
Soundness and Completeness Warnings in ESC/Java2

Joseph R. Kiniry, Alan E. Morkan and Barry Denby
School of Computer Science and Informatics

University College Dublin
Belfield, Dublin 4, Ireland

ABSTRACT
Usability is a key concern in the development of verification tools.
In this paper, we present an usability extension for the verifica-
tion tool ESC/Java2. This enhancement is not achieved through
extensions to the underlying logic or calculi of ESC/Java2, but in-
stead we focus on its human interface facets. User awareness of the
soundness and completeness of the tool is vitally important in the
verification process, and lack of information about such is one of
the most requested features from ESC/Java2 users, and a primary
complaint from ESC/Java2 critics. Areas of unsoundness and in-
completeness of ESC/Java2 exist at three levels: the level of the
underlying logic; the level of translation of program constructs into
verification conditions; and at the level of the theorem prover. The
user must be made aware of these issues for each particular part of
the source code analysed in order to have confidence in the verifica-
tion process. Our extension to ESC/Java2 provides clear warnings
to the user when unsound or incomplete reasoning may be taking
place.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software VerificationÑprogram-
ming by contract; F.3.1 [Logics and Meanings of Programs]:
Specifying and Verifying and Reasoning about Programs

General Terms
Design, Languages, Theory, Verification

Keywords
Extended Static Checking, Java Modeling Language, JML, Sound-
ness, Completeness

1. INTRODUCTION
ESC/Java2 [7] is a programming tool that attempts to partially

verify JML [3] annotated Java programs by static analysis of the
program code and its formal annotations. Users can control the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Fifth International Workshop on Specification and Verification of
Component-Based Systems (SAVCBS 2006), November 10–11, 2006, Port-
land, Oregon, USA.
Copyright 2006 ACM ISBN 1-59593-586-X/06/11 ...$5.00.

amount and kinds of checking that ESC/Java2 performs by annotat-
ing their programs with specially formatted comments called prag-
mas.

In order for the user to have confidence in the verification pro-
cess, s/he must have confidence in the feedback from the tool.
However, ESC/Java2 is neither sound nor complete. ESC/Java2
being unsound means that it emits false positives. That is, it misses
errors that are actually present in the program it is analysing. As
ESC/Java2 is an extended static checker rather than a program ver-
ifier, some areas of unsoundness are incorporated into the checker
by design, based on intentional trade-offs of unsoundness with other
properties of the checker, such as efficiency and the frequency of
false alarms. ESC/Java2 being incomplete means that it emits false
negatives. That is, it warns of potential errors when it is impossi-
ble for these error to occur in any execution of the program. Since
ESC/Java2 attempts to check program properties that are, in gen-
eral, undecidable, some degree of incompleteness is inevitable. In
addition, the developers of ESC/Java2 were willing to accept some
avoidable areas of incompleteness in order to improve performance
and to keep the tool simple.

This paper presents an extension to ESC/Java2 that attempts to
improve the usability of the tool by providing warnings in cases
where the reasoning of the tool is either unsound or incomplete.
These warnings should give the user greater confidence in using
ESC/Java2.

Unfortunately, such user interaction and feedback is very rarely
incorporated in static analysis tools, and in formal methods tools
in general. Indeed, there is very little published related work in
this field. Many tools are only used by a small community and
are not designed for broad adoption, especially across computing
disciplines (including students and programmers in industry). In
addition, user feedback needs to be “honest”. Although, many tools
aim for soundness and a high level of completeness, it is uncommon
for them to openly declare to the user the limitations of the tool.

ESC/Java2, on the other hand, is aimed at a broad number of
users. It reasons about an established industrial-strength language,
detecting common programming errors, while allowing users to de-
termine the amount of checking performed by providing pragmas in
a straightforward behavioural specification language (JML)1. In ad-
dition, the extensions described in this paper are inspired by “hon-
esty”. It is essential that the user be aware of the limitations of
ESC/Java2, much the same as any verification tool that they use.
Finally, efforts to make ESC/Java2 more user friendly are continu-
ous. More details of this can be found in Section 4.

The rest of this paper is organised as follows: Section 2 describes
the soundness and completeness of ESC/Java2. A detection and

1JML is also considered the de facto standard specification lan-
guage for Java

19

warning system for areas where the reasoning of ESC/Java2 is po-
tentially unsound or incomplete is presented in Section 3. Future
work is considered in Section 4 and Section 5 concludes.

2. LIMITATIONS OF ESC/JAVA2
Although ESC/Java2 contains a full Java program verifier, the

goal of ESC/Java2 is not to provide formally rigourous program
verification. Rather, its aim is to help programmers find some kinds
of errors more quickly than they might be found by other meth-
ods, such as testing or code reviews. Consequently, ESC/Java2 em-
bodies engineering trade-offs among a number of factors including
the frequency of missed errors, the frequency of false alarms, the
amount of time used by the tool and the effort required to imple-
ment the tool. These trade-offs mean that ESC/Java2 is neither
sound nor complete2.

It is important to note that, when discussing program verification
the words “soundness” and “completeness” are often used impre-
cisely. Referring to a single concept “soundness” or a single con-
cept “completeness” hides the various layers of each concept that
exist in a verification environment. Firstly, there is the soundness
and completeness of the underlying logic in which the verification
conditions will be generated. Secondly, there is the soundness and
completeness of the translation of program constructs into verifica-
tion conditions. Finally, there is the soundness and completeness
of the theorem prover that disposes the verification conditions.

In this section, we discuss the various instances of unsoundness
and incompleteness in ESC/Java2, paying special attention to the
category to which it belongs.

2.1 Forms of Unsoundness
This section presents the areas of unsoundness in ESC/Java2

classified according to the underlying cause.

2.1.1 Semantics
There are a number of constructs in Java and JML whose seman-

tics are not treated in a sound manner by ESC/Java2. These are:

Unsound Pragmas. The use of unsound pragmas such as assume
and axiom allow the user to introduce assumptions into the veri-
fication process. ESC/Java2 trusts them, assuming them to be true.
When these assumptions are invalid, the verification is unsound.

Arithmetic Overflow. ESC/Java2 reasons about integer arith-
metic as though machine integers were of unlimited magnitude.
This is unsound. However, it simplifies the checker and reduces
the annotation burden for the user, while still allowing ESC/Java2
to catch many common errors.

Inherited pragmas. The also_modifies and also_requires
pragma are unsound because they allow an overriding method to
have a weaker specification than the method it overrides.

Constructor Leaking. There are a number of ways (often in-
volving exceptional behaviour) in which a constructor can make
the new object under construction available in contexts where its
instance invariants are assumed to hold, but without actually hav-
ing established those instance invariants.

2A description of some of the soundness and completeness issues
in the original release of ESC/Java can be found here: http://
secure.ucd.ie/products/opensource/ESCJava2/
ESCTools/docs/ESCJAVA-UsersManual.html

Shared Variables. ESC/Java2 assumes that the value of a shared
variable stays unchanged if a routine releases and then re-acquires
the lock that protects it, ignoring the possibility that some other
thread might have acquired the lock and modified the variable in
the interim.

String Literals. Java’s treatment of string concatenation is not
accurately modeled by ESC/Java2. This is a source both of un-
soundness and incompleteness.

2.1.2 Verification Methodology
Additionally, there are a number of ways in which ESC/Java2

does not translate the semantics of the constructs in a Java program
into appropriately sound verification conditions.

Loops. ESC/Java2 does not consider all possible execution paths
through a loop. It considers only those that execute at most one
complete iteration, together with testing the guard before the sec-
ond iteration. Although this is a straightforward approach and avoids
the need for loop invariants, it is unsound.

Object Invariants. When checking the implementation of a
method, ESC/Java2 assumes initially that all allocated objects sat-
isfy their invariants. However, on checking a call to a method,
ESC/Java2 imposes a weaker condition on the caller. This is that all
actual parameters of the call and all static fields that are in scope are
shown to satisfy their invariants, but not every object in existence.
Since more is assumed than is proven, this is unsound.

In addition, when ESC/Java2 checks the body of a routine r,
it does not consider all invariants but only a heuristically chosen
“relevant” subset. If an invariant is deemed irrelevant during the
checking of a routine that calls r, yet deemed relevant during the
checking of r, then the invariant will not be checked (even for pa-
rameters) at the call site. However, it will nonetheless be assumed
to hold initially during the verification of r. Conversely, ESC/Java2
might consider some invariant to be irrelevant to r, yet relevant to
a caller. In this case, ESC/Java2 will not check that the body of r
preserves the invariant. Nonetheless, it will assume, while check-
ing the caller, that the invariant is preserved by the call.

Modification Targets. When reasoning about a call to a rou-
tine, ESC/Java2 assumes that the routine modifies only its specified
modification targets (as given in modifies and/or also_modifies
pragmas). However, when checking the implementation of a method,
ESC/Java2 does not check that the implementation modifies only
the specified targets.

Multiple Inheritance. When checking a method m of a class
C, which inherits from A and B, ESC/Java2 assumes that the pre-
conditions of m in A and B hold. However, if a routine r contains
a call to m from an object of dynamic type C and static type A,
then ESC/Java2 will only check the preconditions of m in A. This is
unsound.

Ignored Exceptional Conditions. ESC/Java2 ignores cases
where instances of unchecked exception classes (e.g., OutOfMemory-
Error, StackOverflowError, ThreadDeath, Security-
Exception) might be thrown either synchronously or asynchronously,
except by explicit throw statements in a routine body being checked
or in accordance with the throws clauses of routines called by a rou-
tine being checked.

20

http://secure.ucd.ie/products/opensource/ESCJava2/ESCTools/docs/ESCJAVA-UsersManual.html
http://secure.ucd.ie/products/opensource/ESCJava2/ESCTools/docs/ESCJAVA-UsersManual.html
http://secure.ucd.ie/products/opensource/ESCJava2/ESCTools/docs/ESCJAVA-UsersManual.html

Static Initialisation. ESC/Java2 does not perform extended static
checking of static initialisers and initialisers for static fields. Nei-
ther does it check for the possibility that they do not give rise to
errors such as null dereferences, nor does it check that they estab-
lish or maintain static or object invariants.

Class paths and .spec files. When a .spec file exists on the
class path, ESC/Java2 chooses the specifications to check in an un-
sound manner. If ESC/Java2 is run on A.java where A.spec
also exists, only the specifications in A.java are used. If ESC/Java2
is run on B.java, which contains calls to methods in A.java,
then only the specifications in A.spec are used.

Initialisation of Fields declared non_null. In the case
where a field is declared non_null, it may arise that ESC/Java2
uses the existence of a modifies pragma in the constructor (or
in the specifications of a method called from the constructor) to
assume that this field is indeed set to a non-null value. However, the
modifies pragma simply declares what can be modified. It does
not ensure that the field is modified. Therefore, this assumption is
unsound.

Quantifiers and Allocation. When T is a reference type, spec-
ification expressions of the forms (\forall T t; ...) and
(\exists T t; ...) quantify over allocated instances of T. If
a method allocates new objects but is not annotated with a postcon-
dition containing an occurrence of \fresh or \old, ESC/Java2
may infer unsoundly that some property holds for all allocated ob-
jects after completion of a call, when the property may in fact not
hold for objects allocated during the call.

2.1.3 Theorem Prover
Finally, there are areas of unsoundness in Simplify, the main the-

orem prover currently used by ESC/Java2 [4]. Our work identify-
ing issues with Simplify and warning the user about such will need
to be repeated with each new theorem prover that is being added
to ESC/Java2. Currently, partial support exists for PVS [10], the
SMT-LIB [11] provers Sammy [6] and Harvey [1], and the new
CVC3 (a merge of CVC Lite [2] and Sammy), and Coq [5].

Search Limits in Simplify. Simplify sometimes fails to prove
the validity of an input formula or provide a counterexample. Such
failures happen in a number of different ways. These scenarios are
typical of many automated first-order provers.

• Time Limits. The first way Simplify can fail is it can simply
not find a proof or a (potential) counterexample for the verifi-
cation condition for a given routine within a set time limit. In
this case, ESC/Java2 issues no warnings for the method, even
though it might have issued a warning if given a longer time
limit. If Simplify reaches its time limit after reporting one or
more (potential) counterexamples, then ESC/Java2 will issue
one or more warnings, but perhaps not as many warnings as
it would have issued if the time limit had been longer.

• Limit the Number of Warnings. There is also a bound
on the number of counterexamples that Simplify will report
for any conjecture, and thus on the number of warnings that
ESC/Java2 will issue for any routine. Thus many warnings
“early” in a method can result in missing (possibly more se-
rious) problems “later” in the method.

• Universal Quantifiers. Additionally, Simplify has problems
dealing with (universal) quantifiers. When reasoning about

universal quantifiers, Simplify frequently needs “triggers” to
guide skolemization. A set of heuristics are used to help
guide proof search, but they are not guaranteed to be sound.
In particular, Simplify can miss seemingly “obvious” proofs
because it moves down a branch of the proof tree and is un-
able to backtrack properly.

These kinds of failures are witnessed in practise because first-
order assertions are usually directly translated into first-order
terms in verification conditions. Thus, while the quantifiers
used in ESC/Java2’s object logics are “well-triggered,” user
quantifiers are not. This type of failure must be communi-
cated to the user in a natural manner, so rather than showing a
mysterious failure from the prover, ESC/Java2 indicates that
the user’s specifications are overly-rich for the current prover
and suggests trying other provers.

Prover Failures. Simplify, like many complex programs, also
occasionally crashes. When Simplify fails, it is not sufficient to
just hide the crash from the user and report back an incomplete
verification, but instead it must try to characterise the failure so that
the user can take remedial action by either rewriting specifications
or using a different prover.

Arithmetic. The Simplify theorem prover, like many Nelson-
Oppen inspired provers [9], includes a decision procedure for linear
rational arithmetic based on the simplex algorithm. If integer oper-
ations in Simplify’s simplex module result in overflows, they will
silently be converted to incorrect results. Likewise, if non-linear
arithmetic is used in assertions, then Simplify’s arithmetic subsys-
tem is not sound. Thus, when potential overflow or non-linear
arithmetic expressions are detected by the system, an appropriate
warning must be issued.

Other provers that use decision procedures, particularly new SMT-
LIB provers, have exactly the same kind of behaviour and require
the same kind of warnings. Unfortunately, characterising such prover
limitations, especially in the presence of multiple interacting deci-
sion procedures, requires intimate knowledge of the prover’s design
and construction and is sometimes more art than science.

2.2 Forms of Incompleteness
This section presents the areas of incompleteness in ESC/Java2,

each classified according to the underlying cause.

2.2.1 Semantics
Many sources of incompleteness in ESC/Java2 stem from the

fact that we do not fully capture the semantics of Java and JML in
the tool.

Floating-Point Numbers. The semantics for floating-point op-
erations in ESC/Java2 are currently extremely weak. They are not
strong enough to prove 1.0 + 1.0 == 2.0 or even 1.0 !=
2.0.

Strings. The semantics for strings are also quite weak. They
are strong enough to prove "Hello world" != null, but not
strong enough to prove the assertion c == ’l’ after the assign-
ment c = "Hello world".charAt(3). Also, Java’s treat-
ment of string concatenation is not accurately modeled by ESC/Java2.

New, rich, verification-centric specifications of java.lang.-
String are being written to correct this issue. To accomplish this
goal, the new specifications heavily directly leverage the sequence
theories supported by modern first-order provers. This work was

21

halted when the new specifications pushed the boundaries of Sim-
plify’s capability to reason about sequences too far. Thus, the work
is on-hold until CVC3 is integrated.

Unspecified Java APIs. Not all of the classes in the Java li-
braries have full JML specifications. Therefore, reasoning about
calls to methods of these classes is incomplete.

Type Disjointness. According to the rules of the Java type sys-
tem, if two distinct classes S and T are not subtypes of each other,
then S and T have no non-null instances in common. The mech-
anism that ESC/Java2 uses to model the Java type system is suffi-
cient to enforce this disjointness for explicitly-named types, but not
for all types (e.g., the dynamic element types of array variables).

Arithmetic Overflow. In order to reduce the likelihood of arith-
metic overflow occurring in the prover, ESC/Java2 treats all integer
literals of absolute magnitude greater than 1000000 as symbolic
values whose relative ordering is known but whose exact values are
unknown. Thus, ESC/Java2 can prove the assertions 2 + 2 ==
4 and 2000000 < 4000000 but not 2000000 + 2000000
== 4000000.

Reflection. The semantics for reflection is extremely limited. For
example, ESC/Java2 can determine that Integer.class is a
non-null instance of java.lang.Class, but not that it is dis-
tinct from Short.class, or even that it is equal to Integer.TYPE.

2.2.2 Verification Methodology
The verification methodology used in ESC/Java2 is also unsound

for a number of reasons.

Modular checking. The use of modular checking causes ESC/Java2
to miss some inferences that might be possible through whole pro-
gram analysis. When translating a method call E.m(...), ESC/-
Java2 uses the specification of m for the static type of E, even if it is
provable that the dynamic type of E at the call site will always be a
subtype that overrides m with a stronger specification.

2.2.3 Theorem Prover
The verification conditions that ESC/Java2 gives to the Simplify

theorem prover are in a language that includes first-order predicate
calculus (FOPC) (with equality and uninterpreted function sym-
bols) along with some (interpreted) function symbols of arithmetic.

Since the true theory of arithmetic is undecidable, Simplify is
necessarily incomplete. In fact, the incompleteness of Simplify’s
treatment of arithmetic goes well beyond that necessitated by Gödel’s
Incompleteness Theorem. In particular Simplify has no built-in se-
mantics for multiplication, except by constants. Also, mathemati-
cal induction is not supported.

In addition, FOPC is only semi-decidable. That is, all valid for-
mulas of FOPC are provable, but any procedure that can prove all
valid formulas must loop forever on some invalid ones. Naturally,
it is not useful for Simplify to loop forever, since ESC/Java2 issues
warnings only when Simplify reports (potential) counterexamples.
Therefore, Simplify will sometimes report a (potential) counterex-
ample C, even when it is possible that more work could serve to
refute C, or even to prove the entire verification condition.

3. WARNING SYSTEM
Clear user feedback is important in any tool that performs static

analysis. Given the potential soundness and completeness pitfalls

discussed in Section 2, a warning system for such stumbling blocks
would be extremely beneficial, especially to new or inexperienced
users.

This section presents such a warning system that has been imple-
mented as an extension to ESC/Java2. We describe how constructs,
in Java and JML, that ESC/Java2 treats in an unsound or incom-
plete manner are detected. In addition, we provide examples of the
warnings that are emitted.

3.1 General Detection Methodology
We wish to detect many different kinds of contextual sound-

ness and completeness issues. Also, many of these issues exist
across code paths within ESC/Java2. As we now support, or are
now working on support for, two calculi (weakest precondition
and strongest postcondition), the use of an optional dynamic sin-
gle assignment translation, three different logics, and five differ-
ent provers, this means that we have at least seventy different code
paths for verification. Thus, our detection methodology needs to be
reusable across different parameterisations.

Therefore, we decided to implement each detection algorithm
as an independent, type- and assertion-aware visitor that walks the
fully resolved, typed, and annotated abstract syntax tree (AST).

For a given execution of ESC/Java2 with warnings enabled, each
relevant visitor runs in sequence. The visitors are implemented as
pure classes, so they do not affect the state of the AST.

Many of these visitors are simply performing type- and asser-
tion-aware pattern matching on fragments of the AST. For example,
to detect the use of large integer literals in arithmetic expressions,
all the visitor must detect are AST fragments involving binary ex-
pressions, checking for one of a finite set of Java binary operators,
recursively searching each operator’s subexpressions for large Java
integer literals.

Some visitors must be more complex, as they involve AST sub-
trees that are not obviously directly related in the tree. For example,
we must examine all the invariants of an entire type hierarchy (in-
cluding all inherited interfaces) if we wish to check the structure of
relevant invariants for a given context.

3.2 ESC/Java2 Soundness Warnings
In the soundness warning system, there are three categories for

constructs about which ESC/Java2 does not reason soundly. These
are:

1. Constructs that produce warnings in warning user mode.

2. Constructs the produce warnings only in a special verbose
warning mode.

3. Constructs that do not yet produce warnings.

The constructs that produce warnings in a special verbose warn-
ing mode occur too frequently to emit soundness or incompleteness
warnings in a normal warning mode. Consequently, there is also a
Verbose Warning Mode that emits warnings for all constructs that
ESC/Java2 treats in an unsound or incomplete manner.

3.2.1 Warning User Mode
Currently, the following constructs emit soundness warnings in

the Warning User Mode: Unsound Pragmas, Static Initialisation,
String Concatenation, Specification Inheritance, Quantifiers and
Allocation and Search Limits in Simplify.

This set of constructs has been chosen for Warning User Mode as
they are relatively easy to detect while not occurring so frequently
that the warnings displayed to the user would be overwhelming.

22

The following is an example of the clear and terse warning emit-
ted in the case where the tool detects the initialisation of a static
field on line 15 of a class called Test.java:

Test.java:15 Warning: ESC/Java2 does not
perform extended static checking of static
initialisers.

static int a = 1;
^

3.2.2 Verbose Warning Mode
The additional constructs in this mode are: Loops, Object Invari-

ants and Arithmetic Overflow.
As it is a verbose mode, the warning messages emitted also give

extra information to the user. This includes an extended explana-
tion of the unsoundness and a pointer towards a source of more
information including a direct citation to the relevant documenta-
tion.

An example of a warning in this user mode is where the tool
detects the a loop on line 36 of a class called Loop.java is:

Loop.java:36: Warning: ESC/Java2 does not
consider all possible execution paths
through a loop.

for(int i=0, i<n; i++){
^

It considers only those that execute at
most one complete iteration, plus testing
the guard before the second iteration.

This is unsound.

To make ESC/Java2 consider more
iterations, use the -loop option.

More information can be found in Section
2.4.3 and Appendix C.0.1 of the ESC/Java2
User Manual.

This kind of warning behaviour, one that directly cites relevant
detailed documentation, is inspired by Eiffel Software’s EiffelStu-
dio IDE which cites relevant sections of Meyers’s “Eiffel the Lan-
guage” and “Object-Oriented Software Construction” texts.

3.2.3 Unimplemented Constructs
Finally, there are some constructs that do not yet emit soundness

warnings. These are: Ignored Exceptional Conditions, Constructor
Leaking, Initialisation of Fields Declared non_null, Class paths
with .spec files and Shared Variables.

These constructs are an open problem, in part because we must
start relying upon more than just syntactic and lightweight semantic
information (i.e., types) to reason about them. It may be necessary
to do first-order reasoning to detect some of these scenarios.

3.3 ESC/Java2 Completeness Warnings
In the completeness warning system, the same three categories

apply for constructs about which ESC/Java2’s reasoning is incom-
plete.

3.3.1 Warning User Mode

Currently, the following constructs emit completeness warnings
in the Warning User Mode: Large Numbers, Reflection and Bitwise
Operators.

This set of constructs has been chosen for Warning User Mode as
they are relatively easy to detect while not occurring so frequently
that the warnings provided to the user would be overwhelming.

The following is an example of the clear and terse warning emit-
ted where the tool detects the use of the left shift bitwise operator
on line 87 of a class called Bitwise.java:

Bitwise.java:87: Warning: The semantics
of the left shift operator is incomplete.

int_a << 2;
^

3.3.2 Verbose Warning Mode
The constructs for which warnings are emitted in this mode are:

Floating-Point Numbers, Strings and Arithmetic Overflow.
The last warning to be given in Warning User Mode is to remind

the user of the inherent incompleteness of Simplify. This warning
states:

The theorem prover used by ESC/Java2,
Simplify, is necessarily incomplete.
This is due to the undecidability and
semi-decidability of some of the under-
lying theories used by Simplify.

Note that the warning message is parameterisable across prover
names.

As with the soundness warnings, extra information is given to
the user in Verbose Warning Mode. An example of such a warning
is where the tool detects the use of floating-point numbers on line
64 of a class called Decimals.java is:

Decimals.java:64: Warning: The semantics
of floating-point operations are
incomplete.

double d = 1.0 + 2.0;
^

They are not strong enough to prove
1.0 + 1.0 == 2.0 or even 1.0 != 2.0.

For more information, please see Appendix
C.1.1 of the ESC/Java2 User Manual.

3.3.3 Unimplemented Constructs
Finally, there are some constructs that do not yet emit complete-

ness warnings. These are Type Disjointness and Modular Checking.

4. FUTURE WORK
The most obvious piece of further work to be carried out is the

extension of the soundness and completeness warning system to
cover more scenarios.

The extensions presented in this paper are ones that should be
enabled by default in ESC/Java2. At present, it is only an option
that can be switched on. Users that are aware of the myriad of
options available in ESC/Java2 are those that are experienced in
using the tool. These programmers are probably well-aware of the
soundness and completeness issues with the tool. So how do we
make the tool more user friendly, especially for beginners, without
inundating them with excessive feedback?

23

One solution lies in the evolution of ESC/Java2 from a command
line tool into one element of an Integrated Verification Environment
(IVE). The authors are part of the EU MOBIUS Project3 and are re-
sponsible with others for the development of such an IVE. In such
a system, the level of feedback to the user will be configurable,
allowing the user to fine-tune the information s/he receives. The
environment will also highlight or underline pieces of code that are
not reasoned about soundly or completely by ESC/Java2. This al-
lows the user to made aware of such warnings without being forced
to read through them all in the process of verification.

Currently all of these visitors, their specifications, and associated
unit tests are hand-written. Given the complexity of the tool and
aforementioned growing number of critical code paths through the
tool, we believe that generating the visitors is a wise next step. We
plan on defining a formal language in which one can specify the
soundness and completeness limitations of various subsystems and
generating the appropriate visitors with specifications, much like
we already generate the Java and JML AST classes in ESC/Java2.

Likewise, to better support the rich warning messages discussed
in Section 3.2.2, we plan on refining the ESC/Java2 architecture
into a new version, integrated with the Mobius IVE, using a literate
programming-style [8].

Finally, we imagine that some of the more complex situations we
wish to check will necessitate the use of a prover to perform logical
reasoning.

5. CONCLUSION
We have presented an extensions to the ESC/Java2 tool that pro-

vides useful feedback to the user during the verification process.
Indeed, user friendliness of static analysis tools is an area that re-
quires more research. It is one of the complaints of first-time users
of ESC/Java2 that the feedback offered by the tool is hard to clearly
understand and often overwhelming. One step has now been taken
in improving this situation, but more are required.

6. ACKNOWLEDGMENTS
This work is being supported by the European Project Mobius

within the frame of IST 6th Framework, national grants from the
Science Foundation Ireland and Enterprise Ireland and by the Irish
Research Council for Science, Engineering and Technology. This
paper reflects only the authors’ views and the Community is not
liable for any use that may be made of the information contained
therein.

7. REFERENCES
[1] Alessandro Armando, Silvio Ranise, and Michael

Rusinowitch. A rewriting approach to satisfiability
procedures. Journal of Information and Computation,
183(2):140–164, June 2003.

[2] Clark Barrett and Sergey Berezin. CVC Lite: A new
implementation of the cooperating validity checker. In
Rajeev Alur and Doron A. Peled, editors, CAV, Lecture
Notes in Computer Science. Springer–Verlag, 2004.

[3] Lilian Burdy, Yoonsik Cheon, David Cok, Michael Ernst, Joe
Kiniry, Gary T. Leavens, K. Rustan M. Leino, and Erik Poll.
An Overview of JML Tools and Applications. International
Journal on Software Tools for Technology Transfer, Feb
2005.

[4] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a
theorem prover for program checking. J. ACM,
52(3):365–473, 2005.

3The Mobius Project: http://mobius.inria.fr/

[5] G. Dowek, A. Felty, H. Herbelin, G. Huet, C. Murthy,
C. Parent, C. Paulin-Mohring, and B. Werner. The Coq Proof
Assistant User’s Guide. INRIA, Rocquencourt, France,
rapport techniques 154 edition, 1993.

[6] Harald Ganzinger, George Hagen, Robert Nieuwenhuis,
Albert Oliveras, and Cesare Tinelli. DPLL(T): Fast decision
procedures. In R. Alur and D. Peled, editors, Proceedings of
the 16th International Conference on Computer Aided
Verification, CAV’04 (Boston, Massachusetts), volume 3114
of Lecture Notes in Computer Science, pages 175–188.
Springer–Verlag, 2004.

[7] Joseph R. Kiniry and David R. Cok. ESC/Java2: Uniting
ESC/Java and JML: Progress and issues in building and
using ESC/Java2 and a report on a case study involving the
use of ESC/Java2 to verify portions of an Internet voting
tally system. In Construction and Analysis of Safe, Secure
and Interoperable Smart Devices: International Workshop,
CASSIS 2004, volume 3362 of Lecture Notes in Computer
Science. Springer–Verlag, Jan 2005.

[8] Donald E. Knuth. Literate Programming. Number 27 in
CSLI Lecture Notes. Center for the Study of Language and
Information, 1992.

[9] Greg Nelson and Derek C. Oppen. Simplification by
cooperating decision procedures. ACM Transactions on
Programming Languages and Systems, 1(2):245–257, 1979.

[10] S. Owre, J. M. Rushby, , and N. Shankar. PVS: A prototype
verification system. In Deepak Kapur, editor, 11th
International Conference on Automated Deduction (CADE),
volume 607 of Lecture Notes in Artificial Intelligence, pages
748–752, Saratoga, NY, June 1992. Springer–Verlag.

[11] SMT-LIB: The satisfiability modulo theories library.
http://goedel.cs.uiowa.edu/smtlib/.

24

http://mobius.inria.fr/
http://goedel.cs.uiowa.edu/smtlib/

