COP 4020 — Programming Languages 1 November 1, 2007

Homework 3: Declarative Programming

Due: problems 1-6, Friday, September 28, 2007; problems 7-11, Friday, October 5, 2007; problems
12-24, Friday, October 12, 2007.

In this homework you will learn basic techniques of recursive programming over various types of data,
and abstracting from patterns, higher-order functions, currying, and infinite data [UseModels] [Concepts].
Many of the problems below exhibit polymorphism [UseModels] [[Concepts]. The problems as a whole
illustrate how functional languages work without hidden side-effects |[EvaluateModels].

Don’t use side effects (assignment and cells) in your solutions.

You should use helping functions whenever you you find that helpful. Unless we specifically say how
you are to solve a problem, feel free to use any functions from the Oz library (base environment), especially
functions like Map and FoldR.

For all programing tasks, you must run your code using the Mozart/Oz system. For these you must also
provide evidence that your program is correct (for example, test cases). Oz code with tests for various
problems is available in a| zip file, which you can download from the| course resources web page. These tests
make use of our code in the file Test . oz, shown in Figure 2] on page 3] and also | available for download
from WebCT and the |course resources web pagel Turn in (on WebCT) your code and the output of your
testing for all questions that require code.

Be sure to clearly label what problem each area of code solves with a comment.

Don’t hesitate to contact the staff if you are stuck at some point.

Read Chapter 3 of the textbook [RHO4]|. Also read our handout “Following the Grammar.” You may also
want to read a tutorial on the concepts of functional programming languages, such as Hudak’s computing
survey article mentioned in the syllabus.

Iteration
1. (5 points) [UseModels]
Write a function
Fact: <fun {$ <Int>}: <Int>>

that computes the factorial of its argument iteratively. The program described in the book’s section 3.3
is not iterative. Your task is to write and test an iterative version.

2. (10 points) [UseModels]

Do problem 5 in section 3.10 of the textbook [RH04] (iterative SumList). You should make up your
own tests for this.

Following the Grammar

3. (20 points) [UseModels]

For each of the functions in Figure 3] on page [3] say whether (i) the function has a correct outline that
follows the grammar for (finite) flat lists, or (ii) if it doesn’t, then briefly explain what the problem is
with that function (i.e., why it does not follow the outline for the flat list grammar).

(Note: you don’t have to judge whether these are correct or not, and you aren’t expected to run them.)

4. (20 points) [UseModels]

For each of the functions in Figure 4] on page] say whether (i) the function has a correct outline that
follows the grammar for (finite) flat lists, or (ii) if it doesn’t, then briefly explain what the problem is
with that function (i.e., why it does not follow the outline for the flat list grammar).

(Note: you don’t have to judge whether these are correct or not, and you aren’t expected to run them.)

http://www.eecs.ucf.edu/~leavens/about.shtml#OutUseModels
http://www.eecs.ucf.edu/~leavens/about.shtml#OutConcepts
http://www.eecs.ucf.edu/~leavens/about.shtml#OutUseModels
http://www.eecs.ucf.edu/~leavens/about.shtml#OutConcepts
http://www.eecs.ucf.edu/~leavens/about.shtml#OutEvaluateModels
http://www.eecs.ucf.edu/~leavens/COP4020/hw-tests/hw3-tests.zip
http://www.eecs.ucf.edu/~leavens/COP4020/resources.shtml
http://www.eecs.ucf.edu/~leavens/COP4020/lib.zip
http://www.eecs.ucf.edu/~leavens/COP4020/resources.shtml
http://www.eecs.ucf.edu/~leavens/COP4020/docs/follow-grammar.pdf

$Id: Testing.oz,v 1.5 2007/08/19 18:19:10 leavens Exp leavens $

Assertion and testing procedures for Oz.

do oo oo oo op

AUTHOR: Gary T. Leavens

functor $

import
System(showInfo)

export
assert: Assert
assume: Assume
start: StartTesting
test: Test

define
%% Assert that the argument is true.
proc {Assert B}

if {Not B}
then {Exception.raiseError assertionFailed}
end

end

%% Mark an assumption that the argument 1is true.
proc {Assume B}

if {Not B}
then {Exception.raiseError assumptionFailed}
end

end

$% Print a newline and a message that testing is beginning.
proc {StartTesting Name}

{System.showInfo ""}

{System.showInfo ’'Testing ’ # Name # ’'...’"}
end

Test i1f Actual == Expected.
If so, print a message, otherwise throw an exception.
proc {Test Actual Connective Expected}
if Actual == Expected
then {System.showInfo
{Value.toVirtualString Actual 5 10}
' ' # Connective # 7 7
{Value.toVirtualString Expected 5 10}}
else {Exception.raiseError
testFailed (actual:Actual
connective:Connective
expected:Expected
debug:unit)

oo oo
oo oo

end
end
end

Figure 1: Testing code that puts output on standard output (the «Oz Emulator* window). This functor is
available in the course 11ib directory. This can be used in other functors by importing Test ing.

$Id: Test.oz,v 1.6 2006/09/26 08:37:27 leavens Exp $
AUTHOR: Gary T. Leavens

o
°
o
°

declare
local [Testing] = {Module.link [’'Testing.ozf’]}
in
StartTesting = Testing.start
Test = Testing.test
end

Figure 2: Testing code that works in the Mozart system’s Oz Programming Interface. The module linked is
shown in Figure[T]on the preceding page. This file is available in the course 11ib directory To use it, copy the
files from the course directory to your own directory and then put \insert ’Test.oz’ in your file.

(a) fun {TalentsOf People}
case People of
P|Ps then {Talent P} | {TalentsOf Ps}
end
end

(b) fun {TalentsOf People}
case People of
nil then nil
end
end

(c) fun {TalentsOf People}
case People of
P|Ps then {Talent P} |{TalentsOf Ps}
else nil
end
end

(d) fun {TalentsOf People}
case People of
hot then sweltering
[] warm then happy
[] cold then freezing
end
end

(e) fun {TalentsOf People}
if People ==
then {Talent People.l} + {TalentsOf People.2}
else 0
end
end

Figure 3: Problem 3]

(a) fun {RhymesWith Words Sought}
case Words of
orange then nil
[] moon then [Jjune croon swoon]
[] love then [dove glove guv]
end
end

(b) fun {RhymesWith Words Sought}
case Words of
W|Ws then

{Append
if {Not {Rhymes Sought W}} then nil else [W] end
{RhymesWith Ws Sought}
}

else nil

end

end

(¢c) fun {RhymesWith Words Sought}
case Words of
W|Ws then

{Append
if {Not {Rhymes Sought W}} then nil else [W] end
{RhymesWith Ws Sought}
}

end

end

(d) fun {RhymesWith Words Sought}
case Words of
W|Ws then if {Not {Rhymes Sought W} }

then {RhymesWith Ws Sought}
else W| {RhymesWith Ws Sought}
end

else nil

end

end

(¢) fun {RhymesWith Words Sought}
case Words of
W|Ws andthen {Rhymes Sought W}
then W| {RhymesWith Ws Sought}
else {RhymesWith Ws Sought}
end
end

Figure 4: Problem 4

5. (10 points) [UseModels]

Write a function

DeleteAll: <fun {$ <List T> T}: <List T>>

that a list of items of some type T, and an item of type T and returns a list just like the argument list,
but with the each occurrence of the item (if any) removed. Use == to compare the item and the list
elements. The following examples are written using the Test procedure from Figure 2] on page [3]

\insert ’Test.oz’
\insert ’'DeleteAll.oz’
{StartTesting ’'DeleteAll’}

{Test {DeleteAll nil 3} ’'==' nil}

{Test {DeleteAll [1 1 2 3 2 1 2 3 2 1] 1} ’'==" [2 3 2 2 3 2]}

{Test {DeleteAll [1 2 3 2 1 2 3 2 1] 1} ’'==" [2 3 2 2 3 2]}

{Test {DeleteAll [1 1 2 3 2 1 2 3 2 1] 4} '==" [1 1 232123 21]}
{Test {DeleteAll [99 56 3] 3} ’'==" [99 56]}

6. (10 points) [UseModels]
Write a function
DeleteSecond: <fun {$ <List T> T}: <List T>>
that takes a list of items of some type T and an item of type T, and returns a list just like the argument
list, but with the second occurrence of the item (if any) removed.
The following examples are written using the Test procedure from Figure 2] on page[3]

\insert ’Test.oz’
\insert ’'DeleteSecond.oz’
{StartTesting ’'DeleteSecond’ }

{Test {DeleteSecond nil 3} ’'==’ nil}

{Test {DeleteSecond [1 2 3 2 1 2 3 2 1] 1} ’'==" [1 2 3 2 2 3 2 11}
{Test {DeleteSecond [1 2 3 2 1 2 3 2 1] 4} '==" [1 2 3 21 2 3 2 1]}
{Test {DeleteSecond [1 2 3] 3} ’'==" [1 2 31}

{Test {DeleteSecond [3 1 2 3] 3} ’'==’ [3 1 21}

Hint: you may need a helping function.

7. (30 points) [UseModels]

This is a problem about recursion over flat lists. In this problem you will write procedures to operate
on an abstract data type, <Set T> represented as the type <List T>, that is lists whose elements
have type T. (In contrast to a later problem, in this problem, we will only consider finite lists.)

In this problem, we give you some of the code for implementing sets using lists, and ask you to fill in the
remaining code. Our code is available from the WebCT assignment for this problem. You need to read
the code for the operations we provide to understand it. This code assumes that lists are represented
without duplicate elements. The code considers that X is a duplicate of Y if and only if X ==Y

There are two complications in the code that we have provided for you. The first is that it the file we
give you SetOps .oz is written as a functor. See section 3.9.3 in our textbook [RHO4] for more about
functors. For your initial debugging and testing, you may want to take out all the functor syntax. To
do this, comment out everything from the line containing functor $ up to and including the line
containing define, and also comment out the last end; finally, add a declare at the beginning.
After you have done your own debugging and testing, you will have to make the SetOps . oz file back
into a functor, since our tests assume that your file is a functor. To make it a functor again, comment out
the declare you added, and uncomment the functor syntax you commented out previously. When
the file is not a functor, you can feed it to Oz as always, using the “Feed Buffer” item of the Oz menu
(and you can’t compile it). But when the file is a functor, you must compile it using the “Compile File”

item of the Oz menu or using the command ozc —c SetOps.oz. When the file is a functor, you
cannot feed it as usual.

The second complication is that the functions won’t work until you write something for your code. In
particular, our code for the function named AsSet uses the function Add, which you are to write; so
AsSet won’t work and can’t be tested until you write a definition for Add.

Your task is to write a procedure for each of the following functions on sets (given with their types
below).

Add: <fun {$ <Set T> T>}: <Set T>>

Remove: <fun {$ <Set T> T>}: <Set T>>

Union: <fun {$ <Set T> <Set T>>}: <Set T>>
Minus: <fun {$ <Set T> <Set T>>}: <Set T>>
Intersect: <fun {$ <Set T> <Set T>>}: <Set T>>
UnionList: <fun {$ <List <Set T>>}: <Set T>>

All these functions return new sets, none modify or mutate their arguments. (This is functional pro-
gramming!) The function Add inserts an item into the set argument, returning a new set containing
just the elements of the set argument and the item. Remove takes an item out of a set (or returns its set
argument unchanged if the element argument was not in the set argument). Union returns the union
of its two arguments as a set (i.e., without duplicates). Minus returns the set of all elements such that
every element of the result is an element of the first set argument, but no element of the result is an
element of the second set argument. Intersect returns the set of elements that are elements of both
set arguments. UnionList returns the union of all the sets in its argument list.

Figure[5]on the next page gives tests that uses these functions.

To start solving this problem, download the file SetOps . oz from WebCT to your directory. Note that
you must keep the name as SetOps . oz. Then add your own code as indicated in the file.

In your solution you may not modify any of the provided functions.
Hint: these are really just a bunch of list recursion problems.

Hint: To save yourself time, you should write and test each of your functions one by one. It really will
save time to test your code yourself; just trying to run our test cases will be frustrating, because you
won’t have much idea of what went wrong.

Hint: to incrementally develop the procedures, start with by implementing Add. It may be helpful to
“stub out” the other functions. See also the notes above for how to make the SetOps . oz file not be a
functor while doing this development.

Hint: when testing, don’t forget to recompile SetOps . oz as described above. Also when running our
tests, you compile (not feed) SetOps . oz, but you feed (but don’t compile) SetOpsTest .oz.

After doing your own testing, turn your file back into a functor if necessary, and then run our test cases,
and include their output (along with output from any of your own tests) and your source code in what
you turn in.

% SId: SetOpsTest.oz,v 1.2 2007/09/24 20:53:45 leavens Exp leavens $

local [Testing SetOps] = {Module.link [’Testing.ozf’ ’'SetOps.ozf’]}
StartTesting = Testing.start Assert = Testing.assert
EmptySet = SetOps.emptySet AsSet = SetOps.asSet
Size = SetOps.size Choose = SetOps.choose
IsMember = SetOps.isMember IsSubset = SetOps.isSubset
Equal = SetOps.equal Add = SetOps.add
Remove = SetOps.remove Union = SetOps.union
Minus = SetOps.minus Intersect = SetOps.intersect
UnionList = SetOps.unionList
in

{StartTesting ’SetOps’}
{Assert {Equal {AsSet nil} {EmptySet}}}
{Assert {Equal {AsSet [1 2 3]} {AsSet [3 1 2]1}}}
{Assert {Not {Equal {AsSet [1 2 3]} {AsSet [1 2]1}}}}
{Assert {Not {Equal {AsSet [c b]} {AsSet [a b cl}}}}
{StartTesting 'Add’}
{Assert {Equal {Add {EmptySet} 1} {AsSet [1]}}}
{Assert {Equal {Add {AsSet [2 3]} 1} {AsSet [1 2 3]}}}
{Assert {Equal {Add {AsSet [2 3 1]} 1} {AsSet [2 1 31}}}
{StartTesting ’Remove’}
{Assert {Equal {Remove {AsSet [2 3 1]} 1} {AsSet [3 2]}}}
{Assert {Equal {Remove {AsSet [2 3 4 8]} 1} {AsSet [2 3 4 81}}}
{StartTesting 'Union’}
{Assert {Equal {Union {AsSet [a b c]} {AsSet [d e]}} {AsSet [a b c d e]l}}}
{Assert {Equal {Union {AsSet [e a b c]} {AsSet [c d e al}}
{AsSet [a b c d el}}}
{StartTesting ’"Minus’}
{Assert {Equal
{Minus {AsSet [a b c]} {AsSet [d e]}}
{AsSet [a b cl}}}
{Assert {Equal
{Minus {AsSet [e a b c]} {AsSet [c d a e]}}
{AsSet [b]}}}
{Assert {Equal
{Minus {AsSet [e a b c]} {AsSet [c e d a f]}}
{AsSet [b]}}}
{Assert {Equal {Minus {AsSet [a b]} {AsSet [b al}} {AsSet nil}}}
{StartTesting ’Intersect’}
{Assert {Equal {Intersect {AsSet [a b c]} {AsSet [d e]}} {EmptySet}}}
{Assert {Equal
{Intersect {AsSet [e a b c]} {AsSet [c d a e]}} {AsSet [a e c]}}}
{Assert {Equal
{Intersect {AsSet [e a b c]} {AsSet [c e d a f b]}}
{AsSet [c b a el}}}
{Assert {Equal {Intersect {AsSet [a b]} {AsSet [b al}} {AsSet [a b]}}}
{StartTesting ’UnionList’}
{Assert {Equal {UnionList nil} {EmptySet}}}
{Assert {Equal
{UnionList [{AsSet [a b c]} {AsSet nil} {AsSet [d e]}]}
{AsSet [a b c d el}}}
{Assert {Equal
{UnionList [{AsSet [a]} {AsSet [b c]} {EmptySet} {AsSet [d e]}
{AsSet [f g h i1 J]} {AsSet [k 1 ma b e]}l}
{AsSet [abcde fghiijkl1l1m]}i}}
end

Figure 5: Tests for exercise[7}

8. (20 points) [UseModels]

This is a problem about the window layouts discussed in section 5.2 of the “Following the Grammar’
handout.

Write a function

ShrinkTo: <fun {$ <WindowLayout> <Number> <Number>}: <WindowLayout>>

such that {ShrinkTo WL Width Height} returns a window layout that is just like WL, except
that each window in WL is made to have width W and height H, where W is the minimum of the
window’s current width and the Width parameter, and H is the minimum of the window’s current
height and the Height parameter.

You can assume that the input window layout has been constructed according to the grammar. That is,
you don’t have to check for errors in the input.

Figure [f| has some examples that are written using the Test procedure from Figure[2]on page[3] Turn
in your source code along with output of testing that includes these tests.

\insert ’'Test.oz’

\insert ’ShrinkTo.oz’

{Test {ShrinkTo vertical(nil) 10 39} ’'==’ vertical(nil)}

{Test {ShrinkTo horizontal(nil) 10 39} ==’ horizontal (nil)}

{Test {ShrinkTo window (name: simpsons width: 30 height: 40) 10 39}

/==’ window (name: simpsons width: 10 height: 39)}

{Test {ShrinkTo window (name: simpsons width: 30 height: 11) 10 39}

/==’ window (name: simpsons width: 10 height: 11)}

{Test {ShrinkTo window(name: familyGuy width: 30 height: 11) 80 39}

==’ window (name: familyGuy width: 30 height: 11)}

{Test {ShrinkTo window (name: familyGuy width: 30 height: 11) 80 5}

/==’ window (name: familyGuy width: 30 height: 5)}

{Test {ShrinkTo

horizontal ([window (name: familyGuy width: 30 height: 15)
window (name: futurama width: 89 height: 55)])
20 30}

''==' horizontal ([window (name: familyGuy width: 20 height: 15)

window (name: futurama width: 20 height: 30)1)}

{Test {ShrinkTo

vertical (

[vertical ([window (name: simpsons width: 30 height: 40)1])

horizontal ([horizontal ([window (name: news width: 5 height: 5)]1)1])

horizontal ([window (name: familyGuy width: 30 height: 15)

window (name: futurama width: 89 height: 55)1)1)
20 30}
==’ vertical (
[vertical ([window (name: simpsons width: 20 height: 30)1])
horizontal ([horizontal ([window (name: news width: 5 height: 5)]1)1])
horizontal ([window (name: familyGuy width: 20 height: 15)
window (name: futurama width: 20 height: 30)]1)1)}

Figure 6: Tests for exercise 8]

http://www.eecs.ucf.edu/~leavens/COP4020/docs/follow-grammar.pdf

9.

10.

11.

(30 points) [UseModels]
This is a problem about the Boolean expression grammar discussed in the “Following the Grammar’
handout, section 5.4.

Write a function

BEval : <fun {$ <Bexp> <fun {$ <Atom>}: <Bool>>}: <Bool>>

that takes 2 arguments: a Bexp, F, and a function from atoms to Booleans, F'. Assume that F' is
defined on each atom that occurs in a (Varref). This function evaluates the expression F, using F
to determine the values of all (Varref)s that occur within it. Examples are shown in Figure [7| on the
following page.

You can assume that the input Bexp has been constructed according to the grammar. That is, you don’t
have to check for errors in the input.

(35 points) [UseModels]

This is a problem about the statement and expression grammar from the “Following the Grammar”
handout, section 5.5.

Write a function

AllIds : <fun {$ <Statement>} : <Set Atom>>

suchthat {A11Ids Stmt} returns a set of all Atoms that are used in the statement as identifiers. Such
uses may occur in several places in the grammar, but the only base cases in which Atoms occur as iden-
tifiers are: the left side of an assignment statement (e.g., idinassignStmt (id numExp (7)))and
variable reference expressions (e.g., foo in varExp (foo)).

For the sets used in the exercise, you should use your solution to exercise [7] on page[5] (If you don’t
have a working solution to that problem, you can get a solution from the course staff, at the cost of
losing the points for that exercise.) Due to the use of functors in that code, your file A11Ids.oz
would have the following shape.

declare

local [SetOps] = {Module.link [’SetOps.ozf’]}
AsSet = SetOps.asSet EmptySet = SetOps.emptySet
Add = SetOps.add Union = SetOps.union
UnionList = SetOps.unionList

in

fun {Al11Ids Stmt}

o
°

end

Figure[8on page [IT] gives some examples.
Hint: Be sure to use a helping function, such as A11IdsExp, so that your code follows the grammar.

After doing your own testing, run our tests and turn in the output from your tests and ours.

(35 points) [UseModels]

This is a problem about the statement and expression grammar from the “Following the Grammar”
handout, section 5.5.

Write a function

SubstIdentifier : <fun {$ <Statement> <Atom> <Atom>}: <Statement>>

that takes a statement Stmt and two atoms, New and O01d, and returns a statement that is just like
Stmt, except that all occurrences of O1d in Stmt are replaced by New. Examples are shown in
Figure [9]on page

Hint: Be sure to use a helping function, such as SubstIdentifierExp, so that your code follows
the grammar.

http://www.eecs.ucf.edu/~leavens/COP4020/docs/follow-grammar.pdf
http://www.eecs.ucf.edu/~leavens/COP4020/docs/follow-grammar.pdf
http://www.eecs.ucf.edu/~leavens/COP4020/docs/follow-grammar.pdf

\insert
declare

"Assert.oz’

fun {StdEnv A}

case

{Assert
{Assert
{Assert
{Assert
{Assert
{Assert
{Assert

{Assert

{Assert

{Assert

A of
then 1
then 2

then 4020

then 76

then 0

raise stdEnvIsUndefinedOn (A) end

{BEval
{BEval
{BEval
{BEval
{BEval
{BEval
{BEval

{BEval

{BEval

{BEval

comp (equals (g g)) StdEnv} == true}
comp (notequals (g qg)) StdEnv} == false}
comp (equals (g r)) StdEnv} == false}
comp (notequals (p q)) StdEnv} == true}
andExp (comp (notequals (p q))

comp (equals(x x))) StdEnv} == true}
andExp (comp (notequals (p q))

comp (notequals(x x))) StdEnv} == false}
andExp (notExp (comp (equals (p p)))

comp (equals (x x))) StdkEnv} == false}
notExp (andExp (notExp (comp (equals (p p)))

comp (equals (x x)))) StdEnv} == true}
orExp (notExp (andExp (notExp (comp (equals (p p)))
comp (equals(x x))))
orExp (comp (equals (p q))
comp (equals (x x)))) StdEnv} == true}
orExp (andExp (notExp (comp (equals (p p)))
comp (equals (x x)))
orExp (comp (equals (p q))
comp (equals(x y)))) StdEnv} == false}

Figure 7: Testing for BEval, exercise[9]

10

% $Id: AllIdsTest.oz,v 1.1 2007/09/24 22:14:44 leavens Exp leavens $
\insert ’AllIds.oz’

local [Testing SetOps] = {Module.link [’Testing.ozf’ ’SetOps.ozf’]}
StartTesting = Testing.start Assert = Testing.assert
AsSet = SetOps.asSet Equal = SetOps.equal

in

{StartTesting "AllIds’}
{Assert {Equal {AllIds expStmt (varExp(qg))} {AsSet [gl}}}
{Assert {Equal {AllIds expStmt (varExp(r))} {AsSet [r]}}}
{Assert {Equal {AllIds assignStmt (a varExp (b))} {AsSet [a bl}}}
{Assert {Equal {AllIds ifStmt (equalsExp (varExp (id) numExp (0))
assignStmt (id varExp (b)))}
{AsSet [id bl}}}
{Assert {Equal {AllIds expStmt (beginExp (nil varExp(a)))}
{AsSet [all}}}
{Assert
{Equal
{Al111Ids
expStmt (beginExp ([ifStmt (equalsExp (varExp (a) numExp (0))
assignStmt (v varExp (q)))
assignStmt (v2 varExp (w))]
beginExp ([expStmt (varExp (r))] varExp(a))))}
{AsSet [a v g v2 w r]}}}
end

Figure 8: Testing for A11Ids, exercise[I0]

\insert ’'Assert.oz’
{Assert {SubstIdentifier expStmt (varExp(q)) p g} == expStmt (varExp(p))}
{Assert {SubstIdentifier expStmt (varExp(r)) p g} == expStmt (varExp(r))}
{Assert {SubstIdentifier assignStmt (a varExp(a))

== assignStmt (n varExp(n))
{Assert {SubstIdentifier

ifStmt (equalsExp (varExp (id) numExp (0)) assignStmt (id varExp (b)))
var id}

n a}

}

== ifStmt (equalsExp (varExp (var) numExp (0)) assignStmt (var varExp (b)))}
{Assert {SubstIdentifier expStmt (beginExp(nil varExp(a))) n a}
== expStmt (beginExp(nil varExp(n)))}
{Assert {SubstIdentifier
expStmt (beginExp ([1fStmt (equalsExp (varExp (a) numExp (0))
assignStmt (a varExp (b)))
assignStmt (a varExp(a))
]
beginExp (nil varExp(a))))
n at
== expStmt (beginExp ([1ifStmt (equalsExp (varExp (n) numExp (0))
assignStmt (n varExp (b)))
assignStmt (n varExp(n))
]
beginExp (nil varExp(n))))}

Figure 9: Tests for the function Subst Identifier, which is exercise[TT]

11

Using Libraries and Higher-Order Functions

12.

13.

14.

(15 points) [UseModels]

In Oz, write a function

Associated: <fun {$ <List <Pair Key Value>> Key}: <List Value>

such that {Associated Pairs K} is the list, in order, of the second elements of pairs in Pairs,
whose first element is equal (by ==) to the argument K.

Do this (a) by writing out the recursion yourself, (b) by using the for loop in Oz (see the Oz documen-
tation or section 3.6.3 of the text [RHO04]), and (c) using Oz’s built in list functions Map and Filter
(see Section 6.3 of “The Oz Base Environment” [DKS06]).

You can test by passing each of your functions as an argument to the procedure in Figure |[10| on the
following page, which is written using the Test procedure from Figure 2] on page 3] Figure[I0|on the
following page also shows how to use the procedure AssociatedTest in a way that will work if
you name each of your solutions as indicated.

[UseModels]

This problem is due to Simon Thompson. It works with the database of a library. Consider the follow-
ing types.

<Database> = <List <Pair <Person> <Book>>>
<Pair P B> ::= <P> #

<Person> ::= <Literal>

<Book> ::= <Literal>

A value of type <Database> records each borrowing by a person of a book.
(a) (10 points) Write a function Borrowers that takes a <Database> and a <Book> and returns
a list of all persons who have borrowed that book.

(b) (10 points) Write a function Borrowed that takes a <Database> and a <Book> and returns
true just when someone has borrowed it.

(c) (10 points) Write a function NumBorrowed that takes a <Database> and a <Person> and
returns the number of book that person has borrowed.

Figure [11] on the next page gives examples of these written using the procedures from Figure [2| on
page[3l

(15 points) [UseModels] [Concepts]

Write a function

Compose: <fun {$ <List <fun {$ T}: T>>}: <fun {$ T}: T>>

that takes a list of functions, and returns a function which is their composition. Figure [I2]on page[T4]
gives some examples.

Hint: note that { Compose nil} is the identity function.

12

\insert ’'Test.oz’
\insert ’'Associated.oz’

declare
proc {AssociatedTest Associated}
{Test {Associated nil 3} ==’ nil}
{Test {Associated [(3#4) (5#7) (3#6) (9#3)1 3} ’'==" [4 6]}
{Test {Associated [(1l#a) (3#c) (2#b) (4#d)] 2} '==' [b]}
{Test {Associated [(1l#a) (3#c) (2#b) (4#d)] 0} ’'=='" nil}
end

{StartTesting ’"Part (a)’}
{AssocilatedTest AssociatedPartA}
{StartTesting ’'Part (b)’}
{AssociatedTest AssociatedPartB}
{StartTesting "Part (c)’}
{AssociatedTest AssociatedPartC}

Figure 10: Test procedure for Exercise[T2]and its use.

\insert ’Test.oz’

\insert ’'Borrowed.oz’

declare

ExampleBase = [('Alice’ # ’'Tintin’) (’Anna’ # ’'Little Women’)
("Alice’ # ’"Asterix’) ('Rory’ # ’'Tintin’)]

{StartTesting ’'Borrowers, part (a)’}

{Test {Borrowers ExampleBase ’'Tintin’} ==’ [’Alice’ 'Rory’]}
{Test {Borrowers ExampleBase ’'Little Women’} ’'==’ [’Anna’]}
{Test {Borrowers ExampleBase ’'Asterix’} ’'==’ [’Alice’]}

{Test {Borrowers ExampleBase ’'The Wizard of Oz’} ==’ nil}

{StartTesting ’'Borrowed, part (b)’}

{Test {Borrowed ExampleBase ’'Tintin’} ’'==’ true}

{Test {Borrowed ExampleBase ’'Little Women’} ’'==’ true}
{Test {Borrowed ExampleBase ’'Asterix’} ’'==’ true}

{Test {Borrowed ExampleBase ’'The Wizard of 0Oz’'} ==’ false}

{StartTesting ’'NumBorrowed, part (c)’}

{Test {NumBorrowed ExampleBase ’'Alice’} ’'==’ 2}
{Test {NumBorrowed ExampleBase 'Anna’} ’'==" 1}
{Test {NumBorrowed ExampleBase 'Rory’} ’'==" 1}
{Test {NumBorrowed ExampleBase ’'Ben’} ==’ 0}

Figure 11: Examples for exercise[I3]

13

\insert ’'Test.oz’
\insert ’Compose.oz’
{StartTesting ’Compose’}
{Test {{Compose nil} [1 2 3]} ’'==" [1 2 3]}
local
fun {Tail Ls} _|Rest = Ls in Rest end
in
{Test {{Compose [Taill} [1 2 3 4 5]}
'==' [2 3 4 5]}
{Test {{Compose [Tail Tail Tail]} [1 2 3 4 5]}
"'==" 1[4 5]}
end
{Test {{Compose [fun {$ X} X + 1 end fun {$ X} X + 2 end]} 4}
[g— 7}
{Test {{Compose [fun {$ X} 3|X end fun {$ Y} 4|Y end]} nil}
"==" 3| (4Inil)}

Figure 12: Examples for exercise[T4]

14

15. [UseModels] [Concepts]

Consider the following type as a representation of binary relations.

<BinaryRel A B> ::= <List <Pair A B>>
<Pair A B> ::= <A> #

(a) (10 points) Using the built-in function A11 (see Section 6.3 of “The Oz Base Environment”
[DKSO06]), write a function

IsFunction: <fun {$ <BinaryRel A B>}: Bool>

that returns true just when its argument satisfies the standard definition of a function; that is,
{IsFunction R} is true just when for each pair z#vy in the list R there is no pair x#z in R
such that y # z.

The following are examples.

\insert ’'Test.oz’

\insert ’IsFunction.oz’

{StartTesting ’IsFunction’}

{Test {IsFunction nil} ’'==’ true}

{Test {IsFunction [a#l b#2 c#3 a#l]} ’'==' true}

{Test {IsFunction [b#2 c#3 a#l]} ’'==' true}

{Test {IsFunction [b#2 c#3 b#41l a#l1l]} ’'==’ false}

{Test {IsFunction [b#2 c#3 d#2 e#2 f#2 g#3 a#l]} ==’ true}
{Test {IsFunction [bush#shrub]} ==’ true}

(b) (10 points) Using the for loop in Oz (see the Oz documentation or section 3.6.3 of the text
[RHOA4]), write a function

BRelCompose: <fun {$ <BinaryRel A B> <BinaryRel B C>}:
<BinaryRel A C>>

that returns the relational composition of its arguments. That is, a pair z#z is in the result if and
only if there is a pair z#y in the first relation argument of the pair of arguments, and a pair y#z
is in the second argument. For example,

\insert ’'Test.oz’

\insert ’'BRelCompose.oz’

{StartTesting ’'BRelCompose’ }

{Test {BRelCompose nil [2#b 3#c]} ’'==’ nil}
{Test {BRelCompose nil nil} ’'==’ nil}

{Test {BRelCompose [1#2 2#3] [2#b 3#c]}
'==' [1l#b 2%#c]}
{Test {BRelCompose [1#2 1#3] [2#b 3#c]}

'==' [1l#b l#c]}
{Test {BRelCompose [1#3 2#3] [3#b 3#c]}
"==' [1#b 1l#c 2#b 2#c]}

15

16. (5 points) [UseModels] [Concepts]

17.

18.

19.

20.

Define a function

CommaSeparate: <fun {$ <List String>}: String>

that takes a list of strings and returns a single string that contains the given strings in the order given,
separated by ", ". For example,

\insert ’Test.oz’

{StartTesting ’CommaSeparate’}

{Test {CommaSeparate nil} ’'==" ""}

{Test {CommaSeparate ["a" "b"]} '==" "a, b"}

{Test {CommaSeparate ["Monday" "Tuesday" "Wednesday" "Thursday"]}
/==" "Monday, Tuesday, Wednesday, Thursday"}

(5 points) Define a function

OnSeparatelLines: <fun {$ <List String>}: String>

that takes a list of strings and returns a single string that, when printed, shows the strings on separate
lines.

For example,

\insert ’Test.oz’

{StartTesting ’'OnSeparatelines’}

{Test {OnSeparatelines nil} ’'==" ""}

{Test {OnSeparatelLines ["a" "b"]} ==’ "a\nb"}

{Test {OnSeparatelines ["Monday" "Tuesday" "Wednesday" "Thursday"]}
==’ "Monday\nTuesday\nWednesday\nThursday"}

(10 points) Define a curried function

SeparatedBy: <fun {$ <String>}: <fun {$ <List String>}: String>>

that is a generalization of onSeparateLines and commaSeparated. Test it by using it to define
these two other functions.

(5 points) [UseModels]

Define the function MyAppend to be just like the standard Append function. You definition is to be
done by using FoldR , completing the following by adding arguments to the call of FoldR. (For a
description of FoldR, see Section 6.3 of “The Oz Base Environment” [DKS06].)

fun {MyAppend Xs Ys}
{FoldR }
end

(5 points) [UseModels]

Using FoldR in a way similar to the previous problem, define

DoubleAll: <fun {$ <List Number>}: <List Number>>

that takes a list of Numbers, and returns a list with each of its elements doubled. The following are
examples.

\insert ’'Test.oz’

\insert ’DoubleAll.oz’

{StartTesting ’'DoubleAll’ }

{Test {DoubleAll nil} ’'==’ nil}

{Test {DoubleAll [1 2 3]} ’'==' [2 4 6]}

{Test {DoubleAll [3 6 2 5 4 1]} '==" [6 12 4 10 8 2]}

21.

22.

23.

(15 points) [UseModels]

Define the function MyMap to be just like the standard Map function. Your definition is to be done by
using FoldR. As part of your testing, use MyMap to (a) declare DoubleAll, and (b) to add 1 to all
the elements of a list of Ints.

[UseModels]
Consider the following type

<Tree T> ::= node(item:T subtrees:<List <Tree T>>)

for nary-trees, which represents a Tree of elements of some type T as a node record, which contains a
field item of type T and a list of subtrees.

(a) (10 points) Define a function

SumTree: <fun {$ <Tree Int>}: Int>

that adds together all the Ints in a Tree of Ints. For example, the procedure shown in Figure[I3]on
page[T9]tests an implementation of SumTree passed to it as an argument.

(b) (15 points) Define a function
MapTree: <fun {$ <Tree S> <fun {$ S}: T>}: <Tree T>>

that takes a Tree ¢ and a function f and returns a tree that has the same shape of ¢, but where each
item x is replaced by the result of applying f to x.

For example, the procedure shown in Figure [14]on page [20]tests an implementation of MapTree
passed to it as an argument.

(c) (30 points) By generalizing your answers to the above problems, define an Oz function FoldTree
that is analogous to FoldR for lists. This should take a tree, a function to replace the node con-
structor, a function to replace the | constructor for lists, and a value to replace the empty list. You
should, for example, be able to define SumTree, and MapTree on Trees as follows.

declare

fun {Add X Y} X + Y end

fun {SumTree Tree} {FoldTree Tree Add Add 0} end

fun {MapTree Tree F}

{FoldTree Tree

fun {$ I Strs} node(item:{F I} subtrees:Strs) end
fun {$ E Es} E|Es end
nil}

end

\insert ’SumTreeTest.oz’

{SumTreeTest SumTree}

\insert ’'MapTreeTest.oz’

{MapTreeTest MapTree}

(30 points) [UseModels] [Concepts]
A set can be described by a “characteristic function” (whose range is the booleans) that determines if
an element occurs in the set. For example, the function P such that

P(x) = x is an number and = > 7

is the characteristic function for a set containing all numbers strictly greater than 7. Allowing the user to
construct a set from a characteristic function gives one the power to construct sets like {z | P(x)} that
contains an infinite number of elements (in this example, the set contains all numbers strictly greater
than 7).

Your problem is to implement the following operations. (Hint: think about using a function type as the
representation of sets.)

17

(a) The function Set SuchThat takes a characteristic function, F' and returns a set such that each
value X is in the set just when {F X} is true.

(b) The function Union takes two sets, with characteristic functions F' and (G, and returns a set such
that each value X is in the set just when either {F' X} or {G X} is true.

(c) The function Intersect takes two sets, with characteristic functions F' and G, and returns a
set such that each value X is in the set just when both {F' X'} and {G X} are true.

(d) The function Member returns a Boolean that tells whether the second argument is a member of
its first argument. (Note that this is not the same as Oz’s built-in Member function, you are to
write your own.)

(e) The function Complement returns a set that contains everything that is not in its argument set.

As examples, consider the tests in Figure[I5]on page 21}

Note (hint, hint) that the equations in Figure[I6]on page[2T|must hold, for all F, G, and X of appropriate
types.

24. (25 points) [UseModels]

Consider the following data grammars.

<Exp> ::= boolLit (<Bool>)

| intLit (<Int>)

| charLit (<Char>)

| subExp (<Exp> <Exp>)

| equalExp (<Exp> <Exp>)

| ifExp(<Exp> <Exp> <Exp>)
<OType> ::= obool | oint | ochar | owrong

In this grammar, boolLit, intLit, and charLit represent Boolean, Integer, and Character literals
(respectively). As the grammar says, you can assume that inside boolLit isa <Bool>, and inside an
intLit is an <Int>, and similarly for charLit. Records of the form subExp (F; E3) represent
subtractions (£ — F5). Records of the form equalExp (FE71 Fo) represent equality tests, i.e., F; ==
F5. Records of the form i fExp (F; Ey F3) represent if-then-else expressions, i.e., if £ then F5
else F3 end.

Your task is to write a function

TypeOf: <fun {$ <Exp>}: OType>

that takes an <Exp> and returns its OType. Figure[T7]on page 21| gives some examples.

Your function should incorporate a reasonable notion of what the exact type rules are, but your rules
should agree with our test cases in Figure [I7]on page[21] (Exactly what “reasonable” is left up to you;
explain any decisions you feel the need to make. However, note that this is static type checking, you
will not be executing the programs and should not look at the values of subexpressions when deciding
on types.)

References

[DKS06] Denys Duchier, Leif Kornstaedt, and Christian Schulte. The Oz Base Environment. mozart-0z.0rg,
June 2006. Version 1.3.2.

[RHO4] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer Programming.
The MIT Press, Cambridge, Mass., 2004.

18

\insert ’Test.oz’
declare
proc {SumTreeTest SumTree}
{StartTesting ’SumTree’}
{Test {SumTree node (item:4 subtrees:nil)} ’'==' 4}
{Test {SumTree
node (item:3
subtrees: [node (item:4 subtrees:nil)
node (item:7 subtrees:nil)])} ’'==’ 14}
{Test {SumTree
node (item:10
subtrees: [node (item:3
subtrees: [node (item:4 subtrees:nil)
node (item:7 subtrees:nil)])
node (item:10
subtrees: [node (item:20 subtrees: nil)
node (item:30 subtrees: nil)
node (item:40 subtrees: nil)]
) 1)}
r==' 124}
end

Figure 13: Procedure to test exercise 22a]

19

\insert ’Test.oz’

declare

proc {MapTreeTest MapTree}
fun {Addl X} X+1 end
fun {Add3 X} X+3 end

in
{StartTesting ’"MapTree’}
{Test {MapTree node (item:4 subtrees:nil) Addl}
"'==' node (item:5 subtrees:nil)}
{Test {MapTree node (item:3
subtrees: [node (item:4 subtrees:nil)
node (item:7 subtrees:nil)])
Add3}
"'==' node (item:6
subtrees: [node (item:7 subtrees:nil)
node (item:10 subtrees:nil)])}
{Test {MapTree
node (item:10
subtrees: [node (item:3
subtrees: [node (item:4 subtrees:nil)
node (item:7 subtrees:nil)])
node (item:10
subtrees: [node (item:20 subtrees: nil)
node (item:30 subtrees: nil)
node (item:40 subtrees: nil)]
) 1)
Add3}
"'==' node (item:13
subtrees: [node (item: 6
subtrees: [node (item:7 subtrees:nil)
node (item:10 subtrees:nil)])
node (item:13
subtrees: [node (item:23 subtrees: nil)
node (item:33 subtrees: nil)
node (item:43 subtrees: nil)]
) 1)}
end

Figure 14: A procedure to test solutions to exercise [22b]

20

\insert ’'Test.oz’
\insert ’Set.oz’
{StartTesting ’'Set’}

declare
fun {IsCoke X} == coke end
fun {IsPepsi X} X == pepsi end

{Test {Member {SetSuchThat IsCoke} coke} ’'==’ true}

{Test {Member {SetSuchThat IsCoke} pepsi} ==’ false}

{Test {Member {Complement {SetSuchThat IsCoke}} coke} ’'==’ false}

{Test {Member {Union {SetSuchThat IsCoke} {SetSuchThat IsPepsi}}
pepsi} ==’ true}

{Test {Member {Union {SetSuchThat IsCoke} {SetSuchThat IsPepsi}}
coke} ==’ true}

{Test {Member {Union {SetSuchThat IsCoke} {SetSuchThat IsPepsi}}
sprite} ’'==’ false}

{Test {Member {Intersect {SetSuchThat IsCoke} {SetSuchThat IsPepsi}}

coke} ==’ false}

Figure 15: Example tests for exercise 23]

{Member {Union (SetSuchThat F} {SetSuchThat G}} X}

{F X} orelse {G X}

{Member {Intersect (SetSuchThat F} {SetSuchThat G}} X}
{F X} andthen {G X}

{Member {SetSuchThat F} X} == {F X}

{Member {Complement {SetSuchThat F}} X} == {Not {F X}}

Figure 16: Equations that give hints for exercise 23]

\insert ’Test.oz’
\insert ’TypeOf.oz’
{StartTesting ’TypeOf’}

{Test {TypeOf equalExp (intLit (3) intLit(4))} ’'==’ obool}
{Test {TypeOf subExp (intLit (3) 1ntL1t(4))} '==' oint}
{Test {TypeOf subExp (intLit (3) intLit(4))} ’'==’ oint}
{Test {TypeOf subExp (charLit (&a) 1ntL1t(4))} ==’ owrong}
{Test {TypeOf equalExp (subExp (charLit (&a) intLit (3))
intLit (4))} ’'==' owrong}
{Test {TypeOf ifExp (boolLit (true) intLit (4) intLit(5))} ==’ oint}
{Test {TypeOf ifExp(boollLit (true) intLit (4) boolLit (true))} ==’ owrong}
{Test {TypeOf ifExp (intLit (3) intLit(4) intLit(5))} ’'==’ owrong}

{Test {TypeOf equalExp (subExp (charLit (&a) intLit (3))
1fExp (intLit (0) intLit (4) boolLit (true))) }
==’ owrong}

Figure 17: Examples for exercise 24}

21

