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Abstract—Nowadays, big data systems are being widely
adopted by many domains for offering effective data solutions,
such as manufacturing, healthcare, education, and media. Big
data systems produce tons of unstructured logs that contain
buried valuable information. However, it is a daunting task to
manually unearth the information and detect system anomalies.
A few automatic methods have been developed, where the cutting-
edge machine learning technique is one of the most promising
ways.

In this paper, we propose a novel approach for anomaly
detection from big data system logs by leveraging Convolutional
Neural Networks (CNN). Different from other existing statistical
methods or traditional rule-based machine learning approaches,
our CNN-based model can automatically learn event relationships
in system logs and detect anomaly with high accuracy. Our deep
neural network consists of 1ogkey2vec embeddings, three 1D
convolutional layers, dropout layer, and max-pooling. According
to our experiment, our CNN-based approach has better accuracy
(reaches to 99%) compared to other approaches using Long
Short term memory (LSTM) and Multilayer Perceptron (MLP)
on detecting anomaly in Hadoop Distributed File System (HDFS)
logs.

Index Terms—CNN, Big Data, Log analysis, Anomaly detec-
tion.

I. INTRODUCTION

Big data system plays an increasingly important role along
with the rapid growth of massive data size. Several parallel
computing frameworks have been widely used in real-world
applications such as Dryad [1], Hadoop [2], and Spark [3].
When these big data systems process numerous data in parallel
on distributed file systems [4], [5], [6], they also produce
massive logs. In order to scrutinize problems in big data
systems and improve their performance, these logs can be
leveraged to mine crucial information for performance tuning
and anomaly detection. However, analyzing these logs is very
challenging. For example, Hadoop and Spark applications
often demand long execution duration, thus a huge size of
logs will be generated [7], [8]. Furthermore, each system
may employ its own logging framework such as log4j [9]
and self4j [10]; hence log formats could be diverse. More-
over, some unexpected events happening during the program
execution might cause big performance degradation, or even
failures [11], [12], [13]. Those scenarios are hard to be
detected manually, even for system experts.

A log entry (log line) is considered as anomaly if it
contains abnormal key words (e.g., “error”, “warning”) or

shows significant unexpected order in context, such as a
Spark executor restarts repeatedly before it stops working.
Classical anomaly detection has been studied for many years.
Various algorithms and methods have been developed, such
as basic key word searching, regulation expression matching,
traditional statistical and machine learning approaches. It may
incorrectly identify the anomalies and report false positives
when searching anomalies with key words, or matching with
regular expression. Hence, some techniques such as Support
Vector Machine (SVM) and Principal Component Analysis
(PCA) are often used to reduce the complexity of feature set
to be analyzed and improve accuracy. However, the hidden
relationships in extracted feature set are still very difficult to
be analyzed by these aforementioned approaches, which often
require more sophisticated approaches.

In recent years, deep learning approaches are leveraged in
the log analysis domain to improve automation and accuracy.
For instance, Long Short Term Memory (LSTM) and Recur-
rent Neural Network (RNN) are used by [14], [15] to detect
anomalies with a high accuracy to avoid ad-hoc feature extrac-
tion. Within all deep learning methods, Convolutional Neural
Network (CNNs) could be the most famous and widely used
approach, which has obtained great achievements in computer
vision. Due to the convolution layers, CNN-based approach
can learn the hidden relationships with higher accuracy than
other deep learning methods.

In this paper, we propose a CNN-based approach to explore
the buried complex relationship in logs and detect anomalies
effectively. First, we map the log keys to numbers and produce
the embeddings using logkey2vec. Then, embeddings are
fed into convolutional layers with different filters, where the
width of filter is equal to length of a group of log lines. Next,
a max-overtime pooling layer is applied to pick the maximum
value for all features. Finally, we add a fully connected
softmax layer to produce the probability distribution results.
We compare the CNN-based approach with several other deep
learning methods in anomaly detection for logs, and the CNN
model shows the best performance.

The rest of the paper is organized as follows. Section II
surveys the related work about anomaly detection for logs.
Section III illustrates the methodology including log process-
ing, CNN model design, and MLP model design for anomaly
detection. Section IV evaluates our CNN approach. Section V
compares our CNN approach with others. Section VI summa-



rizes our methods and future work.

II. RELATED WORK

In this section, we survey existing log processing ap-
proaches and log-based anomaly detection methods.

A. Log Processing Approaches

Big data system logs are unstructured data printed in time
sequence. Normally, each log entry (line) can be divided into
two different parts: constant and variable. The constant part are
the messages printed directly by statements in source code.
Log keys can be extracted from these constant parts, where
log keys are the common constant messages in all similar log
entries. For example, as shown in Figure 1, the log key is
“Starting task in stage TID partition bytes” in the log entry
“Starting task 12.0 in stage 1.0 (TID 58, 10.190.128.101, par-
tition 12, ANY, 5900 bytes)”. The other part is the remaining
after removing constant parts in log entries, which may contain
variable keywords such as “12.0 1.0 58 10.190.128.101, 12,
ANY, 5900”.

17/02/22 21:04:02.259 INFO TaskSetManager: Starting task 12.0 in
stage 1.0 (TID 58, 10.190.128.101, partition 12, ANY, 5900 bytes)
17/02/22 21:04:02.276 INFO TaskSetManager: Finished task 1.0 in
stage 1.0 (TID 47) in 14075 ms on 10.190.128.101 (1/384)

Fig. 1. Spark system log example

Detecting anomalies from system logs (such as Spark logs)
requires log analysis, i.e., analyzing root causes [16] using
effective methods. Usually, log analysis consists of four main
phases:

1) Parse unstructured raw logs into structure data by log
parser techniques. There are two kinds of log parsing
approaches [17]: heuristic and clustering. The clustering
methods first conduct clustering based on distances
result of logs, then create log template from each cluster.
The heuristic methods count every word’s appearance in
these log entries and select frequently appeared words
to be log events according to the predefined rules.

2) Extract log related features from parsed data. Different
approaches may use different feature extraction meth-
ods (such as rule-based approach or execution path
approach). There are several common window-based ap-
proaches for extracting different features such as session
window, sliding window, and fixed window. Specifically,
a session window is used for grouping log entries with
the same session ID. A sliding window is used to slide
forward in a certain step in the data and extract features
with some overlaps. A fixed size of window can also be
used to extract features.

3) Detect anomalies with extracted features, which is in-
troduced in details in Section II-B.

4) Fix problems based on detected anomalies. There are
many different ways to help fix problems based on de-
tected anomalies, such as root causes analysis, anomalies
visualization. For example, [14] leverages a decision

tree to visualize the anomalies, and [16] uses a linear
regression to compute the probability’s of abnormal
tasks.

B. Anomaly Detection Methods

We broadly classify the approaches of log-based anomaly
detection into two categories: statistical approaches and ma-
chine learning approaches.

a) Statistical approaches: Statistical approaches do not
need any training or learning phases, and mainly include
rule-based methods, principal component analysis (PCA), and
execution path extraction. Xu et al. [14] leverage abstract
syntax tree (AST) to generate two log variable vectors by
parsing system source code, then analyze extracted patterns
from the vectors using PCA. Tan et al. [18] propose a
general tool called SALSA, which uses state machine to
simulate data flows and control flows in big data systems
for anomaly detection in Hadoop’s historical execution logs.
Those methods have some limitations, for instance, specific
rules and system knowledge are absolutely essential. Aguilera
et al. [19] propose two statistical methods to discover causal
paths (workflow) in distributed systems by analyzing historical
logs and monitoring data from the traces of applications.
Chen et al. [20] propose a statistical workflow execution
tool named Pinpoint that leverages log traces to identify fault
modules in J2EE applications. He et al. [17] evaluate total six
supervised and unsupervised methods to provide guidelines
for log-based anomaly detection. Safyallah er al. [21] detect
system anomalies by mining common and frequent-sequence
execution traces from system logs to detect anomalies. Fu et
al. [22] leverage a rule-based approach to identify the log
keys, and detect anomalies with log keys in distributed system
log. In conclusion, statistical approaches can obtain a good
accuracy for anomaly detection if rules and thresholds are
set appropriately. Nevertheless, a special rule based approach
is hard to adopt to deal with different system logs, hence
statistical approaches are weak on portability.

b) Machine learning approaches: To avoid ad-hoc fea-
tures in rule-based statistical approaches, machine learning
techniques have been investigated for log-based anomaly de-
tection. Support Vector Machine (SVM) is a classical super-
vised machine learning approach for classification. Liang et
al. [23] build up three classifiers using RIPPER (a rule-based
classifier), SVM, and a customized Nearest Neighbor method
to predict failure events from logs. Moreover, Fulp ef al. [24]
use a sliding window to parse system logs and predict failures
using SVM. Yadwadkar et al. [25] leverage a Hidden Markov
Model (HMM), a learning approach, to detect anomalies. Lou
et al. [26] propose a Bayesian-based learning approach to
extract a construct graph from logs. However, those classical
machine learning approaches are more time-consuming when
handling large training sets.

Nowadays, deep learning becomes more and more popular
in various fields, especial computer vision. Log analysis can
also benefit from it. Long Short Term Memory (LSTM)
network is a special Recurrent Neural Network (RNN) and
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Fig. 2. Architecture of our CNN-based anomaly detection model.

is popular in the Natural Language Processing (NLP) domain.
Min et al. [15] propose a tool called Deeplog by leveraging
LSTM as its training model to detect anomalies within log
execution path. Brown et al. [27] present an unsupervised
RNN with attentions to discover relationships buried in system
logs. In the NLP area, Kim et al. [28] propose a simple CNN
model that can effective classify distributed word embeddings.
CNN has been widely applied in computer vision areas, such
as GoogleNet [29], AlexNet [30] and other specific tasks [31],
[32], [33], [34], [35]. More recently, deep Resnet [36] has
achieved human-level recognition performance on image clas-
sification tasks. CNN is also used in text analysis [28].
Moreover, Jason et al. [37] show that the CNN model can
be applied to discrete embeddings and achieve high accuracy.
Now, various CNN models have been used in text classifica-
tion.

In our prior work [16], we detect abnormal task and analyze
root causes from Spark logs. It uses a parser to extract CPU
related features, execution path features, and garbage collec-
tion features from raw logs. Then, a threshold is leveraged for
detecting abnormal tasks with longer duration. After detecting
abnormal in Spark log, we utilize a statistical rule based
approach to create seven factors and calculate the weights of
factors to decide the probability of root causes.

III. METHODOLOGY

In this section, we present our two-fold method. We first
introduce our log processing, and then detail our CNN-based
approach and MLP-based approach as the baseline.

A. Log Processing

The purpose of our log processing is to generate struc-
tural input for our CNN model. As the system log con-
sists of multiple identifiers (defined by [14]), an identifier
is an object and has a certain execution path. For exam-
ple, block_ID is an identifier token in HDFS log, and
block_a is an actual identifier and the execution path
of block_a is a sequence that consists of three related
log keys (i.e., Receiving block, PacketResponder

for block terminating, Deleting block file).
Initially, a log template parser is used to find the frequent
log constants, named log key. Then, we use another parser to
analyze and filter the raw logs into structured data consisting
of log keys (exclude useless information like timestamp of
specific logs). Next, we encode each of the parsed log key with
a unique number (e.g., HDFS log has 29 log keys mapped to 29
numbers). Specifically, we count how many unique log keys in
the whole data sets, and map each unique log key (parsed log
entries) into a unique number. Finally, we leverage a session
windows [17] to regroup those log keys to different sessions
(group). After sorting those log keys (numbers) with execution
order, we get a structured sessions. Thus, each session (group)
includes one unique identifier and a series of related log keys
(numbers), such as a session: 5 5 11 26 26 in HDFS
log belongs to one block (an identifier). Considering each
vector represents an execution path which may vary based
on environment settings (different orders), also each path may
have different lengths. For example, some abnormal blocks in
HDEFS log will be killed after just being started, so this block
only contains few log keys, which has a short length of vector.
Hence, we pad O at the end of shorter vectors, and clip longer
vectors to make each vector in the log files with the same
length.

B. CNN-based Model

Neural network is a biologically-inspired approach for pat-
tern recognition [38]. In regular fully connected networks, each
neuron is fully connected to all neurons in the previous layer
and Back-Propagation [39] is utilized to compute the error gra-
dient [40]. However, it is not scaled well for high-dimension
data such as images (e.g., images are of size 32 x 32 x 3 in
CIFAR-10 [41]). Inspired by receptive fields of cat’s visual
cortex [42], Convolutional Neural Network (CNN) has been
proposed to capture local semantic information instead of
global information and defeat the overfitting issues in regular
neural networks.

Basically, convolution is the core operation applied in the
convolutional layers and it extracts features from local recep-
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Fig. 3. Architecture of our MLP-based anomaly detection model.
TABLE I TABLE 11

NETWORK DETAILS AND SPECIFIC PARAMETERS IN OUR CNN MODEL

Layer Output

Input: vectorized log, size: 1 x 50 --

Embedded log matrix

Embedding with code book size: 29 x 128 size: 50 x 128 x1

Conv 1: [3,128,1,128], strides=[1, 1], padding="VALID* 48 x1x 128
Leaky ReLU, max pool [1,48,1,1], strides=[1, 1] 1x1x128
Conv 2: [4,128,1,128], strides=[1, 1], padding="VALID" 47 x1x128
Leaky ReLU, max pool [1,47,1,1], strides=[1, 1] 1x1x128
Conv 3:[5,128,1,128], strides=[1, 1], padding="VALID" 46 x1x128
Leaky ReLU, max pool [1,46,1,1], strides=[1, 1] 1x1x128
Concatenate Conv 1, Conv 2, Conv 3, dropout 0.5 1x384
FC: [384,2] 2

softmax

tive fields on feature maps of previous layer. An activation
function (e.g., Sigmoid, ReLU (Rectified Linear Units), Tanh)
is performed as a non-linear transformation. Following [43],
as shown in Eq. 1, the value of a unit at position (m,n) in
the j* feature map of the 7" layer can be denoted as v;;":

Pi1 Qi1
] (TR0 ) 3 ) Nt
N p=0 ¢q=0

where b;; denotes a bias function of this feature map, N
indexes over the set of feature maps in the (i — 1) layer,
P; is the height of kernel and (); is the width of kernel, and
wy is the value of parameter.

As mentioned as before, Kim et al. [28] first propose a
simple and effective CNN model based on word2vec [44]
and vanilla CNN for sentence classification with static and
non-static channels and get preeminent results in natural
language processing.

Due to the fact that log file is also one special kind
of text, log analysis can also benefit from the advances
of NLP techniques. However, log analysis is different from
the general NLP. The long span relationship widely exists
in nature language context, such as a long sentence with

NETWORK DETAILS AND PARAMETERS IN OUR MLP MODEL

Layer Output

Input: vectorized log, size: 1 x 50 --

Embedded log matrix

Embedding with code book size: 29 x 128 size: 50 x 128 x1

Avg pool [1,50,1,1], strides=[1, 1], flatten

Dropout 128
FC: [128+128], leaky ReLU
Dropout 128
FC: [128+64], leaky ReLU 64
FC: [64+32], leaky ReLU 32
FC: [32%2] 2
softmax

complex structures. But logs only contain small amount of
log keys. Moreover, the goal of anomaly detection is to look
for unexpected execution path (log key sequences), which is a
binary classification, whereas NLP tries to classify sentences
into multiple categories.

As shown in Figure 2, in the embedding layer, we create
a trainable matrix, i.e., 29 x 128 codebook, to map each log
key in a session into a vector. For example, in embedding
process, the log key 5 in session group 5 5 11 26
26 will be encoded to 0.6312, 0.7192, 0.9887,
and the whole session will be encoded as a matrix. We name
this embedding process as logkey2vec. Different from
word embedding that uses word as fine-grained unit such as
word2vec, each log key will produce log embeddings based
on the 29 x 128 codebook. The 1logkey2vec is a trainable
layer optimized with gradient decent during the training of
Neural Network. The codebook is used for mapping 1D vector
to 2D matrix as CNN input, which is a more comprehensive
mapping to enhance the relationships hidden behind logs.

The next part in CNN is convolutional layers, which convo-
lute over the embedded log vectors with three one-layer con-
volutions (filters) in same time. According to our experimental
study, we adopt three convolutional layers in parallel for CNN
training after encoding layer, with size of 3 x 128, 4x 128,



5x 128, respectively, as shown in Eq.1, where P = 3,4,5,
and @ = 128. The activation function o is Leaky Rectified
Linear Unit (leaky ReLU or LReLU) shown in Eq. 2, due
to that leaky ReLU can avoid over-fitting and solve the dead
ReLU problem by setting first part of ReLU to non-zero (a
small positive gradient). The dead ReLU problem means that
some of neurons in the network may never be activated, hence,
the parameters will never be updated. The causes of dead
ReLU have two aspects. The first one is improper parameter
initialization, and the second one is high learning rate setting
which may lead to parameter updating too large. After three
independent convolutional operations, a max-pooling layer
is applied to concatenate output of the convolutional layers.
While, for Leaky ReLU, as the gradient in all its domain
will not be 0, it will feed back a informative update for
each iteration. The max-pooling layer can also reduce over-
fitting effectively by filtering out the weak related features, and
leaving the strongest related features for next layer. Moreover,
a dropout function is applied as a regularization in the second-
to-last layer to prevent over-fitting. Finally, a softmax function
is added in the output layer. The softmax function is shown
in Eq. 3. Moreover, the parameter setting detail of CNN base
model for each layer is shown in Table I.

z if x>0
o(x) 2
0.1z if x <0

where = denotes the input before activator.
e
8= = 3)
T
2 k=1 (e)
where a; denotes the ith number of input,i=1to 2, T =2 in
our implementation.

C. MLP-based Model

According to our empirical study, parameter tuning is very
challenging for LSTM, it is difficult to train such a complicated
model because of gradient vanish/exploding issues existing in
Recurrent Neural Networks like LSTM. As a result, the accu-
racy for anomaly detection may decrease. Hence, we decide to
use a simple and clear network with easy adjustable parameters
as our baseline to compare with CNN in order to prove its
efficacy. Therefore, we design a Multilayer Perceptron (MLP)
as our baseline model and also train it on logkey2vec of
HDEFS logs. MLP is a kind of basic feed-forward artificial
neural network. It consists of three components: input layer,
hidden layers and output layer. Each hidden layer is activated
with a non-linear function. BP is often utilized to update the
weights of MLP. More than one hidden layers are designed
to increase/decrease the complication of models. The output
layer could be different depending on the objective function.
The workflow of our MLP model for log based anomaly
detection is shown in Figure 3. The input embedding stage
is the same as CNN’s logkey2vec, and it encodes vectors
using the same codebook. The parameters of MLP model for

each layer are shown in Table II, the hidden layers are three
fully-connected layers without any convolutional layers, and
the number of MLP hidden neurons for each fully connected
(FC) layer is 128, 64, and 32, respectively. Following the CNN
model, LReLU is also used as MLP’s activation function. The
output of FC layer is concatenated to a vector by an average-
pooling layer.

IV. EVALUATION

In this section, we first introduce the experiment setup, and
then evaluate the accuracy of the CNN-based approach for
detecting anomalies in HDFS data sets.

A. Experiment setup and data set

Our CNN-based approach is implemented in Tensor-
Flow [45]. We compare the accuracy of our approach with
other deep learning methods in log-based anomaly detection
using HDFS log, a widely used benchmark dataset employed
by other approaches [14], [15].

The HDFS log is a dataset generated from running over 200
days experiment in Amazon EC2. The data was first published
by Xu et al. [14], and analyzed by many approaches such
as SVM, PCA, logistic, and LSTM based anomaly detection.
The raw log file is 1.55 GB and contains 11,197,954 log
entries. Moreover, HDFS log records the states of each HDFS
block during job execution time, and includes 29 unique log
keys. Furthermore, the raw data is always parsed with session
windows, and each line consists of unique blockld with related
log keys in the parsed format. We leverage the parsed and
labeled ground truth data, which is the same as [15]. It contains
normal training set (4,855 parsed sessions), normal testing set
(553,366 parsed sessions), abnormal training set (1,638 parsed
sessions) and abnormal testing set (15,200 parsed sessions).

B. Accuracy of Our Methods

We evaluate CNN with our MLP baseline model and LSTM
model on HDFS logs.

Due to the fact that both CNN and MLP are supervised
approaches, and both require training before testing, we use
normal training set from [15], and select 1% of abnormal
testing data set as abnormal training set. Here, the remained
99% abnormal testing set combines with normal testing set as
total testing set.

Those models are evaluated by the metrics listed blow: True
positive (TP) represents the number of real anomalies that are
correctly detected as anomalies by our approach. True negative
(TN) represents the normal cases that are correctly identified as
normal case. False positive (FP) presents the normal scenarios
that are incorrectly identified as anomalies. False negative (FN)
represents the abnormal log cases that are identified as normal.
Based on the four metrics, we calculate the Precision (P),
Recall, and F1-measure for each tested approaches. Precision
is calculated by Eq. (4), which represents the correctly detected
anomalies percentage in reported anomalies. Recall is calcu-
lated by Eq. (5), which shows the detected true anomalies in
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TABLE III
THE COMPARISON OF DIFFERENT MODELS ON HDFS LOG.

Model Accuracy (%) Precision Recall Fl-measure

CNN 99.94856e-05 97.74068e-05 99.340035 98.54+0014

MLP 99.894588e-05 | 98.124+918e-05 | 98.04+£0036 | 98.08+£0018
LSTM [15] — 95 95 96

all real anomalies. F1-measure is calculated by Eq. (6), which
represents the harmonic average of the P and recall.

TP

= — 4
(TP+FP) @)
TP
Reca” = m (5)
2P-Recall
FI- =
measure (P + Recall) 6)

C. Results

To compare the accuracy of our CNN model with LSTM
and our MLP baseline model, we list all the evaluation metrics
results in Table III. Our CNN achieves better results on all the
metrics than the other two models.

Figure 4 compares the accuracy, precision, recall, and F1-
measure of our CNN and MLP based approaches in each
epoch of the training using HDFS logs. The red line is our
CNN-based approach, and the blue line is the fully connected
MLP-based approach without convolution layers. Figure 4 (a)
shows that CNN has the higher accuracy. Although both CNN
and MLP can achieve high accuracy finally, MLP starts with
lower accuracy and slowly converges to high accuracy after
85 epochs. Figure 4 (b) presents that the precision curves of
both models have some fluctuations; however, the curve of
CNN model is much more stable than MLP. Moreover, CNN
could converge in high precision after few epochs, and MLP
converges after 100 epochs. Figure 4 (c) shows the recall of
both models. The recall value of MLP starts at 0 and converges
to 98.7 in 20 epochs, and CNN’s recall is around 0.9 at the

beginning, which is much higher than MLP’s recall. Figure 4
(d) shows F1-measure of both models, where CNN could reach
to a high accuracy in few epochs, but MLP converges till 90
epochs. All the evaluation metrics show that the MLP model
converges slowly and is more time-consuming than the CNN
model on the training of HDFS logs.

To evaluate if the embedding layer could impact the accu-
racy, we design an extra experiment by eliminating the em-
bedding layer inside our MLP model. After MLP model trains
with a series of log key vector directly without embedding
process, we get the results with accuracy of 0.997, precision
of 0.9732, recall of 0.95044 and Fl-measure of 0.961726.
Compared with the results shown in Table III, it demonstrates
that the embedding process could cause big difference in the
efficiency MLP for HDFS log classification. It is because that
the embedding layer leverages codebook to encode vector
into matrix, and this processing could learn comprehensive
semantic representation of log.

V. DISCUSSION

In this section, we discuss potential reasons why the CNN
model works better than the other two network approaches.
Moreover, we analyze the significance of our CNN assembled
the embedding layer.

A. CNN vs. MLP

There are two reasons that make the CNN and MLP models
show different accuracy on HDFS log data. First, in a CNN
network, the learning of weights not only takes the correlation
between the horizontal embedding codes into account, but also
the correlation between longitudinal entries in logs, which is
a 2-dimensional convolution operation. More specifically, the
method of MLP is relatively simple and fast, but the training
procedure does not use the context information. Secondly, our
CNN can mine more relationships in log context by leveraging
multiple filters. After input embedding, each line of parsed
data belongs to a unique identifier group, and consists of iden-
tifiers related log events in a sorted order. Namely, the parsed
data presents an extracted execution path that has stronger
co-correlation, where each identifier has a short and tight
structure, and each log is positioned in a meaningful context.



For example, Job start is before Job is running, and
Job Finish before Job is detected. Therefore, the
CNN-based model can leverage convolution layer to extract
those related features (relationships), which makes CNN get
better performance.

B. CNN vs. LSTM

Long Short Term Memory networks (LSTMs) is an effective
model for text classification, which shows more advantages
than other approaches. Generally speaking, LSTM can store
context information in each cell and continuously roll up
the cell for next cell computation. Namely, the next cell’s
input is determined by the current cell’s output and the prior
cell’s output. Hence, LSTM can mine long span information
produced in a log execution path.

However, some factors may impact the LSTM’s perfor-
mance in log-based anomaly detection. First, the requirements
of log analysis are quite different from NLP, where system
logs have different structures from regular text files. Secondly,
NLP requires word separation based on word2vec, and
log analysis leverages log separation. Thirdly, as mentioned
before, log has short sequence relationship among log entries.
As each extracted execution path from log consists of many
log entries (log keys), a log entries may not be related the
log entries far from it. For example, in HDFS log, the start
state of Receiving block of block and the finish state
of Deleting block file are not very related. Thus,
the long span information is not much useful for LSTM.
Finally, the parameters of LSTM is hard to tune, which is
very challenging to achieve a good performance.

When applying CNN to NLP, the word (log line) embedding
can be naturally attached into the training of network, and
then convert each log file vector into a 2-D matrix. Inside
the matrix, each row indicates an encoding of word (log
line), and column is the number of words inside the log
file. In CNN, it naturally considers the content inside each
log file, and is flexible to control its “memory length” by
setting multiple convolutional kernel size, which turns out to
be much easier to train compared with the recurrent-based
network. For our implementation of log anomaly detection,
there are only 29 words and more importantly, the log length
is stable (average length is 19), thus, the encoding operation
is much easier without losing much information. Hence, CNN
is the preferred method for handling log data among the deep
learning methods.

C. Logkey2vec embedding vs. Non-embedding

According to our experiment result, the network (CNN and
MLP) assembled with embedding layer could achieve a better
performance than our control group without embedding, and
also the one that separately perform embedding layer before
the DNN classifier, the result is presented in Section IV. There
are two main reasons.

Firstly, to map a log key into a fixed length vector rep-
resentation, we can catch a more comprehensive similarity
measurement between two log keys, otherwise, the distance

will be too straight forward. Such as the one hot embedding
treats the each dimension of input data as a independent input,
it marks difference for each kind of log key in the data set,
but ignores the relationship hidden among each digit.

Secondly, even if the distance between keys can be calcu-
lated through word embedding, however, it still turns out to be
difficult to set a proper library for this key-to-vector mapping,
and finally positively affect the classification accuracy. For
instance, the number of 5 and 25 may have a relatively large
distance even by mapping them into vectors by a separate
“word2vector” network, however, as the number 5 and 25
often appears next to each other in logs, it should be better
to let the network learn their concurrency and finally set
a proper mapping through a trainable embedding layer, and
finally make the real classification-oriented network easier to
be trained. By considering this, we naturally assemble the
embedding layer into the classifier and finally get our “two
stage one pass” DNN classifier.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a novel Neural Network based approach
to detect anomaly from system logs. A CNN-based approach
is implemented with different filters for convoluing with
embedded log vectors. The width of filter is equal to the
length of a group of log entries. A max-overtime pooling
is applied for picking up the maximum value. Moreover,
multiple convolutions layers are employed for computing.
Then, we add a fully connected softmax layer to produce the
probability distribution results. We also implement a MLP-
based model that consists of three hidden layers without any
convolutional kernels. Our experimental results demonstrate
that the CNN-based method can achieve a higher and faster
detection accuracy than MLP and LSTM on big data system
logs (HDFS logs). Moreover, our CNN model is a general
method that can parse log directly and does not require any
system or application specific knowledge.

For the further work, more complex system logs will be
considered for training and testing. Furthermore, we plan
to design an automatic log analyzer that can leverage deep
learning approaches to detect anomalies and classify root
causes into multiple classes.
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