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ABSTRACT

In this paper we advance communication using social networks in
two directions by considering dynamics of social graphs. First,
we formally define the problem of routing on dynamic graphs and
show an interesting and intuitive connection between graph dy-
namics and random walks on weighted graphs; graphs in which
weights summarize history of edge dynamics and allow for future
dynamics to be used as weight adjustment. Second, we present sev-
eral measurements of our proposed model on dynamic graphs ex-
tracted from real-world social networks and compare them to static
structures driven from the same graphs. We show several interest-
ing trade-offs and highlight the potential of our model to capture
dynamics, enrich graph structure, and improves the quantitative
sender anonymity when compared to the case of static graphs.

Categories and Subject Descriptors

C.2.0 [Computer Communication Networks]: General – Security

and Protection; C.4 [Performance of Systems]: Design studies

Keywords

Social networks, Anonymity, Dynamics, P2P communication.

1. INTRODUCTION
Social networks provide rich algorithmic and structural prop-

erties that can be used for building certain classes of application
benefiting from these properties. When considered along with the
main characteristic of social networks, trust, the potential of these
networks becomes very promising in solving real-world problems.
For example, social networks have been proposed as a building
block to defend against the Sybil attack [19], to enable routing
in delay tolerant networks[3, 6], and to provide peer-to-peer and
private communication [14, 9, 4]. However, social network-based
systems make certain assumptions towards achieving their goals;
trust among nodes is assumed binary [10], associations are bidi-
rectional [12], and static [14]. For example, insight is brought on
the potential of these designs by experimenting with static social
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graphs, and by ignoring the dynamic nature of social graphs. Ig-
noring this nature might be due to unavailability of tools to capture
the dynamic nature of social graphs, or the unavailability of mea-
sures to quantify the performance of the proposed designs on such
dynamic social graphs. However, the limited nature of the static so-
cial graphs prohibits us from making a concrete insight of these de-
signs in reality when considered for deployment settings in which
social graphs exhibit a dynamic behavior [7, 15]. Such behavior
greatly alters graphs structure, which is an essential determining
factor of the performance of these designs on social networks.

In this paper we proceed further to understand dynamic social
graphs for another family of applications; anonymous communica-
tion systems [14, 9, 4]. On the one hand, we extend and utilize
earlier findings in [14] and [4] of using social graphs as mixers for
anonymity. On the other hand, we improve on these results by for-
malizing the use of dynamic social structures for anonymity, and
establishing a relationship between dynamic and weighted graphs.
We show how our new design improves anonymous communica-
tion and stands against possible attacks by empowering a richer
social structure. We validate our model using empirical studies on
two dynamic social structures driven from real-world networks.

The rest of this paper is organized as follows. Preliminaries are
outlined in §2, theoretical formalism is introduced in§3, and results
and discussion in §4. We review the related work in §5, and draw
concluding remarks in §6.

2. PRELIMINARIES
In this section we review preliminaries of the prior literature on

the problem, which are required for understanding the rest of this
paper. This known literature assumes a static graph. Unless oth-
erwise is mentioned, this formalism follows from [14], which is to
the best of our knowledge the first work that directly touches upon
the problem (other literature work use the same model [9, 4]).

2.1 System Settings and Application Scenario
The idea of building mixers over social links is very simple. Im

such model, users recruit their social social acquaintance to provide
anonymity to their traffic. In a nutshell, each node (user) forwards
her own traffic to her friends, and friends forward that traffic to
their friends, and so on, for a certain number of hops, say ℓ. The
number of hops ℓ used for forwarding the traffic is a system-wide
parameter, which is determined by the security level desired in the
system. For simplicity, and without losing generality, let n be the
number of users in the system. Accordingly, the anonymity is de-
fined for two parties; the sender and the receiver of traffic. For the
receiver, the anonymity set is n, and the entropy of the probability
distribution for a certain node being the sender is Hs = log2(n).
On the other hand, the anonymity of a sender is determined by
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the probability distribution achieved after the fixed number of hops
used in the system. Let the distribution of the final node selected
in a random walk after ℓ hops starting from node vj be πℓ

j , where

πℓ
j = [πℓ

ij ]
1×n, then the anonymity of the sender of the traffic (at

the last hop in the walk) is Hr , which is given as:

Hr = −
n
∑

i=1

πℓ
ij log2 π

ℓ
ij (1)

Using (1), we define the anonymity set Aℓ as

Aℓ = 2Hr (2)

Every random walk on a graph with certain properties—see §2.3
for details—has a unique bounding or stationary distribution which
captures the maximum achieved entropy.

In the rest of this paper, and to simplify the notation, we omit
the index j, which is understood implicitly. Furthermore, the en-
tropy and anonymity set for the sender vj is obtained from the j−th
column in the matrix P , after ℓ hops (multiplications).

2.2 Threat Model and Design Goals
In this paper we use the classical model of a colluding adversary

with the capability of launching Byzantine attacks against the sys-
tem built on top of social networks [9]. The adversary has the ca-
pability of logging end-to-end information, perform active attacks,
and passive attacks. We also assume that the adversary has a limited
capability of launching a Sybil attack in reality by inserting large
number of Sybil identities [19]. In this work, however, we evaluate
the performance of our system under an ideal setting where there is
no Sybil identities are injected into the system.

As for the design goals, our design aims to provide a scalable and
efficient solution, to provide natural incentives of participation, and
to limit the attackers capabilities.

2.3 Formalization: The Case of Static Graphs
Let G = (V,E) be an undirected and unweighted graph where

|V | = n, |E| = m, V = {v1, v2, . . . , vn}, and eij ∈ E iff
vi ∼ vj ∈ V . We define A = [aij ]

n×n as the adjacency matrix of
G where aij = 1 iff eij ∈ E or 0 otherwise. Define the Markov
chain on the graph G following the transition matrix P which is
defined according to P = [pij ]

n×n where:

pij =

{

1
deg(vi)

, vi ∼ vj

0 otherwise
(3)

A unique stationary distribution is defined for the Markov chain
over the transition probabilities defined above if the Markov chain
is ergodic—requiring it to be both irreducible and aperiodic [13].
Theorem 1 states such distribution.

THEOREM 1. (Stationary distribution on static graph) For an

undirected and unweighted graph G, the stationary distribution of

the Markov chain defined over G according to transitions in (3) is

the probability vector, given as π = [πi]
1×n, where

πi = deg (vi)/2m (4)

PROOF. The proof is a special case of the weighted graph case
discussed in section 3 and follows from Theorem 2

Using the model in (1) and the distribution in (4), we define the
maximal (in size) anonymity set following the same model as in (2)
as A∞ = 2H

∞

r , where:

H∞
r = −

n
∑

i=1

(
deg (vi)

2m
) log2(

deg (vi)

2m
) (5)

2.4 Lower-bound of Anonymity
In [14] Nagaraja considered the average distribution achieved

after ℓ hops from any potential source in the social graph as the
anonymity achieved of every potential source. While this captures
the average performance in the system, it simply does not show the
worst case scenario observed at the lower-bound of the achieved
anonymity for sender. Here, we revise Nagaraja’s definition in [14]
and outline a straightforward fix for the measure of the anonymity
provided in a system that uses walks on the social graph.

Without losing generality, let ℓ be a system-wide parameter, which
represents the number of hops from the source to the destination (or
receiver) in the graph, and each node between them is chosen uni-
formly at random from its predecessor. For each source vj (for
1 ≤ j ≤ n), we define the probability distribution after ℓ hops as
πℓ(vj) = [πℓ

i (vj)]
1×n for (1 ≤ i ≤ n). The anonymity achieved

in the system is bounded below by the entropy achieved in the prob-
ability distribution obtained by walking from the worst source in
the graph:

Hr ≥ inf
vj

{−
n
∑

i=1

πℓ
i (vj) log2 π

ℓ
i (vj)} (6)

By extending (2) to the case in (6), we get the following

Aℓ = 2Hr ≥ 2
infvj {−

∑n
i=1 πℓ

i (vj) log2 πℓ
i (vj)} (7)

The intuition of this lower bound is very simple, practical, and fol-
lows from the definition. Technically, this lower bound follows the
classical theoretical trend in security: proving lower bounds of se-
curity (or anonymity as it is the case in hand) would enable us to
guarantee, in the worst time, that our system would perform better
than this bound for every user. On the other hand, considering the
average case for achieved entropy might be very deceiving since
many senders are not likely to achieve this average bound.

3. DYNAMIC GRAPHS FOR ANONYMITY
We extend findings in the literature on static graphs as mixers

for anonymous communication to the case of the dynamic graphs.
Such dynamic graphs arise naturally in many contexts due to social
churn imposed by node and edge dynamics (joining and leaving
social networks). It is worth noting that this is the first work of
its own type to consider extending such results for building anony-
mous communication systems on top of dynamic social graphs.

3.1 Formalization: Dynamic Graphs
The dynamic graph is a simple generalization of the static graph

used in literature. In particular, G = {G(i)} for 1 ≤ i ≤ t is

a dynamic graph over t time periods. Let G(i) = (V (i), E(i))

for 1 ≤ i ≤ t, where |V (i)| = n(i) and |E(i)| = m(i), be
an unweighted and undirected graph (later we extend that to the

weighted graph case). Let V (i) = {v
(i)
1 , v

(i)
2 , . . . , v

(i)

n(i)} and E(i)

be the set of pairs of vertices v
(i)
j -v

(i)
k if both nodes v

(i)
j and v

(i)
k in

V (i) are connected to each other. For G(i), we define A
(i) where

A
(i) = [a

(i)
jk ]

n(i)×n(i)

(the superscription is used as part of the
notation, and does not mean power), where:

a
(i)
jk =

{

1 v
(i)
j ∼ v

(i)
k ∈ G(i)

0 otherwise
. (8)

For the same graph G(i), we define the transition probability matrix
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Figure 1: Simple example of dynamic graph. a
(i)
12 =

w(v
(i)
1 , v

(i)
2 ) is as per the definition.

P
(i) such that P(i) = [p

(i)
jk ]

n(i)×n(i)

, where:

p
(i)
jk =

{

1/deg (a
(i)
jk ) v

(i)
j ∼ v

(i)
k ∈ G(i)

0 otherwise
. (9)

Extending and generalizing (8) and (9) to the weighted case is
easy if weights are given on edges in the graph. We define

a
(i)
jk =

{

w(v(i)
j
, v(i)

k
) v

(i)
j ∼ v

(i)
k ∈ G(i)

0 otherwise
, (10)

where w : E(i) → R is a weight function that assigns real-valued
weights to edges in G(i). Using (10), we define the degree of a
node to be in terms of weights associated with edges for which that
node is an end-vertex, as

degw (v
(i)
j ) =

∑

k

w(v
(i)
j , v

(i)
k ), v

(i)
j ∼ v

(i)
k ∈ G(i). (11)

Notice that (11) can also be written as degw (v
(i)
j ) =

∑

k
a
(i)
jk —

where a
(i)
jk is defined in (10). Using (11), we can compute P

(i) =

[p
(i)
jk ] for weighted graphs, where

p
(i)
jk =

{

w(v
(i)
j , v

(i)
k )/degw (v

(i)
j ) v

(i)
k ∼ v

(i)
k ∈ G(i)

0 otherwise
. (12)

In a matrix form, P(i) can be defined as P(i) = (D(i))−1
A

(i)

where D
(i) is a diagonal matrix computed from A

(i), where the

diagonal element d
(i)
jj in D

(i) is the sum of ones in the j-th row

in A
(i) (that is, the degree of node vix in G(i)). At any time slot

i, we define the bounding distribution of the Markov chain on the

graph Gi as in literature defined [deg (v
(i)
j )/2m(i)]. It is, however,

unclear how to proceed with the different snapshots of the same
graphs at different times.

As shown in Figure 1, both nodes v
(1)
1 and v

(1)
2 are connected,

but not with their future images—v
(2)
1 or v

(2)
1 and v

(2)
2 or v

(3)
2 , re-

spectively. This also applies to states in the future not connected to
the past images. In the following, we investigate several techniques
for modeling the dynamic social graph as a graph where transitions
from future states to past states is possible. Techniques utilize here
are generic, and can be used to any graph with multiple labels.

Prior work in the literature has tried to model dynamic graphs
as 3-mode tensor [1] or union multigraph [5]. However, while the
first uses high dimensionality—making computations on the ten-
sor computationally expensive, the second technique reduces di-
mensionality and loses some information about the graph. Indeed,
the second technique computes the union between multiple graphs
(edge- and node-wise) and omits any potential multiple edges be-
tween two nodes in the union. While this is meaningful to un-
derstand a union snapshot of multiple graphs, demonstrate con-
nectivity characteristics of the union graph driven from multiple
attributes, and potentially other benefits, it does not capture the
“depth” of edges and does not differentiate between different edges
based on their “real value”. For example, while edges in the union

v1
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v3

a
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)

12

a
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13

a
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a (3)23

a
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Figure 2: Simple example of converting a dynamic graph into

multigraph by collapsing all images of a node to the node itself.
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Figure 3: An example of multigraph conversion into weighted

graph by summing weights of edges between pairs of nodes.

multigraph are all the same, some in reality might be the result of
multiple edges whereas others could be the result of a single edge.

3.2 Dynamic Graphs as Multigraphs
Formally, for the dynamic graph G = {G(i)} described in sec-

tion 3.1, we define a multigraph G as G = (V,E), where

V =
⋃

i=1...t

{V (i)}, and E =
⊎

i=1...t

{E(i)}. (13)

Notice that ∪ is a set union, which does not allow repetition of ver-
tices, whereas ⊎ is a multiset union, which allows edge repetition.
When E is computed, the index that corresponds to the time of the
edges in Ei can be removed for simplicity. A simple toy exam-
ple of transforming the multiple snapshots of the dynamic graph in
Figure 1 into a multigraph is in Figure 2.

Our formalization above of the graph as a multigraph (rather than
union multigraph as per the way defined in [5]) follows the intuition
of what a dynamic graph could yield of associations at any time.
At a time i, where 1 ≤ i ≤ t, constructing the proper graph for
operating a potential system, like mixing-based anonymous com-
munication system, and maintaining the same information driven
from the original multiple snapshots of the graph is possible.

3.3 Dynamic Graphs as Weighted Graphs
Now, we convert the dynamic graph model represented as a multi-

graph, as in (13), into a weighted graph. We generalize formal-
izations in section 3.1. In particular, the model in (10) can be
rewritten (for weighted undirected graph) as A = [ajk]

n×n—here,
n = |V|—where

ajk =
∑

i=1...t

w(v
(i)
j , v

(i)
k ), v

(i)
j ∼ v

(i)
k ∈ G(i)∀i. (14)

Similarly, we extend the model in (11) into

degw (vj) =
∑

i=1...t

degw (v
(i)
j ) =

∑

∀k

a
(j)
k (15)

=
∑

∀k

∑

i=1...t

w(v
(i)
j , v

(i)
k ), v

(i)
j ∼ v

(i)
k ∈ G(i). (16)

We can further extend the transition probability formulation to cover
the weighted graph by plugging both (14) and (15) into a similar
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Figure 4: A weighted graph model to express dynamic graphs.

model to that of (12), to get P = [pjk]
n×n, where

pjk = ajk/ deg
w(vj) (17)

For a random walk defined on G according to the transition prob-
ability defined in (17), the following theorem states the stationary
distribution. This theorem (and the proof herein) are essential for
latter results on characterizing and operating on dynamic graphs.
Also, the proof of Theorem 1 follows similarly as in below.

THEOREM 2. Let G = (V,E) be a connected, undirected, and

weighted graph defined as in (13). For a random walk following

transition probabilities as in (17), the stationary distribution is de-

fined as π = [πi]
1×n (for n = |V|), where:

πi = degw(vi)/
∑

k=1...n

degw (vk) (18)

PROOF. See the appendix. The proof is also in [2].

3.4 Generalized weighted graphs
In many natural social contexts, recent associations are more val-

ued than older ones, or vice-versa. Accordingly, a general frame-
work for quantifying the potential of any system on top of social
networks should consider implicit social network characteristics,
such as link age, in addition to the explicit differences among links
captured by the topological structure. We generalize the model in
section 3.3 to accommodate for implicit values of associations over
time. Without losing generality, let αi (for 1 ≤ i ≤ t) be a set of
parameters that take numerical values. An extension of the social
graph model in (14) is as follows:

ajk =
∑

i=1...t

αiw(v
(i)
j , v

(i)
k ), v

(i)
j ∼ v

(i)
k ∈ G(i)∀i. (19)

The rest of the model in section 3.3, particularly in (15) onward,
holds for this generalization after adjusting ajk as in (19). A toy
example demonstrating the adjustment of weights in Figure 3 is
shown in Figure 4.

4. RESULTS

4.1 Datasets and Data Preprocessing
Our sources of data are the Facebook social network dataset [18]

and the DBLP [8] co-authorship graph, which are explained below.
The DBLP Dataset. The DBLP dataset represents co-authorship
graph, where nodes are authors and a link between two authors im-
plies that the authors have co-authored a paper. The original DBLP
dataset consists of 943, 316 nodes and 6, 379, 554 edges between
them, for publication records until May 2011 in computer science
areas. The largest connected component consists of 769, 642 and
3, 051, 127 undirected edges. To generate dynamic graphs from
that component, we select the period of 2006 to 2010 inclusive, by
selecting authors who have publications in each and every of these
years. The result is a multigraph where two nodes would have an
edge if they co-authored a paper in a given year, and number of

Table 1: Statistics of DBLP time-varying graphs. Metrics of

comparison are number of nodes (n), number of edges (m), av-

erage clustering coefficient, diameter, and radius.

nodes edges clustering diameter radius

DBLP (1) 31704 71994 0.483 26 14
DBLP (2) 33012 79475 0.480 27 14
DBLP (3) 33923 84125 0.467 24 13
DBLP (4) 33071 82282 0.453 23 12
DBLP (5) 26150 62161 0.419 24 13

such papers per year is used as weight for weighted graphs. Multi-
ple edges could be created between two authors if they co-authored
over multiple years. Multiple edges are labeled with respect to
the year of publication. The final multigraph has 46, 994 nodes
and 458, 736 edges. We decompose each multigraph to multiple-
graphs with respect to the edge label. Finally, as some nodes who
published in the given period could be isolated in a certain year, we
remove these nodes so as each resulting graph is connected. Statis-
tics of the different resulting graphs are shown in Table 1. For our
study, we consider several cases of the same graph including both
weighted and unweighted, with respect to the time.

Graphs used in our experiments are as follows. (i) Unweighted
graph with respect to each year (5 graphs). (ii) Unweighted single
graph representing the entire dataset (1 graph). (iii) Weighted sin-
gle graph representing the entire dataset. The weight on an edge
connecting two nodes is the sum of all weights of edges between
these nodes over time from the beginning to the end of recording
the graph structure. (iv) Weighted multiple snapshot graphs (up
to each year; 5); a graph G1i combines all nodes in G1 to Gi and
edges between them. (v) Unweighted multiple snapshot (up to each
year; 5). These graphs are obtained using the same method as in
the previous step but without weights. (vi) Weighted graphs with
weights assigned based on the age of the link. We use geometrical
(21−x; x = 1 newest) and reciprocal (1/x) decay distributions.

In Table 1 and Table 2, the basic structural properties are as fol-
lows. (i) Graph size: the number of nodes and number of edges in
the social graph (denoted as n and m). (ii) Clustering coefficient:
is the average (thus in [0, 1]) of local clustering coefficient for all
nodes. The local clustering coefficient for a node is the fraction
of possible triangles that go through that node. (iii) Diameter: the
longest of eccentricities among all nodes in the graph. The eccen-
tricity of a node is defined as the longest shortest path from that
node to other nodes in the graph. (iv) Radius: shortest eccentricity.
The Facebook Dataset. The Facebook dataset [18] is for wall
posts in New Orleans regional network from 2004 to 2009. A link
between two nodes indicates that the first node has interacted with
the second node. Further details on statistics of the entire dataset
is in [18]. To obtain a dynamic graph from this dataset, we limit
ourselves to the last 30 months of interactions, with each graph ob-
tained over 6 months of interaction. The resulting five graphs are
shown in Table 2. The same variations used above are also used for
Facebook.; we omit details for the lack of space.

4.2 Results
In the following we outline the results of utilizing the differ-

ent social graphs obtained in section 4.1, using the techniques de-
scribed earlier in this work. Our main measurement metric is the
achieved anonymity in terms of the total entropy in the distribu-
tion of the last hop in a random walk, as the length of the random
walk increases; computed as in (1). We keep in mind that potential
utilization of social graphs for anonymity systems would be sub-

170



Table 2: Statistics of Facebook time-varying graphs. Metrics

of comparison are number of nodes (n), number of edges (m),

average clustering coefficient, diameter, and radius.

nodes edges clustering dimeter radius

Facebook (1) 9154 23245 0.102 19 10
Facebook (2) 13288 37908 0.101 18 10
Facebook (3) 16540 42427 0.092 19 10
Facebook (4) 23879 59190 0.085 21 11
Facebook (5) 35665 86525 0.084 18 10

ject to the performance of this systems, which necessitate to a short
random walk length. We consider walk lengths varying from 1 to
20 steps, where walk lengths of 1 − 12 are demonstrated in most
experiments. As the entropy varies depending on the source of the
random walk, we are interested in the maximum, minimum (advo-
cated in section 2.4 and expressed in (6)), and mean entropies for a
given dataset as the walk length increases.
Original Unweighted Graphs. We first consider operating the
anonymity system on top of the graphs shown in Table 1 and Ta-
ble 2. First, we observe that lower-bound on the achieved entropy
or the entire system is much smaller than that of the average and
maximum entropy, for any walk length. This tells that the measure
of the lower-bound on the entropy, while theoretically appealing
for the guarantees advocated earlier, do not provide a representative
measure for the whole set of nodes in the system or graph. Second,
we observe that both the mean and the maximum of the entropy in
each of the graphs stabilizes, and reaches its potential maximum
entropy within a relatively smaller number of steps, corresponding
to shorter random walk length. This indeed interesting, and agrees
with prior work in [14], despite that the results in the prior work
have been on relatively a faster mixing social graph [13].
Dynamics as Weights. We consider modeling dynamics of so-
cial graphs as weights on edges. We use the method in 3.3 for
generating these graph with weights. The method of obtaining the
graphs is explained in 4.1. Similar observations on the results for
the tendency of weights is made as on the previous measurements.
Furthermore, the general tendency of improvement of the entropy
value as the time goes is made clear in both measurements.
Unweighted Dynamic Graphs. We consider removing weights
from the different dynamic graphs to observe how this affects the
entropy as walks length increases. For the same experiment above,
with the only difference being deletion of weights. The most impor-
tant point made clear in this experiment is that unweighted graph
generated from these weighted dynamic graphs provide higher en-
tropy for the same walk length (over the same number of nodes).
Different Weighting Scenarios. We consider the potential ways of
assigning the different weights on the social graph, based on the age
of the link, and how this impacts the achieved anonymity on these
graphs. We consider the graphs constructed from the multiple-
snapshots, according to the way described in section 3.3 and sec-
tion 3.4. We use the result in section 3.3 to generate a “linear”
weighting factor (the coefficient is 1), and thus the weight of an
edge is the number of interactions between the two nodes over all
years. We consider the same graph generated in this step without
weights as well. Finally, we use the model in section 3.4 to gener-
ate generalized weighted graphs, where weights are formed accord-
ing to the reciprocal or geometrical decay distributions explained
in 4.1. In these measurements, and somewhat counter-intuitively,
we observe that the unweighted graph model results in best entropy
(in all three categories: min, mean, and max)—Further details are
in the discussion section. On the other hand, we also observe that

in all of these graphs, the achieved anonymity is good enough (as a
portion of the maximal) even with a walk length of 10, suggesting
the usefulness of this design. Both remarks apply to both datasets,
though bias is a lot higher in Facebook than in DBLP.
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butions of weights, W is weighted, and UW is unweighted, and

numbers are to indicate which graph is used: 1-5 are original

graphs whereas 11-15 are the dynamic graph model).
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Figure 6: Average entropy for walk length of 10; all DBLP

graphs (S. is single, G and R are geometrical reciprocal distri-

butions of weights, W is weighted, and UW is unweighted, and

numbers are to indicate which graph is used: 1-5 are original

graphs whereas 11-15 are the dynamic graph model).

Combining All Scenarios. We consider all scenarios mentioned
above, for each of the datasets we had, and for a fixed random
walk length to compare them relatively and draw final conclusions
on the impact of the underlying social structure on the achieved
anonymity. We consider the random walk length ℓ = 10, and ex-
periment for both datasets to compute the entropy—both mean and
max. The results are shown in Figure 5 through Figure 6.

4.3 Analysis and Discussion
In most of the measurements of the entropy on the distribution

of the random walk after ℓ hops, we observe a relatively good en-
tropy which supports the claimed efficiency advocated in this work
and [14]. However, this entropy, for example is not as high in some
graphs, especially those the single snapshots that consider the graph
at one time period, and those resulting from assigning weights on
the graphs corresponding to the richness of the edges. This pattern
is shown in both datasets, which call for explanations.

One potential explanation of the relative difference between the
achieved entropy in the individual graphs and that obtained from

171



the graphs computed using our dynamic graph model is the inherit
increment in the size of the resulting final graph. For example,
while the largest DBLP graph is about 36,000 nodes, the final graph
of the DBLP after using our model that considers graph dynamics
would result into about 44,000 nodes in the largest connected com-
ponents. This, and the fact that the graph becomes richer of more
edges that connect multiple components in the graph, improves the
mixing characteristics of the graph, which ultimately improves the
achieved entropy as ℓ increases.

This does not explain the difference between the achieved en-
tropy in both weighted and unweighted graphs, even for the graph
with the same number of nodes and edges. For example, when
ℓ = 10, the achieved entropy on DBLP-15 when weighted is 14
while it’s 14.5 for the same graph when it is unweighted—while
the difference in entropy is small, i.e., 0.5, the 14.5 bits of entropy
provide about 23, 170 anonymity set whereas only 16, 384 are pro-
vided for the other case, which translates to more than 6, 786 of dif-
ference in anonymity set. One possible explanation of this behavior
is the intuitive meaning of weighting graphs: by assigning weights
on edges, we are biasing the random walk on such graphs and fa-
voring a node over another of being reaching at any time when run-
ning the random walk. This is, some nodes are more likely reached
whereas other nodes while less likely reaching by the random walk
which definitely decreases the potential set of nodes being used as
a last hop in the random walk. This intuitive meaning explains the
difference in the entropy in both cases.

Unexpectedly, both entropy and anonymity sets are greatly de-
creased when using the weighted graphs that model dynamic struc-
ture. One possible explanation is that these weights are obtained
by favoring some edges over others, which is more meaningful
from an anonymity point of view, whereas edges in the unweighted
graph simply make all relationships over time equal. In a realistic
scenario, where potential insider attacker could exist to penetrate
the system to get communicated messages the social overlay, the
model, which considers links to be equal independent of their his-
tory or time of creation, could be problematic. Given this intuitive
explanation of weights associated with edges, one would antici-
pate the use of weighted graphs in real-world scenarios despite this
degradation in the achieved entropy and anonymity set sizes given
their potential for minimizing harms due to edge infiltration.

5. RELATED WORK
Exploiting static social networks for anonymous communication

has been explored in [14, 9, 4], some of which has been discussed
earlier, and all did not consider the dynamic graph case. Modeling
of dynamic social graph and extracting a definition for the mixing
time is done in [1], whereas sampling multigraph defined as node
set union graphs is done in [5]. To the best of our knowledge, no
prior work considered dynamic graphs in the context of the prob-
lem in hand and as per our method. On the other hand, other as-
sumptions in social network-based systems, like binary trust [10],
edge directionality [12], and expansion properties [11] are previ-
ously consider and challenged in separate studies.

Dynamic social graphs have been studied in [7, 17, 15, 16]. Most
of these studies, however, considered mining known simple prop-
erties of social graphs, but not the mixing time and patterns used
for anonymity. Finally, observing dynamics of social networks as
set of static graphs over time has been most recently used in [20].

6. CONCLUDING REMARKS
In this paper we considered the problem of building anonymous

communication systems on (unstructured) dynamic social graphs.

We have pointed out an interesting relationship between dynamic
structures and weighted graphs, and formalized the anonymity achieved
under dynamics as a random walk on weighted graphs. We formu-
lated the problem in hand, and shown the bounding distribution,
which captures the maximal achieved entropy of a random walk on
an anonymous communication system, which uses these dynamic
structures. Through experiments on real-world datasets, we have
shown the potential of these dynamic structures, and despite their
numerical disadvantage over unweighted versions, we have pointed
out their benefits for anonymity for that they capture more mean-
ingful structure that represents stronger ties.

This work has considered “unstructured” social graphs, which a
non-constant (and likely power-law) degree distribution. On one
hand, the potential of structured graphs for anonymity is well stud-
ied, and beautiful theoretical results are already provided. On the
other hand, suitability of these results for real-world social struc-
tures, especially when considering dynamics, is unclear. In the fu-
ture, we will look at creating structured graphs from unstructured
social graphs, and explore their potential for anonymity systems.
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