COP 4020 — Programming Languages | September 1, 2010
Homework 2: Declarative Computation Model

See Webcourses and the syllabus| for due dates.

In this homework you will learn about the declarative computation model [Concepts], including the concepts of free
and bound identifier occurrences, linguistic abstractions, syntactic sugars, and also about the extension of the
declarative model to exception handling. You’ll also see how the declarative computation model relates to C, C++,
and Java [MapToLanguages].

Answers to English questions should be in your own words; don’t just quote text from the textbook.

Code for programming problems should be written in Oz’s declarative model, so do not use either cells or cell
assignment in your Oz solutions. (Furthermore, note that the declarative model does not include the primitive IsDet
or the library function IsFree; thus you are also prohibited from using either of these functions in your solutions.)
You should use helping functions whenever you find that useful. Unless we specifically say how you are to solve a
problem, feel free to use any functions that are compatible with the declarative model from the Oz library (base
environment), especially functions like Map and FoldR.

For all Oz programing exercises, you must run your code using the Mozart/Oz system. For programming problems
for which we provide tests, you can find them all in a zip file, which you can download from problem 1’s assignment
on Webcourses. If the tests don’t pass, please try to say why they don’t pass, as this enhances communication and
makes commenting on the code easier and more specific to your problem.

What to Turn In: Turn in (on Webcourses) your code and output of your testing for each problem that requires code.
Please upload code as a plain (text) file with the name given in the problem or testing file and with the suffix .oz.
Please upload test output and English answers by pasting them into the answer box in the problem’s “assignment” on
Webcourses. If you have a mix of code and English, use a text file with a . oz file suffix, and put English answers in
the answer box. (In any case, don’t put spaces or tabs in your file names!)

Your code should compile with Oz, if it doesn’t you probably should keep working on it. If you don’t have time, at
least tell us that you didn’t get it to compile.

Don’t hesitate to contact the staff if you are stuck at some point.

For background, you should read Chapter 2 of the textbook [VHO4]. But you may also want to refer to the reference
and tutorial material on the Mozart/Oz web site. See also the course resources page.

Reading Problems
The problems in this section are intended to get you to read the textbook, ideally in advance of class meetings.

Read chapter 2, through section 2.1 of the textbook [VHO4]] and answer the following questions.

1. [Concepts] [MapToLanguages] A for loop in Java, C, and C++ is a linguistic abstraction of a while loop. In
Java, interfaces are also linguistic abstractions of abstract classes. Give another, different example of a
linguistic abstraction in Java, C, or C++ by:

(a) (2 points) saying which of these languages you are describing,
(b) (3 points) naming a linguistic abstraction in that language, and

(c) (5 points) naming the main syntactic construct that it is an abstraction of.

Read through section 2.2 of the textbook and answer the following questions.

2. [Concepts]
(a) (4 points) What is a partial value?

(b) (3 points) What happens in Oz when a program executes a statement such as X = Z but both X and Z are
undetermined (i.e., unbound) dataflow variables?

(c) (3 points) What does a thread in Oz do when a dataflow variable is accessed before its value is determined
(i.e., before it is bound).

https://webcourses.ucf.edu/
http://www.eecs.ucf.edu/~leavens/COP4020/syllabus.shtml
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutConcepts
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutMapToLanguages
https://webcourses.ucf.edu/
http://www.mozart-oz.org/
http://www.eecs.ucf.edu/~leavens/COP4020/resources.shtml

Read through section 2.3 of the textbook and answer the following questions.

3. (5 points) [Concepts] [MapToLanguages] What kind of typing does C# have? (Note: C# is designed to be very
similar to Java.)

Read through section 2.4 of the textbook and answer the following questions.
4. (5 points) [Concepts] What is the main advantage of static (i.e., lexical) scoping? (Give a brief answer.)

5. [Concepts] This question is about the subtle but important difference between the confusingly similar terms
“bound variable identifier occurrence” and “bound store variable.”

Consider the Oz program in Figure|[T}

local A in
local B in
A=7
Res = AxB % line 4
end
end

Figure 1: Oz program for question [5]

(a) (2 points) On line 4 of Figure[l] is the occurrence of the variable identifier B a bound occurrence of that
variable identifier, or is it a free occurrence?

(b) (2 points) When starting to execute line 4 of Figure[I] will the store variable that B denotes be a bound store
variable or will it be undetermined?

(c) (2 points) On line 4 of Figure[l] is the occurrence of the variable identifier A a bound occurrence of that
variable identifier, or is it a free occurrence?

(d) (2 points) When starting to execute line 4 of Figure[I] will the store variable that A denotes be a bound store
variable or will it be undetermined?

(e) (2 points) On line 4 of Figureﬂ], is the occurrence of the variable identifier Res a bound occurrence of that
variable identifier, or is it a free occurrence?

(f) (2 points) Suppose that line 4 in Figure[I| were to finish execution (i.e., suppose that another thread unified
B with 10), in that situation, after executing line 4 of Figure[l| would the store variable that Res denotes be a
bound store variable or would it be undetermined?

(g) (5 points) Must a bound occurrence of a variable identifier always denote a determined value at runtime?

Read through section 2.5 of the textbook and answer the following questions.

6. [Concepts] [MapToLanguages]

(a) (5 points) Suppose you are programming in a language (like C, C++, or Java) in which the compiler does
not implement the “last call optimization.” In such a language should you use recursion to write code that
may execute an unbounded number of times? Briefly explain.

(b) (2 points) Does Oz have garbage collection like Java?

(c) (3 points) What kinds of “cleanup” actions should a Java program take to ensure that it does not keep
memory allocated that it no longer needs?

Read through section 2.6 of the textbook and answer the following questions.

7. [Concepts] [MapToLanguages]
(a) (2 points) What is Oz’s andthen operator like in Java or C++?

(b) (3 points) What is the equivalent of the Java or C++ expression A != Bin Oz?

Read through section 2.7 of the textbook and answer the following questions.

8. (3 points) [Concepts] Give a simple example of the syntax used in Oz to throw an exception.

Read through sections 2.8.2 and 2.8.3 of the textbook and answer the following questions.

9. [Concepts]
(a) (2 points) Which language has dynamic type checking: Oz or Java?
(b) (3 points) Which language has static type checking: Oz or Java?

Regular Problems

We expect you’ll do the problems in this section after reading the entire chapter. However, you can probably do some
of them after reading only part of the chapter.

Some of the following problems are from the textbook [VHO04, section 2.9].

10. [Concepts] This is a problem about free and bound identifier occurrences. See the end of section 2.4.3 of the
textbook for a definition of free and bound identifier occurrences. You may also want to do the ungraded quiz on
free and bound identifiers in Webcourses before starting this.

Consider the kernel language statement shown in Figure[2] (Note that there is no declare form in the kernel
language, so you should not imagine one in the figure.)

Composer = proc {$ H G A R}
local Tmp in
{G A Tmp}
{H Tmp R}
end
end
Adderl = proc {$ B Result}
local Seven in
local Eight in
Seven = 7
{Adder B Seven Result}
end
end
end
local Ret in
local Four in
Four = 3
{Composer Adderl Id Four Ret}
end
end

Figure 2: Kernel language statement for problem 10}

(a) (5 points) Write, in set brackets, the entire set of the variable identifiers that occur free in the statement
shown in Figure For example, write {V, W} if the variable identifiers that occur free are V and W. If
there are no variable identifiers that occur free, write {}.

(b) (10 points) Write, in set brackets, the entire set of the variable identifiers that occur bound in the statement
shown in Figure 2] For example, write {V, W'} if the variable identifiers that occur bound are V and W If
there are no variable identifiers that occur bound, write {}.

11. [Concepts]

This is a problem about free and bound identifier occurrences. In this problem, we will consider Number. ’+’ and
Int.’div’ to each be single identifiers (that is, each matches the syntax (X)).

Consider the kernel language statement shown in Figure [3]on the following page. (Note that there is no declare
form in the kernel language, so you should not imagine one in the figure.)

(a) (5 points) Write in set brackets, the entire set of the variable identifiers that occur free in the statement
shown in Figure [3{on the next page. For example, write {V, W'} if the variable identifiers that occur free are
V and W. If there are no variable identifiers that occur free, write {}.

https://webcourses.ucf.edu/

Avglter = proc {$ Ls Total Len ?Answer}
case Ls of
17(1: X 2: Xs) then
local Sum in
{Number.’+’ X Total Sum}
local One in
One = 1
local NewLen in
{Number.’+’ One Len NewLen}
{AvgIter Xs Sum NewLen Answer}
end
end
end
else {Int.’div’ Total Len Answer}
end
end
Average = proc {$ Lst ?Ans}
local Unused in
local Zero in
Zero = 0
{AvgIter Lst Zero Zero Ans}
end

Figure 3: Kernel language statement for problem[T1]

(b) (10 points) Write in set brackets, the entire set of the variable identifiers that occur bound in the statement
shown in Figure 3] For example, write {V, W'} if the variable identifiers that occur bound are V' and W. If
there are no variable identifiers that occur bound, write {}.

12. [Concepts] [MapToLanguages] Consider the Java program in Figure

Answer the following questions with respect to the program in Figure 4]

(a) (3 points) Are the occurrences of the identifiers x and y within the constructor free or bound?

(b) (3 points) Does dx occur in this program as a free or bound identifier?

(c) (3 points) Does newy occur in this program as a free or bound identifier?

public class Point2D {
int x;
int vy;

public Point2D(int a, int b) { x = a; v = b; }
public Point2D makeOffset(int dx, int dy) {
int newx = x+dx;

int newy;
return new Point2D(newx, y+dy);

Figure 4: Code for Problem[12]

13. [Concepts]
Consider the code in Figure 3]

local Z in
local MulByN in
local N in
N=7
MulByN = proc {$ X ?Y}
{Number.’*’ N X Y}

end
end
local N in
N = true % line 10
{MulByN 6 Z}
end
end
{Browse Z}

end

Figure 5: Code that calls MulByN.

Answer the following questions.
(a) (5 points) When you run this code in Oz, what, if anything, is shown in the browser?
(b) (5 points) In what way does the binding of N to true on line 10 affect the output of the program?

(c) (5 points) If this code were executed with dynamic scoping, what would happen when the program was run?

14. [Concepts] [MapToLanguages]

15.

This problem tries to get you to think about how environments are manipulated by calls in Java, and in that sense
is similar to the previous problem, but for Java.

To understand this question, you need to understand how this works in Java. First, Java’s this is an identifier
that is implicitly declared by Java’s class mechanism.

Second, when Java executes a method call, such as r.printThis(), Java looks at the dynamic class of the
receiver object, which is the value of the receiver expression (r), and uses that to find the code for the method
(printThis). To execute that code, Java creates up an environment, which maps this to the receiver’s value, and
the formals to the actual parameters’ values, and then runs the body of the code it found. Note that the
environment created maps the identifier this to the current receiver object.

To see how this works, consider the code in Figure [6|on the next page. This code, when run in Java, produces
output like the following.

Starting Main

Main@17590db

Honda car 4-door

Main@17590db

Ford truck with 7000 1b payload

We now explain how the code in Figure[6]on the following page generates the above output. After an initial
message, the output shows that the value of this in the doPrinting method is an object of class Main at address
17590db. Then when c.printThis() is executing, the value of this is a car object. Upon return from that
method, the environment inside the method doPrinting is unaffected, and again the value of this in the
doPrinting method is an object of class Main at address 17590db. But when t.printThis() is executing, the
value of this is a truck object.

So, with that in mind, we want to consider why the environment has to be set up in such a way as described
above. To do that, consider the Java code in Figure 7 on page 9]

(a) (5 points) Given the above description of how this is declared and used in Java, briefly explain why
occurrences of the identifier this in lines 3 and 4 of Figure [7]on page[9]should be considered to be bound
occurrences?

[Concepts] Before starting on this and other problems that ask you to desugar into the kernel language, you may
want to do the ungraded quiz on desugaring in Webcourses,

(a) (10 points) Translate the proc statement given in the textbook’s chapter 2 problem 1 into the declarative
kernel language’s syntax. This means to produce a statement that has the same meaning but which only uses
the syntax given in Tables 2.1 and 2.2 of the textbook [VHO4]|. Check carefully that your translation
matches that grammar. Since this grammar does not allow the use of infix operators like > and -, in your
translation you should use the built-in procedures Value.’>’ and Number. ’-’ (see the Mozart/Oz system
document The Oz Base Environment [DKS06], sections 3 and 4 for more about these). For purposes of this
problem, we will consider Value.’>’ and Number.’-’ to be identifiers (matching the syntax (X)).

Put your translation in a file Pkernel. oz and turn that in as your answer for this part of the problem.

(Hint: to check for some syntax errors, add the line declare P in just before your translation, then and
feed the translated code to the Oz system. However, Oz will only check against the full language syntax, so
you still might be using parts of the Oz syntax that are not in the kernel syntax [VHO4| Tables 2.1 and 2.2].
So you still need to check by hand that your code is in the kernel language. Finally, we allow comments in
the kernel syntax.)

(b) (5 points) Do the textbook’s problem 1 (free and bound identifiers).

(Hint: note that the question refers only to the statement itself; that is, the statement does not include any
(implicit) declare, since declare is not in the kernel language.)

https://webcourses.ucf.edu/

public class Main {
public static void main(String [] argv) {
System.out.println("Starting Main");
Main m = new Main();
m.doPrinting();

public void doPrinting() {
System.out.println(this);
Car ¢ = new Car("Honda", 4);
Truck t = new Truck("Ford", 7000);
c.printThis();
System.out.println(this);
t.printThis();

public abstract class Vehicle {
protected String name;
protected Vehicle(String make) { this.name = make; }
public String toString() { return name; }
public void printThis() {
System.out.println(this);

public class Car extends Vehicle {
protected int doors;

public Car(String make, int num_doors) {
super (make) ;
this.doors = num_doors;

public String toString() {
return super.toString() + " car "
+ this.doors + "-door";

public class Truck extends Vehicle {
protected int payload;

public Truck(String make, int carries) {
super (make) ;
this.payload = carries;

public String toString() {
return super.toString() + " truck with "
+ this.payload + " 1b payload";

Figure 6: An example showing how this works in Java.

public class Adder {

16.

17.

private int n;
public Adder(int n) { this.n = n; }
public int add(int x) { return this.n + x; }

Figure 7: Code for Problem[I4]on page

(0 points) [Concepts] [UseModels] For practice (note that this is optional, you will not turn this in), do problems
5 (the case statement) and 6 (the case statement again) in the textbook. These problems allow you to check your
understanding of the case statement using the Oz implementation.

(20 points) [Concepts]

Do the textbook’s problem 4 (if and case statements). For your answers, give a both a rule for the translation
and translate our challenge examples using your translation rule. (That is, don’t just show us your translation of
our example, but give both the rule and your translation.) Check your translated examples, which should be Oz
code, by executing them in the Oz system. For each example, both the original code and its translation should
run and give the same results.

What we mean by a translation (or desugaring) rule is shown by the following example rule. The example rule
below desugars an arbitrary but fixed call to a procedure P with an expression F as an argument:

{P E}
=
local X in X=F {P X} end

In the part of the solution that translates a case statement into a statement that uses if statements, you can use
the built-in functions IsRecord, Label, and Arity, as well as the operators . and == (see the Mozart/Oz system
document The Oz Base Environment [DKS06]). (You can use . and == infix, as you don’t have to translate all the
way to the kernel language.)

Finally, for this problem it seems most sensible to only consider inputs that are in kernel syntax. This is sensible
because we can use other rules to desugar an if or case statement that uses more than kernel syntax into one that
only uses kernel syntax. This assumption will also simplify what you have to do.

As a challenge example for translating if to case (part (a)), you are to translate the following example. (Note
that in this example, X is a free variable identifier, so if you want to run it, you will have to declare X and give it a
value.)

if X

then {Browse ’was true’}

else {Browse ’'was false’}

end

For part (b), describe your translation for the case statement for an arbitrary, but fixed, pattern of the form
L(Fy: P;---F,: P,). That s, your translation rule for case should start out with:

case X of L(Fy:P,---F,:P,) then S; else Sy end
=
.if L.

where X is a variable identifier, L is a literal, n > 0, F1, ..., F}, are field names in sorted order, P, ..., P, are
variable identifiers (that we assume, without loss of generality, are distinct from the names of built-in functions),

and S and S5 are statements. Note that .S; and S5 can have (free) occurrences of the varaibles declared in P; to
P,.

As a challenge example for translating case to if, you are to translate the following example. (Note that in this
example, Y and C are free variable identifiers, so if you want to run it, you will have to declare both of these and
give them values.)

case Y of

winter(city: C country: K) then {Browse C#K}
else {Browse ’nope’#C}
end

10

18. (10 points) [Concepts]
Do problem 8 (control abstraction) in the textbook.
For this problem, please put your code for part (b) in a file OrElse.oz and (after doing your own testing) use our
test cases (in OrElseTest.o0z) to test your code.

19. (25 points) [Concepts] [UseModels]
Do the book’s problem 9 (tail recursion) parts (a), (b), and (c), but see below for special directions regarding
parts (a) and (b).
For part (a), use The Oz Base Environment [DKS06], to find identifiers that you can use in place of the infix
operators, so that your expansion into kernel syntax will, for example, use Value.’==" instead of the infix
operator == and Number. ’-’ instead of -. Put your answer for this part into a text file named tailrecursion.oz.
Test your code by making at least one call to each procedure.
For part (b), instead of writing out an answer in detail, just describe how large the stack would become in each of
the two cases.

20. (10 points) [Concepts] [UseModels]
Do problem 10 (expansion into kernel syntax). Again, use The Oz Base Environment [DKS06], to find the
identifiers that you can use in place of the infix operators. Also, according to The Oz Notation [HKO06], if a case
statement is missing an else clause, you should add

else raise error(kernel(noElse ...) ...) end

as an implicit else clause (even though this steps outside the declarative model by using exceptions).

Points

This homework’s total points: 209.

References

[DKS06] Denys Duchier, Leif Kornstaedt, and Christian Schulte. The Oz Base Environment. mozart-oz.org, June

2006. Version 1.3.2.

[HKO06] Martin Henz and Leif Kornstaedt. The Oz Notation. mozart-oz.org, June 2006. Version 1.3.2.

[VHO4] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer Programming. The MIT

Press, Cambridge, Mass., 2004.

