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ABSTRACT

Modularity and code reuse are two important features of object-oriented pro-
gramming. Modularity means that adding new components does not require reveri�-
cation or respeci�cation of existing components. A common form of reuse in object-
oriented programs is to add new subtypes to existing types and to invoke already
existing procedures with objects of these new types. In such cases, behavior of pro-
grams that contain these procedures also depend on the behavior of the new subtype
objects. Reverifying the code that uses existing procedures whenever new types are
added is not practical and is not modular. Thus, a notion of behavioral subtyping
that allows sound modular reasoning is important for object-oriented programming.

In this dissertation, we study behavioral subtyping for arbitrary abstract data
types in the prescence of mutation and aliasing. We propose two notions of behavioral
subtyping. Strong behavioral subtypes have objects that act like supertype objects
in all cases, whereas as weak behavioral subtypes have objects that only need to act
like supertype objects when manipulated as supertype objects. Both these notions
allow sound modular reasoning based on the static types of variables in programs.
Weak behavioral subtyping allows conclusions about programs based on the e�ects
of individual procedures but restricts certain forms of aliasing. Strong behavioral
subtyping allows all forms of aliasing but permits conclusions based only on the
history constraints of the types. History constraints are the re
exive and transitive
properties preserved by objects of a type across di�erent states of a program. We
prove that both these behavioral subtype notions are su�cient for sound modular
reasoning.
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1. INTRODUCTION

Reuse and modularity are touted as important features in object-oriented (OO)
programming. A common form of reuse is to add new types as subtypes to existing
types. Subtype objects masquerade as supertype objects and increase the functional-
ity of several already existing software components.1 In such cases the correctness of
the existing software components also depends on the newly created subtype objects.
Reverifying the entire program, whenever new subtypes are added, is not practical
and goes against the modularity principle of OO programming. The notion of subtyp-
ing plays an important role in modularity and correctness and hence, in the success
of OO programming.

In [GHJV95], Gamma and his co-authors summarize a commonly used notion of
subtyping based on only the interface or the structure of the types [Car91]. They de-
�ne a type, S, a subtype of T if the interface of S contains the interface of T [GHJV95,
page 13]. Though this notion is adequate to prevent any runtime type errors, it can-
not guarantee correctness of OO programs.

A semantic notion of subtyping, based on the behavior of types, can be used to
achieve modular and safe extension of OO software. Such a notion is termed behav-
ioral subtyping. We say one type is a behavioral subtype of another if the subtype
objects \behave like" supertype objects. This notion should allow modular reasoning.
By modular reasoning we mean that conclusions about unchanged programs remain
valid when new behavioral subtypes are added.

One technique for modular reasoning of OO programs is supertype abstrac-
tion [LW95]. This technique allows conclusions based on the static types of vari-
ables. To ensure that these conclusions do not change, only subtype objects that are
based on behavior are allowed in place of supertype objects. The assumption here
is that behavioral subtype objects do not produce any unexpected results when used
in place of supertype objects. Hence for a modular reasoning technique that uses
supertype abstraction any adequate notion of behavioral subtyping should guarantee
that programs do not produce \surprising" results.

In [LW95], Leavens and Weihl give a model-theoretic de�nition of behavioral

1In Ei�el this is done by instances of conforming types and in C++ by pointers to
objects of publicly derived classes.



2

subtyping for immutable types,2 which allows one to use supertype abstraction as
a sound and modular reasoning principle. However, for modular reasoning about
practical OO programs one needs to study behavioral subtype relations in the context
of mutation.

Extending this notion of behavioral subtyping to mutable types is non-trivial.
One complexity while dealing with mutable types is the notion of the state of a
program. A subtype object that behaves like a supertype object in one state can
behave di�erently in a di�erent state. Another complexity is aliasing or interference.
In the following sections, we show that aliasing is not an orthogonal issue to modular
reasoning. The notion of behavioral subtyping for mutable types determines the
kinds of aliasing allowed in a program and hence the kinds of modular reasoning
techniques.

The main goal of this dissertation is to de�ne behavioral subtyping between
arbitrary mutable abstract data types (ADTs) in the presence of aliasing in OO
languages. We de�ne a new weaker notion of behavioral subtyping and formalize a
notion of strong behavioral subtyping. Weak behavioral subtyping allows conclusions
about programs based on the e�ects of invoking procedures or functions in programs
that restrict certain forms of aliasing. Strong behavioral subtyping allows all forms
of aliasing but can make only conclusions that are based on the history properties,
which state re
exive and transitive properties of types. We also show soundness
results, which guarantee that programs using subtype objects in place of supertype
objects do not give unexpected results. Another contribution of this dissertation is
the way that algebraic and denotational techniques are blended to model mutable
ADTs.

1.1 Problem

The following examples illustrate reasoning problems in OO programs and the
role of behavioral subtyping in solving them. Since the focus of our study is behavioral
subtyping in the context of mutation and aliasing, we use ADTs with varying degrees
of mutability in our examples.

1.1.1 Reasoning problem and behavioral subtyping

The type BankAccount used in Figure 1.1 models an account with a savings
component, whose objects support the following methods.

withdraw(b: BankAccount, m: MoneyObj): Void

2Types whose objects do not have any time varying state are referred as immutable
types. Types whose objects have a time varying state are referred as mutable types.
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function test balance(b:BankAccount):Bool

is

const bal: MoneyObj:= balance(b);

const m: MoneyObj:= mkMoneyObj(10)

do

withdraw(b, m)

return

equal(value(balance(b)), value(bal) - value(m));

Figure 1.1: The function check balance returns true on BankAccount objects

balance(b: BankAccount): MoneyObj

deposit(b: BankAccount, m:MoneyObj): Void

The type MoneyObj models US currency as some number of pennies. The value

method extracts the integer amount of pennies from money objects.
After designing and implementing the types MoneyObj and BankAccount, a pro-

grammer might want to implement a function on them. Figure 1.1 gives one such
function, check balance. The function returns true just when the new amount is
exactly equal to the old amount minus the amount withdrawn. The method invoca-
tion withdraw(b, m) is dynamic, that is the code it runs depends on the runtime
type of all its arguments, b and m.

Consider the following typical scenario in OO programming. After implementing
and verifying test balance, a programmer might add a new subtype PlusAccount
that has both a savings and a checking components. OO programming languages
then allow calls to test balance with PlusAccount objects as arguments. Since
message passing is dynamic, the methods balance and withdraw executed will be
those of the type PlusAccount. But the reasoning done earlier that test balance

always returns true is based only on analysis of the balance and withdrawmethods
of BankAccount. So the question is, when PlusAccount is added, do we require a
reveri�cation of test balance?

One approach to solve this problem is to use supertype abstraction as a tool
for modular veri�cation [LW95]. Using supertype abstraction and reasoning at the
static types of variables, that is reasoning under the assumption that b is always
a BankAccount object, the set of expected results of test balance is ftrueg. If
this set of expected results were to change with the addition of new types then we
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need to reverify when new subtypes of BankAccount are added. To prevent this
reveri�cation, the actual set of results when subtype objects are used in place of
supertype objects should be guaranteed to be a subset of the expected set of results.
That is, the set of results when PlusAccount objects are passed to test balance

should be ftrueg. If all the subtypes of BankAccount satisfy this requirement then
one need not reverify test balance whenever new subtypes, like PlusAccount, are
added. This requirement that the set of results when subtype objects are passed
should be a subset of the set of expected results is termed as \no surprises". The
\no surprises" notion is a necessary condition for any notion of behavioral subtyping
that is used for modular reasoning using supertype abstraction.

To see why \no surprises" is a necessary condition for modular reasoning, con-
sider a new subtype, ChargeAccount, that is similar to BankAccount except for the
behavior of the withdraw method. The ChargeAccount's withdraw method charges
a transaction fee, which is deducted from its balance. If this new subtype object
were passed in place of b to test balance then, due to dynamic invocation, the re-
sult would be false. The conclusion that test balance always returns true would
not be valid. Hence we term this result as surprising because it is not in the expected
set of results. To preserve the soundness of modular veri�cation that is based on
supertype abstraction, we disallow the subtype relationship between ChargeAccount

and BankAccount.
So the overall question is: how can one decide behavioral subtype relations

between arbitrary ADTs and guarantee \no surprises"?

1.1.2 Aliasing and behavioral subtyping

Another important point in the study of behavioral subtyping for mutable types
is the e�ect of aliasing on the set of expected results, which in turn a�ects soundness.
In this section we show how the assumptions on aliasing e�ect modular reasoning
and behavioral subtyping.

The following discussion uses a new account type, FrozenAccount, whose objects
are immutable. FrozenAccount objects support the following methods.

get_interest(f: FrozenAccount): Money

balance(f:FrozenAccount): Money

The types FrozenAccount and BankAccount are not related.
Figure 1.2 gives a test deposit function that takes a FrozenAccount object f,

a BankAccount object b, and returns a Bool. The test deposit function withdraws
10 pennies from b and checks to see if that transaction had any a�ect on f .

What is the set of expected results of test deposit? It depends on the following:
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function test deposit(f:FrozenAccount, b:BankAccount):Bool

is

const m :MoneyObj:= mkMoneyObj(10);

const bal: MoneyObj:= balance(f)

do

deposit(b, m);

return

return equal(value(balance(f)), value(bal));

end;

Figure 1.2: Function test deposit to show that aliasing is not orthogonal to be-
havioral subtyping

� the assumptions about aliasing used by the reasoning technique.

� whether aliasing is permitted between f and b.

� the notion of behavioral subtyping.

These three points are not completely independent. The formals f and b can be
aliased only if a common subtype is allowed. In such a case, if the reasoning technique
uses supertype abstraction with the assumption that if f and b cannot be aliased then
the set of expected results would be ftrueg. This is because f and b are not aliased
and f is an immutable object. But if the reasoning technique assumes that f and
b can be aliased and uses supertype abstraction, then the set of expected results
would be ftrue, falseg. But if no common behavioral subtype of BankAccount
and FrozenAccount is permitted, then the set of expected results would be ftrueg.

If the set of expected result contains both true and false then the reasoning
technique cannot conclude that test deposit always returns true. But this is sur-
prising because of our assumption that FrozenAccount is an immutable type and
hence f cannot be changed. But in the above case, we fail to make such a conclusion.
Is this because the reasoning technique is permitting all forms of aliasing or is it
because the reasoning technique is permitting more behavioral subtypes?

To summarize, the two problems discussed in this section are: how to de�ne
notions of behavioral subtyping between arbitrary mutable ADTs that satisfy \no
surprises" and what relation between aliasing and behavioral subtyping permits con-
clusions about OO programs such as objects of immutable types do not change.
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1.2 Overview of the solutions

In this section, we present an overview of our solution and highlight the details
needed in our formal presentation of the solution. We �rst look at the di�erent
options discussed in the above section.

1.2.1 Di�erent notions of behavioral subtyping

If one permits all forms of aliasing and would like to preserve certain constraints,
such as immutability of FrozenAccount, on types, then the behavioral subtype notion
obtained is similar to that of Liskov and Wing (the history constraint version) [LW94,
Figure 4]. In such a case, there cannot be a common behavioral subtype between
FrozenAccount and BankAccount. This is because if such a common subtype ex-
isted then it should satisfy the immutability constraint of FrozenAccount and the
mutability of BankAccount. So f and b in test deposit can never be aliased and
the set of expected results is ftrueg. This notion permits fewer behavioral subtypes
and hence referred as strong behavioral subtyping.

Strong behavioral subtyping disallows subtypes that have extra methods which
violate the supertype's constraints. More speci�cally, it disallows mutable subtypes
of immutable types. However, since mutable subtypes act like immutable types when
viewed through the methods of the immutable supertypes, allowing mutable subtypes
to immutable types does not, at �rst, seem to violate the soundness of supertype ab-
straction. Further, such a notion permits interesting and useful subtype relationships.
As an example, using such relationships, one can pass a mutable array to a function
(eg., average) that expects an immutable array. Such a notion of behavioral subtyp-
ing would permit more behavioral subtype relationships and hence referred as weak
behavioral subtyping.

Weak behavioral subtyping would permit a common behavioral subtype of the
types FrozenAccount and BankAccount. Hence the set of expected results depends
on the assumptions on aliasing by the reasoning technique. If the reasoning tech-
nique forces one to think about a case when f and b are aliased, then the expected
results of test deposit would be f true, falseg. This result is counter-intuitive
because it is hard to imagine the speci�cation of a common subtype to an immutable
type, FrozenAccount and a mutable type, BankAccount, which satis�es the expected
result above. Another problem is that it will be surprising to a programmer using
FrozenAccount to expect false as a possible result because FrozenAccount is an im-
mutable type. Hence we do not investigate reasoning techniques that allows all forms
of aliasing and permits behavioral subtyping between mutable types and immutable
types.

The remaining case is to permit a mutable subtypes to immutable types and allow
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the reasoning technique to restrict aliasing between unrelated types. That is, though
a common behavioral subtype is allowed between FrozenAccount and BankAccount,
but f and b cannot be aliased. Then the set of expected results for test deposit is
ftrueg. The tradeo� for weak behavioral subtyping would be the practical bene�ts
of allowing mutable subtypes to immutable supertypes versus restrictions on aliasing.

1.2.2 Semantic conditions

For both the weak and the strong behavioral subtyping, the intuitive idea is that
subtype objects should in a sense behave like supertype objects. The main objective
in de�ning these notions is to capture this \behaves like" property such that \no
surprises" is guaranteed.

1.2.2.1 Models of mutable types Our approach is model-theoretic. We
capture the \behaves like" relation as a set of semantic properties on models of types.
For this we need models of mutable types, which we refer as mutation algebras.
Mutation algebras, as opposed to regular algebras [Wir90, GM87], contain stores as
values. Using these stores, we model mutation as in denotational semantics. Further
these algebras allow us to study observations on types independent of the language
in which they are implemented. Models for mutable types are discussed in 2.

1.2.2.2 Simulation relations The semantics of a set of ADTs is given by a
set of mutation algebras. To express the \behaves like" relation one might think that
it would be enough to simply relate abstract values of the corresponding algebras.
But these abstract values depend on the store, which map locations to values. Hence
just relating environments that map identi�ers to values does not take into account
the mutation of the store. So one must relate environments, that map identi�ers to
abstract values in the context of stores. This idea is captured in simulation relations.
Simulation relations capture the e�ects of operations on environments. They also
ensure that two related environments are visibly equivalent, that is, simulation rela-
tions capture a notion of observable equivalence on the visible types such as Integer
and Bool.

Since our main objective is to see the observable equivalence of environments
that contain subtype objects in place of supertype objects, we de�ne a \coercion"
property. Coercion property ensures that, if certain aliasing restrictions are satis�ed,
every environment that contains subtype objects in place of supertype objects is
related to an environment that contains only the supertype objects. We call such an
environment, where every identi�er and location denotes a value of its static type,
nominal environment. Nominal environments do not contain any subtyping.
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1.2.2.3 Weak behavioral subtyping We say that the declared subtype
relationships are legal weak behavioral subtypes if for every implementation of the
types (modeled by an algebra), A, there exists an implementationB, such that there
is a simulation relation between A and B. From the coercion property, if the aliasing
requirements are satis�ed, every environment is related to a nominal environment that
is observably equivalent. From this we can conclude that subtype objects \behave
like" supertype objects. We use the notation S �w T to denote that S is a weak
behavioral subtype of T .

1.2.2.4 Strong behavioral subtyping Strong behavioral subtyping is de-
�ned with respect to a history constraint. History constraints [LW94] are like invari-
ants but are de�ned across di�erent stores. Recall that the strong behavioral subtype
notion allows all forms of aliasing and does not allow subtypes that violate super-
type's history constraints. To capture this, we de�ne a model-theoretic equivalent
of the history constraints and de�ne a \constraint" property to ensure that all the
operations on the subtype objects satisfy the history constraint. A declared subtype
relationship is a legal strong behavioral subtype relation with respect to a history
constraint if for every implementation of the types, there exists an implementation
such that there is a simulation relation between them that satis�es the \constraint"
property. This de�nition captures a behavioral subtype notion that prevents the ex-
tra methods in the subtype from violating the supertype's history constraint. We use
the notation S �s T to denote that S is a strong behavioral subtype of T .

1.2.2.5 Example As an example of a weak behavioral subtype relation, con-
sider PlusAccount �w FrozenAccount. We can de�ne a simulation relation with a
coercion property that maps an environment with an identi�er x:FrozenAccount

denoting a PlusAccount object to an environment with x denoting a FrozenAccount
object, whose abstract value is the sum of the checking and savings component of
the PlusAccount. If the balance method of PlusAccount returns the sum of its
savings and checking components, then it satis�es the substitution property, be-
cause the e�ect of balance on a PlusAccount object (say with $100 savings and
$100 checking) is the same as invoking balance on a FrozenAccount object (with
$200 as its savings component). Similarly other methods also satisfy the substitu-
tion property and the other properties. (Refer to Chapter 3 for a proof.) Hence,
PlusAccount �w FrozenAccount.

Because of the constraint property for strong behavioral subtyping PlusAccount
is not a strong behavioral subtype of FrozenAccountwith respect to a constraint that
FrozenAccount objects are immutable. Note that this constraint does not a�ect
the behavioral subtype relation between PlusAccount and BankAccount. Hence,
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we can show that PlusAccount �s BankAccount with respect to a constraint that
FrozenAccount objects are immutable. Every �s is a �w, but the converse is not
true.

1.2.3 \No surprises"

To show the \no surprises" result and to give a concrete idea of the kind of
languages to which our results apply, we de�ne a multi-method OO programming
language, OBS�. To match the model theory discussed above, OBS� is split into two
parts. The �rst part consists of type and method implementations and the second
part consists of programs that use those types. We refer to the later part as the main
programs of OBS�. The denotations of the main programs of OBS� are de�ned using
algebras that represent the denotations of type and method implementations. Using
the denotations of main programs, we show that expressions and statements in OBS�

preserve simulations and prove that the results obtained when programs use subtype
objects are a subset of the results when supertype objects are used.

Alias rules, which are similar to type checking rules, are provided for OBS� to
restrict certain kinds of aliasing for weak behavioral subtypes. We de�ne a semantic
notion of stAliasOk that matches with the aliasing restrictions, which are adequate for
reasoning using nominal environments, and show the soundness of the alias checking
rules with respect to stAliasOk.

For weak behavioral subtyping, the expected results of a program are the set
of results of all the invocations in the nominal environments, provided the aliasing
restrictions are met, in all the implementations (algebras) of the types. Weak behav-
ioral subtyping guarantees that for every state with subtyping in an implementation
there is a corresponding state without subtyping in some implementation that is
related, such that the states are observably equivalent. Since programs in OBS�

preserve simulation relations, we can conclude that the resulting states, that is states
with and without subtyping, are related. Hence, the set of actual results will be a
subset of the expected results.

Similarly we show the \no surprises" for strong behavioral subtyping by taking
the expected results to be the set of all invocations in all the states that along with the
resulting states satisfy the constraint property. We show that for strong behavioral
subtyping, expressions, declarations, and commands in the main programs of OBS�

preserve the constraint property. Hence the actual results of a main program of
OBS� is an expected result with respect to strong behavioral subtyping because
the resulting state satis�es the constraint property. Hence, the actual set of results
obtained will be a subset of the expected results.
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1.3 Related work

Our work on the model-theory of behavioral subtyping is an extension of Leav-
ens's work in [Lea89]. The simulation relations de�ned in [Lea89] do not have any
provision for mutation. Similarly other model-theoretic approaches [BW90, LW90,
LP92, LW95] do not deal with mutation and aliasing. So none of these approaches
study the relation between aliasing and behavioral subtyping. Cusack [Cus91] has
a notion of specialization that is similar to behavioral subtyping. Though her class
schemas allow extra methods in the subtype and seem to deal with mutation, she
does not study the relation between mutation, aliasing, and subtyping. Further, she
requires the types of the arguments for the common methods in the subtype and
supertype to be the same.

In contrast to the above model-theoretic approaches, America [Ame87, Ame91],
and Liskov and Wing [LW93b, LW94] give proof-theoretic de�nitions of behavioral
subtyping. America does not deal with extra mutators in subtypes. Liskov and
Wing allow extra mutators provided that the extra mutators can be explained in
terms of the supertype methods or if they do not violate any history constraints
of the supertype. This rules out the possibility of mutable subtypes of immutable
types. In [DL96], we weaken Liskov and Wing's constraint based notion to allow
more behavioral subtypes that satisfy the supertype's history constraints. We believe
that the strong behavioral subtyping de�ned in this dissertation is a model-theoretic
equivalent of the notion de�ned in [DL96]. We leave the formal proof as a future
work.

1.4 Outline of the dissertation

We present our models of mutable types in Chapter 2. In chapter 3 we de�ne
weak and strong behavioral subtype relationships with examples and comparisons
to related work. To show that our notions of behavioral subtyping satis�es the
established criteria of \no surprises", we de�ne OBS�, its semantics, alias checking
rules for weak behavioral subtyping, and show the soundness of alias checking rules
and soundness of supertype abstraction in Chapter 4. In Chapter 5, we de�ne the
sets of expected results and prove the corresponding \no surprises" results for weak
and strong behavioral subtyping. Chapter 6 discusses our work in the context of
reasoning about OO programs and Chapter 7 o�ers summary and conclusions.
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2. ALGEBRAIC MODELS OF MUTABLE TYPES

In this chapter, we develop algebraic models of mutable types. We refer to these
algebras as mutation algebras. Mutation algebras are extensions of standard algebraic
models of immutable types [Wir90, GM87].

There are two applications of mutation algebras in our study of behavioral sub-
typing for mutable types. The �rst is to provide an algebraic model of types that
is independent of any programming language. This allows us to study relations be-
tween di�erent types or di�erent implementations of types. One such relation, given
in the next chapter, is a simulation relation that is used to de�ne behavioral subtype
relations.

Another application of mutation algebras is in the semantics of programming
languages. We use mutation algebras to give semantics of our language, OBS�, which
is used to show the \no surprises" result for weak and strong behavioral subtyping.
A \split" semantic technique is used for the semantics of OBS�. The split semantics
is a blend of algebraic and denotational semantic techniques. Programs in OBS�

consist of two parts. The �rst part consists of type declarations and methods over
the types, and the second part is a main program that uses the declared types and
methods. The meaning of the �rst part is in a sense \compiled" into a mutation
algebra and this algebra is used to describe the meaning of the main program. We
present the semantics of main programs of OBS� in Chapter 4.

The next section gives a description of the visible types, which are used for obser-
vations and can be considered as the basic types in all mutation algebras. Section 2.2
presents the standard signatures and section 2.3 introduces mutation signatures. Mu-
tation algebras are de�ned in Section 2.4. Section 2.5 formally de�nes notions of
aliasing that are required in our study of behavioral subtyping and we discuss related
work in Section 2.6.

Readers familiar with algebraic techniques can skim sections 2.1 and 2.2 and can
go directly to section 2.3. Section 2.7 summarizes this chapter and presents Table 2.1
that tabulates the notation introduced in this chapter.
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true : (Store)! (Bool; Store)
false : (Store)! (Bool; Store)
and : (Bool; Bool; Store)! (Bool; Store)
or : (Bool; Bool; Store)! (Bool; Store)
not : (Bool; Store)! (Bool; Store)
0 : (Store)! (Integer; Store)
1 : (Store)! (Integer; Store)
add : (Integer; Integer; Store)! (Integer; Store)
mult : (Integer; Integer; Store)! (Integer; Store)
negate : (Integer; Store)! (Integer; Store)
equal : (Integer; Integer; Store)! (Bool; Store)
less : (Integer; Integer; Store)! (Bool; Store)
leq : (Integer; Integer; Store)! (Bool; Store)

Figure 2.1: Operations for visible types, referred as VISOPS.

2.1 Visible types

To facilitate the study of visible behavior, we distinguish a subset of types
as visible types; these are the types of values that can be \output" by a program
[Sch91] [Nip86]. These are de�ned as follows.

VIS
def
= fBool; Integerg (2:1)

These types are used to de�ne observable behavior of states. Hence, one needs to
�x the set of operations on the visible types and the sets of externally visible values
of each of these types. Figure 2.1 gives the names and signatures of operations on
the visible types.

The carrier sets of externally visible values for visible types are de�ned as follows.

EXTERNALSBool = ftrue; falseg (2.2)

EXTERNALSInteger = f0; 1;�1; 2;�2; : : :g (2.3)

Interpretations of operations on the VIS types are given in Figure 2.2.

2.2 Signatures

Signatures describe the interface of a set of types. They contain type names,
a presumed subtype relation between type names, and operation symbols. (Method
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trueA(�)
def
= (true; �)

falseA(�)
def
= (false; �)

andA(v1; v2; �)
def
= (v1 ^ v2; �)

orA(v1; v2; �)
def
= (v1 _ v2; �)

notA(v; �)
def
= (:(v); �)

0A(�)
def
= (0; �)

1A(�)
def
= (1; �)

addA(v1; v2; �)
def
= (v1 + v2; �)

multA(v1; v2; �)
def
= (v1 � v2; �)

negateA(v; �)
def
= (�v1; �)

equalA(v1; v2; �)
def
= (v1 = v2; �)

lessA(v1; v2; �)
def
= (v1 < v2; �)

leqA(v1; v2; �)
def
= (v1 � v2; �)

Figure 2.2: Operation interpretations for VIS types for all algebras,A and all stores,
�.
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names are historically called operation symbols in this context.) By presumed subtype
relations, we mean subtype relations that are declared by programmers. Overloading
of operation symbols based on argument types is permitted. Overloading will also be
useful in applying these algebras to object-oriented languages with message passing
(which supports a kind of dynamic overloading [WB89]). Signatures also contain
a function, ResType, which keeps track of the upper bound of the return type of
operations. That is, operations are allowed to return subtype objects of their return
type. These signatures are thus a simpli�ed form of the signatures used in category-
sorted algebras [Rey80] [Rey85].

De�nition 2.2.1 (Signature) A signature, �, is a tuple,

(TYPES ;OPS ;�;ResType);
where

� TYPES is a set of type symbols,

� OPS is a set of operation symbols,

� � is a pre-order on TYPES, and

� ResType is a family of partial functions such that ResType : OPS �TYPES !
TYPES?, and ResType is monotone. That is, for all n � 0 and g 2 OPS,
and for all types ~S�~T , if ResType(g; ~T ) 6= ? then ResType(g; ~S) 6= ? and

ResType(g; ~S) � ResType(g; ~T ).

For notational convenience, in the rest of dissertation, we use signatures as if
they are closed under the formation of tuple types. That is, for all T1; � � � ; Tn 2
TYPES , we consider (T1; � � � ; Tn) 2 TYPES . Similarly, (S1; � � � ; Sn) � (T1; � � � ; Tn)
only if S1 � T1; � � � ; and Sn � Tn.

Figure 2.3 gives an example signature, E�E. The set of types of E�E includes
Void, the visible types Integer and Bool, MoneyObj, FrozenAccount, BankAccount,
PlusAccount, and Store. The binary relation, �w, de�nes subtype relationships
between these types.

The type Void is used to indicate that a method has no results. The overloaded
operator, withdraw, mutates a PlusAccount or a BankAccount, and returns nothing
and the changed store. To model mutation, as in denotational semantics we use
Store both as an argument and as a result for operations. (Stores are discussed in
the next section along with operations on them.)

Algebras may have additional hidden types and operations. These hidden types
are referred to as sorts and are used to implement external types. A signature that
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TYPES
def
= fVoid; Bool; Integer; Store; MoneyObj;

FrozenAccount; BankAccount; PlusAccountg

�w def
= f(PlusAccount; FrozenAccount); (PlusAccount; BankAccount)g

[ f(T; T ) j T 2 TYPESg

OPS and ResType
nothing : (Store)! (Void; Store)
value : (MoneyObj; Store)! (Integer; Store)
change : (MoneyObj; Integer; Store)! (Void; Store)
balance : (FrozenAccount; Store)! (MoneyObj; Store)
get interest : (FrozenAccount; Store)! (MoneyObj; Store)
balance : (BankAccount; Store)! (MoneyObj; Store)
withdraw : (BankAccount; MoneyObj; Store)! (Void; Store)
interest : (BankAccount; MoneyObj; Store)! (Void; Store)
deposit : (BankAccount; MoneyObj; Store)! (Void; Store)
balance : (PlusAccount; Store)! (MoneyObj; Store)
withdraw : (PlusAccount; MoneyObj; Store)! (Void; Store)
interest : (PlusAccount; MoneyObj; Store)! (Void; Store)
deposit : (PlusAccount; MoneyObj; Store)! (Void; Store)
get interest : (PlusAccount; Store)! (MoneyObj; Store)
check deposit : (PlusAccount; MoneyObj; Store)! (Void; Store)
check balance : (PlusAccount; Store)! (MoneyObj; Store)
mkMoneyObj : (Integer; Store)! (MoneyObj; Store)
mkFrozenAccount : (MoneyObj; Store)! (FrozenAccount; Store)
mkBankAccount : (MoneyObj; Store)! (BankAccount; Store)
mkPlusAccount : (MoneyObj; MoneyObj; Store)! (PlusAccount; Store)

Figure 2.3: A signature, E�E = (TYPES ;�w;OPS [ VISOPS ;ResType), for vari-
ous account types. ResType for VISOPS is given in the previous �gure.
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also describes these internal sorts and their operations is called an internal signature.
Algebras can be thought of as having both an internal signature, for implementation,
and an external signature, a common interface. Such signatures are called hierarchical
signatures and are similar to those in [Wir90, page 734]. Since internal operations
can operate on external types, we require that the internal signature of a hierarchical
signature contain the external signature.

De�nition 2.2.2 (Hierarchical signature) A hierarchical signature consists of a
pair, (I�;E�), of an internal signature I� and an external signature E� such that
I�:TYPES � E�:TYPES , (I�:�) � (E�:�), I�:OPS � E�:OPS , and I�:ResType
� E�:ResType.

To di�erentiate between the internal and the external components of the sig-
nature, we use ITYPES for I�:TYPES and ETYPES for E�:TYPES . Similarly,
use IOPS for I�:OPS and EOPS for E�:OPS , and IResType for I�:ResType and
EResType for E�:ResType. However, we overload � to refer to both I�:� and E�:�.

2.3 Mutation signatures

As in denotational semantics, mutation is modeled using locations and stores.
Locations can be thought of as object identities; they can be used to extract an
object's value from a store. That is the abstract values of a mutable type are locations,
which are mapped by a store to values of the corresponding internal sort for the
mutable type. For example, the abstract values of MoneyObj objects are locations,
which are mapped by a store to an integer. When a MoneyObj, is mutated, the store
is modi�ed so that the MoneyObj's abstract value, which is a location, denotes a new
integer in the modi�ed store.

Since we model mutation algebraically, we require an abstract notion of stores,
that is stores cannot be treated just as functions (as is common in denotational
semantics, e.g., [Sch86]). The following discussion motivates the need for special
types and operations to handle mutation and stores abstractly.

In a given algebra, a subset of ETYPES will be implemented as object types;
that is as types whose carrier set is a set of locations. One could identify these
object types by specifying them in the signature but doing that would make our
signatures nonstandard. Instead we make a convention that all user de�ned types
are object types and use a consistent notation to denote the corresponding sort. For
an object type T , sortFor(T ) is used as the corresponding internal sort. Using a
common notation for all the internal sorts for object types allows us to easily talk
about the subtype relationship between these internal sorts. The abstract values of
these internal sorts vary from algebra to algebra allowing di�erent implementations.
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Hence, for any signature E�, the set of object types can be de�ned as follows.

ObjectTypes(E�)
def
= fT j T 2 ETYPES � fInteger; Bool; Store; Voidgg

The set of object types for E�E, ObjectTypes(E�E), is fMoneyObj; FrozenAccount;
BankAccount; PlusAccountg (refer to Figure 2.4). Readers familiar with C++ can
think of an object type, T , as the reference of type, T &, and sortFor(T ) as T . We
drop the argument E� for ObjectTypes whenever the signature is obvious from the
context.

Hierarchical signatures do not require signatures to have any speci�c types and
operations. But, to model mutation we require Store both as an argument and as
a result type for all external operations, to model mutation. We also need a type
Void for external operations that have no return value other than a store. Hence, for
mutation, we require hierarchical signatures to contain a type Store, a type Void,
some internal operations on Store, and an external operation nothing on Void. We
refer such signatures as mutation signatures.

The operation nothing allows one to return a value of type Void. Since we do
not manipulate the value of Void, we do not require any additional operations on
Void. Thus Void can be modeled as a one-point set.

In the de�nition of mutation signatures below, though we require Store to be an
external type, the operations on it are internal. This might seem strange but since
stores map values of external types (object types) to values of their internal sorts,
exposing the operations of stores would expose the internal sorts. This is because
operations on store, like lookup, return values of their internal sorts. Since internal
operations need not take and return store as an argument, making the operation on
stores internal allows a model of store that is closer to denotational semantics. So we
treat Store as an external type and operations on Store as internal.

De�nition 2.3.1 (Mutation signature) A mutation signature, (I�;E�) is a hi-
erarchical signature, such that E� satis�es the following conditions:

� Store; Void 2 ETYPES , and VIS � ETYPES,

� each g 2 EOPS takes a store as an argument and returns store as a result, i.e.,
it has a signature of the form (S1; � � � ; Sn; Store)! (T; Store),

� VISOPS � EOPS,

� nothing 2 EOPS such that ResType(nothing; (Store)) = (Void; Store),

and I� satis�es the following conditions:



18

� Set[Loc]; Loc 2 ITYPES,

� for each T 2 ObjectTypes, sortFor(T ) 2 ITYPES,

� for each S; T 2 ObjectTypes, if S � T then sortFor(S) � sortFor(T ),

� for each T 2 ObjectTypes, T � Loc,

� for each T 2 ObjectTypes, emptyStore, isInDom, lookup, update, alloc[T ]
2 IOPS such that

ResType(emptyStore; ()) = Store

ResType(isInDom; (T; Store)) = Bool

ResType(lookup; (T; Store)) = sortFor(T )
ResType(update; (T; sortFor(T ); Store)) = Store

ResType(alloc[T ]; (sortFor(T); Store)) = (T; Store)

� emptySet; isIn; addSet 2 IOPS such that that

ResType(emptySet; ()) = Set[Loc]
ResType(isIn; (Loc; Set[Loc])) = Bool

ResType(addSet; (Loc; Set[Loc])) = Set[Loc]

� for each T 2 ObjectTypes there exists a containedObjs[T] and a isNominal[T]
in IOPS such that

ResType(containedObjs[T]; (T; Store)) = Set[Loc]
ResType(isNominal[T]; (T; Store)) = Bool

Names of the form alloc[T ] may seem strange, but adding the type information to the
name allows more 
exibility in allocating objects and permits more subtyping. For
instance, if we had only alloc, then passing a sortFor(PlusAccount) value to it would
result in a PlusAccount location. But with two operations alloc[BankAccount]
and alloc[PlusAccount], passing a sortFor(PlusAccount) value, v, to the operation
alloc[BankAccount] can result in a BankAccount location with a value v and passing
v to alloc[PlusAccount] results in a PlusAccount location with a value v.

For each object type T , we require two internal operations containedObjs[T]
and isNominal[T] in our study of behavioral subtyping in the context of aliasing.
Often, as discussed in the next section, we need an alias graph of a store that links
an object and its containing objects. For such a graph, we need to identify the
components of an object. Since our goal is to hide the implementation details of the
object, we need internal operations, which when given an object and a store return
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the set of contained objects. For these operations to be polymorphic, they need to
satisfy monotonicity. Hence, we introduce a new internal type, Loc, as a supertype
of all object types and require that the result type of containedObjs[T] be Set[Loc].
Note that we do not require any operations on Loc and it can be considered as just
the common supertype of object types.

For some types, like the Collection [Gol84, Coo92] types, the contained objects
vary dynamically. For example, the contained objects in a List type vary with
mutation, that is adding a new object to a list changes its contained objects. Hence,
we cannot have a �xed tuple type as the return type of containedObjs[List]. So we
introduce a sort to contain a set of locations, Set[Loc].

For each object type T , given a value of T and a store, containedObjs[T] returns
a set of objects that are in the abstract value denoted by the value in the store. If the
carrier set of sortFor(MoneyObj) is a set of integers, then containedObjs[MoneyObj]
applied to a MoneyObj object and a store returns an empty set, because it con-
tains an integer value, not a location. If the carrier set of sortFor(BankAccount)
is a set consisting of money objects, then the containedObjs[BankAccount] on a
BankAccount returns either a singleton set with a MoneyObj or the contained objects
of sortFor(PlusAccount) (because PlusAccount �w BankAccount). This informa-
tion is used to construct an alias graph (in later sections).

Another internal operation that is required for our study of behavioral subtyping
is isNominal[T]. For our study, we compare results of operations in stores with
subtyping to the results of operations in stores without subtyping. By stores with
subtyping, we mean stores in which locations of type T denote values of sortFor(S)
where S � T whereas in stores without subtyping locations of type T denote values of
only sortFor(T ). Given a location and a store, isNominal[T] should return true if the
location and all the objects that are reachable from the location do not denote any
subtype values. If this is true for all locations in a store then we can conclude that the
store contains no subtyping. More details, including motivation for isNominal[T],
are provided in the next chapter.

Figure 2.4 gives an example mutation signature. The subtype relation �w is
overloaded for both types (external types) and sorts (internal types). The inter-
nal operations alloc[MoneyObj], alloc[FrozenAccount], alloc[BankAccount], and
alloc[PlusAccount] are used to create MoneyObj, FrozenAccount, BankAccount,
and PlusAccount objects respectively. Making these operations internal, hides im-
plementation details of object types, such as, that a PlusAccount contains a pair of
MoneyObj objects. These are di�erent from the external operations like, mkMoneyObj,
which do not give away any implementation details. The additional operations in I�
are operations on Store.
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ITYPES
def
= (TYPES [ fsortFor(MoneyObj); sortFor(FrozenAccount);

sortFor(BankAccount); sortFor(PlusAccount)
Loc; Set[Loc]g)

I�:�w def
= f(PlusAccount; FrozenAccount); (PlusAccount; BankAccount);

(sortFor(PlusAccount); sortFor(FrozenAccount));
(sortFor(PlusAccount); sortFor(BankAccount))
(MoneyObj; Loc); (FrozenAccount; Loc)
(BankAccount; Loc); (PlusAccount; Loc)g
[ f(S; S) j S 2 ITYPESg

IOPS and ResType
EOPS � IOPS and EResType � IResType

containedObjs[MoneyObj] : (MoneyObj; Store)! (Set[Loc])
containedObjs[FrozenAccount] : (FrozenAccount; Store)! (Set[Loc])
containedObjs[BankAccount] : (BankAccount; Store)! (Set[Loc])
containedObjs[PlusAccount] : (PlusAccount; Store)! (Set[Loc])
isNominal[MoneyObj] : (MoneyObj; Store)! Bool

isNominal[FrozenAccount] : (FrozenAccount; Store)! Bool

isNominal[BankAccount] : (BankAccount; Store)! Bool

isNominal[PlusAccount] : (PlusAccount; Store)! Bool

emptyStore : ()! (Store)
emptySet : ()! (Set[Loc])
isIn : (Loc; Set[Loc])! Bool

addSet : (Loc; Set[Loc])! Set[Loc]
8T 2 ObjectTypes
isInDom : (T; Store)! Bool

lookup : (T; Store)! sortFor(T )
update : (T; sortFor(T ); Store)! (Store)
alloc[T ] : (sortFor(T ); Store)! (T; Store)

Figure 2.4: A mutation signature, (I�;E�)E, where E� is shown in the previous �g-
ures. Note that ObjectTypes((I�;E�)E) = fMoneyObj; FrozenAccount;
BankAccount; PlusAccountg.
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2.4 Mutation algebras

We �rst de�ne standard �-algebras and then de�ne mutation algebras. Algebras
that satisfy a signature � are called �-algebras. These are the variety of algebras
that model the types and operations of a signature �.

De�nition 2.4.1 (�-algebra) Let � be a signature. A �-algebra, A, is a pair
(VALSA;OPSA); where

� VALSA is a family of sets of abstract values, indexed by TYPES , and

� OPSA is a set of operation interpretations such that for each g 2 OPS , there
is a polymorphic partial function gA 2 OPSA where for each ~S 2 TYPES and
T 2 TYPES , if ResType(g; ~S) = T then gA satis�es

gA : VALSA~S ! ([U�TVALS
A

U ?):

� For all T 2 VIS, VALSAT = EXTERNALST .

The last condition allows comparisons between values of visibles types in di�erent
algebras, and is important for the discussion of observable behavior.

We use VALSAT to denote the abstract values of T in A. The notation
d

VALSAT

abbreviates the set of all abstract values of the subtypes of T ; that is,
d

VALSAT =S
U�T (VALS

A

U ). For operations with zero arguments, we use gA to denote gA(). For
example, emptyStoreA is used for emptyStoreA().

A E�-algebra, A, is a (I�;E�)-hierarchical algebra if it is a I�-algebra. We are
interested in the class of algebras that correspond to the mutation signatures, that
is, that satisfy certain properties on stores. These algebras, referred to as mutation
algebras, are a subset of hierarchical algebras.

De�nition 2.4.2 (Mutation algebra) Let (I�;E�) be a mutation signature. A
(I�;E�)-algebra, A, is a (I�;E�)-mutation algebra if

� for all � 2 VALSAStore, T 2 ObjectTypes, l; l0 2 VALSAT , and for all v 2d
VALSA

sortFor(T )
each of the following is true:

isInDomA(l; emptyStoreA) = false
isInDomA(l; updateA(l0; v; �)) = (l = l0) _ isInDomA(l; �)
lookupA(l; updateA(l0; v; �)) = if (l = l0) then v else lookupA(l; �)
lookupA(l; emptyStoreA) = ?

let (l; �0) = alloc[T ]A(v; �) in (isInDomA(l; �) = false
^ �0 = updateA(l; v; �))
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� for all s 2 VALSASet[Loc], T 2 ObjectTypes, and v; v0 2 VALSAT each of the
following are true:

isInA(v; emptySetA) = false
isInA(v; addSetA(v0; s)) = if (v = v0) then true else isInA(v; s)

To ensure that the type Store model stores as in denotational semantics, we
specify properties for operations on stores. That is, the operation updateA(l; v; �),
returns a new store after binding l to v. The operation, lookupA on l on such a store
should return v.

Typically, in denotational semantics stores are modeled as functions. To enable
such a view for the stores in our algebra, we adopt sugared forms for the oper-
ations on stores; these are used when the algebra is clear from the context. We
use l 2 Domain(�) for isInDomA(l; �), (� l) for lookupA(l; �), and [l 7! v]� for
updateA(l; v; �).

We also use v 2 v0 for isInA(v; v0).
Figure 2.5 gives the carrier sets for an example (I�;E�)E-mutation algebra E.

Note that the values of all the object types, that is the types MoneyObj and all the
account types, are typed locations. The carrier sets of sortFor(FrozenAccount) and
sortFor(BankAccount) contain money locations while sortFor(PlusAccount) contains
a pair of money locations. Modeling account types as money locations instead of
integers permits interesting types of aliasing in the store.

Figure 2.6 shows the operation interpretations of E. For the sake of clarity,
we expand the interpretations of polymorphic operations as if they are di�erent op-
erations. That is, the operations interpretation of balance is expanded as three
interpretations based on the type of the argument. To obtain the interpretation of
the unsugared form, we test the argument's type and branch into the corresponding
interpretation. For example, balance is expanded as follows.

balanceE(v; �)
def
= if (v 2 VALSEFrozenAccount) then alloc[MoneyObj]E((� v); �)

else if (v 2 VALSEBankAccount)

then alloc[MoneyObj]E((� v); �)

else if (v 2 VALSEPlusAccount) then let (m1;m2) = (� v) in

alloc[MoneyObj]E((� m1) + (� m2); �)
else ?

Figure 2.7 gives the operations interpretations for internal operations of E.
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VALSEVoid
def
= f�g

VALSEBool
def
= ftrue; falseg

VALSEInteger
def
= f0; 1;�1; 2;�2; : : :g

VALSET
def
= LOCSET ; for each T 2 ObjectTypes

VALSEsortFor(MoneyObj)
def
= VALSEInteger

VALSEsortFor(FrozenAccount)
def
= VALSEMoneyObj

VALSE
sortFor(BankAccount)

def
= VALSEMoneyObj

VALSEsortFor(PlusAccount)
def
= VALSEMoneyObj� VALSEMoneyObj

VALSEStore
def
= LOCSE ! VALSE?

VALSELoc
def
= fli j i 2 Natg

VALSESet[Loc]
def
= Loc! Bool

VALSE(S1�S2���Sn)
def
= (VALSES1 � � � � � VALSESn);

for each S1; � � � ; Sn 2 ITYPES

where

LOCSET
def
= flTi j i 2 Natg; for each T 2 ObjectTypes

Figure 2.5: Abstract values of the (I�;E�)E mutation algebra E.
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mkMoneyObjE(vi; �)
def
= alloc[MoneyObj]E(vi; �)

valueE(mm; �)
def
= ((� mm); �)

mkFrozenAccountE(mm; �)
def
= let (m0; �0) = alloc[MoneyObj]((� mm); �)E in

alloc[FrozenAccount]E(m0; �0)

balanceE(ff ; �)
def
= alloc[MoneyObj]E((� (� ff )); �)

mkBankAccountE(mm; �)
def
= let (m0; �0) = alloc[MoneyObj]((� mm); �)E in

alloc[BankAccount]E(m0; �0)

balanceE(bb; �)
def
= alloc[MoneyObj]E((� (� bb)); �)

depositE(bb;mm; �)
def
= let m0 = (� bb) in

updateE(m0; (� mm) + (� m0); �)

withdrawE(bb;mm; �)
def
= let m0 = (� bb) in

let (v0; �) = (� m0) in
let (v; �) = (� mm) in
if v0 > v then updateE(m0; (v0� v); �) else ?

mkPlusAccountE(mm
1 ;m

m
2 ; �)

def
= let (m0

1; �
0
1) = alloc[MoneyObj]((� mm

1 ); �)
E in

let (m0
2; �

0
2) = alloc[MoneyObj]((� mm

2 ); �
0
1)
E in

alloc[PlusAccount]E((m0
1;m

0
2); �

0
2)

balanceE(pp; �)
def
= let (m1;m2) = (� pp) in

alloc[MoneyObj]((� m1) + (� m2); �)

withdrawE(pp;mm; �)
def
= let (ms;mc) = (� pp) in

let vs = (� ms) in
let vc = (� mc) in
let v0 = (� mm) in
if vs > v0 then (�; [ms 7! (vs � v0)]�)
else if (vs + vl) > v0

then (�; [ms 7! 0][mc 7! (vs + vl � v0)]�)
else ?

� � �

Figure 2.6: Operation interpretations of the (I�;E�)E-mutation algebra E. More
details can be found in the Appendix A. The superscript i, m, f , b, and
p denote values of Integer, MoneyObj, FrozenAccount, BankAccount,
PlusAccount.
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containedObjs[MoneyObj]E(mm; �)
def
= (�(m):false)

containedObjs[FrozenAccount]E(ff ; �)
def
= let m = (� ff ) in

(�(m0):if (m0 = m) then true
else false)

containedObjs[BankAccount]E(bb; �)
def
= let m = (� bb) in

(�(m0):if (m0 = m) then true
else false)

containedObjs[PlusAccount]E(pp; �)
def
= let (m1;m2) = (� pp) in

(�(m0):if (m0 = m1) then true
else if (m0 = m2) then true

else false)
8T 2 ObjectTypes

isNominal[T]E(vT ; �)
def
= if (vT 2 VALSET ) then true

else false
� � �

Figure 2.7: Operation interpretations of internal operations of (I�;E�)E-mutation
algebra E. Additional details can be found in Appendix A.
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(� lBankAccount1 ) = (l
MoneyObj
3 ; l

MoneyObj
4 ); (� lBankAccount2 ) = (l

MoneyObj
4 ; l

MoneyObj
5 )

(� l
MoneyObj
3 ) = 100; (� l

MoneyObj
4 ) = 100; (� l

MoneyObj
5 ) = 200

Figure 2.8: A sample store of E, that is � 2 VALSEStore.

2.5 Aliasing in stores

From the examples in Chapter 1 we have seen that behavioral subtyping depends
on aliasing between objects of di�erent types. In this subsection, we de�ne what it
means for two locations to be aliased in a store. Since we are interested only in direct
aliasing between locations of di�erent types, we limit our discussion to only to direct
aliases.

First, we de�ne an alias graph of a store. Let A be a (I�;E�)-mutation algebra
and let � 2 VALSAStore. Then the notation aliasG(�) is used for the alias graph of
�. It has nodes and edges as follows. The nodes of aliasG(�) are all values v such
that v 2 Domain(�) holds. Recall that v 2 Domain(�) is sugar for isInDomE(v; �),
when v 2 VALSE and � 2 VALSEStore. The directed edges of aliasG(�) are pairs
of (l; v), for every l 2 VALSAT , v 2 VALSAU , where T;U 2 ObjectTypes and v 2
containedObjs[T]A(l; �).

De�nition 2.5.1 (Direct aliasing) Let A be a (I�;E�)-mutation algebra. Let � 2
VALSAStore. Let l1 2 VALSAU and l2 2 VALSAV , where U; V 2 ObjectTypes. Then l1
and l2 are direct aliases in � if there exists a node v in aliasG(�) such that (l1; v)
and (l2; v) are edges of aliasG(�).

Figure 2.9 gives the alias graph of a store given in Figure 2.8. The locations
lBankAccount1 and lBankAccount2 in �, given in Figure 2.9, are direct aliases because of the

edges (lBankAccount1 ; l
MoneyObj
4 ) and (lBankAccount2 ; l

MoneyObj
4 ). We use this notion of direct

aliasing in our study of weak behavioral subtyping.

2.6 Related work

In this section, we present a brief description of some work related to mutation
algebras. Mutation algebras introduced in this chapter are extensions to standard
algebraic techniques described, for example, in [EM85], [GD94].

Gougen and Diaconescu [GD94] treat states as terms of an algebra and use them
to describe properties of data types. States map variables to values and the values are
immutable. One does not have a notion of object identities and hence no mutation
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Figure 2.9: Alias graph of � given in the previous �gure. Locations lBankAccount1 and
lBankAccount2 directly alias a location.

and aliasing of objects. However, their treatment of states as hidden sorts is similar
to our Store, though we require Store as an external type to model mutation.

Evolving algebras [Gur91] have a �xed carrier set that gives values to terms in a
state and function updates that keep track of the changes of structures. For a given
algorithm one writes the transformations on structures. Evolving algebras are more
operational in nature than our mutation algebras. However, they are not algebraic in
the sense that the purpose of the algebras in evolving algebras is only to provide the
structures and hence, one does not de�ne any homomorphism between these algebras.
We require homomorphisms between di�erent algebras to de�ne behavioral subtype
relations. Further, our approach is more denotational. In our split semantics (given
in Chapter 4), we treat mutation algebras as arguments to the valuation functions
of the denotational semantics. It is also not clear how to achieve this split in the
context of operational semantics as the con�gurations depend on speci�c algebras.

Another interesting work that explicitly treats the with modeling mutable types
is D-oids [AZ93]. Essentially, a D-oid consists of a set of instant structures and
dynamic operations. These instant structures can be thought of as con�gurations
(states) that contain objects along with their operations. A dynamic operation is
a mapping between these con�gurations, which also maps higher-level objects or
structures in the static framework. Static structures are the standard algebras used
for immutable types. Object identities across di�erent con�gurations are preserved
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by a tracking map. Hence the notion of object identity is more abstract than our
notion of location. Like evolving algebras, D-oids are operational in nature but
the underlying structures and their transformations are studied algebraically and a
category of d-oids is constructed. However, our approach is more denotational, so
having explicit locations helps in a better understanding of subtype relationships
since it is closer to the way mutation is handled in denotational semantics.

In [Wag92], Wagner gives semantics for a language with objects, classes, and
inheritance. For a given a class system, he de�nes a state and gives semantics of
a language that uses it. One can think of these states as algebras. This work is
di�erent both philosophically and technically from mutation algebras. Our goal in
de�ning mutation algebras is to model a set of types, which may contain mutable
objects. Wagner's work concentrates on an algebraic notion for a set of classes and to
model inheritance. The technical di�erence comes from the fact that while we try to
hide the internal details of objects, it is not an issue in Wagner's semantics. In fact,
he needs a mapping (�) that gives out the internal representation of object, which
enables him to transform subclass objects to superclass objects and back. Another
way of looking at this comparison is while our work models subtype polymorphism,
Wagner's work gives a mathematical explanation for a set of classes with inheritance.

Other related work includes action semantics [Mos92], [Wat91], which specify
data using algebraic techniques. Action semantics, unlike denotational semantics, is
more operational in nature. It would be interesting to look at applying the concepts
of actions in our mutation algebras and split semantics.

Mason and Talcott [MT91], [MT92] studied the semantics of functional languages
with mutation, like LISP [Mas86]. Their approach is mainly operational and uses
equational logics for proving program equivalences. Further, they limit interferences
(aliasing) to within objects. They work on axioms over a particular language while
we work on algebras and operations of the algebras. Our notion of equivalence (sim-
ulations de�ned in the next chapter) is de�ned using algebras and visible types of
the algebras. Using operations of algebra rather than language features is essential
to de�ne behavioral subtyping independent of any programming language.

2.7 Summary

In this chapter we presented an algebraic model for mutation that closely mimics
denotational semantics. We introduced mutation signature that contain stores, loca-
tions, and operations on them. To hide all the implementation details from external
view, we de�ne mutation signatures as hierarchical signatures, where only the exter-
nal signature is visible. A simulation relation on algebras with a common external
signature is de�ned in the next chapter.
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Table 2.1: Overview of the notations adopted
Notation Description
VIS Visible types
VISOPS Operations on visible types
I� Internal Signature
E� External Signature
ETYPES External types also referred as types
ITYPES Internal types also referred as sorts
EOPS External Ops
IOPS Internal Ops
� Presumed Subtype relation, overloaded for types and sorts
sortFor(T ) Internal type or sort for object type T
A;B;C; � � � Mutation algebras
l Values of object types, also referred as locationsd
VALSAT [S � TVALS

A

S

gA gA()
�; �0; �A Stores
l 2 Domain(�) isInDomA(l; �)
(� l) lookupA(l; �)
[l 7! v]� updateA(l; v; �)
v 2 l isInA(v; l)

We conclude by presenting Table 2.1, which, for convenience, gives a quick
overview of the notations adopted in this chapter.
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3. WEAK AND STRONG BEHAVIORAL SUBTYPING

This chapter de�nes weak and strong behavioral subtyping. Presenting these
notions before introducing any programming language allows us to discuss behavioral
subtyping in a general setting. This chapter forms the core of this dissertation.

Intuitively, for a type to be a behavioral subtype of another, subtype objects
should \behave like" supertype objects. This \behaves like" notion requires that
every subtype object should be related, in a certain sense, to a supertype object,
and that subtype methods preserve these relationships. That is, behavioral subtyp-
ing requires some form of relation between subtype and supertype objects. Such
a relationship would allow one to substitute subtype objects in place of supertype
objects without surprising behavioral changes [Lis88]. We refer to such relations as
simulation relations.

These simulation relations form an important component in the de�nition of
weak and strong behavioral subtyping. To de�ne simulations, the �rst thing one
would consider is to relate subtype values to supertype values. That is, in our ex-
ample, relate the abstract values of PlusAccount to that of BankAccount values.
Since the abstract values of PlusAccount and BankAccount are locations, relating a
PlusAccount object to a BankAccount object amounts to relating their corresponding
locations. But mutating a PlusAccount object means changing the value associated
with the location in the corresponding store and not its location. Because locations
do not change, just relating locations cannot capture the e�ects of mutation on the
PlusAccount object and the related BankAccount object. So for methods to preserve
the \behaves like" property between locations, the corresponding stores, where the
mutation is modeled, should be related.

Since our goal is to study behavioral subtyping in the context of mutation and
aliasing, we also need to consider the e�ects of mutation on identi�ers that are aliases.
But stores cannot see the aliasing between identi�ers, so we introduce a notion of an
environment and de�ne simulations over environments.

In the next section, we de�ne environments and in section 3.2 we formalize these
notions. In section 3.3, we de�ne a nominal environment and discuss the alias re-
quirements for nominal environments in section 3.4. Using nominal environments we
de�ne simulation relations in section 3.5. Weak behavioral subtyping is de�ned in
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section 3.6 and an example is presented in 3.7. We de�ne strong behavioral subtyp-
ing in 3.8 and an example in the following section. We discuss these de�nitions in
Section 3.10 and compare them with some related work in Section 3.11.

3.1 Environments

Environments are introduced in this section. Environments permit all forms of
aliasing among identi�ers and locations (objects). Since stores are just like any other
values in mutation algebras, we assign a store to a special identi�er, store, in the
environment. Since these abstract values depend on a particular algebra, we refer
to the environments over a particular algebra. Environments can be thought of as
states of a program, where the identi�ers, other than store, represent identi�ers of a
program and store represents the current store. These notions are also used in the
semantics of programs given in the next chapter.

The set TENV(�) of type environments over an external signature � is de�ned
by TENV(�) = Identi�er ! TYPES?, where Identi�er is the set of all identi�ers.
We use H to denote a (typical) type environment.

The set EnvH[A] of H-environments over A is the set of all mappings, � :
Identi�er ! VALSA? such that if H(x) = T then x 2 Domain(�) and (� x) 2d
VALSAT . We use the notation [I 7! v]� as a shorthand to mean updating the value
of I with v in �. That is, ([I2 7! v]�; I1) = if I1 = I2 then v else (� I1).

Valid environments capture, in a certain sense, the well formedness of environ-
ments over algebras.

De�nition 3.1.1 (valid environments) LetA be a (E�; I�)-mutation algebra and
let H be a type environment. A H-environment, �, over A is valid if and only
if H(store) = Store, and for all T 2 (ETYPES � fStoreg), and for all x 2
Domain(H) such that H(x) = T , if (� x) 2 Domain(� store) then for each value v

2 containedObjs[T]A((� x); (� store)), v 2 Domain(� store).

We consider only valid environments for the rest of this dissertation.

3.2 Homomorphic relations

Homomorphic relations are de�ned on environments over mutation algebras.
These mutation algebras contain arbitrary abstract data types and a few visible types.
Recall that in our model the set of visible types consists of Integer and Bool. Homo-
morphic relations de�ned in this section capture when an algebra simulates another.
These homomorphic relations are similar to the generalized homomorphic relations
de�ned in [LP94] in the sense that they require \substitution", \VIS-identical", and
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\bistrict" properties to be satis�ed by related environments. The di�erence is in
our explicit treatment of stores. More discussion on the comparison can be found in
section 3.11.

Homomorphic relations capture the basic properties of \behaves like" for subtype
objects and are further constrained to de�ne weak and strong behavioral subtyping
below. The additional properties are stated in the de�nitions of weak and strong
behavioral subtypes.

De�nition 3.2.1 (homomorphic relation) LetA be a (I�0;E�)-mutation algebra
and C be a (I�00;E�)-mutation algebra. An E�-homomorphic relation R from C to
A is a family of binary relations on environments, hRH : H 2 TENV(E�)i, such
that for each type environment H 2 TENV(E�),

RH � EnvH [C]? � EnvH[A]?;

and if for each pair of valid H-environments, �C and �A, the following properties
hold:

substitution: for each type ~S, for each type T , for each operation symbol g 2 EOPS
such that g : ~S ! (T; Store), and for all ~x such that H(~x) = ~S,

� for each identi�er y, if gC(�C ~x) 6= ? and gA(�A ~x) 6= ?, and if gC(�C ~x)
= (rC; �

0
C
) and gA(�A ~x) = (rA; �

0
A
) then

�C RH �A
)
[y 7! rC][store 7! �0

C
]�C R[y 7!T ][store7!Store]H [y 7! rA][store 7! �0

A
]�A

� (gC(�C ~x) = ?), (gA(�A ~x) = ?).
VIS -identical: for each T 2 VIS, for each identi�er x such that H(x) = T , if

�C RH �A then (�C x) = (�A x).

bistrict: ?RH ?, and whenever �CRH �A and either �C or �A is ?, then so is the
other.

bindable: for each type T 6= Store, for each identi�er y such that H(y) = T , for
each x,

�C RH �A ) [x 7! (�C y)]�C R[x7!T ]H [x 7! (�A y)]�A

shrinkable: if H 0 � H, �0C 2 EnvH 0[C], and �0A 2 EnvH 0[A] such that �0
C
� �C,

�0
A
� �A, and �0

C
, �0
A

are valid H 0-environments, then

�A RH �A ) �0
C
RH 0 �0

A
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The substitution property of homomorphic relations ensures that operations in
related algebras preserve homomorphic relations. That is, this property ensures that
method invocations in a programming language will preserve homomorphic relations.
For this the results of operations along with the e�ects on other identi�ers should be
related. Hence, we relate the resulting environments after pushing the results of the
operation into the environment. Since the store is also part of the result we push the
store also in the resulting environment and relate the resulting environments at the
appropriate type contexts.

The substitution property also ensures that if resulting environment after the
invocation of an operation in one environment is?, then the corresponding invocation
in a related environment will also be ?. Note that we require the results of operations
in both the related environments to be ? if one of them is ?. We could allow a
method on subtype objects to return ? in fewer cases than the method on supertype
objects. That is, the subtypes are in a sense more de�ned than the supertypes. But
the deterministic models of types we have in this dissertation limits us from allowing
such subtypes.

The `VIS -identical' property states that in related environments, identi�ers of
visible types denote the same value. Recall, that all mutation algebras have the
same carrier sets for visible types. This property allows us to compare visible results,
results that can be printed out in a programming language.

The bistrict property states that two environments are related if and only if both
are unde�ned.

The bindable and shrinkable properties allow homomorphic relations to be pre-
served while entering and leaving di�erent scopes in a programming language. If the
environments are related before an assigning an identi�er to another in a program-
ming language, then bindable property ensures that the resulting environments after
the assignment are related.

We provide examples of homomorphic relations in later sections.
Aliasing between two locations or identi�ers in an environment can be observed

through a series of operations. We refer to such aliasing as observable aliasing.
We claim that observable aliasing between locations or identi�ers is preserved by
homomorphic relations. One could prove the claim formally by de�ning observations
and observable aliasing on environments. Since the purpose of this claim is only to
help in understanding homomorphic relations, we do not wish to elaborate on this
issue and hence, we only provide a discussion to support our claim.

To see that homomorphic relations preserve observable aliasing between stores,
let two locations (�C x); (�C y) be aliases and let the corresponding locations (�A x)
and (�A y) not be aliased. For the sake of contradiction, let the H-environments �C
and �A be related. Some observable mutations of (�C x) result in a change to y in �C
but the samemutations on (�A x) do not result in any change to y in �A. This violates
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the substitution property because the resulting environments, after the mutations,
should be related because of our assumption that �C and �A are related. Further
from our assumption, the mutations are observable, so one can compare the resulting
environments to see that y changed in �C and did not in �A. Hence, our assumption
that aliasing in related environments can be di�erent contradicts the substitution
property. Thus homomorphic relations preserve observable aliasing between stores

3.3 Nominal values and nominal environments

For our study of behavioral subtyping, to capture the \behaves like" property
for subtype objects, we compare environments with subtyping to environments with-
out any subtyping. That is homomorphic relations should relate environments with
subtyping, to environments without any subtyping. In this section, we de�ne ex-
actly what we mean by environments without any subtyping. We refer to such en-
vironments as nominal environments because all the identi�ers and locations denote
objects/values of their nominal (static) type.

The purpose of nominal environments is to allow calls only to operations of the
static types of the objects. This notion allows comparisons with the runtime calls
that depend on the dynamic types of objects. Nominal environments are de�ned
based on a notion of nominality of values. This notion is given by the isNominal[T]
operations of the corresponding mutation algebra.

De�nition 3.3.1 (nominal values) Let (I�;E�) be a mutation signature and let
A be a (I�;E�)-mutation algebra.

For T 2 ObjectTypes, a value v is nominal for type T in store � if and only if
isNominal[T]A(v; �).

For T 62 ObjectTypes, a value v is nominal for T in � if and only if v 2 VALSAT .

The following discussion motivates the two requirements in the above de�nition.
Values of visible types are always nominal for their respective types. However, for
other types there can be non-nominal values. To see this consider a FrozenAccount

location, lFrozenAccount, denoting a sortFor(PlusAccount) value in store �E. This is
allowed because PlusAccount �w FrozenAccount. However, if (�E lFrozenAccount) 62
VALSEsortFor(FrozenAccount), then lFrozenAccount is not nominal for FrozenAccount

in �; that is isNominal[FrozenAccount]E(lFrozenAccount; �) is not true. The location
lFrozenAccount should be nominal for FrozenAccount in store � only if its abstract
value, (� lFrozenAccount) is in VALSEsortFor(FrozenAccount).

While de�ning the isNominal[T] for T 2 ObjectTypes , one should note that that
the contained objects should also be nominal. In our example, because MoneyObj does
not have any subtypes, we do not need speci�cally de�ne nominality for the contained
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MoneyObj objects. So all MoneyObj values are nominal in any store. However, if there
were a subtype of MoneyObj, then any lFrozenAccount would be nominal only if its
abstract value were of sort sortFor(FrozenAccount) and the MoneyObj value denoted
by the sortFor(FrozenAccount) value were of sort sortFor(MoneyObj).

For non-object types, a value v is nominal for a type T in a store � if and only if
it is in the carrier set of that type, when the carrier sets are disjoint. That is, subtype
values are non-nominal for the supertype in any store unless the carrier sets overlap.

We use this notion of nominal values to de�ne a nominal environment as follows.

De�nition 3.3.2 (nominal environment) Let (I�;E�) be a mutation signature
and let A be a (I�;E�)-mutation algebra. Let H be a type environment and let � be
a valid H-environment over A.

Then � is nominal if and only if for every T 2 H, for every x 2 Domain(H)
such that H(x) = T , (� x) 2 VALSAT and (� x) is nominal for type T in (� store).

The following argument motivates our notion of nominal environments. Our
idea, from a programming language perspective, is to ensure that an operation in-
vocation in nominal environments can be thought of as static invocation. That is
because in a nominal environment, the static types of objects and their dynamic
types are the same. But in a non-nominal environment, since identi�ers/objects can
denote values of their subtypes, their dynamic types can be di�erent from their static
types, so methods cannot be dispatched statically. So comparing a method invocation
in nominal environments and in non-nominal environments, where due to dynamic
invocation di�erent methods can execute, allows us to check whether invocations on
the subtype objects \behave like" invocation on the supertype objects.

To see this, let H be a type environment and A be a (I�;E�)-mutation algebra.
Let �1; �2 be valid H-states over A. Informally, consider an operation invocation g

on the denotations of a set of identi�ers ~x such that H(~x) = ~T . Then the actual
invocation would be gA((�1 ~x); (�1 store)), where g is de�ned on arguments with

types (~T; Store). But if (�1 ~x) is not nominal for ~T in (�1 store), then because of
dynamic invocation, the operation g invoked in A is that of a subtype of tuple of
types ~T . Hence, we can compare the results of di�erent operation interpretations
that correspond to the di�erent method invocations in the nominal and non-nominal
environments.

Recall that in the discussion of nominal values we recommend that even the
contained objects should be nominal. To see why this is recommended, consider the
case when g is implemented by invoking an operation f using the contained objects
of its arguments. To compare the invocation of g in the context of supertype and
subtype values, we would like even this invocation to be static. That is we would like
g to invoke f at the nominal types of the contained objects. This comparison ensures
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us a way to decide whether methods when invoked with subtypes act as methods in
the absence of any subtype values. Hence we require even the contained objects to
be nominal. However, since the static reasoning of method invocations is based on
nominal environments, if the nominality is de�ned di�erently then the conclusions
based on nominal environments also change with the notion of nominality.

In summary, nominal environments allow one to create environments as if there
were no subtyping in the environment. Hence, we can compare the results of obser-
vations with subtyping to observations without subtyping, and can decide subtype
objects \behave like" supertype objects. When the carrier sets of two types, partic-
ularly related types, overlap, then a value can belong to two di�erent types. But the
property of nominality ensures that, given a type, the method invoked on nominal
objects can be determined statically.

3.4 Aliasing and nominal environments

While relating certain algebras, there is a con
ict between capturing the \behaves
like" notion and the nominality of environments. In particular, we are referring to
the set of algebras in which the carrier sets of the subtypes and the carrier sets of
supertypes are all disjoint. The reason for considering such algebras is two fold. For
every set of type speci�cations, it is not clear whether there exists an algebra in which
the carrier sets of subtypes are part of the carrier set of the supertypes. The second
reason is often homomorphic relations can be de�ned on a single algebra providing
better intuition on the e�ects of methods on subtype objects and on supertype objects
in that algebra. In this section, we discuss problems with aliasing and nominality in
environments over algebras that contain disjoint carrier sets.

The reason for such a con
ict is that homomorphic relations, as discussed earlier,
should preserve aliasing. To see how the requirement of preserving aliasing restricts
the kinds of environments that can be related, consider two locations of di�erent
types directly aliased in a store. Also suppose that the carrier sets of these two types
are disjoint, which is allowed by mutation algebras. Then any environment consisting
of such a store cannot have a related nominal environment. This is because in general
it is not possible to both preserve the aliasing between such locations and ensure that
abstract values are nominal for their respective types. Hence, in general, combining
the requirement \behaves like" and nominal environments results in the problem that
there cannot be homomorphic relation between any two algebras that allow all forms
of aliasing.

One way to solve this problem is to allow all kinds of aliasing and relax the con-
dition that the reasoning technique requires a nominal environment. This approach
results in strong behavioral subtyping that allows all forms of aliasing but allows
fewer types to be related.
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Another solution to this problem would be to restrict aliasing such that nominal
environments are possible. Such a restriction leads to weak behavioral subtyping.
The following kinds of aliasing restrictions are required for nominal environments.

� An identi�er cannot be a direct alias to a location or another identi�er of
di�erent type (part (a) of Figure 3.1).

� Two locations of di�erent types cannot be direct aliases (part (b) of Figure 3.1).

� If two locations of the same type are direct aliases in a store then they should
denote the same abstract value (part (c) of Figure 3.1).

The �rst two conditions are necessary because any environment containing such
an alias cannot be related to a nominal environment that preserves the aliasing. That
is in the right side of Figure 3.1 parts (a) and (b), because the carrier sets are disjoint,
it is not possible to have both x : T or l1 : T to be nominal and still be aliased to
y : S and l2 : S respectively.

The third condition is subtle and seems less motivated than the other two. To
see why the third condition is important, consider a partial subtype alias, that is
two locations directly alias only to one component of their subtype's abstract value.
This is illustrated on the right side of Figure 3.1(c). The abstract values denoted
by the two FrozenAccount locations lFrozenAccount1 and lFrozenAccount2 are (ms;m) and
(m;mc) respectively, wherem,ms, andmc are the three money objects on the left side
of Figure 3.1(c). The partial direct alias is due to the sharing of the money object
m. If such an aliasing occurs, then in general we cannot have an abstract value
that preserves the aliasing between the locations and still is nominal. We cannot
coerce lFrozenAccount1 and lFrozenAccount2 to a sortFor(FrozenAccount) value while still
preserving the partial direct alias.

However, if the direct alias to subtype objects is not partial, then we can lift
the subtype values to their supertype values and still preserve the aliasing. This
is illustrated on the left hand side of Figure 3.1(c). In this case, lFrozenAccount1 and
lFrozenAccount2 denote the same abstract value (ms;mc), where ms and mc are the
two money objects. In this case, we can lift (ms;mc) to a nominal value of sort
sortFor(FrozenAccount), and still preserve the direct aliasing between lFrozenAccount1

and lFrozenAccount2 . Then the related environment can have a store where the two
locations, lFrozenAccount1 and lFrozenAccount2 , are aliased to a sortFor(FrozenAccount)
value.

The following discussion formalizes the alias restrictions on environments.
First, we de�ne the notion of an alias type set, which given a type environment,

an algebra, a value v, and a valid environment, �, returns a set consisting of static
types of identi�ers or locations through which v can be reached in �. The reachability
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Figure 3.1: A comparison of the kinds of direct aliases that are allowed and are
prohibited for weak behavioral subtyping, where S �w T (but S 6= T ).
The notation lTn represents a location of type T .
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of a location is de�ned based on the alias graph of a store de�ned in Section 2.5. Let
A be a (I�;E�)-mutation algebra and � be a valid H-environment over A. Then a
value l is reachable from x in a H-environment, � overA if and only if x 2 Domain(H)
is such that (� x) = l or ((� x); l) is a path in aliasG(� store).

aliasTypeSet(H;A; v; �)
def
=

8>>>><
>>>>:

fT j T 2 ObjectTypes ;H(x) = T; (� x) = vg
[ fT j T 2 ObjectTypes ; l 2 VALSAT ;
if l is reachable from some x 2 Domain(H)
such that (l; v) is an edge in aliasG(� store)g

For any value if the alias type set contains more than one type, then the corre-
sponding environment violates the alias restrictions. We use this condition to de�ne
environments that satisfy the alias restrictions discussed above.

De�nition 3.4.1 (storeAliasOkW , stAliasOk) Let A be a (I�;E�)-mutation alge-
bra. Let � 2 VALSAStore. Then storeAliasOkW (A; �) is true if and only if for
each U; V 2 ETYPES and for each l1 2 VALSAV and l2 2 VALSAU such that
l1; l2 2 Domain(�), if l1 and l2 are direct aliases in � then U = V and (� l1) = (� l2).

Let H be a type environment such that store 2 Domain(H), and let � be a valid
H-environment. Then stAliasOk(H;A; �) is true if and only if for every x : T 2 H,
aliasTypeSet (H;A; (� x)) = fTg and storeAliasOkW (A; (� store)).

All other kinds of aliasing, that is two identi�ers of the same type denoting the
same location, two locations of the same type denoting the same location (nominal
or non-nominal), and (partial) direct aliases to a value of its nominal type, allow a
related nominal environment. Figure 3.1 compares the kinds of aliasing allowed to
the kinds of aliasing restricted for a sound notion of weak behavioral subtyping.

3.5 Simulation relations

Recall that homomorphic relation de�ned in Section 3.2 capture the \behaves
like" notion for objects. But the intuitive idea for behavioral subtyping is that sub-
type objects should behave like supertype objects. The following de�nition extends
homomorphic relations to capture this notion.

De�nition 3.5.1 (simulation relations) Let A be a (I�0;E�)-mutation algebra
and C be a (I�00;E�)-mutation algebra. An E�-simulation relation R from C to A
is a homomorphic relation from C to A such that the following condition is satis�ed:

coercion: if stAliasOk(H;C; �C) then there exists a nominal H-environment over
A, �A, such that �C RH �A. Otherwise, there exists a valid H-environment,
�0
A
, over A such that �C RH �0

A
.
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If the aliasing constraints are satis�ed then the \coercion" property ensures
that there is a related environment where all the subtype objects are coerced into
supertype objects. The homomorphic relation between such environments ensure
that subtype objects \behave like" supertype objects.

Since the substitution property allows comparisons between method invocations
on subtype objects and supertype objects, one can have a case when the subtype
operation behaves di�erently than a supertype operation. In such cases, the identity
relation on environments is not a simulation. The following example illustrates that
not every identity is a simulation relation.

Example 3.5.2 Let E�F be an external signature that contains the visible types, the
Store, BankAccount, and a ChargeAccount. The type ChargeAccount is similar to
BankAccount except for the behavior of the balance method. The ChargeAccount's
balance method charges a transaction fee, which is deducted from its balance and
the deducted balance is returned. Let ChargeAccount be declared as a subtype of
BankAccount.

Let F be a (E�F; I�F)-mutation algebra. Let the carrier sets of BankAccount
and ChargeAccount be (0;m1;m2) and (1;m1;m2) respectively, where m1 and m2 are
two MoneyObj objects. The tag 0 or 1 is used to keep the carrier sets of BankAccount
and ChargeAccount disjoint.

LetRF be an identity relation on environments. LetH be a type context such that
Domain(H) = fx; storeg and H(x) = BankAccount. Let �1 be a valid environment
such that stAliasOk(H;F; �1) and (�1 x) 2 VALSFChargeAccount.

IfRF is a simulation relation, there exists a nominal state, �2, such that �1RFH�2.
But, since RF is an identity relation on environments, �1 = �2. Hence, (�2 x) denotes
a ChargeAccount object, so �2 is not nominal. So RF is not a simulation relation.

The following discussion shows that even adding a coercion, from subtype objects
to supertype objects, to the identity relation on environments is not a simulation
relation. That is, we show that even an identity relation that is extended to satisfy
the coercion property is not a simulation relation.

Suppose the relation, RF, is a simulation with a coercion that converts non-
nominal ChargeAccount values to BankAccount by changing the tag from 1 to 0.
Then there exists a �2 such that �2 is nominal and �1 RH �2.

Applying the substitution property for balance with arguments (x; Store), for
some y we have

[y 7! v1][store 7! �01]�1RF[y 7!Integer]storeStoreH [y 7! v2][store 7! �02]�2:

From the VIS -identical property, we have v1 = v2.
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Since, �2 is a nominal environment, (�2 x) 2 VALSFBankAccount. So the opera-
tion balance does not charge any transaction fee and hence the amount returned
v2 is di�erent from v1 returned by balance for a ChargeAccount. But this contra-
dicts VIS -identical property. Hence, our assumption that the identity relation, RF,
extended to satisfy the coercion property is a simulation relation is false.

3.6 Weak behavioral subtypes

Weak behavioral subtyping is de�ned on the denotations of speci�cations of
types, which are sets of algebras. The existence of a simulation relation between an
algebra and itself ensures that objects of subtype behave like objects of supertype.
This conclusion is based on the substitution property and the coercion property, which
relate the e�ects of operations on subtype and supertype objects. Hence, the existence
of a simulation relation between an algebra and itself is su�cient to ensure that
subtype objects act like supertype objects. But we give a more general de�nition for
behavioral subtyping that permits relationships between incompletely speci�ed data
types to be supertypes of more completely speci�ed types. For example, Bag, with
an under speci�ed get operation, can be a supertype of Stack, with a completely-
speci�ed get. The get operation of a Stack is more de�ned than a Bag in the sense
that it gets the last inserted element. However, to permit more de�ned subtypes, we
need to consider a set of algebras that satis�es the denotations of speci�cations of
types. Such a set allows one to �nd at least one implementation of the incompletely-
speci�ed type that is simulated by a more completely speci�ed subtype. That is,
the implementation of Bag with a get operation that selects the last inserted item is
simulated by objects of Stack.

The set of all implementations of a given set of type speci�cations is referred to
as SPEC. Weak behavioral subtyping is de�ned with respect to SPEC.

De�nition 3.6.1 (weak behavioral subtyping) Let E� be a signature and let
SPEC be a set of E�-algebras, such that each A in SPEC is a (I�;E�)-mutation
algebra for some I�. The presumed subtype relation � of E� is a weak behavioral
subtype relation for SPEC if and only if for each B 2 SPEC there is some A 2
SPEC such that there is a E�-simulation relation, R, from B to A.

Note that the only property of simulation relations that deals directly with the
operations is the substitution property, which compares the e�ects of operations on
subtype and supertype objects. Simulations does not place any constraints on the
extra operations on the subtypes. Hence, we can have types with extra mutators, that
are subtypes of immutable types. That is, PlusAccount can be a weak behavioral
subtype of FrozenAccount (unlike the case for strong behavioral subtyping).
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For a reasoning technique based on weak behavioral subtyping to be practical,
each program state should satisfy stAliasOk. If that were not the case then for some
algebras the environment at any give state of the program could not be related to
a nominal environment because it would violate aliasing restrictions. In such cases,
modular reasoning using supertype abstraction would be unsound. We show that the
semantics of OBS� given in the next chapter allows reasoning with weak behavioral
subtyping by constructing only states that satisfy stAliasOk.

3.7 Example of a weak behavioral subtype relation

In this section we show that the presumed subtype relation, �w, given in Fig-
ure 2.4 is a weak behavioral subtype relation for fEg. To show this, we �rst de�ne
a relation, Rw between algebra E (given in Figures 2.5 and 2.6) and itself. Then we
prove that Rw is a simulation relation. This proof is tedious but is constructive. In
addition, we believe that this kind of proof might work in general for other mutation
algebras with di�erent external signatures.

We de�ne a function that captures similarity between abstract values, and an
environment homomorphism that maps environments with similar aliasing. Using
these two notions, we de�ne a relation that preserves both the similarity between the
abstract values of identi�ers and the aliasing in related environments. We show that
that this relation is a simulation relation.

We �rst de�ne an abstraction function AT for each T 2 ObjectTypesE�E that
maps the abstract values of various object types to an integer. The type of each AT

is:
AT : (

d
VALSET � VALSE

Store)! Integer?

and the particular versions are de�ned as follows:

AMoneyObj(v; �) = (� v)

AFrozenAccount(v; �) = if (� v) 2 VALSEsortFor(FrozenAccount)
then AMoneyObj(� v)
else let (ms;mc) = (� v) in
AMoneyObj(� ms) +AMoneyObj(� mc)

ABankAccount(v; �) = if (� v) 2 VALSEsortFor(BankAccount) then AMoneyObj(� v)

else let (ms;mc) = (� v) in
AMoneyObj(� ms) +AMoneyObj(� mc)

APlusAccount(v; �) = let (ms;mc) = (� v) in
(AMoneyObj(� ms) +AMoneyObj(� mc))

We de�ne the notion of similarity, Sw, between abstract values of two types of
E and use that notion in de�ning simulation relations. For each T 2 (ETYPES �
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fStoreg),

SwT : (VALSEStore� VALSEStore)! (
d

VALSE � d
VALSE)! Bool?

is a predicate that tests the similarity of two values in their respective stores. It is
de�ned as follows. Let �1; �2 2 VALSEStore.

For all T 2 (VIS [ fVoidg) and for each v1; v2 2 VALSE
sortFor(T )

:

SwT (�1; �2)(v1; v2)
def
= (v1 = v2) (3.1)

We extend Sw pointwise to tuples. That is, ~U; ~V 2 TYPES such that ~U �w ~V ,
for each pair �1; �2 2 VALSEStore, such that for each ~u 2 VALSE~U and ~v 2 VALSE~V ,
~u Sw~V ~v if and only if

(j ~u j=j ~v j) ^ ^
(1�i�j~uj)

SwVi(�1; �2)(ui; vi) (3.2)

For all S; T 2 f MoneyObj; FrozenAccount; BankAccount; PlusAccount g and for
each v1 2 d

VALSES and v2 2 d
VALSET such that S 6= PlusAccount_T 6= PlusAccount:

SwT (�1; �2)(v1; v2)
def
= AT (v1; �1) = AT (v2; �2) (3.3)

For T 2 fPlusAccountg, for each v1; v2 2 d
VALSET , if (�1 v1) = (vs1; v

c
1) and

(�2 v2) = (vs2; v
c
2) then:

SwT (�1; �2)(v1; v2) = (AMoneyObj(v
s
1; �1) = AMoneyObj(v

s
2; �2))

^(AMoneyObj(v
c
1; �1) = AMoneyObj(v

c
2; �2)) (3.4)

A coercion relation on abstract values is not enough because it does not preserve
aliasing between related environments. We de�ne an environment homomorphism
that preserves the aliasing between related environments. While coercing environ-
ments we also need a coercion between subtype values that are locations to supertype
values. Since coercion of locations require knowledge of the particular carrier sets of
an algebra, we de�ne environment homomorphism speci�c to a particular algebra,
which in our case is E. The aliasing between locations is preserved by a graph homo-
morphism between the alias graphs of the corresponding stores. We require variables
also to have the same aliasing in the environments.

De�nition 3.7.1 (environment-homomorphism) Let E be a (E�; I�0)-mutation
algebra given in Figure 2.5 and Figure 2.6. Let H be a E� type environment and
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�E and �0
E

be valid H-environments over E. Suppose that (�E store) = �E and
(�0
E
store) = �0

E
.

Then (hv; hn) is an environment homomorphism on E between �E and �0
E
if and

only if (hv; hn) is a graph homomorphism between aliasG(�E) and aliasG(�0
E
) and

the following conditions are satis�ed

� for each T 2 ObjectTypes, if x : T 2 Domain(H), hv(�E x) = (�0
E
x),

� if stAliasOk(H;A; �E) is false, then (hv; hn) is an injective graph homomor-
phism.

� if stAliasOk(H;A; �E) is true, then for each l1; l2 2 Domain(�E), hv(l1) =
hv(l2) if and only if l1 = l2 or there exists a l such that (�E l) = (l1; l2) and
h(l) 2 VALSAT , where T 2 f BankAccount, FrozenAccount g.
The �rst condition ensures that the denotations of identi�ers are preserved in

the graph homomorphism. The second and third conditions ensure that aliasing is
preserved across related environments and that coercing of locations can be done only
if the environment, �E satis�es alias restrictions.

Since the coercion of locations depends on algebras, this notion of environment
homomorphism, the last condition, is di�erent for di�erent algebras. But, one can
de�ne a environment homomorphism in similar lines by de�ning the coercion between
locations as part of the last condition.

The following relation, Rw, between E and itself ties together the abstraction
function and the environment homomorphism on E.

De�nition 3.7.2 (Rw) The relation Rw from E to E is a family of binary relations
on environments, hRw

H : H 2 TENV(E�E)i, such that for each any type environment
H 2 TENV(E�E), Rw

H � EnvH[E]? � EnvH [E]?, ? Rw
H ? and for proper �E and

�0
E
, �E Rw

H �0
E
if and only if the following conditions all hold:

� �E; �
0
E
are valid H-environments over E,

� for each type T 2 (ETYPES � fStoreg), for each x such that H(x) = T ,
SwT (�E; �

0
E
)((�E x); (�0

E
x)),

� there exists an environment homomorphism on E between �E and �0
E
.

We claim that Rw is a E�E-simulation relation between E and itself.

Proposition 3.7.3 Rw is a E�E-simulation relation between E and itself.

Proof: Let H be a type environment such that store 2 Domain(H). Let �E; �
0
E
be

valid H-environments over E.
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substitution: To show that Rw satis�es the substitution property we must show
that all the external operations of (I�E;E�E) satisfy the substitution property.
The following example shows how the proof goes for one operation, withdraw,
and the rest of the operations can be shown in a similar way.

To show the substitution property for withdraw, let

~S = (BankAccount; MoneyObj; Store)
T = Void

g = withdraw:

Suppose that ~x = (x1; x2; store) and H(x1; x2; Store) = ~S.

Suppose the result of withdrawE((�E ~x)) is ?. This can happen only in two
cases. The �rst case is when (�E xi) is not in the domain of �E. This cannot
happen because �E is a valid H-environment.

The other case is when the amount in (�E x1) is less than the amount in
(�E x2). In such a case, because of SWBankAccount(�E; �

0
E
)((�E x1); (�0E x1)) and

SWMoneyObj(�E; �
0
E
)((�E x2); (�0E x2)), the amount in (�0

E
x1) would be less than

the amount in (�0
E
x2). Hence the result of withdrawE((�E ~x)) would be ?.

Similarly, we can show that when the result of withdrawE((�0
E
~x)) is ?, so is

the result of withdrawE((�E ~x)).

If the result is not ? then, we need to show that for each identi�er y, if (�; �r) =
withdrawE(�E ~x) and (�; �0r) = withdrawE(�0

E
~x) then

�E R
w
H �0

E

)
([y 7! �][store 7! �r]�E R

w
[y 7!Void][store7!Store]H [y 7! �][store 7! �0r]�

0
E
)

The trivial case is when both gE(�E ~x) and gE(�0
E
~x) have the same interpreta-

tion, that is they execute the same branch in the meaning of gE. The tricky case
is when the two operations have di�erent interpretations. This happens when
�E satis�es stAliasOk and x1 : BankAccount denotes a location in the carrier
set of PlusAccount in �E and a location in the carrier set of BankAccount in
�0
E
. We consider only this case in detail.

Let (�E x) = l1, (�0E x) = l2, (�E y) = m1, and (�0
E
y) = m2, where l1 2

VALSEPlusAccount, l2 2 VALSEBankAccount, and m1;m2 2 VALSEMoneyObj.

Let �r
E
and �0r

E
be the resulting environments. That is,

�r
E

= [y 7! �][store 7! �r]�E
�0r
E

= [y 7! �][store 7! �0r]�
0
E
:
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Further, suppose that
�E Rw

H �0E (3:5)

Then we need to show that

(�rE R
w
[y 7!Void][store7!Store]H �0rE) (3:6)

Consider the results of calling withdraw with (l1;m1; �E) and with (l2;m2; �
0
E
)

in E. The corresponding operation interpretations of withdraw are given in
Figure 2.6. Recall from the discussion in Section 2.4, that the two meanings
of withdraw given in Figure 2.6 correspond to the di�erent cases depending
on the �rst argument. Hence, depending on the type of l1 and l2 we take the
corresponding meaning for withdraw.

The result of withdrawE(l1;m1; �E) can be either ?, or a pair of � and a store.
The case when the result is ? is already discussed.

The remaining case is when both the results are proper. We prove Equation 3.6
by showing that �r

E
and �0r

E
satisfy all the properties of Rw. For convenience,

let �r
E
= [ms 7! (vs � v1)]�E and �0r

E
= [m0 7! (vb � v2)]�E be the resulting

stores corresponding to the operation interpretations in Figure 2.6. The values
vs corresponds to the amount in the savings component of l1 in �E and vb
corresponds to the balance of l2 in �0E. The values v1 and v2 denote amount in
m1 and m2 in �E and �0

E
respectively.

� From the hypothesis and the construction, the environments �r
E
and �0r

E

are valid [r 7! Void][store 7! Store]H-environments over E.

� To show that the abstract values for each identi�er are similar in the
�nal states, let T be a type and let z : T be an identi�er in [r 7!
Void][store 7! Store]H. We do this by cases.

{ Suppose that there is no path from (�E z) to ms in aliasG(�E), then
the abstract value of z is unchanged in �E.
From the hypothesis, we can conclude that

SwT (�
r
E; �

0r
E)((�

r
E z); (�0rE z))

{ If z = x, we need to show SwBankAccount(�rE; �
0r
E
)((�r

E
x); (�0r

E
x)). We

calculate from the desired formula backwards as follows.

SwBankAccount(�rE; �
0r
E
)((�r

E
x); (�0r

E
x))

= hby dereferencing x in �r
E
and �0r

E
i

SwBankAccount(�rE; �
0r
E
)(l1; l2)
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= hby the de�nition of SwBankAccounti
SwInteger(�rE; �

0r
E
)((�r

E
ms) + (�r

E
mc); (�0rE m0))

But from the hypothesis, we have SBankAccount(�E; �
0
E
)(l1; l2). That is,

(�E ms) + (�E mc) = (�0
E
m0), where (ms;mc) and m0 are the values

denoted by l1 and l2 in respective stores. From the semantics of E, we
know that the amount (�E m1) is subtracted frommc and the amount
(�0
E
m2) is subtracted from m0 in the new stores �r and �0r. But from

equation 3.5, (�E m1) = (�0
E
m2). Hence, we can conclude that the

relation SwBankAccount(�rE; �
0r
E
)((�r

E
x); (�0r

E
x)) is true.

{ Otherwise z is not x but one of the contained objects of x, say
ms, is reachable along some path of aliasG(�E) from (�E z). From
stAliasOk(H;A; �E), the alias should be a complete one, that is,
(�E (�E z)) = (�E (�E x)) = (ms;mc).
From the hypothesis, we have a (hv; he)-environment homomorphism
such that hv(�E z) = (�0

E
z) and hv(�E x) = (�0

E
x). Since (hv; he)

is a graph homomorphism, he((�E z);ms) = (hv(�E z); hv(ms)) and
he((�E z);mc) = (hv(�E z); hv(mc)).
Since (�E x) 2 VALSEPlusAccount and (�0

E
x) 2 VALSEBankAccount, from

the de�nition of environment homomorphism on E we have, hv(ms) =
m0 and hv(mc) = m0.
But hv(�E z) = (�0

E
z) and (hv(�E z); hv(ms)); (hv(�E z); hv(mc)) are

edges of aliasG(�0
E
), so we have hv(ms) = m0 and hv(mc) = m0. That

is (�0
E
(�0
E
z)) = (�0

E
(�0
E
x)) = m0.

Since z denotes the same abstract value as x, as shown in the previous
case, the abstract values of z are similar.

� We de�ne a new environment homomorphism on E, (h0v; h
0
e) between �r

E

and �0r
E
such that h0v = hv and h0e = he. Because only the mapping of a

MoneyObj object, which is not a part of the alias graph of the corresponding
stores, is changed between �r and �r

E
, we can conclude that (hv; he) is the

required environment homomorphism on E.

The other case when withdraw has a proper value and vs < v0 can be shown
similarly.

coercion: If stAliasOk is false, then we can de�ne �0
E
= �E. Because the relation

Rw is re
exive with an environment homomorphism that is the identity on
Domain(hv), we can conclude �E Rw

H �0
E
.

If stAliasOk is true, then we construct a nominal H-environment �n
E
such that

�E R
w
H �n

E
.
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We construct an environment �n
E
that is nominal and is related to �E. We �rst

construct a nominal store, �n
E
and then map the corresponding locations to

identi�ers for a nominal environment. Let �E = (�E store).

For all l 2 VALSAT , if l is nominal for T in �E then v 2 Domain(�n
E
), (�n

E
v) =

(�E v) and for each vi 2 containedObjs[T](v; �E) hv(vi) = vi, and he(v; vi) =
(v; vi).

For all l 2 VALSAT , if l is not nominal for T in �E, then T 2 fFrozenAccount;
BankAccountg and (�E l) 2 VALSEPlusAccount. Let (�E l) = (ms;mc). We
allocate a new MoneyObj, m, such that (�n

E
m) = (�E ms) + (�E mc), and

(�n
E
l) = m. Also, hv(l) = l, hv(ms) = hv(mc) = m, and he(l;ms) = he(l;mc) =

(l;m). According to this construction, if l0 is a direct alias of l in �E, then hv(l
0)

will be a direct alias of h(l) in �n
E
.

We de�ne the store of �n
E
to be the nominal store, �n

E
, constructed above, that

is, (�n
E
store) = �n

E
.

For all T 2 TYPES � fStoreg, x : T 2 H, if (�E x) is nominal for T in (�E)
then (�n

E
x) = (�E x) and hv(�E x) = (�n

E
x).

For all T 2 fBankAccount; FrozenAccountg, and for all x : T 2 H, if (�E x) 2
VALSEPlusAccount and (�E (�E x)) = (ms;mc) then (�nE x) = l such that (�n

E
l) =

m and (�n
E
m) = (�E ms) + (�E mc). Further, hv(�E x) = l, hv(ms) = m,

hv(mc) = m, he((�E x);ms) = (l;m), and he((�E x);mc) = (l;m).

From the construction, �n
E
is nominal. It remains to be shown that �E R

w
H �n

E
.

� To show that �n
E
is valid, we consider only the cases when an identi�er or

a location is not nominal in �E. This is because all the other values in �
n
E

are the same as in �E, which is a valid environment. In our construction,
since we explicitly create a MoneyObj location and assign it to a identi�er
or a location of type FrozenAccount or BankAccount, we can conclude
that �n

E
is a valid H-environment.

� for each type T 2 (ETYPES � fStoreg), for each x such that H(x) = T ,
SwT (�; �n)((�E x); (�n

E
x)) is true from the construction.

� The pair of mappings (hv; he) is an environment homomorphism on E from
the construction.

EXTERNALS -identical: From the de�nition of Rw, for all T 2 VIS , and for all
H(x) = T , SwT (�E; �

0
E
)((�E x); (�0

E
x)) should be hold. That is, (�E x) =

(�0
E
x).
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bistrict: ?Rw
H? from the de�nition. And suppose �ER

w
H�

0
E
, then by construction,

if only one of �H and �0
E
is ? then Sw is not satis�ed. Hence for �E and �0

E
to

be related, �0
E
has to be ?.

bindable: Let �ER
w
H �

0
E
. For each type T , for each identi�er y such that H(y) = T ,

for each identi�er x : T , we need to show that [x 7! (�E y)]�E Rw
[x7!T ]H [x 7!

(�0
E
y)]�0

E
. We show this by proving that the new environments satisfy all the

properties of Rw.

� [x 7! (�E y)]�E and [x 7! (�0
E
y)]�0

E
are valid [x 7! T ]H-environments

over E by construction.

� for each type T , for each z such that [x 7! T ]H(z) = T , from the assump-
tion that �E Rw

H �0
E
, we can conclude that SwT (�E; �

0
E
)((�E z); (�0

E
z))

is true. The case when z = x SwT (�E; �
0
E
)((�E z); (�0

E
z)) will be true

because SwT (�E; �
0
E
)((�E y); (�0

E
y)) is true from hypothesis.

� since the only di�erence between �E and [x 7! (�E y)]�E is the alias be-
tween x and y, and since x and y have the same type, stAliasOk([x 7!
T ]H;E; [x 7! (�E y)]�E), and

� Let (hv; he) be an environment homomorphism on E between �E and �0
E
.

Based on (hv; he), we de�ne an environment homomorphism on E, (h0v; h
0
e),

between [x 7! (�E y)]�E and [x 7! (�0
E
y)]�0

E
as follows. h0v = [(�E x) 7!

(�E y)]hv and h0e = he. From our assumption that (hv; he) is an environ-
ment homomorphism on E and from the construction, we can conclude
that (h0v; h

0
e) is an environment homomorphism on E.

shrinkable: Let H 0 � H, �E;H 0 � �E, �
0
E;H 0 � �0

E
, where �E;H 0 and �0

E;H 0 are valid
H 0-environments. Let us suppose that �E Rw

H �0
E
. From these assumptions it

is easy to see that the �rst three conditions of Rw are trivially satis�ed. So, to
conclude that �E;H 0Rw

H 0�0
E;H 0 we need to show that there exists an environment

homomorphism between �E;H 0 and �0
E;H 0.

Let (hv; he) be the environment homomorphism between �E and �0
E
. A sub-

graph homomorphism of (hv; he) between (�E;H 0 store) and (�0
E;H 0 store) is

the required environment homomorphism between �E;H 0 and �0
E;H 0. The sub-

graph homomorphism is de�ned by restricting the domains of hv to nodes and
he to edges of aliasG(�

0
H store).

Corollary 3.7.4 The presumed subtype relation, �w of Figure 2.3 is a weak behav-
ioral subtype relation for fEg.
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3.8 Strong behavioral subtyping

Recall that strong behavioral subtyping permits all forms of aliasing but pre-
serves certain properties of types across states of a program. These properties are
speci�ed as history constraints, which are introduced by Liskov and Wing [LW94].
These history constraints can be thought of as invariants over ordered pairs of stores
produced in the extension of a program. The �rst component of such an ordered pair
is created earlier than the second component in a program.

De�nition 3.8.1 (history constraint, satisfaction) Let (I�;E�) be a mutation
signature and let A be a (I�;E�)-mutation algebra. A binary relation, {A, is a
history constraint over A if and only if it is re
exive and transitive.

Then A satis�es history constraint {A if and only if for each type S, for each type
T , for all g 2 EOPS, such that g : ~S ! (T; Store), for all ~v : ~S, if (rA; �

0
A
) = gA(~v)

then �A {A �0
A
.

In contrast to invariants that require properties to be preserved in a every store,
history constraints require properties to be preserved across di�erent stores. A few
examples of the kinds of properties that can be captured by history constraints are
that the value of an object does not change or the integer value of an object never
decreases. A reasoning technique based on such history constraints can make conclu-
sions based on the immutability or nondecreasing value of such an object.

To see a detailed example of a history constraint, consider a variation of (I�;E�),
(I�S;E�S), given in Figure 3.2. This signature is similar to (I�;E�)E, except that we
remove the subtype relationship between the PlusAccount and the FrozenAccount
types. Let D be a (I�S ;E�S)-algebra such that the only di�erence between D and
E is in the signatures. Note that, in D an operation with FrozenAccount values
can never invoke the code corresponding to PlusAccount's methods because of the
subtype relation in the signature (I�S ;E�S).

Example 3.8.2 Let D be a (I�S;E�S) mutation-algebra. Let P 0 � (VALSDStore �
VALSDStore). For each �1; �2 2 VALSDStore, P 0(�1; �2) holds if and only if: for each
l 2 VALSDFrozenAccount such that l 2 Domain(�1) (�1 l) = (�2 l), (�1 (�1 l)) =
(�2 (�2 l)).

The constraint P 0 holds if the amount of a FrozenAccount is constant over two
environments. If this constraint property holds across all environments, one can
deduce that FrozenAccount objects are immutable irrespective of any aliasing or
behavioral subtyping.

Recall, that SPEC represents the set of all implementations of a given set of
type speci�cations. Similarly, for a model-theoretic equivalent of history constraints,
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E�x:ETYPES = E�:TYPES

E�x:EOPS = E�:OPS

E�x:EResType = E�:ResType

I�x:ITYPES = I�:TYPES

I�x:IOPS = I�:OPS

I�x:IResType = I�:ResType

�s def
= f(PlusAccount; BankAccount)g

[ f(T; T ) j T 2 E�x:TYPESg

Figure 3.2: A mutation signature, (I�S ;E�S), where (I�;E�)E is given in Fig-
ure 2.4.

for each algebra that implements the given set of type speci�cations, we require
an interpretation of the history constraint for that algebra. That is, if p is the
(binary) predicate given in the type speci�cation for the history constraint in the
type speci�cations then for every A that implements the given type speci�cations,
we require a history constraint over A. We refer to the set of all such interpretations
as HCONST. HCONST is a function from algebras to history constraint over SPEC
such that for every A 2 SPEC, HCONST(A) is a history constraint over A. That
is, HCONST(A) represents the history constraint over A that corresponds to the
denotation, in A, of the constraint given in the set of type speci�cations.

Since our goal in de�ning strong behavioral subtypes is to permit all forms of
aliasing and use static types to make conclusions about OO programs, we de�ne
strong behavioral subtyping to satisfy history constraints.

De�nition 3.8.3 (strong behavioral subtyping) Let E� be a signature and let
SPEC be a set of E�-algebras, such that each A in SPEC is a (I�;E�)-mutation
algebra for some I�. Let HCONST be a history constraint over SPEC. The presumed
subtype relation � of E� is a strong behavioral subtype relation for SPEC with
respect to HCONST if and only if for each B 2 SPEC there is some A 2 SPEC such
that there is a E�-simulation relation from B to A, B satis�es history constraint
HCONST(B) and A satis�es history constraint HCONST(A).

The simulation relation ensures that strong behavioral subtypes \behave like"
their supertype objects and the constraint property ensures that history properties
are preserved by operations even when all forms of aliasing is allowed.
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3.9 Example of a strong behavioral subtype relation

In this section we show that the presumed subtype relation, �s, given in Fig-
ure 3.2 is a strong behavioral subtype relation for fDg with respect to P 0. To show
this, we �rst de�ne a relation, Rs between algebra D (given in Figures 2.5 and 2.6)
and itself. Then we prove that Rs is a simulation relation and D satis�es P 0.

Th proof of simulation is similar to Section 3.7. The only di�erence is in deal-
ing with FrozenAccount values. Unlike in E, FrozenAccount values in D cannot
denote any PlusAccount values because according to (E�; I�)S, PlusAccount is not
a behavioral subtype of FrozenAccount.

We �rst de�ne an abstraction function AT for each T 2 ObjectTypesE�E that
maps the abstract values of object types to an integer. The type of each AT is:

AT : (
d

VALSET � VALSE
Store)! Integer?

and the particular versions are de�ned as follows:

A0
MoneyObj(v; �) = (� v)

A0
FrozenAccount(v; �) = A0

MoneyObj(� v)

A0
BankAccount(v; �) = if (� v) 2 VALSEsortFor(BankAccount) then A0

MoneyObj(� v)

else let (ms;mc) = (� v) in
A0
MoneyObj(� ms) +A0

MoneyObj(� mc)

A0
PlusAccount(v; �) = let (ms;mc) = (� v) in

(A0
MoneyObj(� ms) +A0

MoneyObj(� mc))

We de�ne the notion of similarity, Ss, between abstract values of two types of
D and use that notion in de�ning simulation relations. For each T 2 (ETYPES �
fStoreg),

SsT : (VALSDStore� VALSDStore)! (
d

VALSD � d
VALSD)! Bool

is a predicate that tests the similarity of two values in their respective stores. It is
de�ned as follows. Let �1; �2 2 VALSDStore.

For all T 2 (VIS [ fVoidg) and for each v1; v2 2 VALSD
sortFor(T )

:

SsT (�1; �2)(v1; v2)
def
= (v1 = v2) (3.7)

We extend Ss pointwise to tuples. That is, ~U; ~V 2 TYPES such that ~U �w ~V ,
for each pair �1; �2 2 VALSDStore, such that for each ~u 2 VALSD~U and ~v 2 VALSD~V ,
~u Ss~V ~v if and only if

(j ~u j=j ~v j) ^ ^
(1�i�j~uj)

SsVi(�1; �2)(ui; vi) (3.8)
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For all S; T 2 f MoneyObj; FrozenAccount; BankAccount; PlusAccount g and for
each v1 2 d

VALSDS and v2 2 d
VALSDT such that S 6= PlusAccount_T 6= PlusAccount:

SsT (�1; �2)(v1; v2)
def
= A0

T (v1; �1) = A0
T (v2; �2) (3.9)

For T 2 fPlusAccountg, for each v1; v2 2 d
VALSDT , if (�1 v1) = (vs1; v

c
1) and

(�2 v2) = (vs2; v
c
2) then:

SsT (�1; �2)(v1; v2) = (A0
MoneyObj(v

s
1; �1) = A0

MoneyObj(v
s
2; �2))

^(A0
MoneyObj(v

c
1; �1) = A0

MoneyObj(v
c
2; �2)) (3.10)

Like in construction of an example simulation for weak behavioral subtyping, we
de�ne an environment homomorphism for D.

De�nition 3.9.1 (environment-homomorphism) Let D be the (E�; I�)S-mut-
ation algebra given in Figure 2.6 and Figure 2.5. Let H be a E� type environment
and �D and �0

D
be valid H-environments over D. Suppose that (�D store) = �D

and (�0
D

store) = �0
D
.

Then (hv; hn) is an environment homomorphism on D between �D and �0
D
if and

only if (hv; hn) is a graph homomorphism between aliasG(�D) and aliasG(�0
D
) and

the following conditions are satis�ed

� for each T 2 ObjectTypes, if x : T 2 Domain(H), hv(�D x) = (�0
D
x),

� if stAliasOk(H;A; �D) is false, then (hv; hn) is an injective graph homomor-
phism.

� if stAliasOk(H;A; �D) is true, then for each l1; l2 2 Domain(�D), hv(l1) =
hv(l2) if and only if l1 = l2 or there exists a l such that (�D l) = (l1; l2) and
h(l) 2 VALSAT , where T 2 fBankAccountg.
The following relation, Rs, between D and itself ties together the abstraction

function and the environment homomorphism on D. We claim that Rs is a E�S -
simulation relation between D and itself.

De�nition 3.9.2 (Rs) The relation Rs from D to D is a family of binary rela-

tions on environments, hRs
H : H 2 TENV(E�x)i, such that Rs

H � EnvH [D]? �
EnvH [D]?, ? Rs

H ? and �D Rs
H �0

D
if and only if the following conditions all hold:

� �D; �
0
D

are valid H-environments over E,

� for each type T 2 (ETYPES � fStoreg), for each x such that H(x) = T ,
SsT (�E; �

0
E
)((�E x); (�0

E
x)),
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� there exists an environment homomorphism on E between �E and �0
E
.

Proposition 3.9.3 Rs is a E�D-simulation relation between D and itself.

Proof: (sketch) Since Rs is similar to Rw and D is similar to E, the proof that Rs

is a simulation relation from D to D is similar to the proof that Rw is a simulation
relation from E to E. In the construction of nominal environments, unlike before, we
do not coerce values of FrozenAccount to PlusAccount because there is not subtype
relation between PlusAccount and FrozenAccount in (I�S ;E�S).

Proposition 3.9.4 D satis�es history constraint P 0.

Proof: None of operations of D mutate FrozenAccount values. This is true even
for operations that take FrozenAccount values as arguments, such as balance and
get interest. From this, we can conclude that P 0 is satis�ed.

Corollary 3.9.5 The presumed subtype relation, �s of Figure 3.2 is a strong behav-
ioral subtype relation for fDg with respect to P 0.

3.10 Discussion

In this section we �rst discuss the relationship between weak and strong behav-
ioral subtyping and then give examples of various behavioral subtypes, which are
used in our discussion of the related work.

3.10.1 Weak behavioral subtyping versus strong behavioral subtyping

From the de�nition of weak and strong behavioral subtyping it is clear that every
strong behavioral subtype relation is a weak behavioral subtype relation.

Theorem 3.10.1 Let SPEC be a set of E�-algebras such that each A in SPEC is
a (I�;E�)-mutation algebra for some I�. Let HCONST be a history constraint over
SPEC.

If � is a strong behavioral subtype relation for SPEC with respect to HCONST
then � is a weak behavioral subtype for SPEC.

In our example signature given in Figure 2.4, we have BankAccount as both a strong
and a weak behavioral subtype of PlusAccount.

However, the converse is not true. The following proposition shows that the
weak behavioral subtype relation �w in Figure 2.3 is not a strong behavioral subtype
relation. This is because of a mutable type, PlusAccount, is declared to be a subtype
of an immutable type, FrozenAccount in our example signature E�E.
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Proposition 3.10.2 The presumed subtype relation �w of (I�;E�) in Figure 2.4 is
not a strong behavioral subtype for fEg with respect to P 0.

Proof: We prove this by contradiction. Consider a state over E such that a x :
FrozenAccount denotes a PlusAccount value and y : PlusAccount denotes is aliased
to x. This is possible from our assumption that PlusAccount �s FrozenAccount.
But invoking withdraw on y, changes the value of x, and hence violates the constraint,
P 0.

Hence the presumed subtype relation between PlusAccount and FrozenAccount

is not a strong behavioral subtype.

3.10.2 Weak and strong behavioral subtype hierarchies

In this section we discuss several weak and strong behavioral subtype relations
among commonly used types. We treat these examples informally. In most cases the
names of the types indicate the operations and their behavior.

3.10.2.1 More mutable subtypes Weak behavioral subtyping provides
more interesting subtype hierarchies where the subtypes can have varying degrees
of mutability. As shown earlier, PlusAccount, which is a mutable type, is a weak be-
havioral subtype of FrozenAccount, which is immutable. In the following discussion,
by an immutable type we mean the history constraint states that objects of that type
do not change over in di�erent environments.

Other examples include tuples of varying degrees of mutability. Figure 3.3 gives
weak and strong behavioral subtype relationship between tuples.

The type ImmutablePair consists of two components and its value does not
change over time. A MutablePair can allow updates on one or more of its compo-
nents. MutablePair is a weak behavioral subtype of ImmutablePair because the
common operations of MutablePair act like that of ImmutablePair and a value
of MutablePair can be coerced to a value of ImmutablePair. But MutablePair

cannot be a strong behavioral subtype with respect to a constraint that values of
ImmutablePair cannot change over time.

But an ImmutableTriple can be a strong behavioral subtype of ImmutablePair
with respect to the constraint that values of ImmutablePair do not change over time.

The type SemiMutableTriple consists of an immutable pair and a mutable third
component. SemiMutableTriple is both a weak and strong behavioral subtype of
ImmutablePair.

To see the practical uses of allowing varying degrees of mutable types as sub-
types to immutable types consider a model of various departments of a university.
Each department mutates only a part of student records. For example, the payroll
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ImmutablePair
�������

�w, �s
HHHHHHH

�w
ImmutableTriple MutablePair

HHHHHHHH

��������
�w �w
SemiMutableTriple

�s

�w

MutableTriple

Figure 3.3: Behavioral subtype relationships between tuple types

department mutates only those components of a student record that are pertinent to
the student's �nances while the admissions o�ce mutates components related to the
student's grades. In order to protect from accidental updates we can make a series
of weak behavioral subtypes of student records and use client functions that access
or mutate the �elds. Figure 3.4 gives such weak behavioral subtypes.

Note that the aliasing restrictions required for weak behavioral subtyping are
not really restrictive in this example. Further, the StudentRecord type can have
weak behavioral subtypes that contain more �elds and/or more mutators.

This kind of hierarchy, based on mutability, can be visualized for several com-
monly used types like arrays, trees, and other similar types (only) for weak behavioral
subtyping.

3.10.2.2 Virtual supertypes Often to capture common properties of di�er-
ent types, we need virtual supertypes. These types do not have any instances but only
capture some common behavior of their subtypes. Both weak and strong behavioral
subtypes allow such virtual supertypes. For example, the ImmutableStudentRecord
discussed in Figure 3.4 can be a virtual type.

Another canonical example of a virtual type is the geometrical hierarchy of
shapes. This hierarchy consists of a virtual type Shape with several concrete shapes
such as Rectangle, Square, and Triangle as behavioral subtypes. Whether they
are weak or strong behavioral subtypes depends on the mutability of these shapes.
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ImmutableStudentRecord

observers

�������
FinancialStudentRecord

observers + mutators for
financial information

PPPPPPP
AdmissionsStudentRecord

observers + mutators for
academic information

PPPPPPPPP

���������
StudentRecord

all observers
+ all mutators

Figure 3.4: Weak behavioral subtype, �w, relations among di�erent (views of) stu-
dent records.

3.11 Related work

In this section we present a brief description of some related work. In Chapter 7,
we present our conclusions on how useful these subtype notions are based on the
kinds of reasoning they permit. (This discussion is in Chapter 7 because we prove
the relevant properties of our notions of behavioral subtyping in Chapter 5.) In this
section, we limit our discussion to the kinds of subtyping allowed by di�erent notions
of behavioral subtyping.

Subtyping based on signature [Car84, Car91] does not imply behavioral subtyp-
ing [Sny86]. To see this, consider two types Stack and a Queue with get, put, and
isIn operations. If subtyping is just based on the signature then a Stack is a subtype
of a (FIFO) Queue and vice versa. But it is quite clear that objects of Stack do not
behave like objects of Queue. Allowing a Stack to be a subtype of a Queue would
permit Stack objects to be sent to functions that expect Queue object. This would
lead to surprising results because of the di�erence in behavior. So we believe that
subtype relations should be based on the behavior, not just on the structure of types.
We do not discuss these structural notions [Car84, Car91] of subtyping further.

Studies of subtyping that are based on the behavior of types can be broadly
categorized into model-theoretic [BW90, Lea89, LW95, LP94] and proof-theoretic
approaches [Ame87, Ame91, LW93a, LW94, DL96]. While the former approaches
study models of types and de�ne behavior in terms of these models, the latter ap-
proaches de�ne behavioral subtyping based on the speci�cation of individual types.
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3.11.1 Model theoretic de�nitions

There are several model-theoretic studies of behavioral subtyping [BW90, Lea89,
LW95, LP94] that use simulation relations or simulation functions to de�ne behavioral
subtyping. However, all these works are restricted to types with immutable objects,
and hence do not deal with mutation and aliasing.

Even if one were to eliminate aliasing between identi�ers/objects of di�erent
types, the de�nitions of behavioral subtyping for immutable types cannot be directly
applied to the behavioral subtyping when mutable types are allowed.

3.11.1.1 Leavens and Pigozzi's behavioral subtyping Like Leavens and
Pigozzi [LP94], we also de�ne behavioral subtyping based on simulations that pre-
serve substitution, coercion, VIS -identical, and other properties. Our substitution
property, as in [LP94], captures the e�ects of operations by relating environments
before and after the invocation of an operation. But since we deal with mutation, we
require a special identi�er store to capture the e�ects of operation on the internal
states of di�erent objects. Because of mutation, unlike in their work, two values that
related in an environment might not be related in a new environment. Whenever the
store changes several values in the environment are a�ect though there is no change
in that value. This notion along with aliasing presents a di�erent set of problems
and hence, di�erent notions of behavioral subtyping.

Further, our notion of nominality is not straightforward as it depends on con-
tained objects and the store, which can have locations mapping to their subtype
values. Because of nominality and aliasing we obtain two di�erent notions of be-
havioral subtyping. In essence, the di�erence between our work and Leavens and
Pigozzi's work is the study of the e�ects of mutation and aliasing in de�ning behav-
ioral subtyping. In this dissertation we limit our work to proving the soundness of
our behavioral subtype notions. Since we use a similar framework as Leavens and
Pigozzi, it is interesting to see if we could adopt their techniques to show that our
notions are complete. We leave this as future work.

3.11.1.2 Abadi and Leino's subsumption Abadi and Leino [AL97] ex-
tend Cardelli's [Car91] structural subtyping rules on records to include behavior.
One of the conditions for their notion of subsumption, which is their notion of be-
havioral subtyping, is that two types should be structurally subtypes. Hence, their
notion of subsumption cannot relate arbitrary abstract data types.

Abadi and Leino present a sound veri�cation logic based on their notion of
subsumption. It is not clear if this veri�cation logic is modular and if one can conclude
properties of types from speci�cation using their veri�cation logic. For example, in
the case of the bankaccounts, it is not clear if one can conclude from their veri�cation
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logic that FrozenAccount objects are immutable. This property is important for
modular reasoning because it allows conclusions about existing procedures without
looking at programs that use these procedures. Introducing history constraints in
their subsumption relations would be allow such reasoning and we believe that their
notion of subsumption would then be equivalent to strong behavioral subtyping that
is restricted to relations between structural subtypes.

3.11.1.3 Cusack's Specialization Cusack [Cus91] de�nes a notion of spe-
cialization over schemas of Z [Spi88] that is like behavioral subtyping. Since she uses
schemas to de�ne the specialization both the subtypes and the supertypes should be
speci�ed in the same schema. Further, she does not deal with the subtyping in the
extra arguments of methods and does not have any notion of history constraints. So
it is not clear on what are the properties of types that are preserved in the context
of mutation and aliasing.

3.11.1.4 Lewerentz et al.'s re�nement calculus In their study [LLRS95],
Lewerentz and his colleagues present a theory of objects and present a re�nement
calculus based on observations on types. Their goal is to use re�nement calculus
in OO modeling. Like us, they de�ne re�nement using simulations. Unlike our
simulations, their simulations use programs to de�ne a \behaves like" notion. It is
de�ned using the attributes of subtypes and supertypes. Simulations, with the help
of a coercion program, relate the e�ect of constructors and methods on the states of
the subtype and the supertype objects.

The di�erence between our approach and their approach is both in our objective
and in our technique. We treat types as abstractly, that is our simulation relations
are not de�ned on the attributes or contained objects of the types. They de�ne
simulations based on the attributes of types and their simulations are dependent
on language constructs. De�ning simulation relations independent of the language
allows a wider application of our results. They do not consider aliasing or interference
between identi�ers in their programs, which is a main component in our study of
behavioral subtyping.

3.11.2 Proof-theoretic approaches

In contrast to our model-theoretic approach, there are several other works on
proof-theoretic notions of behavioral subtyping. These include America [Ame87],
Liskov and Wing [LW93a, LW94] and our proof-theoretical notions of behavioral
subtyping in [DL96].

Other than the approach, there are some fundamental di�erences between this
dissertation and these proof-theoretic notions. Model-theoretic approaches look at
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(abstractions of) di�erent implementations of types and determine whether the sub-
typing in the programs is a behavioral subtype or not. Looking at a set of types,
together with a set of operations, allows model-theoretic approaches to draw con-
clusions about programs that use these types. However, proof-theoretic approaches
look at individual type speci�cations and de�ne a relationship between such types.
Our goal in studying behavioral subtyping is to provide a sound notion of behavioral
subtyping that can be used for supertype abstraction. None of these proof-theoretic
approaches [Ame87, LW93a, LW94, DL96] prove soundness of behavioral subtyping.
But proving behavioral subtype relations using proof-theoretic notions is easier than
using model-theoretic notions.

We also identify two notions of behavioral subtyping of which the strong be-
havioral subtype notion is closer to the notions proposed by several proof-theoretic
approaches. The notion of weak behavioral subtyping is new to our work [DL96].

Since Liskov and Wing's work is an extension of America's work, we omit dis-
cussion of America's work.

3.11.2.1 Liskov and Wing's de�nition In [LW93a, LW94], Liskov and
Wing de�ne behavioral subtyping based on the speci�cation of types. They require
the invariant, the constraint, and the postcondition of each method of the subtype to
imply that of the supertype's and the precondition of each method of the supertype
to imply that of the subtype. In order to ensure that the vocabulary of the pre and
postcondition is same they use a coercion function from subtype values to supertype
values. Their notions, both the constraint and extension based behavioral subtyping,
allow all forms of aliasing in states.

If one were to specify a type as immutable in the history constraint, then the
constraint-based behavioral subtyping of Liskov and Wing, does not allow any mu-
table subtypes of immutable types. This is because the subtype's history constraint
should imply its supertype's history constraint, which for a mutable subtype does
not hold.

Even the behavioral subtype relation with the extension rule of Liskov and Wing
does not allow a behavioral subtype relation between a mutable type and an im-
mutable type. This is because, according to the \extension" rule, all the extra meth-
ods in the subtype should be explained by operations of the supertype. But the
method withdraw for PlusAccount cannot be explained in terms of the methods of
FrozenAccount. Hence, PlusAccount is not a behavioral subtype of FrozenAccount
according to the behavioral subtype relation based on the extension rule. Weak be-
havioral subtyping allows such relationships where the subtype's extra operations
have more mutability.

Comparing our notion of strong behavioral subtyping to Liskov and Wing's de�-
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nitions is interesting. Like Liskov and Wing's notions, our notion of strong behavioral
subtyping allows all forms of aliasing and disallows mutable subtypes of immutable
types. One of our goals in de�ning strong behavioral subtyping is to obtain a sound
model-theoretic equivalent of Liskov and Wing's notions of behavioral subtyping.
However, we leave a relation between strong behavioral subtyping and their de�ni-
tion as a future work. Since it is not clear what is the adequate notion of soundness
for proof-theoretic notions of behavioral subtyping, a formal relation between strong
behavioral subtyping that is shown to be sound for reasoning and the proof-theoretic
notions that are easy to prove is useful. Such a relation would have the advantages
of both these approaches.

3.11.2.2 Dhara and Leavens' proof-theoretic de�nition In [DL96], we
present our proof-theoretic notion of behavioral subtyping. We weaken Liskov and
Wing's \constraint" based behavioral subtyping rule slightly and de�ne a proof-
theoretic equivalent of our weak behavioral subtyping.

By weakening the post condition rule, we allow subtype objects to operate in a
bigger domain than supertype objects. For example [DL96], consider a type T with
a method foo(int x) with a speci�cation that requires the x > 0 as a precondition.
Unlike, Liskov and Wing, we [DL96] allow a behavioral subtype with a foo method
that weakens the precondition of T . That is, we allow a strong behavioral subtype
that has a pre-condition x < 0 ^ x > 0.

Our model-theoretic notion of strong behavioral subtype is closer to this notion
of behavioral subtyping than Liskov and Wing's. We leave the proof that the strong
and weak notion of behavioral subtyping of [DL96] are equivalent to those de�ned
here as future work.
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4. OBS� { A MULTI-METHOD LANGUAGE

The soundness of the behavioral subtype notions de�ned in the last chapter can
be shown by comparing the results of a function over a state with subtyping and over
a state without subtyping. Our criteria for the soundness of the behavioral subtype
notions is that the results over a state with subtyping should be a subset of the results
over a state without subtyping. To do this comparison, we require a language that
allows a (client) function to observe states with or without subtyping. Hence the
name of our language, OBS�.

In this chapter, we de�ne OBS�, and refer to the function and the observation
as a main program of OBS�. Since the soundness depends on the features of OBS�,
it is important to see the features o�ered by main programs of OBS�. They are as
follows.

� OBS� allows mutation and aliasing.

� Programs in OBS� allow subtyping in their states. That is, identi�ers and
locations can denote subtype values of their static (nominal) types.

� Programs in OBS� can construct a state (with or without subtyping) and pass
this state to a (client) function.

� OBS� allows dynamic message passing.

� OBS� has a sound type and alias checking rules that demonstrate that the
constraints de�ned for weak behavioral subtyping are not too restrictive.

The method invocations used in the main programs of OBS� are interpreted
using mutation algebras. These mutation algebras are obtained by a \compilation"
of the semantics of type and method declarations of OBS�. We present the syntax of
type and method declarations of OBS�, but for simplicity, we do not give the details
of its \compilation" into algebras. We leave this as a future work, which would allow
a blend of denotational and algebraic semantics [LD94].

In the next section we give an overview of OBS� and present its syntax (including
the type and method declarations) with an example. In later sections, we present
the semantics of main programs of OBS� with appropriate alias constraints and we
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Abstract syntax:
ALG 2 Algebra TD 2 Type-Declarations IV 2 Instance-Variables
T 2 Type I 2 Identi�ers MD 2 Method-Declarations
F 2 Formal-Parameters A 2 Alias-Declaration B 2 Body
D 2 Const-Declaration C 2 Command E 2 Expression
N 2 Number

ALG ::= TD* MD*
TD ::= type I subtype of fT*g instance variables IV* end
T ::= I
IV ::= I : T

MD ::= method I ( F* ) : T A is B
F ::= I : T
A ::= j may alias { T* }

B ::= D do C return E
D ::= j const I : T := E j D1 ; D2

E ::= N j nothing j true j false j I j I ( E* ) j new I (E*) j I1 . I2
C ::= E j if E1 then C1 else C2 fi j C1 ; C2 j I1 . I2 := E

Figure 4.1: Abstract syntax for type and method implementations of OBS�. \TD*"
is a sequence of zero or more \TD"s (with separators in concrete exam-
ples).

conclude this chapter by presenting the soundness of our alias rules for the main
programs.

4.1 Syntax and overview of OBS�

4.1.1 Split in OBS�

Figure 4.1 shows abstract syntax of the type and method implementation of
OBS� and Figure 4.2 shows the abstract syntax of main programs of OBS�. The
language for type and method implementations could be completely di�erent from
the main program. But for clear presentation, we use a similar language for both
these components.

This split in the language (refer to Figure 4.3) allows the study of the proper-
ties of types independent of the properties of main programs that use those types.
Another interesting aspect of our language is the form of the (client) programs, that



64

Abstract Syntax:
P 2 Main-Program FN 2 Client-Function D 2 Const-Declaration
C 2 Command E 2 Expression I 2 Identi�er
T 2 Type F 2 Formal-Parameters B 2 Body
N 2 Number

P ::= observe FN by D do C; call I ( E*)

FN ::= client function I ( F* ) : T is B
F ::= I : T

B ::= D do C return E
D ::= j const I : T := E j D1 ; D2

E ::= N j nothing j true j false j I j I ( E* )

C ::= E j if E1 then C1 else C2 fi j C1 ; C2

Figure 4.2: Abstract syntax of main programs of OBS�.

is the second component. We refer to this component as the main program. A main
program consists of a function, a set of declarations, and commands to set up a state
for observing the function. This division in the main program allows us to study
the results of an existing function while changing the state in which the function is
called. That is, by setting up a state where the call to the client function contains
subtype objects, we can observe the behavior of the client function in the context of
subtyping. Such a notion simulates the e�ects of calling existing functions with new
subtype objects, which is essential for our study of behavioral subtyping.

The corresponding split in the semantics compiles type declarations and method
declarations into a mutation algebra and then runs the main program M using that
algebra. Figure 4.3 illustrates the idea of split semantics. Split semantics is the
technique in which the denotations of types and method declarations are captured in
an algebra and the meanings of the main programs are de�ned using these algebras
as parameters. The signature of the algebra acts as an interface for split semantics.
That is, the denotations of the constructs in the main program are de�ned with
respect to any algebra that satis�es the signature at the split in Figure 4.3.

Though the commands and expressions used in the body of methods and in main
programs are similar, there are a few di�erences; these di�erences provide a basic form
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Algebraic

�

Denotational main
program

types
methods

Figure 4.3: A picture that illustrates the idea of the split semantics.

of encapsulation. This encapsulation prevents main programs from accessing instance
variables and enforces the split between the main programs and implementations of
types. Method bodies can access instance variables (I1.I2), create new objects (new),
and also assign instance variables (I1.I2 := E). These expressions and the instance
variable assignment command cannot be used in the main procedure (M). Since
subtype objects may be implemented in di�erent ways than the supertype objects,
we do not allow subtypes to use instance variables of their supertypes. In OBS�,
for any method this simpli�cation would force the programmers to write a set of
methods such that for each combination of the type of the permitted arguments there
is a unique method that applies. Chambers and Leavens [CL94] use inheritance and
a form of specialization [Cha92] to reduce the number of methods that need to be
written in such cases. For more 
exibility (with respect to the above restriction),
inheritance could be added to OBS�, but that would complicate the semantics and
would not be of any help to our study of behavioral subtyping. Hence, there is no
inheritance in OBS�.

In the next sections we present semantics of main programs of OBS�.

4.1.2 A sample program in OBS�



66

type MoneyObj subtype of {}

instance variables money: Integer end;

type FrozenAccount subtype of {}

instance variables acct: MoneyObj end;

type BankAccount subtype of {}

instance variables acct: MoneyObj end;

type PlusAccount subtype of {FrozenAccount, BankAccount}

instance variables svgs: MoneyObj, chkg: MoneyObj end;

method mkFrozenAccount(m: Money):FrozenAccount

is const money: MoneyObj := new MoneyObj (value(m));

const result: FrozenAccount := new FrozenAccount (money)

do

nothing

return result;

method withdraw(p: PlusAccount; m: MoneyObj):Void

is const pSvgs: Integer := value(p.svgs);

const pChkg: Integer := value(p.chkg);

const mValu: Integer := value(m)

do

if (pSvgs > mValu) then update(p.svgs, (pSvgs - mValu))

else if ((pSvgs + pChkg) > mValu) then update(p.svgs, 0);

update(p.chkg, (pSvgs + pChkg) - mValu);

else nothing

return nothing;

method check_balance(p: PlusAccount): MoneyObj

may alias {MoneyObj}

is

do

nothing

return p.chkg;

...

...

Figure 4.4: Type and method implementation for types and methods of E�E. Omit-
ted details can be found in Appendix B.
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observe

client function verify_withdraw(b: BankAccount): Bool

is const m: MoneyObj := mkMoneyObj(3);

const bal: Int := value(balance(b))

do

withdraw(b, m)

return (equal(value(balance(b)), minus(bal,3)));

by

const b: BankAccount := mkPlusAccount(mkMoney(20), mkMoney(10))

do

deposit(b, mkMoney(10));

call verify_withdraw(b);

Figure 4.5: A sample main program, which observes the types BankAccount and
PlusAccount of E�E. The result of this program is true.

Figure 4.4 gives the type and method implementations of the E�E-algebra E
(given in Figure 2.5 and Figure 2.6). The type declaration for MoneyObj indicates
that it has an instance variable money of type Integer. The type declaration for
PlusAccount states that it is a subtype of both FrozenAccount and BankAccount

and it has instance variables svgs and chkg of type MoneyObj.
The mkFrozenAccountmethod returns a new object of type FrozenAccountwith

a MoneyObj whose initial value is that of money object m passed as a parameter. The
method check balance illustrates the \may alias" construct. The alias component
of this method states that the result of this method may be aliased to a location
of type MoneyObj. This aliasing information is used in statically restricting aliases
between objects of di�erent types. Such restrictions help in creating stores that satisfy
the aliasing constraints that are required for sound reasoning when weak behavioral
subtyping is used.

The client function in the main program in Figure 4.5, verify withdraw com-
pares the amount in b before invoking withdraw(b, m) and after the invocation. To
reason about verify withdraw statically, we can check the code of the withdraw

operation of BankAccount and can conclude that it returns true.
However, method dispatching in OBS� is dynamic in the sense that the method

lookup does not depend on the static types of arguments, but depends on the types
of the objects at runtime, that is, during the call. In the environment that is set up
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by the main program in Figure 4.5, the runtime type of b is a PlusAccount. Hence,
in the verify withdraw the call withdraw(b, m) invokes the withdraw method on
PlusAccount objects, because b denotes a PlusAccount object. If behavioral sub-
typing is sound, that is if reasoning at the static types of objects is sound, then the
result of verify withdraw, when b denotes a PlusAccount object, should be true.

From the discussion in the previous chapter (Section 3.4 we saw the aliasing re-
quirements for the soundness of weak behavioral subtyping. In the following sections,
we discuss these aliasing restrictions with respect to OBS� and present the semantics
of the main programs of OBS�.

4.2 Alias restrictions for weak behavioral subtyping

Our notion of weak behavioral subtyping is adequate for supertype abstraction
only if we restrict direct aliasing between variables or locations of di�erent types in
an environment. In Section 4.2.1 we present the conditions on algebras that are used
(in Section 4.3) to conservatively restrict aliasing between variables and locations of
di�erent types in OBS�.

4.2.1 Alias legality

Since the semantics (shown later) of main programs of OBS� is parameterized
by a mutation algebra, that provides interpretations for operations, we need develop
aliasing constraints on both the main programs and the mutation algebras. Because
mutation algebras are independent of particular implementation details, we develop
a conservative notion, which is referred as alias legality, to constrain certain kinds
of aliasing for weak behavioral subtyping. All the mutation algebras need to satisfy
alias legality for the soundness of our type and alias checking rules that guarantee
that the environments generated by OBS� programs satsify stAliasOk. The following
discussion formalizes the notion of alias legality for mutation algebras.

Semantically, for the soundness of weak behavioral subtyping, every environment
in the program should satisfy stAliasOk. Since we do not work with the compilation
of algebras, and since the main programs are parametrized with algebras that can be
obtained from other forms of compilation, we require all the external operations of
mutation algebras to satisfy the alias restrictions.

Mutation signatures, de�ned in Chapter 2, give only the type information, but
we need the alias information for each operation. That is the alias type set of the
return value of operations. In case of methods of OBS�, this information is obtained
from the \may alias" component of method declarations. This information could be
added to a mutation signature while compiling the type and method declarations.
But that would make the signatures non-standard. Hence we de�ne our notion with
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8g 2 EOPSE�E , 8~S; T 2 ETYPES such that EResType(g; ~S) = T ,

LE(g; ~S) = fg:

Figure 4.6: Alias context LE for operations of algebra E

respect to an alias context, which gives the upper bound on the alias type set of the
return value of external operations in a mutation algebra. We refer to this notion
as the alias context of a signature and denote it by L. An alias context is a family
of partial functions such that L : OPS � TYPES ! PowerSet (TYPES ). The alias
context of algebra E, given in Figures 2.5 and 2.6, is shown in Figure 4.6. Since,
the alias context for all operations returns an empty set, operations of algebras that
satisfy the alias context should return a new object.

To illustrate more about alias context, we could have a method return savings

with an alias context, L(return savings; (PlusAccount; Store)) = fMoneyObjg. A
method return savings that returns the savings component of its PlusAccount

object satis�es the above alias context for return savings. As return savings is
used only for illustration, we do not include it in our signature for E�E.

If an environment that satis�es the alias constraints for weak behavioral sub-
typing is passed to an operation, then the resulting environment should satisfy the
constraints and the alias type set of the return value of the operation should be a
subset of the expected set of aliases given by its alias context. The following de�nition
formalizes these notions as a condition on mutation algebras.

De�nition 4.2.1 (preserves alias legality) Let A be a (I�;E�)-mutation algebra
and let L be an alias context for (I�;E�). Then A preserves alias legality with respect
to L if and only if for each type environment H, for each H-environment, �, over
A such that stAliasOk(H;A; �), for each operation g 2 EOPS , for each type ~S, if

ResType(g; ~S) = (T; Store); ~v 2 VALSA~S , and (v; �0) = gA(~v) then:

stAliasOk(H;A; [store 7! �0]�)

^ (T 2 ObjectTypes ) aliasTypeSet (H;A; v; [store 7! �0]�) � L(g; ~S))

The �rst conjunct states that the resulting environment, which includes the
updated store, should be stAliasOk. The set inclusion in the second clause ensures
that the alias type set of the returned value is a subset of the expected alias type
set given by the alias context. The following subsection discusses the implications of
these requirements on mutation algebras.
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Claim 4.2.2 Algebra E given Figures 2.5 and 2.6 satis�es alias legality with respect
to the alias context LE given in Figure 4.6.

The proof of this claim is trivial because all operation interpretations of E in
Figure 2.6 return new objects, and hence these objects are not aliased to any of their
arguments.

4.2.2 Restrictions on type and method declarations of OBS�

This section discusses the practical implications of enforcing the required aliasing
conditions. That is, it answers the question: what does it mean for algebras to satisfy
alias legality from the point of view of implementing the corresponding type and
method declarations?

4.2.2.1 Aliasing in method arguments Aliasing between arguments in
method calls may result in identi�ers of distinct types to be direct aliases in method
bodies. This could happen to a method with formals of two di�erent types. One
way of preventing this is to prevent aliasing between actuals. This is more restrictive
than necessary because aliasing between formals of the same type does not violate
the required aliasing restrictions. Instead, we require that the programmer imple-
ment enough methods that would cover all kinds of method calls and would prevent
aliasing between formals of di�erent types. For example, a method foo that takes
two arguments of unrelated types S and T . If at a later point, a common subtype of
S and T , U is added then the user has to provide a method for foo that takes two
U objects. A call to foo with the two actuals aliases would invoke the new method
and hence do not violate any alias restrictions.

4.2.2.2 Aliasing in method bodies The instance variable assignment in
method bodies can make direct aliases that result in denotations of type and method
implementations, that is algebras, that do not satisfy alias legality. To see this,
consider an operation, alias savings, that takes two PlusAccount objects and
make an alias between the savings component of the two PlusAccount objects.
Let x : BankAccount and y : BankAccount and let l1 : BankAccount and l2 :
BankAccount be the denotations of x and y. Further, let l1 and l2 denote two di�erent
sortFor(PlusAccount) values. This state itself satis�es stAliasOk, but the resulting
state of a call to alias savings with l1 and l2 as arguments makes an illegal alias
that violates stAliasOk. That is, in the resulting state l1 and l2 are direct aliases,
and the values of l1 and l2 denote subtype values and are di�erent. Hence, to ensure
that algebras preserve alias legality, we disallow aliasing of instance variables. This
is again more restrictive than necessary but we leave the investigation of techniques
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that are less restrictive than this and still permit sound type and alias checking rules
to future work.

4.3 Semantics of main programs

In this section we present our alias and type checking rules for the main programs
of OBS�. Our goal is a conservative alias analysis of main programs such that each
environment sequence in the sequence of environments given by the semantics of main
programs satis�es stAliasOk.

4.3.1 Type and alias checking rules for OBS�

Figure 4.7 gives the alias and type checking rules for the main programs of OBS�.
The notation �;H;L ` E : T :: r means that an expression E has a static type T
and r is the upper bound on the alias type set of the result of E, when evaluated in
an algebra with an external signature of �, a type context H, and an alias context,
L. For integers and booleans, which are immutable, the upper bound on the alias
type set is fg because there cannot be any observable aliasing for these types. For a
variable, the alias type set is the singleton set consisting of the type of the variable
given by the type-context H. The alias type set of a method invocation, g, with
static argument types ~S, is given by L(g; (~S; Store)). This set can be obtained from
method declarations' \may alias" construct.

The [decl] allows the creation of states with subtyping in the main programs of
OBS�. To avoid the improper kinds of aliasing for weak behavioral subtyping, we
require the alias type set of E to be the same type as the identi�er it is assigned
to or to be empty. The empty case allows assigning subtype objects to identi�ers of
supertype.

The [Main] rule types the client function, checks the declarations, commands,
and the call to the client function. To ensure that there is no aliasing among ar-
guments in the client function call, for any call with more than one argument, we
require that its alias type set be empty. This ensures that the values or objects that
are bound to the formals of the client function do not have any other references, thus
avoiding aliasing between them.

4.3.2 Valuation functions

In this section we present the valuation functions, which de�ne the meaning of
the various constructs in the main programs of OBS�. We use standard denotation
semantics [Sch94]. These valuation functions correspond to the typing rules and are
used in proving the soundness of the type and alias rules given in the previous section.
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[Num] �;H;L ` N : Integer :: fg [nothing] �;H;L ` nothing : Void :: fg
[true] �;H;L ` true : Bool :: fg [false] �;H;L ` false : Bool :: fg
[ident] �;H;L ` I : H(I) :: fH(I)g if I 2 Domain(H)

[call]

�;H;L ` ~E : ~S :: ~r;

L(I; (~S; Store)) = r

�;H;L ` I(~E) : T :: r

if �:ResType(I; (~S; Store))
= (T; Store)

[NList] �;H;L ` () : () :: ()

[EList]
�;H;L ` ~E : ~T :: ~r; �;H;L ` E : T :: r

�;H;L ` ~EE : (~T; T ) :: (~r; r)

[B]
�;H;L ` D =) H 0 �;H [H 0;L ` C

p
; �;H [H 0;L ` E : T :: r

�;H;L ` D C return E : T :: r

[FN]
�; [~I 7! ~T ]H;L ` B : T :: r

�;H;L ` client function I(~I : ~T ):T is B : (~T ! T )
if T 2 VIS

[EDecl] �;H;L ` =) fg

[SDecl]
�;H;L ` E : S :: r

�;H;L ` const I:T:=E =) f(I; T ); (store; Store)g if S�T; r � fTg

[MDecl]
�;H;L ` D1 =) H 0; �;H [H 0;L ` D2 =) H 00

�;H;L ` D1; D2 =) H 0 [H 00 if uniqueIDS(H 0;H 00)

[ECom]
�;H;L ` E : S :: r

�;H ` E
p

[Cond]
�;H;L ` E : Bool :: r; �;H;L ` C1

p
; �;H;L ` C2

p
�;H;L ` if E then C1 else C2 fi

p

[Seq]
�;H;L ` C1

p
; �;H;L ` C2

p
�;H;L ` C1 ; C2

p

[Main]

�; fg;L ` FN : (~T ! T ); �; fg;L ` D =) H

�;H;L ` C
p
; �;H;L ` E� : ~S :: ~r

�;L ` observe client function

I(~I:~T):T is B by D do C; call I(E*)
p

if ~S � ~T , and

(j ~S j> 1 ^ (1 � i �j ~S j)
) each ri = fg)

Figure 4.7: Type and alias checking rules for the main procedure part of OBS�. The
auxiliary function uniqueIDs(H 0;H 00) is true ifDomain(H 0) � fStoreg
and Domain(H 00) � fStoreg are disjoint, otherwise it is false.
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Let SIGS denote the class of all mutation signatures; thus the notation � : SIGS
means that � is a mutation signature. Let Alg(�) denote the class of all �-algebras.

Alg(�)
def
= fA j A is a �-mutation algebrag (4:1)

We use STATEAH to represent the set of valid H-environments. That is,

STATEAH = f� j � 2 EnvAH and � is a valid H-environmentg: (4:2)

The subscript H is dropped whenever the type context is clear. All the following
valuation functions, take a signature and a mutation algebra over that signature as
parameters. Hence, the type of valuation functions is a dependent type. For example,
the type of valuation function for expressions is:

E : (� : SIGS )! (H : TENV)! Expression! (A : Alg(�))

! STATEAH ! VALSA?

The type of this E can be thought of as a function, which given a mutation signature,
�, a type context H, an expression, a �-mutation algebra A returns a function from
a state over A to the lifted domain of values of A.

Though this type is more complicated than the usual valuation function for
denotational semantics, to ensure a proper blend between the algebraic and denota-
tional semantics this kind of parameterization is required. The notation EH� is used
to denote this function applied to a signature, �, and a type context H. A similar
convention is used for the other valuation functions.

For brevity, we avoid any distinction between lists and vectors in the following
semantic functions. The function addToEnd(~v; v) returns a vector after adding v to
~v at the end. We use (~v; v) for addToEnd(~v; v) as if they are equivalent.

4.3.2.1 Expressions and expression lists As described above, the mean-
ing of an expression is found by either looking up an identi�er in the environment,
or by using the algebra and store to evaluate an operation. The store is needed by
algebras because all external operations take a store.

The semantic function for numerals, N , has the following type.

N� : Numeral! (A : Alg(�))! VALSAStore ! (VALSA)?

The denotations for numerals should be dependent on the algebra. Details of N
are trivial because one can use a series of operations calls to denote various integer
numerals. That is, N� [[N ]] A � = NA(�).
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The denotations for true, false, and nothing use the appropriate method in
the algebra; hence these semantic equations are also independent of the particular
algebra. Similarly, the meaning of a method call uses an operation in an algebra.

EH� : Expression! (A : Alg(�))! STATEAH ! VALSA � VALSAStore?
EH� [[I]] A � = let v = �[[I]] in (v; (� store))
EH� [[N]] A � = N� [[N]] A (� store)
EH� [[true]] A � = trueA(� store)
EH� [[false]] A � = falseA(� store)
EH� [[nothing]] A � = nothingA(� store)

EH� [[g(~E)]] A � =

let (~v; �0) = E�H� [[~E]] A � in gA(~v; �0)

The let expressions used in the semantics are strict [Sch86]. That is, for a let
expression let v = E in E1, if E is ?, then the result of the let expression is ?.
For example, if ~E is ? then g( ~E) is ?.

The meaning of a list of expressions is a list of values together with the store
that results from their evaluation. The expressions are evaluated left to right.

E�H� : Expression-List ! (A : Alg(�))! STATEAH ! (List(VALSA)� VALSAStore)?
E�H� [[]] A � = ((); (� Store))

E�H� [[~EE]] A � =

let (~v; �n) = E�H� [[~E]] A � in
let (v; �0) = EH� [[E]] A [store 7! �n]� in
((~v; v); �0)

Since let is strict, if one of the expressions is ? then the result of the entire
expression list, ~E, is ?.

4.3.2.2 Commands The semantic functions for commands are straightfor-
ward. In an if-command, though the value of the test is used, since it is of a visible
type, the semantics for if-command is independent of the algebra.

CH� : Command! (A : Alg (�))! STATEAH ! (VALSAStore)?
CH� [[E]] A � = let (v; �0) = EH� [[E]] A � in �0

CH� [[C1; C2]] A � = let �1 = CH� [[C1]] A � in CH� [[C2]] A [store 7! �1]�
CH� [[if E1 then C1 else C2 fi]] A � =

let (v; �0) = EH� [[E1]] A � in

if (v 62 VALSABool) then ?
else if v then (CH� [[C1]] A [store 7! �0]�) else (CH� [[C2]] A [store 7! �0]�)
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4.3.2.3 Constant declarations A constant declaration evaluate its expres-
sion, and returns a new state with a binding of the declared identi�er to the expres-
sion's value. The signature is used to check that the type has been declared.

DH
� : Declaration! (A : Alg(�))! (STATEAH )!

S
H 0:TENV STATEAH 0?DH

� [[ ]] A � = [store 7! (� store)]emptyEnviron
DH

� [[const I:T = E]] A � =
let T 0 = T � [[T]] in
let (v; �0) = EH� [[E]] A � in

if v 62 d
VALSAT 0 then ? else [I 7! v][store 7! �0]emptyEnviron

DH
� [[D1;D2]] A � =

let �1 = DH
� [[D1]] A � in

let �2 = DH
� [[D2]] A (� ] �1) in

�1 ] �2

The auxiliary function T � [[T]] is used to check if the declared type is in � and the
(in�x) auxiliary function ] is used to combine environments. Note that the subscript
A is omitted for ].
T : (� : SIGS )! Type-Name! Identi�er?
T � [[T]] = if T 2 ETYPES then T else ?
]A : (STATEH[A]� STATEH 0[A]! STATEH[H 0[A])
�1 ] �2 = [store 7! (�2 Store)](�1 [ �2)

4.3.2.4 Observation function Our observation functions are unique in the
sense that they return both a value and a state. This is because we would like to
check some properties of the returned state. These observations are obtained from
the functions in the main programs of OBS�.

Since the primary purpose of OBS� is to provide observations for client functions,
before presenting the semantics of client functions we �rst de�ne observations. A
(�;H)-observation, of type OBSERVATION�

H , is a function that takes a �-algebra,
a H-state, and returns a value of visible type and the result state.

OBSERVATION�
H = (A : Alg(�))! STATEAH ! (VALSA � STATEAH )

Given a �-mutation algebra and a state, an observation returns a value and a state.
We refer to the value in the result of OBSERVATION�

H as the result of the observation
and the state as the resulting state of the observation. An observation can be thought
of as a frozen computation with respect to a signature � and a type context, H, over
that signature, which given a �-mutation algebra and a state returns a result and
possibly a new state.
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The denotation of a client function returns a type context, H and an observation.
The type context determines the kinds of states that can be passed to the observation.

FN : (� : SIGS )! Client-Function! ((H:TENV)�OBSERVATION�
H )?

FN� [[client function FN(~F ):T is D do C return E]] =
let H 0 = F�� [[F]] in
let H = H 0 [ f(store; Store)g in
let f = (�C : (�s :

if � 62 STATECH then ?
else let �0 = DH

� [[D]] C � in
let �0 = CH� [[C]] C (� ] �0) in
let (v; �00) = EH� [[E]] C [store 7! �0](� ] �0) in
(v; [store 7! �00](� ] �0))

in (H; f)

The auxiliary function F�� [[F]] returns a list of identi�er and type pairs. The
function map takes a function, f , and a list, l, and returns a list that contains the
result of applying f to each element of l in order.

F� : (� : SIGS )! Formal-List! List(Identi�er� Type-Name)?
F�� [[F]] = map (F �) [[F]]
F : (� : SIGS )! Formal! (Identi�er� Type-Name)
F� [[I : T]] = let T 0 = T � [[T ]] in (I; T 0)

4.3.2.5 Main programs The meaning of a main program is a tuple consist-
ing of a type environment H, an H-observation function, and a H-state. The type
declaration and observation function is obtained from the denotation of the client
function as described above. A tuple of values that are obtained from the call expres-
sion is bound to the actuals of the client function. This environment along with the
store produced by the �rst part of the main program consists of the third component
of the denotation of a main program. This environment can be non-nominal, that is
can contain subtyping.

M� : Main! (A : Alg (�))! ((H:TENV)�OBSERVATION�
H � STATEAH )

MH
� [[observe FN by D do C; call I( ~E)]] A =

let (H; f) = FN� [[FN]] in
let � = DH

� [[D�]] A [store 7! emptyStore]emptyEnviron in
let �0 = CH� [[C]] A � in

let (~v; �00) = E�H� [[~E]] A [store 7! �0]� in
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let �00 = bindActuals[A] (~v; �00) H in
(H; f; �00)

Note that the environment returned by a main program does not contain the
identi�ers declared [[D]]. This means the identi�ers used in observations, that is in
the body of the client functions, are either the formal identi�ers or the locally de�ned
identi�ers.

The binding of actuals to formals creates an environment. The folding process
in the call to foldright passes the �-abstraction an element of F̂ , which is a pair of an
identi�er and a type name, the forming environment, and the index of the element
of the list F̂ ; hence the notation (Ii; Si) used below is accurate.

bindActuals [A] : (VALSA)
� ! List(Identi�er� Type-Name)! Env [A]?

bindActuals [A] ~v F̂ =

let ~S = (formalTypes F̂ ) in

if ~v 62 d
VALSA~S then ?

else let (�0; n) =
(foldright

(�((Ii; Si); (�; i)) : ([Ii 7! (~v # i)]�; i� 1))

(emptyEnviron; length F̂ )

F̂ )
in �0

formalTypes : List(Identi�er� Type-Name)! List(Type-Name)
formalTypesF = map(�(I; T ):T )F

4.4 Soundness of alias and type checking rules

In this section, we prove a theorem (4.4.6), which states that the alias and type
checking rules are sound. We �rst present a series of lemmas and then present the
theorem and its proof. The signi�cance of this theorem is that if a mutation algebra
preserves alias legality with respect to an alias constraint, L, then main programs in
OBS� satisfy the alias constraints required for sound reasoning with weak behavioral
subtyping.

If the result of the main program is a ?, then requiring that the result needs to
satisfy stAliasOk becomes moot. Hence, the lemmas and the theorem in this section
do not consider the case when ? is a possible result.

In all the following lemmas A refers to an (I�;E�)-mutation algebra, L refers
to an alias context for E�, and H refers to a type environment. For clarity, we use
[I 7! v]� for its equivalent [I 7! v][I 7! v0]�, especially while mapping store in the
environments.
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Lemma 4.4.1 Let E be an expression in the main program of OBS� (as in Fig-
ure 4.2.) Let � be a valid H-environment over A. If A preserves alias legality with
respect to L, stAliasOk(H;A; �), and (v; �0) = EH� [[E]] A � for v 2 VALSA, then

E�;H;L ` E : T :: r
)
(stAliasOk(H;A; [store 7! �0]�) ^ (aliasTypeSet(H;A; v; [store 7! �0]�) � r))

Proof: This is shown by induction on the structure of E.
Basis: For the expressions N , nothing, true, and false, since �0 = � and since the
alias type set for non-object types is fg, the conclusion is satis�ed trivially.

Inductive step: Let E be g( ~E). Assume the conclusion holds true for all subex-

pressions of E. Suppose E�;H;L ` g( ~E) : T :: r.

Let (~v; �n) = E�H� [[~E]] A � and let (v; �0) = gA(~v; �n).
We need to show that

stAliasOk(H;A; [store 7! �0]�) ^ (aliasTypeSet (H;A; v; [store 7! �0]�) � r):

It su�ces to show that stAliasOk(H;A; [store 7! �n]�) because of the following

reason. Since E�;H;L ` g( ~E) : T :: r, and sinceA satis�es alias legality with respect
to L, if stAliasOk(H;A; [store 7! �n]�) holds then from the alias legality condition
the conclusion of the lemma holds.

stAliasOk(H;A; [store 7! �0]�) ^ (aliasTypeSet (H;A; v; [store 7! �0]�) � r)

So we need to show that stAliasOk(H;A; [store 7! �n]�). We show this by

induction on the length of ~E.
When the length is 0, then �n = � and [store 7! �n]� = �, then the condition

stAliasOk(H;A; [store 7! �n]�) holds trivially.
Assume that stAliasOk(H;A; [store 7! �i]�) is true for any i less than n. Let

~E = ( ~E 0; E), where j ~E0 j= i. Let (vi; �i) = E�H� [[ ~E 0]] A � and �;H;L ` ~E0 : ~S0 :: ~r0.
Let (vi+1; �i+1) = EH� [[E]] A [store 7! �i]� and �;H;L ` E : Si+1 :: ri+1.

The following calculation, based on the denotations of ~E0 and E of the expres-
sion ( ~E0 E), shows that stAliasOk(H;A; [store 7! �i+1]�). The �rst clause in the
calculation is true from the hypothesis of the lemma.

stAliasOk(H;A; �)
) hby applying the induction hypothesis for i < ni

stAliasOk(H;A; [store 7! �i]�) ^ aliasTypeSet (H;A; vm; [store 7! �i]�) � ri
) hby applying induction hypothesis on Ei
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stAliasOk(H;A; [store 7! �i+1]�)
^ (aliasTypeSet(H;A; v; [store 7! �i+1]�) � ri+1)

) hby predicate calculusi
stAliasOk(H;A; [store 7! �i+1]�)

Lemma 4.4.2 Let D be declarations of main program of OBS�. Let � be a H-state
over A. If A preserves alias legality, stAliasOk(H;A; �), and �0 = DH

� [[D]] A � then

(�;H;L ` D =) H 0)) stAliasOk((H [H 0);A; (� ] �0)) (4:3)

Proof: This is shown by induction on the structure of D.

� If D is empty, then Equation 4.3 is trivially true because from the semantics of
declarations, (� ] �0) = �.

� If D = const I:T := E. Let (v; �0) = EH� [[E]] A � and �;H;L ` E :
S :: r for some S � T . Then H 0 = f(I; T ); (store; Store)g and the result-
ing environment �0 = [I 7! v][store 7! �0]emptyEnviron. Hence, (� ] �0) =
(� ] [I 7! v][store 7! �0]emptyEnviron).

Let's assume that Equation 4.3 does not hold in this case. But from the
Lemma 4.4.1, we know that

stAliasOk(H;A; [store 7! �0]�) ^ aliasTypeSet(H;A; v; [store 7! �0]�) � r

(4:4)

From Equation 4.4 and from the de�nition of stAliasOk, we can conclude that
storeAliasOkW (A; �0) is true. The only case when stAliasOk((H [H 0); A; (� ]
�0)) can be false is if aliasTypeSet(H;A; v; [store 7! �]�) contains a U such
that U 6= T .

But from Equation 4.4, aliasTypeSet(H;A; v; [store 7! �0]�) � r. Hence
fUg � r. Also, from the type rule [SDECL], we have r � fTg. That
is, U = T . This contradicts our assumption that U 6= T , hence Equation 4.3
holds.

� If D = D1;D2. The induction hypothesis is that Equation 4.3 holds for all
substructures of D.

Let �;H;L ` D1 =) H1 and �; (H [ H1);L ` D2 =) H2. Let �1 =
DH

� [[D1]] A � and �2 = DH
� [[D2]] A (� ] �1). Then from the semantics of
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declarations, H 0 = H1 [H2 and �0 = (�1 ] �2). The following calculation shows
the desired conclusion.

stAliasOk(H;A; �)
) hby the induction hypothesis on D1i

stAliasOk((H [H1);A; (� ] �1))
) hby the induction hypothesis on D2i

stAliasOk(((H [H1) [H2);A; ((� ] �1) ] �2))
= hby associativity of ] and [i

stAliasOk((H [ (H1 [H2));A; (� ] (�1 ] �2)))
= hby semantics of declarationsi

stAliasOk((H [H 0);A; (� ] �0))

Lemma 4.4.3 Let D be declarations of main program of OBS�. Let � be a H-state
over A. If A preserves alias legality, stAliasOk(H;A; �), and �0 = DH

� [[D]] A � then

(�;H;L ` D =) H 0)) stAliasOk(H 0;A; �0) (4:5)

Proof: From Lemma 4.4.2, we have stAliasOk((H [H 0);A; (� ] �0)). From the
de�nition of stAliasOk, we can conclude that stAliasOk(H 0;A; �0).

If that is not the case, since the store is same in both cases, there exists a x 2
Domain(H 0) such that aliasTypeSet (H 0;A; (�0 x); �0) contains more than one type.
But from the de�nition of ] and sinceH�fStoreg and H 0�fStoreg are disjoint, we
have for any y 2 Domain(H 0) (�0 y) = ((�]�0) y). So, if aliasTypeSet(H 0;A; (�0 x); �0)
contains more than one type then aliasTypeSet ((H [ H 0);A; (�0 x); (� ] �0)) also
contains more than one type, which contradicts our assumption. Hence, we can
conclude that stAliasOk(H 0;A; �0).

Lemma 4.4.4 Let C be a command that can be used in main program of OBS�.
Let � be a H-state over A. If A preserves alias legality, stAliasOk(H;A; �), and
�0 = CH� [[C]] A � then

(�;H;L ` C
p
)) stAliasOk(H;A; [store 7! �0]�) (4:6)
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Proof: (sketch)(induction on the structure of C) The base case, when C is E follows
from Lemma 4.4.1.

The inductive case, when C is C1;C2, follows by applying the inductive hypothe-
sis on C1 and then on C2. The other inductive case, when C is if E then C1 else

C2 follows by using the lemma on expressions and the induction hypothesis. The �rst
when E is true, applying Lemma 4.4.1 on E, the resulting state is stAliasOk. Then
by induction hypothesis applied to either C1 or C2 depending on the result of E, we
can conclude that the resulting state is stAliasOk.

The following lemma shows that the call to the client function in a main program
satis�es the alias constraints.

Lemma 4.4.5 Let P = observe client function I(~I:~T):T is B by D do C;
call I( ~E) be a main program of OBS� such that �;L ` P

p
.

Let � be a valid H-environment over A. If A preserves alias legality with respect
to L, stAliasOk(H;A; �), and (~v; �n) = E�H� [[ ~E]] A � then,

1. stAliasOk(H;A; [store 7! �n]�) and

2. stAliasOk([~I 7! ~T ];A; [~I 7! ~v][store 7! �n]emptyEnviron)

Proof: (1)(sketch) This is shown by induction on the structure of ~E. The base case

is when ~E is empty, then �n = (� store), so the conclusion holds trivially.

The inductive case is when ~E = ( ~E0; E). This is shown by applying the inductive

hypothesis on ~E0 to obtain, stAliasOk(H;A; [store 7! �n�1]�), where �n�1 is the

resulting store of E�H� [[ ~E0]] A �. Then applying Lemma 4.4.1 to E, we can conclude
stAliasOk(H;A; [store 7! �n]�).

(2) We need to show

stAliasOk([~I 7! ~T ];A; [~I 7! ~v][store 7! �n]emptyEnviron) (4:7)

From (1), we know that storeAliasOkW (A; �n). So it su�ces to show that there

is no aliasing between the identi�ers ~I that violate stAliasOk.
If j ~I j � 1, then Equation 4.7 is trivially satis�ed.

If j ~I j > 1 then let us assume that Equation 4.7 does not hold. That means,
for Ti 6= Tj such that Ti; Tj 2 ObjectTypes , there exists an Ii : Ti and an Ij : Tj, such
that the corresponding values denoted by them vi and vj are equal for some i 6= j.

Let Ei and Ej be the expressions such that (vi; �i) = EH� [[Ei]]A [store 7! �i�1]�
and (vj; �j) = EH� [[Ej]] A [store 7! �j�1]�.

Without loss of generality, assume that i < j. From the typing rule [Elist] for

( ~Ei�1; Ei) we know that �;H;L ` Ei : Ti :: ri. But from the typing rule [Main],
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ri = fg. Applying Lemma 4.4.1 on Ei, we have aliasTypeSet(H;A; vi; [store 7!
�i]�) = fg. That is, vi is not reachable in [store 7! �i]�.

Similarly applying the typing rules and the Lemma 4.4.1 for Ej, we can conclude
that aliasTypeSet(H;A; vj; [store 7! �j]�) = fg. That is, vj is not reachable in
[store 7! �j]�.

Since vj = vi, vi is reachable in [store 7! �j]� through a path in the aliasG(�j)
as accessed by Ej. So before the denotation of Ei, vi is not reachable, and after the
denotation of Ei, at some point vi is reachable. This can only happen if vi is bound
either by Ei or by some other expression after Ei. But in such a case the alias type
set of vj in [store 7! �i]� will not be fg. This contradicts our earlier conclusion that
vj is not reachable in [store 7! �i]�. Hence our assumption that such a vi and vj
exist is wrong.

So we can conclude stAliasOk([~x 7! ~T ];A; [~x 7! ~T ][store 7! �n]emptyEnviron).

Theorem 4.4.6 Let (I�;E�) be a mutation signature and let L be an alias context
for (I�;E�). Let P be a main program of OBS�. Let A be an (I�;E�)-mutation
algebra. If A preserves alias legality with respect to L and (H; f; �) = MH

� [[P ]] A,
then (E�;L ` P

p
)) stAliasOk(H;A; �).

Proof: Let P = observe client function I(~I:~T):T is B by D do C; call
I( ~E) such that �;L ` P

p
. Let (H; f; �) =MH

� [[P ]] A.
Let �; fg;L ` D =) H 0. Let

�1 = DH
� [[D]]A[store 7! emptyStore]emptyEnviron;

�0 = CH� [[C]] A �1, and (~v; �00) = E�H� [[ ~E]] A [store 7! �0]�1. From the denotation

of P , � = [~I 7! ~v][store 7! �00]emptyEnviron.

stAliasOk(fg;A; [store 7! emptyStore]emptyEnviron)
) hby Lemma 4.4.3i

stAliasOk(H 0;A; �1)
) hby Lemma 4.4.4i

stAliasOk(H 0;A; [store 7! �0]�1)
) hby (2) of Lemma 4.4.5i

stAliasOk([~I 7! ~T ];A; [~I 7! ~v][store 7! �00]emptyEnviron).

Hence, stAliasOk(H;A; �) is true.
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5. BEHAVIORAL SUBTYPING MEANS NO SURPRISES

In this chapter, we �rst prove some general properties of OBS� and simulations,
de�ne expected results for weak and strong behavioral subtyping, and prove the \no
surprises" theorems for both strong and weak behavioral subtyping. Recall that
proving \no surprises" ensures the soundness of supertype abstraction in reasoning,
by showing that the set of results of programs when subtypes are used in place of
supertypes is an expected one. The expected set is the set of results when only the
nominal type, that is no subtyping, objects are used in programs. Since the \no
surprises" result is shown for main programs of OBS�, whenever we refer to OBS�,
we mean the main program parts of OBS�.

5.1 Properties of simulation relations

In this section we show that simulation relations are preserved by expressions,
declarations, and commands in OBS�.

Since we did not present a separate language for weak and strong behavioral
subtyping, the type and alias checking rules in Figure 4.7 are interpreted just as type
checking rules by ignoring the alias checks, for reasoning in the context of strong be-
havioral subtyping. For example, the notation �;H;L ` E : T :: r is just interpreted
as �;H ` E : T . Such a type system would allow all forms of aliasing and does not
require algebras to satisfy alias legality.

Since the following lemmas show that various constructs of OBS� preserve sim-
ulation relations, we do not use the alias context L in the type rules. That is, all the
lemmas in this section can be applied to both weak and strong behavioral subtype
relations.

The following lemma says that simulation relations are preserved by expressions
of OBS�. Recall that let is used as a strict binding mechanism in the semantics.

Lemma 5.1.1 Let (I�0;E�) and (I�00;E�) be mutation signatures. Let C be a
(I�0;E�)-mutation algebra and A be a (I�00;�)-mutation algebra. Let R be a E�-
simulation relation from C to A.
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Let H be a type environment and �C and �A be valid H-states. Then for each
expression E in OBS� such that E�;H ` E : T , for each y : T 62 H,

�C RH �A
)
(let (vC; �

0
C
) = EH� [[E]] C �C in [y 7! vC][store 7! �0

C
]�C)

R[y 7!T ][store7!Store]H

(let (vA; �
0
A
) = EH� [[E]] A �A in [y 7! vA][store 7! �0

A
]�A)

Proof: (by induction on the structure of E.) Let �C, and �A be valid H-states
over C and A respectively. Let T 2 TYPES and E : T such that �;H;` E : T .

Suppose that
�C RH �A (5:1)

Basis: Suppose that E is either a numeral N, true, or false. In that case,
since �0

C
= �C and �0

A
= �A. Further, from the semantics, we have vC = vA. If E

is nothing, then from then the result follows from the substitution property. If E
is an identi�er, then the result follows from the hypothesis (Equation 5.1) and the
bindable property.

Inductive Step: Suppose that E has the form g( ~E). Since g( ~E) has a type T ,

it must be that g : (~S; Store)! (T; Store), for some ~S 2 TYPES .

If the result of executing gC( ~E) in �C or g( ~E) in �A is ?, then from the substi-
tution property the conclusion of the lemma is true.

When the results are proper, let (vC; �
0
C
) = EH� [[g( ~E)]] C �C and (vA; �

0
A
) =

EH� [[g( ~E)]] A �A
The inductive hypothesis is that the lemma is true for each subexpression, Ei of

type Si of ~E. So, for fresh identi�ers zi : Si, if H 0 = H [ f(z0; S0); � � � ; (zi�1; Si�1)g
then for all H 0-states, �C;i�1 and �A;i�1, over C and A such that for each type
Si and for each expression Ei of type Si, if (vC;i; �C;i) = EH� [[Ei]] C �C;i�1 and
(vA;i; �A;i) = EH� [[Ei]] A �A;i�1 then

�C;i�1 RH 0 �A;i�1

The plan is to use the induction hypothesis for each expression ~E, for each i,
binding the result of Ei to zi. Using this we construct new states �C;i and �A;i

corresponding to ~E, such that the following hold for each 1 � i � n:

(~vC;n; �C;n) = E�H� [[~E]] C (�C; �C) (5.2)

(�C;i zi) = vC;i (5.3)
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(~vA;n; �A;n) = E�H� [[~E]] A (�A; �A) (5.4)

(�A;i zi) = vA;i (5.5)

[store 7! �C;n]�C;n R[~zi 7! ~Si][store7!Store]H [store 7! �A;n]�A;n (5.6)

If equation 5.6 holds, the following calculation shows the inductive step for g( ~E).
Let (vC; �

0
C
) = gC(~v; �C;n) and (vA; �

0
A
) = gA(~v; �A;n). Let H

0 = [~z1 7! ~S1] � � � [zn 7!
Sn][store 7! Store]H.

[store 7! �C;n]�C;n RH 0 [store 7! �A;n]�A;n

) hby the substitution property, for some y : T i
[y 7! vC][store 7! �0

C
]�C;n R[y 7!T ][store7!Store]H 0 [y 7! vA][store 7! �0

A
]�A;n

) hby the shrinkable propertyi
[y 7! vC][store 7! �0

C
]�C R[y 7!T ][store7!Store]H [y 7! vA][store 7! �0

A
]�A

It remains to construct the related states �C;nRH 00 �A;n, where H
00 = [zi 7! Si]H

and the vectors ~vC and ~vA. These states are constructed by induction on number of
arguments n, that is the length of ~E. If any of the E evaluates to ? in C, then by
the substitution property of simulations it evaluates to ? in A and hence satis�es
our condition.

For the basis, if n = 0, then ~E is empty and we let �C;0 = �C, �A;0 = �A,
~vC = (), and ~vA = (). The required properties hold trivially.

For the inductive step, suppose that ~E is E1; � � � ; Ej�1; Ej, and assume induc-
tively that for j > 0 �C;j�1, �A;j�1, ~vC;j�1, and ~vA;j�1 satisfy the required properties.

The required stores, along with locations that will be used shortly, are con-
structed as follows.

(vC;j; �C;j)
def
= EH� [[Ej]] C �C;j�1 (5.7)

(vA;j; �A;j)
def
= EH� [[Ej]] A �A;j�1 (5.8)

We de�ne the required environments and lists as follows.

~vC;j
def
= (~vC;j�1; vC;j) (5.9)

~vA;j
def
= (~vA;j�1; vA;j) (5.10)

�C;j
def
= [zj 7! vC;j][store 7! �C;j]�C;j�1 (5.11)

�A;j
def
= [zj 7! vA;j][store 7! �A;j]�A;j�1: (5.12)

To show that ~vC;j and �C;j have the required properties of Equation 5.2 we
calculate as follows.

E�H� [[E1 � � �Ej�1 Ej]] C �C
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= hby de�nition of E�i
let ((v1; � � � ; vj�1); �j�1) = E�H� [[E1; � � � ; Ej�1]] A �C in
EH� [[Ej]] A [store 7! �j�1]�C

) hby inductive hypothesisi
let (vC;j; �C;j) = EH� [[Ej]] C [store 7! �C;j�1]�C in
((~vC;j�1; vC;j); �C;j)

= hby de�nition of (~vC;j; �C;j)i
(~vC;j; �C;j)

Similarly, ~vC;j and �A;j have the required properties of Equation 5.4.
From the construction of �C;j and from the distinctness of each zi, (�C;j zi) = vi

for any i � j. This veri�es the required property 5.3. Similarly we can show that
�C;j has the property given in Equation 5.5.

Equation 5.6 thus follows directly from the main inductive hypothesis, because
of the inductive assumption that �C;j�1 R �A;j�1.

The following lemma extends the above lemma to show that simulation relations
are preserved by command in OBS�.

Lemma 5.1.2 Let (I�0;E�) and (I�00;E�) be mutation signatures. Let B be a
(I�0;E�)-mutation algebra and A be a (I�00;�)-mutation algebra. Let R be a E�-
simulation algebra from B to A.

Let H be a type environment and �B and �A be a valid H-states. Then for each
command C such that E�;H;` C

p
, if �0

B
= CH� [[C]] B �B and �0

A
= CH� [[C]] A �A

then
�B RH �A ) [store 7! �0

B
]�B RH [store 7! �0

A
]�A (5:13)

Proof: (by induction on the structure of C)
Let �B, �A be a valid H-states over B and A respectively. Let C be a command

in OBS� such that the free variables of C are in H.
Let �0

B
= CH� [[C]] B �B and �0

A
= CH� [[C]] A �A

Suppose that �B RH �A.
Basis: Suppose C is an expression E of type T .
If E evaluates to ? in �B, then from the previous lemma it evaluate to ? in �A.

And from bistrict property ?RH ?.
Otherwise, let (vB; �

0
B
) = EH� [[E]]B �B and (vA; �

0
A
) = EH� [[E]]A �A. Then we

can show the result by the following calculation.

�B RH �A
) hby the previous lemma, for some fresh identi�er y : T i
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[y 7! vB][store 7! �0
B
]�B R[y 7!T ][store7!Store]H [y 7! vA][store 7! �0

A
]�A

) hby the shrinkable property of simulationsi
[store 7! �0

B
]�B R[store7!Store]H [store 7! �0

A
]�A

= hby the hypothesis that H(store) = Storei
[store 7! �0

B
]�B RH [store 7! �0

A
]�B

Inductive Step: Assume, inductively, that the result holds for all subcommands
of C. There are two cases.

1. Suppose C is C1;C2. Let �B;1 = CH� [[C1]] B �B, �A;1 = CH� [[C1]] A �A,
�B;2 = CH� [[C2]] B [store 7! �B;1]�B, and �A;2 = CH� [[C2]] A [store 7! �A;1]�A.

�B RH �A
) hby the inductive hypothesisi

[store 7! �B;1]�B RH [store 7! �A;1]�A
) hby the inductive hypothesisi

[store 7! �B;2]�B RH [store 7! �A;2]�A

2. Suppose C is \if E then C1 else C2".
If the result of evaluation E in �B or in �A is ?, then by the previous lemma it

evaluates in both cases. And from bistrict property ?RH ?.
Let y : Bool be a fresh variable. Let (vB; �

0
B
) = EH� [[E]] B �B and (vA; �

0
A
) =

EH� [[E]] A �A. Then by the previous lemma

[y 7! vB][store 7! store0B]�B R[y 7!Bool]H [y 7! vA][store 7! �0A]�A (5:14)

Since Bool is a visible type, if vB 2 VALSBBool then from R is VIS -identical,

vB = vA (5:15)

Hence the result of the test is the same in both B and in A.

[y 7! vB][store 7! �0
B
]�B R[y 7!Bool]H [y 7! vA][store 7! �0

A
]�A

) hby the shrinkable property of simulationsi
[store 7! �0

B
]�B RH [store 7! �0

A
]�A

) hby the inductive hypothesis and if vB is truei
[store 7! (CH� [[C1]] B [store 7! �0

B
]�B)]�B

RH [store 7! CH� [[C1]] A [store 7! �0
A
]�A]�A

Similarly, if vB is false, we can prove that

[store 7! (CH� [[C2]]C [store 7! �0
C
]�C)]�C

RH [store 7! (CH� [[C2]] A [store 7! �0
A
]�A)]�A:

We prove the following lemma that is useful in combining two environments.
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Lemma 5.1.3 Let (I�0;E�) and (I�00;E�) be mutation signatures. Let C be a
(I�0;E�)-mutation algebra and A be a (I�00;�)-mutation algebra. Let R be a E�-
simulation relation from C to A.

Let H be a type environment and let D be a declaration such that E�;H `
D =) H 0. If �C and �A be valid H-states and �0

C
and �0

A
be valid H 0-states such

that �0
C
= DH

� [[D]] C �C and �0
A
= DH

� [[D]] A �A. Then

(�C RH �A) ^ (�0C RH 0 �0A)) (�C ] �0C)RH[H 0 (�A ] �0A) (5:16)

Proof: This is shown by induction on the structure ofD. IfD is an empty declaration,
then Equation 5.16 is trivially true.

If D is const I:T := E, then applying Lemma 5.1.1 on E when the identi�er
y = I, we can conclude that Equation 5.16 is true. The following calculation gives
more detail. Let (vC; �

0
C
) = EH� [[E]] C �C and (vA; �

0
A
) = EH� [[E]] A �A.

�C RH �A
) hby lemma 5.1.1 using I for yi

[I 7! vC][store 7! �0
C
]�C R[I 7!T ]H [I 7! vA][store 7! �0

A
]�A

) hby rearranging the environments using 7!i
[store 7! �0

C
](�C [ [I 7! vC][store 7! �0

C
]emptyEnviron)

RH[f(I;T );(store;Store)g [store 7! �0
A
](�A [ [I 7! vA][store 7! �0

A
]emptyEnviron)

= hby de�nition of ]i
(�C ] [I 7! vC][store 7! �0

C
]emptyEnviron)

RH[H 0 (�A ] [I 7! vA][store 7! �0
A
]emptyEnviron)

The induction step is when D = D1;D2. Assume that the hypothesis is true for
all subdeclarations ofD. Let �C;1 = DH

� [[D1]]C �C and �C;2 = DH
� [[D2]]C (�C;1]�C).

Let �A;1 = DH
� [[D1]] A �A and �A;2 = DH

� [[D2]] A (�A;1 ] �A). Let H1 and H2 be
the corresponding type contexts for D1 and D2 respectively.

�C RH �A
) hby induction hypothesis on D1i

(�C;1 ] �C;1)RH[H1
(�A ] �A;1)

) hby induction hypothesis on D2i
((�C ] �C;1) [ �C;2)R(H[H1)[H2

((�A [ �A;1) ] �A;2)
) hby associativity of ]i

(�C ] (�C;1 ] �C;2))RH[(H1[H2) (�A ] (�A;1 ] �A;2))
= hby semantics of declarationsi

(�C ] �0
C
)RH[H 0 (�A ] �0

A
)
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Lemma 5.1.4 Let (I�0;E�) and (I�00;E�) be mutation signatures. Let C be a
(I�0;E�)-mutation algebra and A be a (I�00;�)-mutation algebra. Let R be a E�-
simulation relation from C to A.

Let H be a type environment and �C and �A be a valid H-states. Then for
each declaration D such that E�;H ` D =) H 0, if �0

C
= DH

� [[D]] C �C and
�0
A
= DH

� [[D]] A �A then

�C RH �A ) �0C RH 0 �0A (5:17)

Proof: From Lemma 5.1.3, we have (�C ] �0C) RH[H 0 (�A ] �0C). By shrinkable
property of simulations, we have �0

C
RH �0

A
.

The following lemma uses previous lemmas to show that bodies of the client
functions of OBS� preserve simulations.

Lemma 5.1.5 Let (I�;E�) be a mutation signature. Let SPEC be the set of E�

mutation algebras and let A 2 SPEC. Let P = client function I(~F:~T):T is

D C return E by D do C; call I( ~E) such that E�; fg ` P
p
. Let (H; f; s) =

MH
� [[P ]] A. Let E�;H ` D =) H 0 and E�;H [H 0 ` E : T .
Let C;A 2 SPEC. Let R be a E�-simulation relation from C to A. Let �C be

a valid H-state over C and �A be a valid H-state over A. If (vC; �
0
C
) = (f C �C)

and (vA; �
0
A
) = (f A �A) then for any fresh identi�er y : T ,

�C RH �A ) [y 7! vC]�
0
C R[y 7!T ](H[H 0) [y 7! vA]�0A (5:18)

Proof: Let E�;H ` D =) H 0, E�;H [H 0 ` C
p
, and E�;H [H 0 ` E : T .

Let �C;1 = DH
� [[D]] C �C, �A;1 = DH

� [[D]] A �A, �C;2 = CH� [[C]] C (�C ] �C;1),
�A;2 = CH� [[C]] A (�A ] �A;1), (vC; �C;3) = EH� [[E]] C [store 7! �C;2](�C ] �C;1),
and (vA; �A;3) = EH� [[E]] A [store 7! �A;2](�A ] �A;1).

�C RH �A
) hby Lemma 5.1.3i

(�C ] �C;1)RH[H 0 (�A ] �A;1)
) hby Lemma 5.1.2i

[store 7! �C;2](�C ] �C;1)RH[H 0 [store 7! �A;2](�A ] �A;1)
) hby Lemma 5.1.1 for any y : T i

[y 7! vC][store 7! �C;3](�C ] �C;1)
R[y 7!T ](H[H 0) [y 7! vA][store 7! �A;3](�A ] �A;1)
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5.2 Expected results and \no surprises" for weak behavioral subtyping

In this section we develop the notion of the set of expected results for an observa-
tion, which is used to show the adequacy of our notions of behavioral subtyping. For
modular reasoning, conclusions about programs in the context of supertypes should
be valid in the context of executing the programs with subtypes. The kinds of conclu-
sions one can make in the presence of aliasing will be di�erent than the conclusions
one can make with some restrictions on aliasing. Hence, we require di�erent notions
of expected results for weak and strong behavioral subtyping. In this section, we
de�ne two sets of expected results for (client) functions of OBS�: one appropriate for
weak behavioral subtyping, where aliasing is restrictive and one for strong behavioral
subtyping, where aliasing is not restricted.

Ideally, we would like to de�ne the expected set of results for behavioral subtyp-
ing in terms of stores without any subtyping. This form of nominal store is possible
for weak behavioral subtyping, because of restriction of aliasing. But for strong be-
havioral subtyping, because we allow all forms of aliasing, it is not sensible to restrict
our study to stores that do not contain subtyping, that is nominal stores. This is be-
cause we cannot, in general, construct nominal stores that preserve aliasing. Hence,
the kinds of conclusions for programs with strong behavioral subtyping are di�erent
than for weak behavioral subtyping. So we have two di�erent notions of the set of
expected results for weak and strong behavioral subtyping.

The set of expected results for weak behavioral subtyping are the results of
invoking the client function, f , over all stores without any subtyping and over all
possible values such that they do not violate any aliasing constraints. Formally, it is
de�ned as follows.

De�nition 5.2.1 (weakly expected results) Let SPEC be a set of E�-mutation
algebras that preserve alias legality with respect to an alias context L. Let FN be a
client function in OBS� and let (H; f) = FN� [[FN]] Let (H; f) be the denotation of
a client function in OBS�.

Then the set of weakly expected results of f for SPEC is the union over all A 2
SPEC and all H-states, sA, over A such that sA is nominal, of the results v, where
(v; s0

A
) = (f A sA).

A result is weakly surprising for SPEC if it is not a weakly expected result.
Weakly surprising results can occur when one uses a presumed subtype relation that
is not a weak behavioral subtype relation and observes a state that is not nominal.

The \no surprises" theorem ensures the correctness of our weak behavioral sub-
typing. It shows that the set of actual results of an observation is subset of the set
of weakly expected results. This theorem ensures using supertype abstraction for
modular veri�cation is sound.
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Theorem 5.2.2 (Weak behavioral subtyping means \no surprises") Let
(I�; E�) be a mutation signature and let L be an alias context for E�. Let SPEC
be a set of E�-mutation algebras that preserve alias legality with respect to L and
let A 2 SPEC. Let P be a main program of OBS� such that E�; fg;L ` P

p
. Let

(H; f; s) =MH
� [[P ]] A.

Then for all C 2 SPEC , for all H-states, sC such that stAliasOk(H;C; sC) and
(v; s0

C
) = (f C sC), if E�:� is a weak behavioral subtype relationship for SPEC, then

the result v is a weakly expected result.

Proof: Let (I�;E�) be a mutation signature and let L be an alias context for the
external signature E�. Let SPEC be a set of E� mutation algebras that preserve
alias legality with respect to L and let A 2 SPEC. Let P be a main program of
OBS� such that the body of the client function of P is D do C return E. Let
(H; f; s) =MH

� [[P ]] A, E�;H;L ` D =) H 0, and E�;H [H 0;L ` E : T :: r.
Let C 2 SPEC and let sC be a H-state over C. Let E�:� be a weak behavioral

subtype relation for SPEC .
Since E�:� is a weak behavioral subtype relation, from the de�nition, there is

some C0 2 SPEC and a E�-simulation relation, R, from C to C0. From the coercion
property there exists a nominal H-state, sC0, over C0 such that sC RH sC0.

Let (vC; �C) = (f C sC) and (vC0; �C0) = (f C0 sC0).
From Lemma 5.1.5 and from the meaning of f , for any fresh identi�er y : T , we

have [y 7! vC]�CR[y 7!T ](H[H 0) [y 7! vC0]�C0.
Since, T 2 VIS and applying EXTERNALS -identical property, we have vC =

vC0.
Since s0

C
is a nominal state, we can conclude that the result of (f C sC) is an

expected result.

5.3 Expected results and \no surprises" for strong behavioral subtyping

Since reasoning based on strong behavioral subtyping does not assume any re-
strictions on aliasing, the coercion property does not ensure that a related nominal
environment exists. Hence, a new notion of expected result based on the history
constraint is de�ned in this section.

Any result that is obtained in a state that along with the initial state satis�es
the history constraint required by the strong behavioral subtyping is an expected
result. This set of expected results is referred as the set of strongly expected results.

Note that, though we use \strongly" this set of expected results is usually larger
than the set of weakly expected results. We use \strongly" to match the name of
strong behavioral subtyping.
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De�nition 5.3.1 (strongly expected results) Let SPEC be a set of E�-mutation
algebras. Let HCONST be a history constraint over SPEC such that each A in
SPEC satis�es the history constraint. Let FN be a client function and let (H; f) =
FN� [[FN]].

Then the set of strongly expected results of f for SPEC and HCONST is the union
over all A 2 SPEC and all H-states, sA, over A of the results v, where (v; s0

A
) =

(f A sA) and (sA store) HCONST(A) (s0
A

store).

A result is strongly surprising for SPEC and HCONST if it is not strongly ex-
pected, that is if it is not a proper result (i.e., not ?) or if the resulting state and
the original state pair do not satisfy the history constraint.

Lemma 5.3.2 Let A be a (I�;E�)-mutation algebra. Let {A be a history constraint
over A.

Let E be an expression in the main program of OBS�. Let H be a type environ-
ment such that E�;H ` E : T . Let � be a H-state over A. Let (v; �0) = EH� [[E]]A �.

If A satis�es history constraint {A, then (� store) {A �0.

Proof: (by induction on the structure of E.)
Let A be a (I�;E�)-mutation algebra and let {A be a history constraint over

A.
Let H be a type environment and let � be a valid H-environment. Let � =

(� store).
If E is a numeral, identi�er, true, false, or nothing, �0 = � and hence by

re
exivity of the history constraint, the conclusion of the lemma is true.
The inductive step is when E is g( ~E). The inductive hypothesis is that the

lemma is true for all subexpressions of g( ~E).

Let (vn; �n) = EH� [[ ~E]] A �. If � {A �n, then we use the constraint property of
strong behavioral subtyping to conclude the lemma.

So it su�ces to show that
� {A �n: (5:19)

We show this by induction on the length of ~E. If ~E is empty, then Equation 5.19
follows from the re
exivity of the history constraint.

Let Equation 5.19 be true when n is i�1. Let (vi�1; �i�1) = EH� [[E1; � � � ; Ei�1]]A
� and let (vi; �i) = EH� [[Ei]] A [store 7! �i�1]�. So from the induction hypothesis we
have, �{A �i�1. Applying main hypothesis on Ei, we can conclude that (�i�1{A �i).
By the transitivity of history constraints we have � {A �i, which completes the in-
duction.
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Lemma 5.3.3 Let A be a (I�;E�)-mutation algebra. Let {A be a history constraint
over A.

Let C be a command in the main program of OBS�. Let H be a type environment
such that E�;H ` C

p
. Let � be a H-state over A. Let �0 = EH� [[C]] A �.

If A satis�es history constraint {A then (� store) {A �0.

Proof: (sketch) This can be shown by induction on the structure of C.
If C is an expression, then the conclusion follows from the previous lemma. If

C is C1;C2, applying the induction on C1 and C2 and using the transitivity of the
history constraint, we can conclude that (� store) {A �0. For the case when C is an
if command, we use the previous lemma for E, induction hypothesis for C1 or C2

depending on the value of E, and transitivity to conclude the lemma.

Lemma 5.3.4 Let A be a (I�;E�)-mutation algebra. Let {A be a history constraint
over A.

Let D be a command in the main program of OBS�. Let H be a type environment
such that E�;H ` D =) H 0. Let � be a H-state over A. Let �0 = EH� [[D]] A �.

If A satis�es history constraint {A then (� store) {A �0.

Proof: (sketch) (induction on the structure of D)
The empty case is trivially true. The case when D = const I:T := E fol-

lows directly from lemma 5.3.2. The induction D = D1;D2 follows by applying the
induction hypothesis on D1 and D2 and transitivity of the history constraint.

Theorem 5.3.5 (Strong behavioral subtyping means \no surprises") Let
(I�; E�) be a mutation signature. Let SPEC be the set of E�-mutation algebras.
Let HCONST be a history constraint over SPEC . Let A 2 SPEC. Let P be a main
program in OBS� such that � : H ` P

p
. Let (H; f; sA) =MH

� [[P ]] A.
Then for all C 2 SPEC, for all H-states, sC, over C such that if E�:� is

a strong behavioral subtype relationship for SPEC with respect to HCONST and if
(v; s0

C
) = (f C sC) then v is a strongly expected result.

Proof: Let (I�;E�) be a mutation signature. Let A be a (I�;E�)-mutation algebra.
Let P be a main program in OBS�. Let (H; f; sA) = MH

� [[M ]] A, where f takes a
A a H-state.

Let C 2 SPEC and let sC be a H-state over C. and let {C = HCONST(C).
Since E�:� is a strong behavioral subtype relation for SPEC with respect to

HCONST, C satis�es the history constraint with respect to {C.
Let the body of the program f be D do C return E. Let �C = DH

� [[D]] C sC,
let �0

C
= DH

� [[C]] C (sC ] �C), and let (v; �00) = EH� [[E]] C [store 7! �0
C
](sC ] �C).
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Let (v; s0
C
) = (f C sC). Then from the semantics, we have (s0

C
store) = �00.

From Lemma 5.3.4, we have (sC store) {C (�C store). From Lemma 5.3.3, we
have (�C store){C�0C. From Lemma 5.3.2, we have �0

C
{C�00C. From the transitivity

of {, we can conclude that (sC store) {C �00
C
.

That is, (sC store) {C (s0
C
store). Hence, the result (vC; s

0
C
) of (f C s0

C
) is a

strongly expected result.
These theorems prove the soundness of weak and strong behavioral subtyping.

In the next chapter, we discuss the adequacy of these notions for modular reasoning
of OO programs.



95

6. DISCUSSION

In this chapter we discuss the signi�cance of the \no surprises" results for weak
and strong behavioral subtyping and place the context of our results in long term
goal of understanding OO programs.

6.1 Modular reasoning of OO programs

Recall that in Chapter 1, we state that our motivation for the study of behavioral
subtyping is modular veri�cation of OO programs. Since a formal discussion on the
veri�cation of OO programs is beyond the scope of this dissertation, we informally
discuss how the \no surprises" results aid in the modular veri�cation of OO programs.

6.1.1 Adequacy of weak behavioral subtyping

The \no surprises" theorem for weak behavioral subtyping states that if aliasing
is restricted, then the results of programs that use subtypes in place of supertypes
are not surprising. That is, programs that use subtype objects do not produce any
surprises.

Note that, for weak behavioral subtyping the set of expected results is calculated
using only the nominal states. This set of expected results does not change with the
addition of new behavioral subtypes. Further, the \no surprises" guarantees that
the results of using these new behavioral subtypes in place of supertypes are not
surprising. Hence, conclusions based on this set of expected results does not change
with the addition of new behavioral subtypes. For sound modular reasoning using
supertype abstraction this result is signi�cant because it ensures that the addition of
new behavioral subtypes does not require reveri�cation.

6.1.2 Adequacy of strong behavioral subtyping

Every strong behavioral subtype relation is a weak behavioral subtype relation.
Thus if the alias conditions are satis�ed then the \no surprises" theorem of weak
behavioral subtyping applies for strong behavioral subtype relations also. Hence, the
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supertype abstraction principle can be used as a modular reasoning technique in such
a case.

But strong behavioral subtyping does not place any restrictions on aliasing. So
a sound reasoning technique based on strong behavioral subtyping should not make
any assumptions on aliasing. If the reasoning technique does not assume any alias
restrictions, then we cannot conclude properties of programs based on method invo-
cations directly. To see this, consider the following program, where NewAccount0 and
NewAccount1 are two unrelated account types with no common behavioral subtype.

client function is_Changing(b:NewAccount0, p:NewAccount1): Bool

is const m: MoneyObj = mkMoneyObj(5);

const bal: Int = value(balance(b));

do

withdraw(p, m)

return (equal(value(balance(b)), bal));

The set of actual results when there are no subtypes to NewAccount0 and
NewAccount1 is ftrueg. However, with the addition of a new common behavioral
subtype, unlike weak behavioral subtyping, b and p can be aliased to an object of
the new subtype. So the set of expected results changes to ftrue, falseg. If the
addition of new types changes the set of expected results, then any conclusions based
on the set of expected results might also change. So a veri�cation technique that uses
supertype abstraction should either reverify or should not use this set of expected
results to make conclusions when new strong behavioral subtypes are added. But
reveri�cation of all existing functions when new types are added is not practical and
nonmodular.

However, a di�erent kind of modular reasoning technique based on supertype
abstraction could be used for programs that use strong behavioral subtyping. Such
a reasoning technique makes conclusions based on only the history constraints of the
static types of identi�ers in the program. If all the behavioral subtypes satisfy these
constraints, then the conclusion do not change with the addition of new types. So
this reasoning technique would be modular.

The \no surprises" result of strong behavioral subtyping guarantees that using
subtype objects in place of supertype objects does not produce any surprises with
respect to the constraint. Hence, for any sound modular reasoning technique based on
supertype abstraction that makes conclusions based only on the constraint property,
strong behavioral subtyping is an adequate notion.

A closer look at the kinds of conclusions one can derive out of the constraint
property shows that only a few conclusions can be made using this approach. Since
one cannot specify properties with speci�c values to variables over states, one can-
not conclude anything but re
exive and transitive properties such as immutability,
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never increasing, never decreasing, and similar monotonic properties. However, if the
reasoning technique assumes aliasing restrictions then we could conclude more about
programs based on e�ects of method invocations.

6.2 Context of our results

The context of any study of behavioral subtyping is to understand OO programs
that use subtype polymorphism. Whether one uses proof-theoretic techniques or
model-theoretic techniques, the main goal is to capture a relationship that aids in
understanding, formally or informally, OO programs. In this section, we look at this
context and place the results of our work with respect to this context.

Most proof-theoretic approaches [Ame91, LW94, DL96] study relationships be-
tween speci�c types and conclude that a behavioral subtype relationship exists. Prov-
ing these subtype relationships is easier. Since the behavior of types is given by their
speci�cation, these studies do not need a di�erent model and a di�erent semantics for
studying behavioral subtype relations. However, none of the proof-theoretic studies,
so far, apply behavioral subtyping to the results of programs and show that their
notion of behavioral subtyping do not produce any surprising results.

Model-theoretic studies [LW95], including this study, give models of type spec-
i�cations, de�ne behavioral subtype relations over those models, and prove that
valid behavioral subtype relationships do not result any surprising behavior. These
are shown over the context of a OO programming language. Compared to proof-
theoretic approaches, it is tedious to prove behavioral subtype relationships using
model-theoretic techniques. The results of these studies can be used for a sound
modular reasoning technique [LW95].

An important future work is the study that bridges these two approaches. The
results of such a study combine the ease of proving subtype relationships and the
automatic application of \no surprises" results to modular veri�cation. The work
in this dissertation leads to a result that allows modular reasoning of OO programs.
The next step is a modular veri�cation logic, which is left as a future work.

In [LP94], Leavens and Pigozzi give a de�nition of behavioral subtyping for
immutable types that is both sound and complete. Though we use a similar notion
of simulations, it is not clear whether our notions of weak and strong behavioral
subtyping are complete. We leave this as an open problem.

Work on split semantics, analyzing aliasing constraints in method bodies, and
extending mutation algebras to model nondeterministic types, are also left as future
work.
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7. CONCLUSIONS AND SUMMARY

In this chapter we summarize our study of behavioral subtyping in the context
of mutation and aliasing by highlighting our contributions and by presenting our
conclusions.

7.1 Conclusions

In this section, we o�er some conclusions from our study and provide informal
guidelines for de�ning behavioral subtyping among di�erent types.

Most OO languages allow users to declare subtype relationships. Often large
OO software systems are constructed using subtype hierarchies and subtype poly-
morphism. If the subtype relation is not a valid one, then software systems based on
such incorrect relationships produce unexpected results and hence, the whole soft-
ware systems might fail. So understanding behavioral subtype relations is important
for the correctness of OO software.

Behavioral subtyping is closely tied to aliasing allowed in a language. Aliasing
allowed in programs determines the notion of behavioral subtyping and hence the
kinds of reasoning technique that can be used to reason about the programs.

If subtype hierarchies are used in a context where there are very few aliases, then
weak behavioral subtyping with appropriate alias restrictions should be used. This
gives several practical type hierarchies as seen in Figure 3.4. It also gives a richer
reasoning technique in the sense that it can make more conclusions about programs.
Hence, we believe that these alias restrictions may actually be of some bene�t.

However, if objects of these types are used in a context where one needs un-
restricted aliasing then strong behavioral subtyping should be used. In such cases
fewer conclusions can be made about programs. Programmers that use strong be-
havioral subtyping should be aware of the e�ects of behavioral subtyping on aliasing.
It might be surprising to �nd out that identi�ers of two di�erent types can, in future,
be aliased. This happens when one declares a common strong behavioral subtype to
these two types.

The following are a set of guidelines that can be used as an informal checklist to
de�ne behavioral subtype relationships.
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� What is the relationship between the abstract values of subtype objects and
supertype objects? That is, how can one coerce a state that contains subtype
objects to a state that contains supertype objects? This can be done with
respect to a individual value without considering any aliasing.

� What are the e�ects of the common methods of the subtype? By common
methods, we mean methods that are common to the subtypes and the super-
types. For valid behavioral subtype relationships, both weak and strong, these
common methods in the subtypes should act like their corresponding methods
in their supertypes. Not just the return values of the methods but the e�ects
of these methods on the state should also be similar.

� What are the e�ects of the extra methods in the subtype? For weak behavioral
subtypes, the behavior of the extra methods of the subtype need not be con-
sidered. That is, they can have extra mutability. However, in such cases the
aliasing of identi�ers of di�erent types need to be restricted. For strong behav-
ioral subtypes, the extra methods in the behavioral subtypes should satisfy the
history constraint of the supertype.

� Are the alais restrictions needed are practical and can they be enforced in the
system?

We believe that the answer to the last question is \yes". Though we show that
the alias restrictions can be statically enforced in a language, we do not have any
experience that it is actually the case in general.

In practice, if one does not use all the methods of a type, it is possible to
identify a subset of the type speci�cation that permits more behavioral subtype re-
lations [Lea89]. However, any future uses that might use the excluded speci�cation
might produce surprising results. To prevent such surprising behavior, we recommend
that the user de�ne and use a new type that includes only the required subspeci�ca-
tion.

7.2 Summary

The main contribution of this dissertation is the de�nition of a new notion of
behavioral subtyping in the context of mutation and aliasing that allows subtype
objects to be passed in place of supertype objects without any surprises. Other
important contributions are a model-theoretic formulation of strong behavioral sub-
typing, a new technique to statically enforce alias restrictions on programs, and a
new model for mutable types.
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We presented a new, weaker notion of behavioral subtyping that allows interest-
ing behavioral subtype relationships between mutable types and immutable types.
We have shown that this notion is sound and argued that it allows supertype ab-
straction as a sound and modular reasoning principle.

A notion of nominality is de�ned in the context of mutable types and we for-
mulate the necessary aliasing restrictions to construct these nominal states. Since
supertype abstraction principle uses nominal states, these alias restrictions need to
be enforced by any reasoning technique that uses supertype abstraction principle to
reason about programs that use mutable types. We present a multi-method language,
OBS�, and show that these alias restrictions can be statically enforced. We show the
soundness of the type and alias rules that enforce alias restrictions for OBS�.

We also de�ned a strong behavioral subtype relation that allows all forms of
aliasing. This notion uses history constraints that speci�es invariant properties of
objects across two di�erent stores. We discuss the kinds of modular reasoning that can
be done when strong behavioral subtyping is used in programs. We prove a soundness
result for strong behavioral subtyping and argued that this notion is adequate for a
modular reasoning technique that can make conclusions based only on the history
constraints.
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APPENDIX A. OMITTED DETAILS OF ALGEBRA E

We complete details of the algebra E omitted in Chapter 2 in this appendix.
The following are the omitted operation interpretations of E from Figure 2.6.

nothingE(�)
def
= (�; �)

changeE(mm; ii; �)
def
= (�; [mm 7! ii]�)

get interest(ff ; �)
def
= let m = (� ff ) in

if (valueE(m;�) < 1000)
then alloc[MoneyObj](0; �)

else alloc[MoneyObj](50; �)

get interestE(pp; �)
def
= let (ms;mc) = (� ff ) in

if ((� ms) + (� mc)) < 1000)
then alloc[MoneyObj](0; �)

else alloc[MoneyObj](50; �)

interestE(bb; �)
def
= let m = (� bb) in

if (valueE(m;�) < 1000) then (�; �)
else (�; [m 7! ((� m) + 50)]�)

interestE(pp; �)
def
= let (ms;mc) = (� pp) in

if ((� ms) + (� mc)) < 1000) then (�; �)
else (�; [ms 7! ((� ms) + 50)]�)

depositE(bb;mm; �)
def
= let m = (� bb) in

(�; [m 7! ((� m) + (� mm))]�)

depositE(pp;mm; �)
def
= let (ms;mc) = (� pp) in

(�; [ms 7! ((� ms) + (� mm))]�)

check depositE(pp;mm; �)
def
= let (ms;mc) = (� pp) in

(�; [mc 7! ((� mc) + (� mm))]�)

check balanceE(pp; �)
def
= let (ms;mc) = (� pp) in (mc; �)

Omitted details of internal operations interpretations in Figure 2.7 are given
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below.
emptyStoreE()

def
= (�(x):?)

emptySetE()
def
= (�(x):false)

isInE(l; s)
def
= (s l)

addSetE(l; s)
def
= (�(x):if (x = l) then true

else (s x))

isInDomE(l; �)
def
= l 2 Domain(�)

lookUpE(l; �)
def
= (� l)

updateE(l; v; �)
def
= [l 7! v]�

For each T 2 ObjectTypes(E),

alloc[T ](v; �)
def
= let l = lT

1+lubfijlT
i
2Domain(�)g

in

(l; [l 7! v]�)
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APPENDIX B. OMITTED DETAILS OF FIGURE 4.4

Method implementation for operations given in algebra E.

method mkMoneyObj(i: Integer):MoneyObj

is

do nothing

return new MoneyObj (i);

method value(m: MoneyObj):Integer

is const result: Integer := m.money;

do nothing

return result;

method change(m: MoneyObj, i: Integer): Void

is

do m.money = m.money + i;

return nothing;

method mkBankAccount(m: Money):BankAccount

is const money: MoneyObj := new MoneyObj (value(m));

const result: BankAccount := new BankAccount (money)

do

nothing

return result;

method mkPlusAccount(m1: Money, m2:Money):PlusAccount

is const mny1: MoneyObj := new MoneyObj (value(m1));

const mny2: MoneyObj := new MoneyObj (value(m2));

const result: FrozenAccount := new PlusAccount (mny1, mny2)

do

nothing

return result;

method balance(f: FrozenAccount): MoneyObj

is const m: MoneyObj := new MoneyObj (value(f.acct))

do nothing

return m;

method get_interest(f: FrozenAccount):MoneyObj
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is const m: MoneyObj := new MoneyObj (0)

do if (f.acct < 1000) then nothing

else change(m, 50)

return m;

method get_interest(p: PlusAccount):MoneyObj

is const m: MoneyObj := new MoneyObj (0)

do if ((p.svgs + p.chkg) < 1000) then nothing

else change(m, 50)

return m;

method balance(b: BankAccount): MoneyObj

is const m: MoneyObj := new MoneyObj (value(b.acct))

do nothing

return m;

method balance(p: PlusAccount): MoneyObj

is const m: MoneyObj := new MoneyObj (value(p.svgs + p.chkg))

do nothing

return m;

method withdraw(b: BankAccount, m: Money):Void

is const i: Integer := value(b.acct);

is const i2: Integer := value(m)

do if (i > i2) then change(b.acct, (i - i2))

else withdraw(b,m)

return nothing;

method withdraw(p: PlusAccount, m: Money):Void

is const i_s: Integer := value(p.svgs);

is const i_c: Integer := value(p.chkg);

is const i2: Integer := value(m)

do if (i_s > i2) then change(p.svgs, (i_s - i2))

else if ((i_s + i_c) > i2)

then change(p.svgs, 0);

change(p.chkg, (i_c - (i_s -i2)))

else withdraw(p, m)

return nothing;

method interest(b: BankAccount):Void

is

do if (value(b.acct) < 1000) then nothing

else change(b.acct, (value(b.acct) + 50))

return nothing;

method interest(p: PlusAccount):Void

is const i_s: Integer := value(p.svgs);
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is const i_c: Integer := value(p.chkg)

do if ((i_s + i_c) < 1000) then nothing

else change(p.svgs, (value(p.svgs) + 50))

return nothing;

method deposit(b: BankAccount, m: MoneyObj):Void

is const i0: Integer := value(b.acct);

const i1: Integer := value(m)

do change(b.acct, (i0 + i1));

method deposit(p: PlusAccount, m: MoneyObj):Void

is const i0: Integer := value(p.svgs);

const i1: Integer := value(m)

do change(p.svgs, (i0 + i1));

method check_deposit(p: PlusAccount, m: MoneyObj):Void

is const i0: Integer := value(p.chkg);

const i1: Integer := value(m)

do change(p.chkg, (i0 + i1));
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