
Computer Science Technical Reports Computer Science

2-1994

Overview and Specification of the Built-In Types in
Little Smalltalk
Gary T. Leavens
Iowa State University

Yoonsik Cheon
Iowa State University

Follow this and additional works at: http://lib.dr.iastate.edu/cs_techreports

Part of the Programming Languages and Compilers Commons, and the Systems Architecture
Commons

This Article is brought to you for free and open access by the Computer Science at Digital Repository @ Iowa State University. It has been accepted for
inclusion in Computer Science Technical Reports by an authorized administrator of Digital Repository @ Iowa State University. For more information,
please contact digirep@iastate.edu.

Recommended Citation
Leavens, Gary T. and Cheon, Yoonsik, "Overview and Specification of the Built-In Types in Little Smalltalk" (1994). Computer Science
Technical Reports. Paper 134.
http://lib.dr.iastate.edu/cs_techreports/134

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs_techreports?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs_techreports?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/cs_techreports/134?utm_source=lib.dr.iastate.edu%2Fcs_techreports%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Overview and Speci�cation
of the Built-In Types in

Little Smalltalk

Gary T. Leavens and Yoonsik Cheon

TR #91-22a
October, 1991 (revised February 1994)

Keywords: Smalltalk, class, subclass, inheritance, instance, method, message passing, speci�cation, sub-
type, pre-condition, post-condition.
1991 CR Categories: D.2.1 [Software Engineering] Requirements/Speci�cations | Languages; F.3.1 [Log-
ics and Meaning of Programs] Specifying and verifying and reasoning about programs | pre- and post-
conditions, speci�cation techniques.

c
 1991 Gary T. Leavens and Yoonsik Cheon. Permission is granted for you to make copies of this
document for educational and scholarly purposes, but not for direct commercial advantage.

Department of Computer Science
Atanaso� Hall

Iowa Sate University
Ames, Iowa 50011-1040, USA

Contents

1 Notation for Method Speci�cations 3

2 Protocol for all Classes 4

2.1 Creation of New Classes : 6
2.2 Subclass and Superclass Access : 6
2.3 Instance Method Access : 6
2.4 Method Creation and Editing : 7
2.5 Saving and Restoring Class Descriptions : 7
2.6 Instance Creation : 7

3 Protocol for all Objects 8

3.1 Class access and Membership Tests : 8
3.2 Instance Method Testing : 8
3.3 Printing and Displaying : 8
3.4 Object Identity Comparisons : 9
3.5 Protocol for Mutable Objects : 9

3.5.1 Copying : 9

4 Smalltalk 10

4.1 Saving System State : 10
4.2 Terminal I/O : 10

5 Primitive Types 10

5.1 Boolean : 10
5.1.1 Conditionals : 10
5.1.2 Logical connectives : 11

5.2 Symbol : 11
5.3 Magnitude : 11
5.4 Char : 12
5.5 Numbers : 12

5.5.1 Arithmetic Operations : 12
5.5.2 Integer Speci�c operations : 12

6 Collections 14

6.1 Protocol for all Collections : 14
6.1.1 Testing : 14
6.1.2 Iteration : 15
6.1.3 Conversions among Collection Types : 15

6.2 List : 15
6.2.1 Adding and Removing Elements : 15
6.2.2 Accessing Elements : 16
6.2.3 Mapping and Filtering : 16

6.3 Set : 17
6.3.1 Adding and Removing Elements : 17
6.3.2 Iteration : 17

6.4 Array : 17
6.4.1 Fetching and Storing : 18
6.4.2 Iteration : 18

6.5 Dictionary : 19
6.6 String : 19

1

7 Control Structures 20

7.1 Block : 20
7.2 Interval : 20

8 Files 21

9 Guide to the Implementation 21

2

This document informally speci�es the behavior of most of the key data types in the Little Smalltalk
system. This is done partly because the protocols di�er from those found in Smalltalk-80[GR83] and also
because for version three of Little Smalltalk, the documentation in [Bud87] is hopelessly out of date and
the description in [Bud91] lacks detail. Since our speci�cations emphasize the client's point of view, many
specialized or private methods of a class are suppressed. The system itself may be used to discover and
examine the behavior of such methods.

In the �rst section we explain our notation for specifying methods. The next sections give type speci�-
cations for groups of related types. Section 2 describes protocol for all classes; i.e., the methods of the type
Class. Section 3 gives protocol for all Smalltalk objects; i.e., the methods de�ned in the type Object, the
ultimate supertype of all other types. In Section 4, the type Smalltalk is discussed, whose sole instance is
used for saving the state of the interpreter, as well as for terminal I/O. Section 5 speci�es methods for such
primitive types as Boolean, Char, Number, and Symbol. The type String, along with other collection types
(Array, List, etc.), is explained in Section 6. Smalltalk control structures (blocks) are speci�ed in Section 7.
The type File is described in Section 8. Section 9 presents a table that can be used to �nd methods in the
implementation of Little Smalltalk.

1 Notation for Method Speci�cations

Speci�cations of methods are given informally, but in a stylized manner, following [LG86]. A speci�cation
consists of a header, a requires clause, and an ensures clause. The header describes the signature of the
operation and gives formal names to the arguments and the result. These names are used in the requires and
ensures clauses. The requires clause states a pre-condition on the operation's arguments; that is, a property
of the arguments that the caller is expected to satisfy. The requires clause is omitted if the condition is
vacuous (i.e., always true). The ensures clause states a post-condition on the results, described in terms
of the arguments and the formal result identi�er. The post-condition is a property of the result that the
method establishes.

Consider the following simple example, the at: operation on arrays.

at: self: Array, i: Integer ! o: Object

Requires: i is greater than 0, and less than or equal to the size of self.

Ensures: o is the ith element of self.

The header says that at: is a message that can be sent to an instance of the class Array or a subtype1 of Array.
The receiver, the object to which the message is sent, is given the name self . The at: message also needs
an additional argument, which must be an Integer (or a subtype); this additional argument is denoted by i.
The object returned by the at: method must be an Object (or one of its subtypes, which is not restrictive),
and this object is represented by o. The requires clause says that, the value of i must be a legal index into
the array self. If this condition is true, the operation behaves as described in the ensures clause. Otherwise,
the operation does not need to behave as speci�ed in the ensures clause, and may instead do something else,

such as printing an error message. The ensures clause says that the value returned is the ith element of
the receiver (self). This is a termination semantics, that is to say, the operation must not loop forever or
encounter an error when the requires clause is satis�ed. If the operation does not return, those cases will be
made explicitly described.

A slightly di�erent format is used for operations that mutate their arguments and for those that have
no return value. For operations that mutate their arguments, a modi�es clause is included to state which
objects are allowed to be modi�ed. Most operation speci�cations omit this clause, which means no objects
are mutated by that operation. For some operations, especially those that mutate their arguments, the
return value is irrelevant. Therefore for such operations, the arrow (!) and the information about the result
is omitted from the header; this is interpreted as follows: if the requires clause is satis�ed, the receiving
object itself will be returned. For such operations the post-condition is stated in an e�ect clause instead of

1A \subtype of Array" is a type whose instances behave like arrays in the sense that each instance of the subtype simulates
some array. At the least, an object q simulates r if a sequence of message sends cumulating in a boolean or integer result would
yield the same �nal result for both q and r. See [LW90] and [Lea91] for more details.

3

an ensures clause. Logically the meaning is the same, however such a post-condition only states side e�ects,
because there is no return object to refer to.

In the speci�cation of an operation that mutates its arguments, it is sometimes necessary to refer the
value of an object in two di�erent states; the states before and after the call. It is also necessary to refer the
identity of the object (i.e., its address), that is to say, the object itself not its value. These distinctions are
made by qualifying formal argument names. Consider, for example, an object named self. The value of this
object before the call is denoted by pre(self) while the value after the call is represented by post(self). The
object's identity is denoted by obj(self). Quali�cations are often redundant. This leads us to adopt certain
defaults depending on the context in which a name appears. In the modi�es clause, one always refers to
object identities, so the object quali�cation is the default. An unquali�ed formal argument name arg is, by
default, quali�ed as pre(arg). A formal result name res is, by default, quali�ed as post(res). For example,
consider the following description of the at:put: operation for arrays, which stores an object at a given index
in the receiver.

at:put: self: Array, i: Integer, o: Object
Requires: i is greater than 0, and less than or equal to the size of self.

Modi�es at most: self.

E�ect: makes o the element of post(self) at index i.

The input formal i appearing in the requires and e�ect clauses, is a short form of pre(i), and the input
formal o in the e�ect clause is short for pre(o). The receiver self in the modi�es clause is also short for
obj(self).

The major conceptual di�erence of our notation from Liskov and Guttag's is that we omit from a type's
speci�cation speci�cations for operations de�ned in the type's supertypes. For instance, since all types are
subtypes of the type Object, all have a method class that returns the class of the receiving object. However
this method is not repeatedly speci�ed in each type, since repeating it would be redundant and uninformative.
It is only speci�ed in the type Object once and for all. Therefore one can think of subtyping as inheritance
of speci�cations (as opposed to code inheritance, which is subclassing in Smalltalk). Because of this, it is
worthwhile to refer to the speci�cations of supertypes if the desired operation seems to be missing.

A set of method speci�cations are collected together to give a speci�cation of an abstract data type.
An abstract data type, which will be called a type for short, is an abstraction of a set of Smalltalk classes
characterized by their behavior. A type is usually implemented by a single Smalltalk class. However it may
be implemented by several classes, as in the case of type Boolean which is implemented by three Smalltalk
classes, Boolean, True, and False. Figure 1 shows the subtype relationships among the types speci�ed in this
paper. Figure 2 gives the actual class hierarchy of the Little Smalltalk system.

2 Protocol for all Classes

A class is a module that implements an abstract data type. The code and other information kept about
each class de�nition is stored in the Smalltalk system as an object, called a class object. Since each class
de�nition is represented by a single class object, classes and class objects are identi�ed; hence class objects
are often called classes for short. Each object in Smalltalk is an instance of a class; hence a class can also
be thought of as a set (or class) of objects. Classes (i.e., class objects) are important in Smalltalk because
they store Smalltalk code; thus a programmer must master the protocol of class objects to read and write
code. Each class object in Smalltalk is named by a global variable that denotes it. The name of this global
variable is the name of the class. In what follows we use these names to refer to particular class objects.
For example the class Object is named by the global variable Object. Since classes are represented by class
objects, these objects must also be instances of some class. That class is called Class. It is the protocol of
the class Class that is described in this section.

Classes are related to one another by subclass (or inheritance) relationships. Each class is a proper subclass
of exactly one other class, called its proper superclass, and may be a proper superclass of any number of other
classes. A class, C, its proper superclass, its proper superclass's proper superclass, and so on are collectively
called the superclasses (or ancestors) of C. A class C, its proper subclasses, its proper subclass's proper
subclasses, and so on are collectively called the subclasses (or descendents) of C. See Figure 2 for the class

4

S
S
So

�
�
�7 6 6

@
@@I

�
���

66

@
@@I

�
�
��>

��
��

��*

�

Q
Q

Q
QQk

S
S
So

Object

���
���

���
���

��:

���
���

���
��:

�
�
��3

Z
Z

ZZ}

PP
PP

PP
PPi

6
XXX

XXX
XXX

XXX
XXy

Boolean Magnitude Unde�nedObject Symbol MutableObject Block Smalltalk

Char Number String Class Collection File

Integer Fraction Float Array Dictionary Interval List Set

Figure 1: The hierarchy of types

�
�
�
���

���
���

���
���

���
�:

��
��

��
��

��
��1

��
��

��
��*

HH
HH

HH
HHY

@
@

@@I

PP
PP

PP
PP

PP
PPi

�
�
�
��

B
B
B
BBM

PP
PP

PP
PP

PPi

�
�
���

J
J
J
JJ]

� 6

6

A
A
AAK

�
�
���

6

6

6

@
@

@
@I

�
�
�
�� 6

6

6

Object

Unde�nedObjectSymbolSmalltalkMagnitudeFileClassBooleanBlock

False True Char Collection Number

FloatFractionIntegerIntervalIndexedCollectionList

LongIntegerDictionaryArraySet

ByteArray

String

Figure 2: The class hierarchy of the Little Smalltalk

5

hierarchy of the Little Smalltalk. The operations described below allow one to create new classes, traverse
the inheritance hierarchy, access the instance methods de�ned in a class or its ancestors, create and edit
methods, save and restore one's work, and create instances of given class. One can also use the messages in
Section 2.2 to traverse the hierarchy of classes.

2.1 Creation of New Classes

New classes can also be created using the methods described in Section 2.5.

addSubClass:instanceVariableNames: self: Class, cn: Symbol, ivn: String
Modi�es at most: self, the global dictionary symbols.

E�ect: creates a new class named cn as a proper subclass of self with its instance variables names
those words appearing in ivn. (Words in ivn are separated by blanks.)

2.2 Subclass and Superclass Access

The methods described below allow one to traverse the class hierarchy.

superClass self: Class ! c: Class

Ensures: c is the proper superclass of self.

subClasses self: Class ! subs: List

Ensures: subs contains all of the proper subclasses of self without repetition and no other classes.

upSuperclassChain: self: Class, b: Block
Requires: b is a one-argument block that takes a class object as its argument.

Modi�es at most: the objects modi�ed by the execution of b.

E�ect: invokes the block b with argument self, the proper superclass of self, and so on for each ancestor
of self (in that order).

To better traverse the class hierarchy, one can add additional methods to the class Class. For example,
the following method would invoke a block on each subclass of the receiver (in depth �rst order).

allSubclassesDo: aBlock

aBlock value: self.

self subClasses do: [:c | c allSubclassesDo: aBlock]

2.3 Instance Method Access

An instance is said to respond to a given message if its class de�nes or inherits a method for that message.
This is no guarantee that something useful will happen when that message is sent to it; in some cases an
error will be produced. See also messages for method creation and editing in Section 2.4 the methods in
Section 3.2, and the methods in Section 5.2.

respondsTo self: Class ! d: Dictionary

Ensures: d is a new dictionary that describes the messages to which instances of self respond. That
is, d maps each method name (a Symbol) to the method object (a Method) that implements that
method. Inherited methods are included.

methods self: Class ! d: Dictionary

Ensures: d is a new dictionary that describes the messages that are de�ned in the class self . Inherited
methods are not included.

viewMethod: self: Class, s: Symbol

E�ect: If instances of self respond to the message s, then the name of the class where the instance
method for s is de�ned and the code that implements that method are printed; otherwise an error
message is printed.

methodNamed: self: Class, s: Symbol ! m: Object

Ensures: If there is a method named s implemented in self or its superclasses, then m is the Method
object that implements s; otherwise m is nil.

6

2.4 Method Creation and Editing

Method creation in Little Smalltalk is either done interactively (as described in this section) or through the
use of external �les and the methods described in Section 2.5. One can create a method interactively using
the editor named by the global variable editor (which is \emacs" by default at ISU). Once editing is �nished,
it is compiled by the system into an executable code. If there are any errors, one gets a chance to correct
them.

addMethod self: Class

Modi�es at most: self.

E�ect: allows you to add a new method to the class self, using the editor whose name is the value of
the global variable editor.

readMethods self: Class

Modi�es at most: self.

E�ect: allows you to add several method to the class self. You are prompted as to whether you want
to add a method or not, and if so you add it as in addMethod. When you are done, you are again
asked whether you want to add a method or not, etc.

editMethod: self: Class, s: Symbol

Modi�es at most: self.

E�ect: if instances of self respond to the message s, then you are allowed to edit the method de�nition
named s; otherwise an error message is printed.

2.5 Saving and Restoring Class Descriptions

Smalltalk code can be saved to and restored from the operating system's �les using the methods described
in this section. It is a good idea to save methods to �les fairly often; it is especially important to save them
before running any tests, because if the Smalltalk system gets into an inconsistent state, you may be forced
to restart from �les.

The \�le out" methods write a description into a �le, which can be read back in by the \�ling in"
methods. Among the methods listed below, some are actually those messages that should be sent to File
objects (see Section 8). It is also possible to save the state of the entire system (see Section 4).

�leOut self: Class

E�ect: write a description of self in a �le named \cn.st", where cn is the name of the class self.

�leOutOn: self: Class, f: File
Modi�es at most: f.

E�ect: write a description of self into the �le f.

�leOutMethodsOn: self: Class, f: File
Modi�es at most: f.

E�ect: write a description of all instance methods of the class self into the �le f.

�leIn: self: File, fn: String
Modi�es at most: self, the global dictionary symbols, and existing class objects.

E�ect: reads class and/or method descriptions stored in the �le named fn, and installs them in the
system.

�leIn self: File

Modi�es at most: self, the global dictionary symbols, and existing class objects.

E�ect: reads class or method descriptions stored in the �le self, and installs them in the system.

2.6 Instance Creation

Most objects (other than class objects) in Smalltalk are created (ultimately) by sending some class object a
new message. However, arrays and strings are created with new: message (see Section 6).

7

new self: Class ! o: Object

Requires: self is neither Array nor String.

Ensures: o is a new instance of the class self, and this new instance has, itself, also been sent the
message new (unless self is Class, in which case the new class object is sent the message initialize
instead).

new: self: Class, i: Integer ! o: Object

Requires: self is either Array or String.

Ensures: o is a new instance of self, with size i.

3 Protocol for all Objects

The type Object is a supertype of all other types, just as the class Object is a superclass of all other classes.
Its methods provide a consistent basic functionality and default behavior that is useful for debugging. With
these methods one can observe all objects in the Little Smalltalk system, including class objects.

The methods of the type Object described below can be used to test the class of an object, test the
instance methods to which an object responds, to print and display objects, and to compare the identity of
objects. Also included below are methods of the type MutableObject, which is a �ctitious2 subtype of Object.
A mutable object is one whose state can be changed. The methods of type MutableObject can be used to
copy mutable objects.

3.1 Class access and Membership Tests

The proper way to test if an object is a member of a certain class is with the messages whose speci�cation
is given below. (There are also messages, such as isFraction and isInteger, that should be regarded as private
to various classes.)

class self: Object ! c: Class

Ensures: c is the class of self.

isMemberOf: self: Object, c: Class ! b: Boolean

Ensures: b is true if and only if c is the class of self.

isKindOf: self: Object, c: Class ! b: Boolean

Ensures: b is true if c is the class of self or a superclass of self; b is false if c is not an ancestor of the
class of self. For example, 1 isKindOf: Object is true, but 1 isKindOf: Boolean is false.

3.2 Instance Method Testing

The messages to which an object responds can be discovered in two ways. One can use the respondsTo:
message speci�ed below, or one can �rst obtain the object's class and use the message respondsTo speci�ed
in Section 2.3. Note that the respondsTo: message can be sent to any object, while the respondsTo message
are limited to class objects. Furthermore, these messages di�er in the number of arguments and the kind of
value returned. (The inverse of this kind of test is described in Section 5.2.)

respondsTo: self: Object, s: Symbol ! b: Boolean

Ensures: b is true if self responds to the message s; otherwise b is false.

3.3 Printing and Displaying

The message printString is used in preparing formatted output. For debugging the other messages are more
useful.

printString self: Object ! s: String

2That is, MutableObject only exists for purposes of speci�cation and there is no class calledMutableObject in Little Smalltalk.

8

Ensures: s is a string describing self. The exact result depends on the class of self and its value. (By
default, s is just the class name of self.)

print self: Object

Modi�es at most: the standard output.

E�ect: prints the string that results from sending self the message printString.

display self: Object

Modi�es at most: the standard output.

E�ect: prints a description of self on the standard output device. The exact result depends on the
class of self and its value. (By default, this prints the class name in parentheses and the value of
sending self the message printString.)

3.4 Object Identity Comparisons

Object identity is a useful concept only for mutable types (types whose instances have time-varying state)
and should not be used for comparing instances of immutable types. The major exception to this rule is for
testing to see if an object is de�ned or nil. In most circumstances one should use the = message to compare
the abstract values of objects instead of comparing their identity (address). However, the speci�cation for
= cannot be given here, as it varies from type to type and is not meaningful for some types (e.g., Block).

== self: Object, o: Object ! b: Boolean

Ensures: b is true if obj(self) is equal to obj(o); otherwise b is false. Hence, true is returned if and
only if self and o are the same object.

~~ self: Object, o: Object ! b: Boolean

Ensures: b is false if obj(self) is equal to obj(o); otherwise b is true. Hence, true is returned if and
only if self and o are di�erent objects.

isNil self: Object ! b: Boolean

Ensures: b is true if and only if obj(self) is the object nil, which is the sole instance of the class
Unde�nedObject.

notNil self: Object ! b: Boolean

Ensures: b is false if and only if obj(self) is equal to obj(nil).

3.5 Protocol for Mutable Objects

The type MutableObject is considered to be a supertype of all mutable types. The methods described below
are implemented in class Object in Little Smalltalk, but do not work for objects of all types and hence cannot
be speci�ed as methods of type Object. The methods of Section 3.4 are also principally useful for mutable
objects, but they also work for immutable objects and so are considered methods of type Object.

3.5.1 Copying

Copying an instance of a mutable type is useful as a way to preserve an object's state from side-e�ects and
to avoid aliasing. The usual way to copy an object is to use the copy operation, which is de�ned for many
types. However, its speci�cation cannot be given here, as it varies from type to type.

shallowCopy self: MutableObject ! o: MutableObject

Ensures: o is a new object that has the same value as self, o is not the same object as self (i.e.,
obj(o) 6= obj(self)), but o shares all the objects contained in self with self.

deepCopy self: MutableObject ! o: MutableObject

Ensures: o is a new object that has the same value as self, is not the same object as self (i.e., obj(o) 6=
obj(self)), and does not shares any objects contained in self. That is, none of the objects contained
in o is equal (==) to any of the objects contained in self.

9

4 Smalltalk

The type Smalltalk handles terminal input and output, as well as saving the state of the interpreter. The
class Smalltalk has as its only instance the value of the pseudo-variable smalltalk.

4.1 Saving System State

See also the methods in Section 2.5.

saveImage self: Smalltalk

E�ect: prompt the user for a �le name (e.g., \systemImage", typed without the quotes) and save the
current system state in that �le.

saveImage: self: Smalltalk, s: String
E�ect: save the current system state in a �le named s.

4.2 Terminal I/O

getPrompt: self: Smalltalk, p: String ! s: String

Modi�es at most: standard input and output.

Ensures: s is a string consisting of a line read from the standard input, after p is printed as a prompt
on the standard output with no carriage return. The line read from standard input is terminated
by a carriage return, which is not included in s.

inquire: self: Smalltalk, p: String ! b: Boolean

Modi�es at most: standard input and output.

Ensures: b is true if the �rst character on a line read from standard input is either \y" or \Y"; b is
false otherwise. Before reading the line, the string p is printed as a prompt (i.e., with no carriage
return) on the standard output.

error: self: Smalltalk, s: String
Modi�es at most: standard error output.

E�ect: print s as an error message on the standard error output, followed by a trace of the run-time
stack, and terminate current execution (so this operation never returns).

5 Primitive Types

The type Unde�nedObject has as its only instance the object that is the value of the pseudo-variable nil. It
is sometimes useful as a placeholder or a default value.

5.1 Boolean

The type Boolean provides conditionals and logical connectives. It is implemented by three classes named
Boolean, True, and False. There are two boolean objects, true and false, which are bound to the pseudo
globals true and false respectively. The class of true is True, and that of false is False. Both of these classes
are subclasses of the class Boolean. Having two classes provides an interesting demonstration of the technique
of using the class of an object to select the algorithm used in the implementation of a message.

5.1.1 Conditionals

The messages ifTrue:ifFalse: and ifFalse:ifTrue: can be used both as expressions and statements.

ifTrue:ifFalse: self: Boolean, c: Block, a: Block ! o: Object

Requires: c and a take no arguments.

Modi�es at most: the objects modi�ed by the execution of c or a.

Ensures: o is the result of evaluating c if self is true; otherwise o is that of evaluating a.

10

ifFalse:ifTrue: self: Boolean, a: Block, c: Block ! o: Object

Requires: a and c take no arguments.

Modi�es at most: the objects modi�ed by the execution of c or a.

Ensures: o is the result of evaluating a if self is false; otherwise o is that of evaluating c.

ifTrue: self: Boolean, c: Block
Requires: c takes no arguments

Modi�es at most: the objects modi�ed by the execution of c.

E�ect: Evaluates c if self is true; otherwise does nothing.

ifFalse: self: Boolean, a: Block
Requires: a takes no arguments

Modi�es at most: the objects modi�ed by the execution of a.

E�ect: Evaluates a if self is false; otherwise does nothing.

5.1.2 Logical connectives

To achieve short-circuit evaluation, the connectives or: and and: take as their second argument a block that
should return a boolean.

and: self: Boolean, aBlock: Block ! b: Boolean

Requires: aBlock takes no arguments and returns a Boolean.

Modi�es at most: the objects modi�ed by the execution of aBlock .

Ensures: b is false if self is false; otherwise b is the result of evaluating aBlock.

or: self: Boolean, aBlock: Block ! b: Boolean

Requires: aBlock takes no arguments and returns a Boolean.

Modi�es at most: the objects modi�ed by the execution of aBlock .

Ensures: b is true if self is true; otherwise b is the result of evaluating aBlock.

not self: Boolean ! b: Boolean

Ensures: b is true if self is false; otherwise b is false.

xor: self: Boolean, b2: Boolean ! b: Boolean

Ensures: b is true if self is not equal to b2; otherwise b is false.

5.2 Symbol

Symbols, such as #foo:bar:, are used for message selectors and in dictionaries. They can be created by the
compiler from literals (#aSymbolLiteral), or by sending the message asSymbol to a String object. Symbols
cannot be created using new. Abstractly a symbol is a string of characters. Hence, its identity is determined
by its string of characters. As a result, there is only one symbol with a given string of characters. Symbols
are immutable.

In addition to the methods described below, the methods apply: and apply:ifError: can be used to send a
message when the name of the message is not known until run-time.

respondsTo self: Symbol ! s: Set

Ensures: s is a new set that contains all classes whose instances respond to the message named self.

asString self: Symbol ! s: String

Ensures: s is the string of characters that form the abstract value of self.

5.3 Magnitude

The type Magnitude de�nes a general comparison protocol followed by its subtypes: Char, Number, and some
subtypes of Collection. The messages <=, <, >=, >, ~= (not equal), =, min:, and max: can be sent to objects of
type Magnitude (or a subtype) and have the usual meanings. They should only be considered de�ned when
the second argument has the same subtype as the receiver (e.g., both numbers or both characters). The only
unusual message is the following.

11

between:and: self: Magnitude, low: Magnitude, high: Magnitude ! b: Boolean

Requires: self, low, and high are instances of classes that have a common ancestor which is a proper
subclass of Magnitude.

Ensures: b is true if self is greater than or equal to low and self is less than or equal to high; otherwise
b is false.

5.4 Char

Characters can be created using literals (such as $c) by sending the asCharacter message to a (small) Integer.
The type Char is a subtype of Magnitude; thus characters can be compared with the usual comparison
operations (see Section 5.3).

asInteger self: Char ! i: Integer

Ensures: i is the ASCII code for self.

isAlphabetic self: Char ! b: Boolean

Ensures: b is true just when self is an alphabetic character (a-z or A-Z).

isDigit self: Char ! b: Boolean

Ensures: b is true just when self is a digit (0-9).

isAlphaNumeric self: Char ! b: Boolean

Ensures: b is true just when self is an alphabetic character (a-z or A-Z) or a digit (0-9).

isBlank self: Char ! b: Boolean

Ensures: b is true just when self is the space character ($).

isUppercase self: Char ! b: Boolean

Ensures: b is true just when self is an upper case letter (A-Z).

isLowercase self: Char ! b: Boolean

Ensures: b is true just when self is a lower case letter (a-z).

5.5 Numbers

The type Number has three subtypes: Integer, Fraction, and Float. Integers and
oating point numbers can
be created using literals. Integers can also be created by sending the message asInteger to a String object.
Fractions are created by division of integers using the message /. The numerator and denominator of a
fraction can be obtained by using the messages top and bottom.

De�nite iteration over numbers is possible by creating intervals using the methods to: or to:by: sent to
a number (see Section 7.2). For example the following expression prints the odd numbers from 1 to 10.

(1 to: 10 by: 2) do: [:i | i print]

The timesRepeat: message (see Section 5.5.2) can also express de�nite iteration. Protocol for comparing
numbers is inherited from the type Magnitude (see Section 5.3).

5.5.1 Arithmetic Operations

The protocol for arithmetic, given in Smalltalk's syntax, is fairly standard. Most of it is implemented in the
class Number. See Figure 3.

5.5.2 Integer Speci�c operations

In addition to the following operations, integers also have several operations that can be used to manipulate
bit-�elds: bitShift:, bitAnd:, bitOr:, bitXor:, bitAt:, bitInvert, anyMask, and allMask.

even self: Integer ! b: Boolean

Ensures: b is true if self is divisible by 2; otherwise b is false.

odd self: Integer ! b: Boolean

12

Figure 3: Arithmetic operations

message name meaning
abs absolute value
negated unary negation
positive test if receiver is greater than or equal to 0
strictlyPositive test if receiver is greater than 0
negative test if receiver is less than 0
sign return -1, 0, or 1 depending on sign of receiver

rounded integer nearest the receiver
truncated integer part of receiver
fractionalPart fractional part of receiver

oor largest integer not greater than receiver
ceiling smallest integer not less than receiver

exp e to power of receiver
ln logarithm base e
log: logarithm at base of argument
sqrt square root of receiver
squared receiver multiplied by itself
raisedTo: multiply receiver by itself argument times

reciprocal 1 divided by receiver
+ addition
- subtraction
* multiplication
/ division (preserves accuracy)
// division truncated towards �1
\\ modulo (remainder truncated towards �1)
rem: remainder truncated towards 0
quo: quotient truncated towards 0

13

Ensures: b is true if self is not divisible by 2; otherwise b is false.

factorial self: Integer ! i: Integer

Requires: self is not negative.

Ensures: i is the factorial of self ; that is, i = self � (self � 1)� � � � � 2� 1.

timesRepeat: self: Integer, aBlock: Block
Requires: self is not negative and aBlock has no arguments.

Modi�es at most: the objects modi�ed by the execution of aBlock .

E�ect: evaluate aBlock self times.

gcd: self: Integer, j: Integer ! i: Integer

Ensures: i is the largest integer that divides both self and j.

radix: self: Integer, base: Integer ! s: String

Requires: base is between 2 and 36 (inclusive).

Ensures: s represents the value of self as a numeral in base base digits.

6 Collections

The type Collection is the supertype of types, like List and Array, whose instances contain a \bunch" of other
objects. The major subtypes of Collection are List and Array. Arrays are much like those in Smalltalk-80,
but lists are quite di�erent. Other subtypes of Collection are Set, Dictionary, String, and Interval. Common
protocol for Dictionary, Array and String is implemented by the type IndexedCollection (See Figure 1 on page 23
for more detail). Protocol for all collections (i.e., those methods de�ned in the type Collection) is described
in the next sub-section. The following sub-sections describe the subtypes.

6.1 Protocol for all Collections

Objects of a subtype of Collection are mutable, and thus Collection is a subtype of MutableObject (see
Section 3.5). As such collections can be copied. A deep copy of a collection generally copies each element,
while a shallow copy shares elements with the original. By default copy gives a shallow copy

It is best to think of a collection as homogeneous, that is, a collection should contain elements that have
a common supertype (e.g., Object) if nothing else. Following this view, one can think of Collection as a type
generator, which can be instantiated for various element types; for example, sets of integers or arrays of
objects.

The type of a collection of objects that are magnitudes (e.g., lists of integers) is a subtype of Magnitude
and hence supports the comparison protocol of the type Magnitude (see Section 5.3). In implementation
terms, the comparison protocol that the class Collection inherits from the class Magnitude only works if the
elements also support the protocol. The basic \magnitude" of a collection in this view is how many times
an element occurs in the collection. For example, if c1 and c2 are lists, then c1 <= c2 if every element of
c1 occurs at least as many times in c2 as it occurs in c1. (See the message occurrencesOf: below.)

6.1.1 Testing

isEmpty self: Collection ! b: Boolean

Ensures: b is true if self contains no elements, and false otherwise.

size self: Collection ! i: Integer

Ensures: i is the number of elements in self.

occurrencesOf: self: Collection, o: Object ! i: Integer

Ensures: i is the number of elements in self that are equal (=) to o.

includes: self: Collection, o: Object ! b: Boolean

Ensures: b is true if self contains an element that is equal (=) to o, and false otherwise.

14

6.1.2 Iteration

See also the methods for the type Interval in Section 7.2.

do: self: Collection, aBlock: Block
Requires: aBlock takes one argument.

Modi�es at most: the objects modi�ed by the execution of aBlock .

E�ect: evaluate aBlock for each element of self.

select: self: Collection, aBlock: Block ! c: Collection

Requires: aBlock takes one argument, returns a Boolean, and has no side-e�ects.

Ensures: c is a new collection with the same class as self, that contains just those elements e of self
for which the expression aBlock value: e is true (See Section 7.1).

inject:into: self: Collection, v: Object, aBlock: Block ! o: Object

Requires: aBlock takes two arguments and has no side-e�ects.

Ensures: o is the reduction of self by aBlock with initial value v. That is, if self has no elements,
then o is v. If self has an element e, then o is aBlock value: x value: e, where x is the reduction
of the remaining elements of self . For example, one can sum the elements of a collection c by the
following expression.

c inject: 0 into: [:x :y | x + y]

6.1.3 Conversions among Collection Types

asArray self: Collection ! a: Array

Ensures: a is a new Array that contains just the elements of self .

asSet self: Collection ! s: Set

Ensures: s is a new Set that contains just the elements of self , such that no two elements of s are
equal (=).

sort: self: Collection, aBlock: Block ! lst: List

Requires: aBlock takes two arguments, returns a Boolean, and has no side-e�ects; furthermore, the
elements of self are totally ordered by aBlock.

Ensures: lst contains just the elements of self , sorted so that for all i < j that are indexes of lst,
aBlock value: (lst at: i) value: (lst at: j) returns true.

sort self: Collection ! lst: List

Requires: the elements of self are totally ordered by <=.

Ensures: lst contains just the elements of self in increasing order.

6.2 List

A List object is, abstractly, a mutable, ordered sequence of objects. Elements can be added and taken o�
the list at both ends; there is a �rst element and a last element in every non-empty list. The objects in the
sequence are the list's elements. Empty instances of List are created by sending the new message to the class
object List.

6.2.1 Adding and Removing Elements

The various ways that elements can be added to a list can be exploited to implement stacks, queues, priority
queues, and other data structures. Note, however, that there is no removeLast operation that corresponds
to the removeFirst operation.

add: self: List, o: Object
Modi�es at most: self.

E�ect: makes post(self) contain o as its last element; the other elements of post(self) are those of
pre(self), in their original order.

15

addLast: self: List, o: Object
Modi�es at most: self.

E�ect: makes post(self) contain o as its last element; the other elements of post(self) are those of
pre(self), in their original order.

addFirst: self: List, o: Object
Modi�es at most: self.

E�ect: makes post(self) contain o as its �rst element; the remaining elements of post(self) are those
of pre(self), in their original order.

addAll: self: List, c: Collection
Modi�es at most: self.

E�ect: makes post(self) contain all the elements of c as its last elements (in the ordering of c, if c
has an order), and the elements of pre(self) as its �rst elements, in their original order.

add:ordered: self: List, o: Object, b: Block
Requires: b takes two arguments, returns a Boolean, and has no side-e�ects.

Modi�es at most: self.

E�ect: makes post(self) contain all the elements of pre(self) in their original order, except that o
appears in post(self) just before the �rst element of pre(self) v such that the expression b value: v
value: o is false. For example, if lst is a list with elements 1, 1, and 3 (in that order), the result of

lst add: 2 ordered: [:x :y | x < y]

is to insert 2 just before the 3 in lst, so that the elements of lst are (in order): 1, 1, 2, and 3.

remove: self: List, o: Object
Modi�es at most: self.

E�ect: makes post(self) contain all the elements of pre(self) in their original order, except for the
�rst occurrence of an element that is equal (=) to o.

removeFirst self: List

Modi�es at most: self.

E�ect: makes post(self) contain all the elements of pre(self) in their original order, except for the
�rst element of pre(self).

6.2.2 Accessing Elements

Surprisingly, there is only one operation available to access elements directly. The other way to access the
elements of a list is by using the iteration operations described below and in Section 6.1.2.

�rst self: List ! o: Object

Ensures: o is the �rst element of self.

6.2.3 Mapping and Filtering

In addition to those operations described in Section 6.1.2, List also de�nes following iteration operations.

collect: self: List, aBlock: Block ! lst: List

Requires: aBlock takes one argument.

Modi�es at most: the objects modi�ed by the execution of aBlock .

Ensures: lst is a new list that contains for each element e of self the result of the expression aBlock

value: e, where the results appear in the same order as the elements of pre(self). (The argument
aBlock is invoked on the elements in the order that they appear in pre(self).)

reject: self: List, aBlock: Block ! lst: List

Requires: aBlock takes one argument, returns a Boolean, and has no side-e�ects.

Ensures: lst is a new list that contains the elements e of self such that the result of the expression
aBlock value: e is false, The elements appear in their original order.

16

reverseDo: self: List, aBlock: Block
Requires: aBlock takes one argument.

Modi�es at most: the objects modi�ed by the execution of aBlock .

E�ect: evaluate aBlock once for each element of self, starting with the last element and working back
to the �rst.

6.3 Set

The abstract value of a Set instance is a set of objects with distinct abstract values. The elements of a Set

are compared using the equality (=) message. That is, two objects x and y have the same abstract value if
and only if the result of the equality (=) message is true. It is assumed that equality (=) can be applied to
any two objects and that it is an equivalence relation on all objects.

Instances of class Set are partially ordered by set inclusion; that is, s1 is a subset of s2 if for each element
e1 of s1, there is some element in s2 with the same abstract value (i.e., that is equal (=) to e1). Two instances
of Set have the same abstract value if each is a subset of the other. Furthermore s1 is a proper subset of
s2 if s1 is a subset but they do not have the same abstract value. The = message tests sets for the same
abstract value, while the <= message tests the subset relation.

New instances of Set are created with by sending the new message to the class object Set, which returns
an empty set.

6.3.1 Adding and Removing Elements

add: self: Set, o: Object
Modi�es at most: self.

E�ect: makes post(self) contain just the elements of pre(self) and o.

addAll: self: Set, c: Collection
Modi�es at most: self.

E�ect: makes post(self) contain just the elements of pre(self) plus all the elements of c.

remove: self: Set, o: Object
Modi�es at most: self.

E�ect: makes post(self) contain the elements of pre(self) except o.

6.3.2 Iteration

In addition to those messages described in Section 6.1.2, Set also de�nes following iteration protocol.

collect: self: Set, b: Block ! s: Set

Requires: b takes one argument.

Modi�es at most: the objects modi�ed by the execution of b.

Ensures: s is a new set that contains for each element e of self the value of the expression aBlock

value: e. (The set s is constructed by invoking b once for each element of self in arbitrary order.)

reject: self: Set, b: Block ! s: Set

Requires: b is a one-argument block that returns a Boolean and has no side-e�ects.

Ensures: s is a new set that contains just those elements, e, of self for which b value: e is false. Note
that this is the opposite of select:.

6.4 Array

The abstract value of an Array is an ordered sequences of elements. This ordering is used to index the
elements. The �rst element has index 1, the second 2, and so on. A legal index is thus the one between 1
and the size of the collection (inclusive).

An array is created using a literal of the form #(1 aSymbol 3.3) or by the new: message sent to the
class object Array where the argument is the desired size.

17

6.4.1 Fetching and Storing

Some messages not described below give the programmer more control over error conditions through the use
of zero-argument exception blocks. These include at:ifAbsent: and indexOf:ifAbsent:.

at: self: Array, i: Integer ! o: Object

Requires: i is greater than 0, and less than or equal to the size of self.

Ensures: o is the ith element of self.

indexOf: self: Array, b: Block ! i: Integer

Requires: b takes one argument, returns a Boolean, and has no side-e�ects; furthermore self contains
some element x such that b value: x is true.

Ensures: i is the smallest index of self such that the expression b value: (self at: i) returns true.

at:put: self: Array, i: Integer, o: Object
Requires: i is greater than 0, and less than or equal to the size of self.

Modi�es at most: self.

E�ect: makes o the element of post(self) at index i; the other elements of pre(self) are unchanged.

with: self: Array, o: Object ! a: Array

Ensures: a is a new array that has as its elements the elements of self in order, followed by o.

addAll: self: Array, a2: Array
Requires: a2 has no more elements than self .

Modi�es at most: self.

E�ect: makes the �rst s2 elements of post(self) the elements of a2 in the order of a2, where s2 is the
size of a2; the elements of post(self) whose indexes are greater than s2, if any, are unchanged from
pre(self).

exchange:and: self: Array, i: Integer, j: Integer
Requires: i and j are greater than 0, and less than or equal to the size of self.

Modi�es at most: self.

E�ect: the element of post(self) at index i is that of pre(self) at index j and vice versa; the other
elements of pre(self) are unchanged.

6.4.2 Iteration

As a subtype of Collection, Array also supports all the iteration operations described in Section 6.1.2. In
addition to the above, there are also several other interesting operations that have been omitted for lack of
space. The messages binaryDo: and binaryInject:into: enable one to operate on both elements and indexes.
The messages with:do: and with:ifAbsent:do: allow one to operate on the elements of two arrays at once.

collect: self: Array, aBlock: Block ! a: Array

Requires: aBlock takes one argument.

Modi�es at most: the objects modi�ed by the execution of aBlock.

Ensures: a is a new array that contains for each element e of self the result of the expression aBlock

value: e, where the results appear in the same order as the elements of pre(self). (The argument
aBlock is invoked on the elements in the order they appear in pre(self).)

reverseDo: self: Array, aBlock: Block
Requires: aBlock takes one argument.

Modi�es at most: the objects modi�ed by the execution of aBlock.

E�ect: evaluates aBlock once for each element of self, starting with element at the greatest index, and
working back to the element with index 1.

18

6.5 Dictionary

Abstractly, a Dictionary object is a mutable mapping from keys to values. The mapping is generally partial.
The elements of a dictionary are the values, i.e., the range of the map. As a subtype of Collection, Dictionary
also supports the iteration operations described in Section 6.1.2. Some messages not described below give
the programmer more control over error conditions through the use of zero-argument exception blocks, for
example, at:ifAbsent: and indexOf:ifAbsent:.

at: self: Dictionary, key: Object ! v: Object

Requires: self is de�ned at key.

Ensures: v is the value associated with key in self.

indexOf: self: Dictionary, b: Block ! key: Object

Requires: b takes one argument, returns a Boolean, and has no side-e�ects; furthermore, self contains
some element x such that b value: x is true.

Ensures: key is one of the keys of self such that b value: (self at: key) returns true.

includesKey: self: Dictionary, key: Object ! b: Boolean

Ensures: b is true if self is de�ned at key , otherwise b is false.

at:put: self: Dictionary, key: Object, value: Object
Modi�es at most: self.

E�ect: makes value the element of post(self) at key key ; the rest of the mapping is unchanged.

addAll: self: Dictionary, d2: Dictionary
Modi�es at most: self.

E�ect: makes post(self) map the keys of d2 to the values associated by d2 ; other keys de�ned in
pre(self) are mapped to their values in pre(self).

removeKey: self: Dictionary, key: Object
Requires: self is de�ned at the key key .

Modi�es at most: self.

E�ect: makes post(self) not de�ned at key ; the mapping is unchanged for all other keys.

6.6 String

A String object is an ordered collection of characters. Strings are mutable, and are a subtype of the type
array of characters. As such they inherit copying protocol (see Section 3.5) and the fetching and storing
protocol of Array (see Section 6.4.1), but with the restriction that only Char objects can be fetched and
stored.

As a subtype of Collection whose elements are magnitudes, String supports a lexicographic ordering
messages of type Magnitude (see Section 5.3), and the iteration messages described in Section 6.1.2. The
iteration protocol of Arrays also applies (see Section 6.4.2).

Strings cannot be created by sending the new message to the class object String. Instead they are created
by literals ('a String, don''t laugh!').

, self: String, s2: String ! s: String

Ensures: s is a new String that contains the elements of self (in their original order), followed by the
elements of s2. This is a string concatenation. For example,

'high' , 'brow'

returns a string containing the characters \highbrow" in that order.

copyFrom:to: self: String, f: Integer, t: Integer ! s: String

Requires: f is no less than 0 and no greater than the size of self , and t is no less than f � 1 and no
greater than the size of self.

Ensures: s is a new String containing, in order, the characters of self starting at index f to index t

(inclusive). This is a substring operation.

words: self: String, aBlock: Block ! a: Array

19

Requires: aBlock takes one character argument and returns a Boolean.

Ensures: a is a new Array that contains as elements substrings of self that are consecutive runs of
characters of self such that aBlock value: c returns true, in the order in which these runs appear in
self . For example,

'hi###there' words: [:c | c ~= $#]

returns an array with two elements the strings 'hi' and 'there'.

7 Control Structures

Conditionals, which are messages sent to Booleans, are described in Section 5.1.1.

7.1 Block

The class Block provides the essential control structures of Smalltalk. Technically a block is a closure; that
is, a block contains some parameterized code and an environment used to look up variables that occur in
the block but which are not parameters.

Blocks may have up to three arguments. Zero argument blocks are invoked with the value message. The
main use of a zero-argument block is to delay evaluation of code. One argument blocks are invoked with the
value: message while two argument blocks are with the value:value: message. Finally, the value:value:value:
message is used to invoke a three-argument blocks are invoked with the value:value:value: message. For
example, the following expressions all have a value of 7.

[5 + 2] value

[:x | x + 2] value: 5

[:x :y | x + y] value: 5 value: 2

[:x :y :z | x + y + (z - z)] value: 5 value: 2 value: 8

In addition to the following, there are also messages (fork, forkWith:, and newProcess) that can be used
to create multiple threads of control (parallelism).

whileTrue: self: Block, body: Block
Requires: self is a zero-argument block that returns a Boolean, and body is a zero-argument block.

Modi�es at most: the objects modi�ed by the execution of self and body.

E�ect: evaluate self , if the result is false, return; otherwise evaluate body and repeat this process. For
example,

i <- 1.3

[i <= 4] whileTrue: [i print. i <- i+1]

prints the numbers 1.3, 2.3, and 3.3 in that order.

whileFalse: self: Block, body: Block
Requires: self is a zero-argument block that returns a Boolean, and body is a zero-argument block.

Modi�es at most: the objects modi�ed by the execution of self and body.

E�ect: evaluate self , if the result is true, return; otherwise evaluate body and repeat this process.

whileTrue self: Block

Requires: self is a zero-argument block.

Modi�es at most: the objects modi�ed by the execution of self.

E�ect: evaluate self repeatedly, so that this operation never returns.

7.2 Interval

The type Interval is a subtype of Collection. An Interval object is, abstractly, an arithmetic sequence of
numbers, either ascending or descending. Each Interval has a lower bound, an upper bound, and a step size.
Intervals with step size 1 are created by sending the message to: to a number with an number argument;

20

for example, the expression 1.3 to: 4 creates an interval with lower bound 1.3, upper bound 4, and step
size 1. The \elements" of this interval are 1.3, 2.3, and 3.3. In general, the elements are numbers of the
form l + (n� s) where l is the lower bound, s is the step size, and n is an integer that ranges from 0 up to
the largest integer N such that l + ((N + 1) � s) is strictly greater than the upper bound if the step size is
positive or strictly less than the upper bound if the step size is negative.

The \for loop" of other languages is modeled by the do: message sent to an Interval object For example,

(1.3 to: 4) do: [:i | i print]

prints the numbers 1.3, 2.3, and 3.3 in that order. Less involved \for loops" can also be constructed by
sending an integer the timesRepeat: message with a zero-argument block as an argument (see Section 5.5.2).
Collections also provide direct ways to iterate over their elements, using the message do: and others described
in Section 6.1.2.

The lower bound, the upper bound, and the step size of an Interval object can be modi�ed by the following
methods.

lower: self: Interval, n: Number

Modi�es at most: self

Ensures: n is the lower bound of post(self).

upper: self: Interval, n: Number

Modi�es at most: self

Ensures: n is the upper bound of post(self).

step: self: Interval, n: Number

Modi�es at most: self

Ensures: n is the step size of post(self).

8 Files

A File object is created by new message. The name of the �le associated with a File object is set by name:
(where the argument must be a string), and accessed by name. A �le can be opened in three di�erent modes:
read ('r'), write ('w'), and read-and-write ('r+w'). The message open: (with one of the mode strings as its
argument) is sent to a �le object to open it; if mode is 'w', a new �le named that of the receiver is created
in the current directory, otherwise, the existing �le named that of the receiver is opened for reading in the
current directory. If no such �le exists when the open-mode is 'r', an error occurs. A File object is closed by
close message. The method readUntil:doing: can be used for complex reading operations (such as parsing).

The main methods for reading and writing to �les are described below. See also Section 2.5 for messages
that save and read classes and method de�nitions into and out of �les.

getString self: File ! s: Object

Requires: self was opened with read mode ('r' or 'r+w').

Modi�es at most: self

Ensures: s is the next line of self (terminated by a carriage return) if such is present before the
end-of-�le; otherwise s is nil.

print: self: File, s: String
Requires: self was opened with write mode ('w' or 'r+w').

Modi�es at most: self

E�ect: appends s at the end of self.

9 Guide to the Implementation

Table 1 lists types speci�ed in this document; it shows which classes implement which operations by methods.
The left-hand column gives names of types speci�ed above. The next column, gives the names of the class or

21

classes that implements each type. For example, the type Integer is implemented by the classes Integer and
LongInteger. Operations are mentioned in the column spec & impl next to the classes that implement them,
provided the operations are also speci�ed above. For example, the operation radix: is implemented by the
class Integer, and we also give a speci�cation for it above under the type Integer. The column re-implemented

gives those operations that are speci�ed for a supertype, implemented by the corresponding superclass, and
that are also re-implemented (over-ridden) by the subclass. For example, the abs operation is speci�ed in
Integer's supertype Number, implemented by a method in LongInteger's superclass Number, and that method
is re-implemented in the class LongInteger.

Notice that we omit from a type's speci�cation operations speci�ed by its supertypes. Therefore, to get
all the operations de�ned for a type, one may need to traverse its supertype chain given in Figure 1 on page 5.
For example, the operation abs is de�ned for Integer objects, because it is speci�ed in Integer's supertype
Number. In the implementation, the class Integer inherits the method abs from its superclass Number (see
Figure 2 on page 5), because abs is not mentioned in the column labeled re-implemented.

Operations listed in the column must be impl are speci�ed by a type but not implemented by the
corresponding class; these operations must be implemented in subclasses of the given class. For example, we
speci�ed do: as an operation de�ned on objects of type Collection, but the class Collection does not implement
do:. A slightly di�erent case is the operation =, which is implemented in the class Object, even though its
implementation should usually be over-ridden.

Several operations not speci�ed in this document but implemented in Little Smalltalk are listed below
the column with header not speci�ed.

Acknowledgements

Thanks to Krishna Kishore Dhara and the students in \Principles of Programming Languages" and \Pro-
gramming Languages I" at Iowa State for helping debug these speci�cations and for suggestions on improving
their presentation.

References

[Bud87] Timothy Budd. A Little Smalltalk. Addison-Wesley, Reading, Mass., 1987.

[Bud91] Timothy Budd. Object-Oriented Programming. Addison-Wesley, New York, N.Y., 1991.

[GR83] Adele Goldberg and David Robson. Smalltalk-80, The Language and its Implementation. Addison-
Wesley Publishing Co., Reading, Mass., 1983.

[Lea91] Gary T. Leavens. Modular Speci�cation and Veri�cation of Object-Oriented Programs. IEEE

Software, 8(4):72{80, July 1991.

[LG86] Barbara Liskov and John Guttag. Abstraction and Speci�cation in Program Development. The MIT
Press, Cambridge, Mass., 1986.

[LW90] Gary T. Leavens and William E. Weihl. Reasoning about Object-oriented Programs that use
Subtypes (extended abstract). ACM SIGPLAN Notices, 25(10):212{223, October 1990. OOPSLA
ECOOP '90 Proceedings, N. Meyrowitz (editor).

22

Table 1: Speci�ed types and their implementations

type impl classes operations
spec & impl re-implemented must be impl not specified

Array IndexedCollection at: indexOf: addAll: asArray
at:ifAbsent: indexOf:ifAbsent:

Array at:put: with: collect: select: size deepCopy =< with:do:
reverseDo: exchange:and: shallowCopy do: with:ifAbsent:do:

Block Block value: value:value:
value:value:value: whileTrue
whileTrue: whileFalse:

Boolean Boolean ifTrue: ifFalse: ifFalse:ifTrue: ifTrue:ifFalse
and: or:

True ifTrue:ifFalse: not xor printString
False ifTrue:ifFalse: not xor printString

Char Char asInteger isAlphabetic isDigit printString digitValue
isBlank isUppercase < == asString
isLowercase isAlphaNumeric

Class Class addSubClass:instnaceVariable- printString name name:
Names: superClass display instanceSize
subClasses methods variables
upSuperclassChain:
respondsTo viewMethod:
methodNamed: addMethod
readMethods editMethod:
fileOut fileOutOn:
fileOutMethodsOn: new new:

Collection Collection isEmpty size includes: printString do: = <
occurrencesOf: inject:into: display
asArray asSet sort sort:

Dictionary IndexedCollection at: indexOf: addAll: collect: asArray indexOf:ifAbsent:
select: do:

Dictionary includesKey: at:put: display at:ifAbsent: hash
removeKey: removeKey:ifAbsent:

File File getString print: open: open mode
close readUntil:doing: mode: delete
fileIn fileIn: name name:

Float Float integerPart rounded printString exp
truncated + �

� = = < quo ln

Fraction Fraction with:over abs reciprocal top bottom
printString
truncated ln
+ � � = < =

Integer Integer radix: timesRepeat: even printString quo
odd lcm: gcd: factorial truncated
+ � � = = < >

LongInteger abs negated quo
printString
negative
+ � � = <

Interval Interval lower: upper: do: step:

List List add: addLast: addAll: size links
addFirst: add:ordered:
remove: removeFirst first
collect: do: reverseDo:
reject: select:

Magnitude Magnitude <= >= > < = ~= min
max: between:and:

MutableObject Object shallowCopy deepCopy

Number Number abs negated positive = < generality
strictlyPositive negative coerce
sign rounded tuncated
fractionalPart floor ceiling
exp ln log: sqrt raisedTo:

reciprocal + � � = == \\
rem: quo:

Object Object class, isMemberOf: = hash, basicAt:
isKindOf: respondsTo: basicAt:put:
print printString display basicSize
== ~~ isNil notNil

Set List addAll: remove: do: size links
collect: select: reject:

Set add:

Smalltalk Smalltalk getPrompt: inquire:
error: saveImage saveImage:

String Magnitude <= >= ~= min:
max: between:and:

String , = < word: size print hash
copyFrom:to: printString

Symbol Symbol respondsTo asString printString
apply: apply:ifError:

UndefinedObject UndefinedObject printString
isNil notNil

23

IO
W

A S
TATE UNIVERSITY

O
F

 S
C

IENCE AND TECHN
O

L
O

G
Y

SCIENCE
with

PRACTICE

DEPARTMENT OF COMPUTER SCIENCE

Tech Report: TR91-22a
Submission Date: February 22, 1994

	2-1994
	Overview and Specification of the Built-In Types in Little Smalltalk
	Gary T. Leavens
	Yoonsik Cheon
	Recommended Citation

	main.dvi

