, we only use similar training pairs that satisfy
τ > 0.5. We also use all dissimilar pairs where, trivially, τ = 0.

https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet
https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet

(a) MIRFLICKR, Text to Image (b) MIRFLICKR, Image to Text (c) NUS-WIDE, Text to Image (d) NUS-WIDE, Image to Text

Figure 2: Precision-recall curves using a 32-bit hash code. DDSRH outperforms the other baselines in all cases.

Table 1: Mean average precision at top 50 (mAP@50) results for our method versus baseline methods. The best results are
shown in bold. The bit lengths given refer to the number of binary bits in the hash code LB . All methods were tested using the
same data splits and results reported are the average over five runs.

MIRFLICKR NUS-WIDE
Text query Image Image query Text Text query Image Image query Text

Method 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits
QCH 0.7055 0.7015 0.6911 0.6651 0.6682 0.6655 0.6407 0.5993 0.5683 0.5383 0.6014 0.6171
STMH 0.6718 0.7055 0.7341 0.6844 0.7158 0.7370 0.5942 0.6081 0.6499 0.6274 0.6689 0.7200
LSSH 0.6934 0.7106 0.7160 0.6455 0.6679 0.6851 0.6034 0.6235 0.6468 0.5651 0.5716 0.5609
IMH 0.6878 0.6875 0.6823 0.6862 0.6883 0.6884 0.5344 0.5647 0.5731 0.5624 0.5990 0.6101
CVH 0.5957 0.6149 0.6395 0.5797 0.5834 0.5834 0.4304 0.4090 0.3972 0.5023 0.4886 0.4794
LSRH 0.7709 0.7825 0.7959 0.7323 0.7393 0.7465 0.5658 0.5799 0.5621 0.6437 0.6381 0.6383
CDQ 0.8429 0.8517 0.8567 0.8414 0.8495 0.8542 0.7900 0.8090 0.8102 0.7921 0.8115 0.8136

DDSRH 0.8894 0.9020 0.9037 0.8297 0.8431 0.8505 0.8657 0.8887 0.8991 0.8159 0.8412 0.8463

4.2 Comparison with Baselines
The retrieval task is divided into two categories: image-query-text
and text-query-image. The first uses images as queries to retrieve
the top k relevant texts from the database, and the second performs
the opposite task. Here, we compare the performance of our model
against other works by using mean average precision obtained at
the top 50 results (mAP@50), as well as precision-recall curves.

Table 1 shows the mAP@50 results for our method versus CDQ
[4], a state-of-the art deep nonlinear hashing method, and several
linear hashing methods: QCH [25], STMH [23], LSSH [29], IMH
[22], CVH [15], and LSRH [16]. For each experiment, we vary the
number of bits from 16 to 64. All methods were trained and tested
using our data splits. For the linear hashing methods, the input is
the deep features outputted from our feature learning segment. For
CDQ, we selected the most optimal parameters by using the same
validation set used to tune our own model. It is important to note
that every experiment in this paper is run five times so that each
reported result is the average across the five runs.

DDSRH outperforms the compared methods by approximately
5% or more on both datasets for the text-query-image task. For the
image-query-text task, DDSRH still shows competitive performance.
In fact, on the NUS-WIDE dataset, DDSRH exhibits the highest
image-query-text performance by a margin of approximately 4%.

This shows that DDSRH can perform equally well on both large
datasets such as NUS-WIDE and small datasets such as MIRFLICKR.

We believe that the overall lower performance seen on the image-
query-text task is due to the semantic gap between images and
texts in the datasets. In both datasets, texts belonging to the same
category are more similar to each other than images belonging to
the same category. As noted in [16, 29], since texts are better able
to describe the semantic concept than images, higher mean average
precision can be expected for text queries.

Fig. 2 shows the precision-recall curves for DDSRH compared
to each baseline. It is evident that DDSRH obtains the best perfor-
mance. Note that in each case, the precision for DDSRH remains
relatively high until the recall reaches approximately 0.75, indicat-
ing that DDSRH is capable of returning more relevant results even
for larger queries when many items are retrieved.

4.3 Ablation Study
To evaluate the effectiveness of the de-correlation, quantization, and
bit balance components of our method, we ran several experiments
in which each component was either utilized or not utilized. To
eliminate the bit balance or quantization components, we simply
set α or λ in (5) to 0 respectively. To eliminate the de-correlation
component, we modify the neural network architecture such that

I → T T → I

D - - D B - D B Q - - - - B - - B Q

(a) MIRFLICKR (b) NUS-WIDE

Figure 3: mAP@ 50 observed by varying which features are
turned "on" among de-correlation (D), bit balancing (B), and
quantization (Q). In the legend, a capital letter denotes that
the corresponding feature is turned "on". Image-query-text
(I → T) and text-query-image (T → I) results are shown for
both MIRFLICKR (a) and NUS-WIDE (b).

h1∗ and h2∗ in Fig. 1 are fully connected. The experiments were run
using a hash code length of 32 bits.

The mAP@50 results of this experiment are shown in Fig. 3. The
legend indicates which features have been turned "on", where D =
de-correlation, B = bit balance, and Q = quantization. Observing the
results for NUS-WIDE, we find that the de-correlation component
can be very powerful when coupled with bit balancing. While
adding de-correlation alone or bit balancing alone only improves
the performance by a small amount, adding both together improves
the mAP by almost 3% for both retrieval tasks. The results for
MIRFLICKR do not indicate the same improvements, which we
speculate is due to the fact that it is a much smaller dataset and
thus the model can still benefit from a fully-connected architecture
with fewer regularization terms.

Finally, we observe that the addition of the quantization term
does not consistently improve the mAP results. We believe that
this is because the similarity loss term from (3) can only be truly
minimized when the outputs of h3∗ are exactly 0 or 1, such that no
quantization loss would occur. Thus, even though the similarity
loss term is designed to enforce similarity learning, it appears to
be sufficient enough for quantization as well. Note that the results
shown in Fig. 2 and Table 1 were gathered using de-correlation, bit
balancing, and quantization (see Section 3.9 for the hyperparameter
values that determine the weight of the bit balancing and quanti-
zation components.) However, as can be seen from Fig. 3, similar
results could be achieved by setting λ in (5) to 0 and effectively
removing the quantization component from the loss function.

4.4 Effect of Subspace Dimension
This experiment studies the effect of varying the different subspace
dimension K . The experiment is designed such that for each value
of K , the amount of information contained in the hash code is held
constant by using the same number of binary bits, LB = 60. To
accomplish this, we test K = 21, 22, .., 25 and set the number of
K-ary digits L as L = 60/log2 K . (LB = 60 is chosen since 60 is a
common multiple of 1 to 5.) Fig. 4 shows the effect of changing

(a) MIRFLICKR (b) NUS-WIDE

Figure 4: mAP @ 50 observed by altering the subspace di-
mension K , while keeping the bit length of the hash code
fixed at LB = 60. Image-query-text (I → T) and text-query-
image (T → I) results are shown for both MIRFLICKR (a)
and NUS-WIDE (b).

the subspace dimension K . It is evident that K values between 4
and 16 perform well for both MIRFLICKR and NUS-WIDE. This is
similar to the findings in LSRH, which found the optimal subspace
dimension to be 4 across several datasets. However, it is advisable
to use cross-validation to choose the optimal subspace dimension
for the given dataset.

5 CONCLUSION
In this paper, we have proposed a novel ranking-based cross-modal
hashing method called Deep De-correlated Subspace Ranking Hash-
ing, the first of its kind to exploit de-correlated nonlinear ranking-
based hashing for cross-modal retrieval. The nonlinear, de-correlated
subspaces learned by the deep neural network were proven to be
much more effective at preserving the cross-modal similarity than
the linear subspaces proposed in prior works. Additionally, we have
proposed adaptations of de-correlation, bit balancing, and quanti-
zation for ranking-based hashing; and we have demonstrated that
de-correlation and bit balancing in particular can significantly im-
prove the performance of the model. Comparing DDSRH to several
modern baselines, we have shown that DDSRH significantly out-
performs current state-of-the-art methods on the text-query-image
task, while achieving competitive or superior performance on the
image-query-text task.

ACKNOWLEDGMENTS
This work is partially supported by Crystal Photonics, Inc. under
research ID 1063271. Any opinions, findings, and conclusions ex-
pressed in this paper are those of the authors and do not necessarily
reflect the views of Crystal Photonics, Inc.

REFERENCES
[1] Andrei Z Broder, Moses Charikar, Alan M Frieze, and Michael Mitzenmacher.

2000. Min-wise independent permutations. J. Comput. System Sci. 60, 3 (2000),
630–659.

[2] Michael M Bronstein, Alexander M Bronstein, Fabrice Michel, and Nikos Paragios.
2010. Data fusion through cross-modality metric learning using similarity-
sensitive hashing. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE
Conference on. IEEE, 3594–3601.

[3] Yue Cao, Mingsheng Long, and JianminWang. 2016. Correlation hashing network
for efficient cross-modal retrieval. arXiv preprint arXiv:1602.06697 (2016).

[4] Yue Cao, Mingsheng Long, Jianmin Wang, and Shichen Liu. 2017. Collective
Deep Quantization for Efficient Cross-Modal Retrieval.. In AAAI. 3974–3980.

[5] Yue Cao, Mingsheng Long, Jianmin Wang, Qiang Yang, and S Yu Philip. 2016.
Deep Visual-Semantic Hashing for Cross-Modal Retrieval.. In KDD. 1445–1454.

[6] Tat-Seng Chua, Jinhui Tang, Richang Hong, Haojie Li, Zhiping Luo, and Yantao
Zheng. 2009. NUS-WIDE: a real-world web image database from National Uni-
versity of Singapore. In Proceedings of the ACM international conference on image
and video retrieval. ACM, 48.

[7] Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. 2011. Torch7: A
matlab-like environment for machine learning. In BigLearn, NIPS Workshop.

[8] Guiguang Ding, Yuchen Guo, and Jile Zhou. 2014. Collective matrix factorization
hashing for multimodal data. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2075–2082.

[9] Mark J Huiskes and Michael S Lew. 2008. The MIR flickr retrieval evaluation. In
Proceedings of the 1st ACM international conference on Multimedia information
retrieval. ACM, 39–43.

[10] Piotr Indyk and Rajeev Motwani. 1998. Approximate nearest neighbors: towards
removing the curse of dimensionality. In Proceedings of the thirtieth annual ACM
symposium on Theory of computing. ACM, 604–613.

[11] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: Convolu-
tional architecture for fast feature embedding. In Proceedings of the 22nd ACM
international conference on Multimedia. ACM, 675–678.

[12] Qing-Yuan Jiang and Wu-Jun Li. 2017. Deep Cross-Modal Hashing. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

[13] Lu Jin, Kai Li, Hao Hu, Guo-Jun Qi, and Jinhui Tang. 2018. Semantic Neighbor
Graph Hashing for Multimodal Retrieval. IEEE Transactions on Image Processing
27, 3 (2018), 1405–1417.

[14] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[15] Shaishav Kumar and Raghavendra Udupa. 2011. Learning hash functions for
cross-view similarity search. In IJCAI proceedings-international joint conference
on artificial intelligence, Vol. 22. 1360.

[16] Kai Li, Guojun Qi, Jun Ye, and Kien Hua. 2016. Linear subspace ranking hashing
for cross-modal retrieval. IEEE transactions on pattern analysis and machine
intelligence (2016).

[17] Kai Li, Guo-Jun Qi, and Kien A Hua. 2017. Learning label preserving binary codes
for multimedia retrieval: A general approach. ACM Transactions on Multimedia

Computing, Communications, and Applications (TOMM) 14, 1 (2017), 2.
[18] Zijia Lin, Guiguang Ding, Mingqing Hu, and Jianmin Wang. 2015. Semantics-

preserving hashing for cross-view retrieval. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 3864–3872.

[19] Mingsheng Long, Yue Cao, Jianmin Wang, and Philip S Yu. 2016. Composite cor-
relation quantization for efficient multimodal retrieval. In Proceedings of the 39th
International ACM SIGIR conference on Research and Development in Information
Retrieval. ACM, 579–588.

[20] JonathanMasci, MichaelMBronstein, AlexanderMBronstein, and Jürgen Schmid-
huber. 2014. Multimodal similarity-preserving hashing. IEEE transactions on
pattern analysis and machine intelligence 36, 4 (2014), 824–830.

[21] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
2015. Imagenet large scale visual recognition challenge. International Journal of
Computer Vision 115, 3 (2015), 211–252.

[22] Jingkuan Song, Yang Yang, Yi Yang, Zi Huang, and Heng Tao Shen. 2013. Inter-
media hashing for large-scale retrieval from heterogeneous data sources. In
Proceedings of the 2013 ACM SIGMOD International Conference on Management of
Data. ACM, 785–796.

[23] Di Wang, Xinbo Gao, Xiumei Wang, and Lihuo He. 2015. Semantic Topic Multi-
modal Hashing for Cross-Media Retrieval.. In IJCAI. 3890–3896.

[24] WeiWang, Beng Chin Ooi, Xiaoyan Yang, Dongxiang Zhang, and Yueting Zhuang.
2014. Effective multi-modal retrieval based on stacked auto-encoders. Proceedings
of the VLDB Endowment 7, 8 (2014), 649–660.

[25] Botong Wu, Qiang Yang, Wei-Shi Zheng, Yizhou Wang, and Jingdong Wang.
2015. Quantized Correlation Hashing for Fast Cross-Modal Search.. In IJCAI.
3946–3952.

[26] Jay Yagnik, Dennis Strelow, David A Ross, and Ruei-sung Lin. 2011. The power
of comparative reasoning. In Computer Vision (ICCV), 2011 IEEE International
Conference on. IEEE, 2431–2438.

[27] Dongqing Zhang and Wu-Jun Li. 2014. Large-Scale Supervised Multimodal
Hashing with Semantic Correlation Maximization.. In AAAI, Vol. 1. 7.

[28] Yi Zhen and Dit-Yan Yeung. 2012. Co-regularized hashing for multimodal data.
In Advances in neural information processing systems. 1376–1384.

[29] Jile Zhou, Guiguang Ding, and Yuchen Guo. 2014. Latent semantic sparse hashing
for cross-modal similarity search. In Proceedings of the 37th international ACM
SIGIR conference on Research & development in information retrieval. ACM, 415–
424.

	Abstract
	1 Introduction
	2 Related Work
	3 Deep De-correlated Subspace Ranking Hashing
	3.1 Problem Definition
	3.2 Ranking-Based Hashing
	3.3 DDSRH
	3.4 Objective Function
	3.5 Optimization
	3.6 Network Architecture
	3.7 Feature Learning Segment
	3.8 Hashing Segment
	3.9 Training the Network

	4 Experiments
	4.1 Datasets
	4.2 Comparison with Baselines
	4.3 Ablation Study
	4.4 Effect of Subspace Dimension

	5 Conclusion
	Acknowledgments
	References

