
COP 5021 — Program Analysis February 16, 2014

Homework 2: Overview and Project Start
See the syllabus and listen in class for the due dates.
In this homework you learn more about the fundamental ideas of program analysis described in chapter 1 of the text,
and you will get a start on your semester project.
If you wish, you can work in groups, and I recommend that for the semester project part of this homework. However,
be sure to follow the process described in the course’s grading policy if you work in groups.

Read chapter 1 of our textbook: Principles of Program Analysis [1].

1. Consider the following abstract syntax of expressions in set theory.
e ∈ Exp expressions
es ∈ Exp expression sequences
n ∈ Num numeric literal
s ∈ SetExp set expression
x ∈ Var variables

e ::= true | x | s | a | e1 ∈ e2 | e1 ⊆ e2 | e1 = e2
| ¬e | e1 ∧ e2 | e1 ∨ e2 | e1 < e2 | λx.e | e1(e2) | let x = e1 in e2

a ::= n | x | a1 + a2 | a1 − a2 | a1 × a2
s ::= {es} | P(s) | s1 × s2 | {e0 | es} | e1 ∪ e2 | e1 ∩ e2
es ::= e1, . . . , en (where n ≥ 0)

Since this is abstract syntax, we will use parentheses to disambiguate expressions written in these forms. The
notation for expressions is supposed to have its standard mathematical meaning. For example, e1 × e2 can be
used to multiply numbers and also to form the cross product of two sets. Note that λx . e is the function with
formal x and body e.

The following will begin our exploration of type checking for set theory. We say that an expression in set theory
has a type error if it does not make sense mathematically. For example, true + 3 has a type error. Note that false
does make sense mathematically. What does not make sense is using an operator outside its domain, as in ¬4 or
3 ∈ 3.

(a) (5 points) Which of the following expressions have a type error? Briefly explain why.
A. 3 < 3

B. 3 ∈ P({0, 1, 2})
C. {3} ⊆ P({0, 1, 2})
D. {y | y = 97}
E. P({y | y = 97})

(b) (5 points) Which of the following expressions have no type error? Briefly explain why.
A. 3 ∈ 33

B. ¬((λx . x)(3))

C. {(λx . x)(v) | v ∈ v}
D. let q = 15 in ¬((q × q) < q)

E. {5, 0} × ({2, 1}+ 10)

2

Read section 1.6 (especially 1.6.2) of our textbook: Principles of Program Analysis [1].

2. [Concepts] [Semantics] Suppose we want to write a type system for set theory that prevents type errors. We
wish to use judgments of the form Γ ` e : τ , where Γ is a type environment (a map from variables (x) to types,
and types and type environments are given by the following abstract syntax.

Γ ∈ TypeEnv type environments
τ ∈ Type type expressions

Γ ::= x : τ | Γ, x : τ
τ ::= Int | Boolean | Set(τ) | τ1 × τ2 | τ1 → τ2

Here are a few type checking rules for set theory to give you the idea.

(VAR)

(Γ, x : τ) ` x : τ

(DROP)
Γ ` e : τ ′

(Γ, x : τ) ` e : τ ′

(PLUS)
Γ ` a1 : Int, Γ ` a2 : Int

Γ ` a1 + a2 : Int

(APP)
Γ ` e1 : τ2 → τ, Γ ` e2 : τ2

Γ ` e1(e2) : τ

(LAM)
(Γ, x : τ ′) ` e : τ

Γ ` λx . e : τ ′ → τ

(POW)
Γ ` s : Set(τ)

Γ ` P(s) : Set(Set(τ))

(SCOMP)
x1 occurs free in e1,

(Γ, x1 : τ1) ` e0 : τ0, (Γ, x1 : τ1) ` e1 : Boolean,
(∀2 ≤ i ≤ n . (Γ, x1 : τ1) ` ei : Boolean)

Γ ` {e0 | e1, . . . , en} : Set(τ0)
WHERE n > 0

(a) (5 points) Write a type checking rule in this style for expressions of the form e1 ∈ e2. (This means, that the
conclusion of the rule has in it an expression of this form.)

(b) (10 points) Write a type checking rule for expressions of the form let x = e1 in e2.

3. (30 points) [Concepts] [BuildTools] For purposes of this problem, a program analysis question is a careful
specification of what an analysis will determine at each program point. For example, section 2.1.1 of our
textbook [1] says that “the available expressions analysis will determine:”

“For each program point, which expressions must have already been computed, and not later
modified, on all paths to the program point.”

Other examples appear at the beginning of sections 2.1.2, 2.1.3, and 2.1.4. Note that these statements often rely
on auxiliary definitions.

For your own semester project, list the most important program analysis question(s) that the project will have to
answer. You can list up to 3 of these for your project. If you have others, you might want to write them down for
yourself, but turn hand in the most important three questions for your project. (What “most important” means is
up to you, but you might decide that these are the questions that are necessary prerequisites for answering any
other questions that your project needs answered.)

4. (100 points) [BuildTools] Write and test a parser and the construction of abstract syntax trees for the
programming language (fragment) that you will be using in your semester project.

We recommend that you use JastAdd (see http://jastadd.org). For working with JastAdd, you should read
the on-line documentation, especially the reference manual. Also, it’s useful to start with an existing JastAdd
sample project (see http://jastadd.org/projects), such as PicoJava, and modify it to suit your language.

You can use our WHILE language as a sample project also. The Unix command for anonymous checkout is:

http://www.eecs.ucf.edu/~leavens/COP5021/about.shtml#OutConcepts
http://www.eecs.ucf.edu/~leavens/COP5021/about.shtml#OutSemantics
http://www.eecs.ucf.edu/~leavens/COP5021/about.shtml#OutConcepts
http://www.eecs.ucf.edu/~leavens/COP5021/about.shtml#OutBuildTools
http://www.eecs.ucf.edu/~leavens/COP5021/about.shtml#OutBuildTools
http://jastadd.org
http://jastadd.org/projects

3

svn checkout http://refine.eecs.ucf.edu/svn/proganalysis/WHILE/trunk WHILE

and the URL http://refine.eecs.ucf.edu/svn/proganalysis can be used with tools like Eclipse, but check
out the WHILE/trunk if you are working with Eclipse. If you have permission problems with SVN, browse to
http://refine.eecs.ucf.edu/gf and get a login, then send the instructor an email about the problem.

We recommend that you use a scanner generator (such as “flex”) and a parser generator (such as “beaver” or
ANTLR), since this will allow you to change your language more easily as your project progresses. To avoid
parsing troubles, we recommend that you use reserved words to uniquely identify each statement (or expression,
etc.). Note that the syntax of C and C++ have notorious parsing difficulties (to some extent inherited by Java), but
many of these can be avoided by adding some additional keywords. (It is okay to do this for your project, even if
it means that your project’s language is slightly different than what you originally proposed.) If you have trouble
with the grammar of your language, or with ambiguity in your grammar, see the instructor or send an email.

For this project, write both a parser and a JastAdd “aspect” that does unparsing. Also you will need tests to
demonstrate that your parser and unparser work properly.

References
[1] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program Analysis. Springer-Verlag,

1999.

http://refine.eecs.ucf.edu/svn/proganalysis
http://refine.eecs.ucf.edu/gf

