
COP 4020 — Programming Languages I January 7, 2009

Homework 1: Introduction to Programming Concepts
See webcourses and the syllabus for due dates.
In this homework you will learn some of the basics of Oz and the Mozart system [UseModels], and, more
importantly, you will get an overview of programming concepts [Concepts].
For all Oz programing exercises, you must run your code using the Mozart/Oz system. See the course’s “Running
Oz” page for instructions about installation and troubleshooting of the Mozart/Oz system on your own computer.
For programming problems for which we provide tests, you can find them all in a zip file, which you can download
from the course resources web page or from Webcourses.
If the tests don’t pass, please try to say why they don’t pass, as this enhances communication and makes commenting
on the code easier and more specific to your problem.
Our tests use the functions in the course library’s TestingNoStop.oz. The Test procedure in this file can be
passed an actual value, a connective (which is used only in printing), and an expected value, as in the following
statement.

{Test {CombA 4 3} ’==’ 24 div (6*1)}

The Assert procedure in this file can be passed a boolean, as in the following statement

{Assert {Comb J I} == {CombB J I}}

Calls to Assert produce no output unless they are passed the argument false. Note that you would not use
Browse or Show around a call to Test or Assert. If you’re not sure how to use our testing code, ask us for help.
Turn in (on Webcourses) your code and output of your testing for all exercises that require code. Please upload code
as text files with the name given in the problem or testing file and with the suffix .oz. Please use the name of the
main function as the name of the file. Please upload test output and English answers as plain text files with suffix
.txt or as PDF files with suffix .pdf. (In any case, don’t put spaces or tabs in your file names!)
Your code should compile with Oz, if it doesn’t you probably should keep working on it. If you don’t have time, at
least tell us that you didn’t get it to compile.
You should use helping functions whenever you find that useful. Unless we specifically say how you are to solve a
problem, feel free to use any functions from the Oz library (base environment), especially functions like Map and
FoldR.
Don’t hesitate to contact the staff if you are stuck at some point.
For background, you should read Chapter 1 of the textbook [VH04] (except section 1.7). But you may also want to
refer to the reference and tutorial material on the Mozart/Oz web site. See also the course resources page.

Reading Problems
The problems in this section are intended to get you to read the book, ideally in advance of class meetings.

Read section 1.1 and 1.2 of the textbook [VH04] and answer the following questions.

1. [UseModels]

(a) (2 points) What does {Browse symbol} do in Oz?

(b) (3 points) What kind of character must a variable identifier start with in Oz?

Read sections 1.3-1.15 of the textbook and answer the following questions.

2. [Concepts] [UseModels]

(a) (3 points) What is pattern matching used for in Oz?

(b) (2 points) Give a brief example.

http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutUseModels
http://www.eecs.ucf.edu/~leavens/COP4020/about.shtml#OutConcepts
http://www.eecs.ucf.edu/~leavens/COP4020/running_oz.shtml
http://www.eecs.ucf.edu/~leavens/COP4020/running_oz.shtml
http://www.eecs.ucf.edu/~leavens/COP4020/hw-tests/hw1-tests.zip
http://www.eecs.ucf.edu/~leavens/COP4020/resources.shtml
https://webcourses.ucf.edu/
http://www.eecs.ucf.edu/~leavens/COP4020/lib.zip
http://www.eecs.ucf.edu/~leavens/COP4020/lib/TestingNoStop.oz
http://www.mozart-oz.org/
http://www.eecs.ucf.edu/~leavens/COP4020/resources.shtml

2

3. (5 points) [Concepts] [MapToLanguages]

What is the most important difference between a variable in Oz and a variable in C++ or Java?

4. (5 points) [Concepts]

In Oz, what happens when a variable is used before it is bound to a value? What is the technical term for this
behavior?

Read sections 1.3-1.15 of the textbook and answer the following questions.

5. [Concepts]

(a) (5 points) According to chapter 1, why is programming with both cells and concurrency difficult?

(b) (2 points) Have you seen enough evidence to agree or disagree with the book’s position on this question?

Other Problems

We expect you’ll do the problems in this section after reading the entire chapter. However, you can probably do some
of them after reading only part of the chapter.

The textbook problems are from the Concepts, Techniques and Models of Computer Programming book [VH04,
section 1.18].

6. (20 points) [UseModels]

Do problem 2 in chapter 1, calculating combinations. Note that this should be done without using cells or
assignment (that is, in the declarative model).

Your solution’s Oz code should be in a file Comb.oz, and that file should contain two functions. Part (a)’s
solution should be called CombA, and part (b)’s solution called CombB.

Hint: use the function Comb from section 1.3, and use recursion. Don’t write the same code twice, instead make
function calls.

You must test your code using Mozart/Oz. After doing your own tests (with Show or Browse) you must run our
tests. To do this, put your file Comb.oz and our test file CombTest.oz in the same directory. Then run our
tests by feeding the buffer CombTest.oz to Oz. You will have to look at the *Oz Emulator* buffer to see
the output. Save that buffer when done in CombTest.txt. Then turn in both your Comb.oz and the
CombTest.txt files to Webcourses. (See also the general directions at the beginning of this homework.)

If you have trouble running our tests, see the troubleshooting section of the course’s running Oz page. If that
doesn’t help, contact the course staff.

7. (10 points) [UseModels]

Do problem 5 in chapter 1, lazy evaluation.

8. (10 points) [UseModels]

Do Problem 7 in chapter 1, explicit state.

9. (15 points) [UseModels]

Do problem 10 in chapter 1, explicit state and concurrency.

10. [Concepts]

Consider the code in Figure 1 on the following page.

(a) (5 points) What do you see in the Oz Browser when you run the code in Figure 1 on the next page using Oz?

http://www.eecs.ucf.edu/~leavens/COP4020/running_oz.shtml

3

% $Id: Reserve.oz,v 1.2 2008/08/27 03:44:52 leavens Exp $
declare
Count = {NewCell 0}
Passengers = {NewCell nil}
local NUM_SEATS=4 in

proc {Reserve Name ?Success}
if @Count =< NUM_SEATS-1
then % {Delay 10}

Count := @Count+1
{ReserveFor Name}
Success=true

else
Success=false

end
end

proc {ReserveFor Name}
Passengers := Name | @Passengers

end
end
thread {Reserve alice _} end
thread {Reserve bob _} end
thread {Reserve carl _} end
thread {Reserve denise _} end
thread {Reserve elvira _} end
thread {Reserve fred _} end
{Delay 3000}
{Browse ’Count=’#@Count}
{Browse ’Passengers=’#@Passengers}

Figure 1: Oz code in the file Reserve.oz, which is included in the hw1-test.zip file.

(b) (5 points) Is the implementation of Oz permitted to introduce delays in a thread where the comment
% {Delay 10} appears in the then part of the if-statement in the procedure Reserve?

(c) (5 points) What happens when you uncomment that comment; that is, what is shown in the browser when
there is a delay of 10 milliseconds in the code at the point where the comment appears?

(d) (5 points) Suppose this program was used to reserve seats for a small airplane or a bus. Would the code in
Reserve correctly ensure that at most NUM_SEATS are reserved at every instant of the program’s
execution, even when there are multiple threads calling Reserve?

Extra Credit Problems

Extra credit problems are entirely optional. See the course grading policy for details.

11. (20 points; extra credit) [Concepts]
Do problem 3 in chapter 1, program correctness.

12. (10 points; extra credit) [UseModels]
Do problem 8 in chapter 1, explicit state and functions.
Your solution’s Oz code should be in a file Accumulate.oz. Run our tests in AccumulateTest.oz Then
turn in both your Accumulate.oz code and the testing output files to Webcourses.

4

Points
This homework’s total points: 102. Total extra credit points: 30.

References
[VH04] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer Programming. The MIT

Press, Cambridge, Mass., 2004.

