
Chatter: Classifying Malware Families
Using System Event Ordering

Aziz Mohaisen, Andrew G. West, and Allison Mankin

Verisign Labs, VA, USA

Omar Alrawi

Qatar Foundation, Doha, Qatar

Abstract—Using runtime execution artifacts to identify mal-
ware and its associated “family” is an established technique in the
security domain. Many papers in the literature rely on explicit
features derived from network, file system, or registry interaction.
While effective, use of these fine-granularity data points makes
these techniquse computationally expensive. Moreover, the signa-
tures and heuristics this analysis produces are often circumvented
by subsequent malware authors.

To this end we propose CHATTER, a system that is concerned
only with the order in which high-level system events take place.
Individual events are mapped onto an alphabet and execution
traces are captured via terse concatenations of those letters.
Then, leveraging an analyst labeled corpus of malware, n-gram
document classification techniques are applied to produce a
classifier predicting malware family. This paper describes that
technique and its proof-of-concept evaluation. In its prototype
form only network events are considered and three malware
families are highlighted. We show the technique achieves roughly
80% accuracy in isolation and makes non-trivial performance
improvements when integrated with a baseline classifier of non-
ordered features (with an accuracy of roughly 95%).

I. INTRODUCTION

Malware analysis and classification is an important prob-
lem given the rapid growth of malware attacks targeting
all types of users: personal, enterprise, and government [1].
While the binary task of distinguishing malware from benign
executables is well-known, being able to reliably identify the
“strain” or “family” to which malcode belongs is an equally
important task, especially in operational and industrial set-
tings [2]. For example, family identification helps orchestrate
mitigation, assessment of damage, and reinforcement of dis-
infection mechanisms. Additionally, discovering longitudinal
trends in malware strains can enable researchers to concentrate
their efforts on understudied or emergent families [3].

Techniques for characterizing malware samples are of two
types: signature-based [4], [5] and behavior-based [6]–[8].
Signature-based techniques rely on known sets of patterns
obtained by reverse engineering and manually inspecting mal-
ware samples. Accordingly, these techniques require many
specialized man-hours of analysis. Signature-based methods
are computationally cheap in that they pattern match over static
binaries, but they are also easily circumvented by polymor-
phic obfuscation, packing, and code rearranging. Conversely,
behavior-based techniques use run-time execution artifacts to
extract features. While computationally expensive, such ap-
proaches are more effective than signature-based ones as they
are agnostic to the underlying code and any obfuscation [8].

Manually inspecting malware samples to identify
strain/class/family – while certainly possible for small datasets
– does not scale for real-world malware populations [3].
Machine learning has enabled the automation of malware
classification [9]. When a piece of malware infects a system,
the generated behavioral artifacts (often monitoring memory,
file system, registry, and/or network interfaces) contain a
wealth of features that can be used to “fingerprint” that
malware. The accuracy of machine learning algorithms
rely on three factors: algorithms, ground truth, and feature
selection [10]. Many algorithms are well-understood for their
benefits/shortcomings and their application is straightforward.
On the other hand, both ground truth and feature selection
are challenges more specific to the problem at hand [8].

Obtaining ground-truth from blackbox-like sources – in-
cluding antivirus scans – has been shown insufficient [3],
[11]. With malware’s growing complexity the limitations of
signature-based techniques utilized by major antivirus vendors
are significant. Moreover, these signatures and their output tend
to be inconsistent across multiple vendors. To the best of our
knowledge, no study in the literature relies on labels other than
those provided by antivirus vendors for ground truth, despite
the common belief that those labels are unreliable.

Determining the correct abstraction level at which to de-
rive features is equally important [10], [12]. Features that
accurately represent the malware family are an important and
defining criterion for high-fidelity malware classification. Fur-
thermore, the level of complexity needed to deploy associated
systems in operational settings determines the potential of
adopting and accepting such systems at scale. For example,
sandboxing and virtual execution is a privilege that comes with
costs in online detection systems [13]. This is, when a piece
of malware runs on a host, collecting deep features becomes
invasive to users on those hosts. To this end, while obtaining
indicative artifacts and features is important, the degree of
invasiveness is also a significant consideration.

In this paper we address both issues by introducing CHAT-
TER, a “less-invasive” behavior-based system for collecting
run-time artifacts and performing feature derivation/analysis.
CHATTER relies on the order and frequency with which mal-
ware samples generate behavioral artifacts. CHATTER can be
implemented as a stand-alone system or integrated into more
robust execution-based systems. As its ground truth CHATTER

relies on labels manually produced by malware analysts. This
vetting process requires many man-hours and permits confident
learning; man-hours not needed during online operation. To
this end, the contributions of this paper are as follows:

2014 IEEE Conference on Communications and Network Security

978-1-4799-5890-0/14/$31.00 ©2014 IEEE 283



AutoMal
Malware
Feed

Raw Artifacts
With timestamps Chatter Malware

Labels

Fig. 1. Flow diagram of CHATTER and its use of AUTOMAL

• We introduce CHATTER, a system for malware anal-
ysis and classification based on cheap order-based
behavioral features. CHATTER is less invasive than
existing systems and we argue for various deployment
scenarios, addressing operational needs.

• We demonstrate the operation of CHATTER over three
malware families using only the network interface.
For this evaluation we rely on manually produced
labels. We demonstrate that CHATTER is capable of
accurately identifying malware family in a binary-
classification context. This is achievable even when
limiting the number of features below a quantity
commonly used in related literature.

The use of n-grams in the context of malware classification
is well established. However, a novel and major component
of our work is that it uses n-gram techniques to encode the
order of subsequences of network communication events. Our
hypothesis is that each malware type has a unique commu-
nication pattern characterized by a certain order of events.
This hypothesis is supported by Forrest et al. [14] which
analyzed Unix system calls in a similar fashion. Building on
this assumption we attempt to classify malware using only the
order of network events. Our choice of network features is
not arbitrary: as discussed in the rest of the paper, network
features are cheaper than file system, registry, etc. features to
obtain. For example, they can be captured without residing on
the same host as the malware being executed. For our study we
looked at three malware families: Zeus, Darkness, and Shady
RAT, representing a diversity of malware intentions.

The organization of this paper is as follows. In Section II
we review the design of CHATTER. Section III evaluates
CHATTER on three real-world datasets of different malware
families. In Section IV we discuss several aspects of CHATTER

and its operation before reviewing related work in Section V.
Concluding remarks are made in Section VI.

II. SYSTEM AND DESIGN

CHATTER characterizes malware samples by executing
them, using this intelligence for training purposes. For online
operation this capability is not required. We proceed by dis-
cussing CHATTER’s design goals and then detailing how these
are achieved in practice.

A. Design Goals and Requirements

CHATTER was designed with the following goals in mind:

• Cost-effectiveness: Feature extraction should be com-
putationally inexpensive, especially in online opera-
tion. We emphasize that CHATTER ignores solutions
requiring deep analysis of a large number of artifacts
as in prior literature (AMAL [8] is an example –
among many other systems [7], [11] where the whole

image of a 10GB hard drive and 256MB of RAM are
analyzed to extract features).

• Less-invasiveness: While possible to analyze malware
in instrumented and virtualized environments, it is
desirable to collect such artifacts while running on
the “natural” host OS. A system that can be deployed
externally to observe malware is ideal. We keep in
mind that this is only a design objective for the final
system, not necessarily a requirement on how that
system is trained and/or arrived at.

• Generalizable and multi-purpose: While the stated
goal of CHATTER is to characterize malware samples
by their behavior, the system should be flexible enough
for re-purposing outside the malware realm. In Sec-
tion IV-C we show two such applications that benefit
from such generalized capabilities.

• Flexible to behavioral changes: Given that many
malware families evolve over time to circumvent
behavior-based techniques, one goal of our system
is to resist this evolution by providing flexible and
longitudinally-aware techniques.

• Accuracy: The system should aim to provide the
greatest coverage while minimizing false positives. We
strive for operationally acceptable accuracy.

With CHATTER’s design goals in mind. we now show how
they are achieved as we walk through the system design and
subsequently, its evaluation.

B. System Workflow

CHATTER’s overall workflow is visualized in Fig. 1. In
describing this workflow we begin with our sandboxed exe-
cution environment and its output. We then describe how this
output is transformed to make use of n-gram techniques and
the machine learning algorithms which are applied.

1) Sandboxed Execution: While any sandboxed execution
environment (or bare metal execution) can be used for ex-
tracting the features used by CHATTER, we use a proprietary
system named AUTOMAL [8]. AUTOMAL is a Windows-
based system capable of collecting low-granularity artifacts
speaking to how malware samples interact with memory, file
system, registry, and network interfaces. AUTOMAL takes
as input binaries that are likely to be malware. AUTOMAL

is described in greater depth in [8], but to summarize it
consists of 4 components: submitter, controller, workers, and
back-end storage. Input samples are queued until resources
become available. The controller initiates virtual machines
(VMs), loads configurations, and runs the malware sample.
Once execution is completed the collected artifacts are logged
in the backend storage unit.

While artifacts from all interfaces are interesting, we make
use of only network features herein. This is done in order
to concentrate on the novelty of CHATTER’s technique and
because network behaviors can be monitored external to local
hosts (see Section IV). Towards eventual expansion into other
interfaces, the CHATTER model should be interpreted as a
blackbox that takes the raw-artifacts with timestamps and
generates labels. A detailed diagram of CHATTER is shown
in Fig. 2 which we follow moving forward.

2014 IEEE Conference on Communications and Network Security

284



Artifacts to feature
Transformation

Features to alphabets
transformation

n gram features
extraction

Machine learning
Algorithm

Raw artifacts

n Algorithm selection
Ground truth

Training

Transformation transformation extraction Algorithm

Labels

Fig. 2. Flow diagram of CHATTER

2) Behavioral Documents: As input CHATTER takes both
raw artifacts generated by AUTOMAL and the family label
applied to the associated malware sample. The raw artifacts
generated by AUTOMAL are termed the behavioral profile of
the malware sample. Crucially, the behavioral profile maintains
the notion of order. CHATTER then processes the profile into
features. In the case of network features AUTOMAL outputs
an ordered PCAP file which is then parsed for relevant events.
For example, A DNS query of type MX on port 53 would flag
events like dns query, port 53, and mx query.

These events are then mapped onto an alphabet. In this
phase, CHATTER assigns a character(s) from a pre-determined
alphabet to each event. This allows each behavioral profile (i.e.,
the PCAP) to be represented as a document by concatenating
the character(s) associated with network events. Abstracting
the behavioral profile into a document in this way simplifies
the application of “text mining” and classification techniques.

3) Utilizing n-grams: Given a value for the parameter n
and the behavioral document, CHATTER enumerates all unique
n-grams in that document. CHATTER counts the number of
times each n-gram occurs in a document; these counts are the
most important feature(s) moving forward. These counts are
not represented as an exhaustive feature vector. Such a vector
would be extremely lengthy given the growth of permutation
operations, in turn slowing machine learning methods. Instead,
a sparse representation is utilized based on those n-grams actu-
ally observed in an entire corpus of malware samples. Indeed,
many of the possible n-gram sequences do not even represent
legal network sequences of events, generating considerable
spatial and temporal efficiency gains.

4) Machine Learning Component: Once the n-gram feature
vectors are computed for the different malware samples, they
are fed into the machine learning algorithm of choice. Using
a training set the machine learning model is constructed, and
then validated against a test set. Further details on use-cases
of CHATTER are in Section IV.

III. EVALUATION

To evaluate our proposal we begin by describing the
malware samples utilized and how ground-truth is produced.
This data is put through the CHATTER workflow and feature
vectors are computed. We then apply our machine learning
technique of choice, producing evaluation metrics which are
then interpreted with respect to system performance.

A. Malware Samples

For the evaluation of CHATTER we use three malware
families: Zeus, Darkness, and Shady RAT (SRAT). As we
will soon describe, these three families cover a wide range
of network behavior. Our system is applicable for all malware
families and our proof-of-concept selection is for demonstra-
tion purposes. Subsequent to the analysis described herein, we

TABLE I. MALWARE FAMILIES USED IN THE EVALUATION OF

CHATTER, INCLUDING SET SIZE AND THE AVERAGE NUMBER OF EVENTS

PER EXECUTION TRACE (FURTHER DETAILS ARE IN §III-A).

Family Quantity Characters Avg.
Zeus 1025 50.74

Darkness 544 61.47
Shady RAT 1130 52.74

also ran our system on 13 other families, including Ramnit,
Bredolab, Zero Access, SillyFDC, and Virut. The systems’
operation and accuracy during these larger trails was consistent
for the results we present for our three-family trial.

Each malware sample in these families is obtained from
an operational product, where sources of the malware samples
include Verisign customers, partnering antivirus vendors, and
researchers. Once the malware samples are fed into AUTOMAL

they are executed for a fixed amount of time to generate
artifacts. Table I reports on the quantity of samples we virtual-
ized and the average document length that resulted. To foster
transparency and reproducibility of results, we intend to release
the dataset used in this work to the larger community.

For every malware family set we also have an equally-sized
sample of random malware samples drawn from an expansive
malware repository. For example, our evaluation has 1025
Zeus samples. Thus when testing our model we also include
1025 non-Zeus samples consisting of many different malware
families. In our proof-of-concept evaluation we therefore treat
family membership as a binary classification task. We now
discuss each of these families in greater depth:

Zeus: Zeus [15] is a well-known banking Trojan that is used
by cyber criminals to recruit botnet members for purposes
of stealing money, credentials, and system resources from
the infected victims and their machines. Upon infection the
malware communicates with the command and control (C&C)
server by sending information pertaining to the infected host
and requesting a configuration file and further instructions.
Zeus also periodically sends out stolen data to a “drop site” that
is noted in the configuration file. These network artifacts can
help network administrators identify possibly Zeus infected
hosts in their environment. These network artifacts can also
be used by CHATTER to identify Zeus network traffic.

Darkness: The second malware family utilized is the dis-
tributed denial of service (DDoS) bot known as Darkness
or Optima (we prefer “Darkness” moving forward). Darkness
infects machines for the sole purpose of using the resource
to carry out DDoS attacks. The bot infects the system by
installing itself as a service and communicating with the C&C
server to receive commands. Darkness is capable of carrying
out Hypertext Transfer Protocol (HTTP) flood, Internet Control
Message Protocol (ICMP) flood, Transmission Control Proto-
col (TCP) or User Datagram Protocol (UDP) flood attacks. The
HTTP flood attack varies user-agent strings for each request
making it hard to identify DDoS traffic. The network artifacts
generated by the Darkness are characterized on a network due
to their high volume, making it a good feature to use for
classifying the DDoS bot using machine learning algorithms.

Shady RAT (SRAT): The final malware family considered
is “targeted” malware that McAfee terms Shady RAT [16]

2014 IEEE Conference on Communications and Network Security

285



TABLE II. EVENTS USED IN COMPOSING THE BEHAVIORAL

DOCUMENTS OF MALWARE SAMPLES.

Event class Component events
IP and port unique dest IP, certain ports
Connections TCP, UDP, RAW
Request type POST, GET, HEAD

Response type response codes (200s through 500s)
Size request (quartiles), reply (quartiles)

DNS MX, NS, A records, PTR, SOA, CNAME

(we will refer to it as “SRAT”). The malware targets several
high profile organization and government entities to steal
intellectual property and sensitive data. SRAT infects systems
via spear phishing email using social engineering techniques.
After infection. communication starts with the C&C server.
The communication is sometimes done by downloading an
HTML page and parsing out HTML comments which contain
encrypted commands. Another method involves the use of
stenography to decrypt commands from images embedded in a
web page. This communication channel is very hard to detect
by a network administrator because it blends in with regular
traffic flowing through the network.

B. Ground-truth

Labeling malware to establish a ground-truth is an impor-
tant step in any supervised classification task. Prior literature
relies heavily on family labels and names provided by anti-
virus scanners. Several recent works [7], [11], [13] have shown
such scans to be unreliable. This is understandable to some
extent, as these AV scanners are often designed with the
primary goal of distinguishing malware from benign code –
not distinguishing between malware families.

To this end, the malware samples we utilize have been
collected over a considerable period of time, enabling expert
analysts in Verisign’s organization to manually identify and
label them. This process is time-consuming; a previously
unseen malware sample averages 10+ hours of manual charac-
terization. However, family discovery is done in parallel with
other important tasks. This time is not spent analyzing the
binary just for this research initiative. Instead, Verisign analysts
are contracted by customers to produce detailed reports on the
modus operandi of a malware sample.

In addition to customer submitted binaries, partnering anti-
virus vendors and analyst’s research endeavors also contribute
to our malware repository. Yara signatures [17] are sometimes
applied to weed out irrelevant samples and a system called
AMAL [8] is applied to characterize samples from well un-
derstood families. We emphasize that the majority of samples
used in this study come from customers, where manual efforts
are used for the labeling of samples.

Critics may see this labeling methodology as an expensive
and constraining factor in the operation of CHATTER. In Sec-
tion IV-B we argue that certain businesses have a continuous
need for such manual inspections, and reliable family labels
are a cheap by-product of this process.

TABLE III. THE NUMBER OF UNIQUE n-GRAMS ACTUALLY OBSERVED

IN EACH OF THE STUDIED FAMILIES.

n value 1 2 3 4 5 6 7 8
Zeus 24 102 250 481 943 1690 2638 3794

Darkness 24 103 243 461 875 1503 2266 3149
SRAT 25 105 247 460 877 1536 2337 3300

C. Feature Space and Its Reduction

Running a malware sample in a sandboxed environment
results in many artifacts and large PCAP files. Not all of
these are relevant nor meaningful in identifying a malware
sample. Accordingly, we rely on expert domain knowledge to
identify the network-related events of interest. To this end,
Table II highlights some of the 26 network-related events
used in our analysis. Per Table III observe that some events
do not occur for some families (n = 1) and far greater
unique combinations of events never occur (where n > 1
there is no permutation-scale growth). This makes empirical
the advantages of using that sparse feature representation we
described earlier. For example, when n = 8 our feature vector
needs only ≈ 3800 entries, not the 2.0811 entries needed for
exhaustive representation.

CHATTER uses the full feature vector in its analysis. While
algorithms exist to reduce the feature space, we avoid these for
two reasons: (1) The goal of CHATTER is to enable the use of
new features rather than testing which subset of them performs
best, and (2) Reducing the number of features using off-
the-shelf algorithms like recursive features selection (RFS) or
principle component analysis (PCA) is orthogonal to this work.
Our informal experiments with these techniques suggest little
improvement in scalability or degradation of performance.
This result is in line with a large body of literature on the
problem [7], [8], [12], [15], [18].

D. Evaluation Metrics and Learning

To evaluate CHATTER, we use evaluation metrics widely
used in the literature [7], [8]: the accuracy, precision, recall,
and F1 score. These are explained in the appendix. For all
experiments evaluating CHATTER, we use the k-fold cross-
validation method with k = 10. In this method, the input
dataset is divided into k-folds, where k − 1 folds are used
for training the machine learning algorithm and the remaining
fold is used for testing. The process is repeated k-times by
changing the testing dataset among among the k possible folds.
At the end, the result is computed as the average over the k
runs. We set k = 10 due to its common use.

Three machine learning algorithms are used in our evalu-
ation: the k-nearest neighbor (k-NN), support vector machine
(SVM), and decision tree classifiers. All three algorithms are
intended for binary supervised learning and are capable of
identifying the membership of a malware sample into one
of two classes. More details on those algorithms and their
operation are in the appendix.

E. Quantitative Results

We now present results from our evaluation. This section
consists primarily of quantitative results, whereas later sections
analyze and discuss these results in greater depth.

2014 IEEE Conference on Communications and Network Security

286



TABLE IV. PRECISION, RECALL, ACCURACY AND F1-SCORE FOR SELECTED N-GRAM VALUES

n-grams 1 4 8
Algorithms P R A F1 P R A F1 P R A F1

Z
eu

s k-NN 80.79 79.68 81.48 79.97 79.07 83.90 82.25 81.35 78.29 78.17 79.64 78.09
SVM 67.41 82.67 72.69 73.92 75.96 80.47 78.67 77.84 80.41 82.87 82.45 81.50
Decision Trees 80.14 80.90 81.74 80.42 81.13 81.82 82.67 81.35 80.82 82.82 83.02 81.77

D
ar

k
. k-NN 76.22 73.13 76.08 74.56 80.40 71.52 77.70 75.57 71.38 69.58 71.65 70.20

SVM 76.82 32.38 62.24 45.05 78.18 71.32 76.45 74.35 76.62 76.36 77.22 76.27
Decision Trees 80.45 72.56 78.20 76.07 81.75 72.89 79.04 76.93 80.50 68.37 76.39 73.59

S
R

A
T k-NN 81.38 76.78 82.78 78.45 83.87 81.83 85.51 81.95 83.99 74.28 82.93 78.16

SVM 76.88 65.43 75.88 69.55 83.70 82.94 86.23 83.03 85.68 80.86 86.33 82.71
Decision Trees 85.16 81.11 86.44 82.60 88.28 81.65 88.01 84.45 86.13 78.92 85.54 81.85

1 2 3 4 5 6 7 8

86
88

90
92

94
96

n values

P
re

ci
si

on

●

●
● ●

●

● ●
●

● K Nearest Neighbor (KNN)
Support Vector Machine (SVM)
Decision Trees Classifier

(a) Precision

1 2 3 4 5 6 7 8

86
88

90
92

94
96

n values

R
ec

al
l

●
●

● ●

●
●

● ●

● K Nearest Neighbor (KNN)
Support Vector Machine (SVM)
Decision Trees Classifier

(b) Recall

1 2 3 4 5 6 7 8

86
88

90
92

94
96

n values

A
cc

ur
ac

y

●

●
● ●

● ●
● ●

● K Nearest Neighbor (KNN)
Support Vector Machine (SVM)
Decision Trees Classifier

(c) Accuracy

1 2 3 4 5 6 7 8

86
88

90
92

94
96

n values

F
−

1 
S

co
re ●

●
● ●

● ●
● ●

● K Nearest Neighbor (KNN)
Support Vector Machine (SVM)
Decision Trees Classifier

(d) F1 Score

Fig. 3. Performance measures for the Zeus malware family with network artifact classification using CHATTER atop a baseline classifier

Results in isolation: Table IV shows performance for selected
values (n = 1, 4, 8) across all families and algorithms using
only order-based features. To make sweeping generalizations
across all families, decision tree classifiers tended to perform
best with an average accuracy of ≈80%. Although the tran-
sition from n = 1 to n = 4 tends to produce noticeable
performance increases, the performance ramifications of the
next increase to n = 8 were more mixed. Between families
we observe that “Darkness” malware was the most difficult
to computationally identify, while performance for “SRAT”
models fluctuated wildly based on the algorithm applied.

Atop a baseline classifier: While it is clear that CHATTER is
able to independently predict malware family with reasonable
accuracy, it is also desirable to see if it can contribute when
paired with a robust baseline classifier. Figs. 3, 4, and 5
show this result. Here the baseline classifier consists primarily
of filesystem features. Comparing the results presented in
Table IV with those computed over the same dataset in [15]
(without the contribution of CHATTER), we observe that
ordered features are capturing independent portions of the
problem space and making non-trivial improvements to overall
precision, recall, accuracy and F1 score.

IV. DISCUSSION

In this section we highlight interesting findings and ob-
servations regarding CHATTER. This includes how the pro-
posed system meets its defined requirements and acknowledges
weaknesses fo the proposal. One of the foremost questions
is the role of gram-length n in performance. When n = 1
ordering plays no role, whereas there are tremendous ordered
dependencies when n = 8 (our upper limit). We observe that
malware families tend to peak in performance when n = 4 or
n = 5. This observation is further validated when combining
baseline and ordered network features. The accuracy graphs

in Figs. 3, 4, and 5 show a downward trend as n takes on
values larger than 5. We conclude that order does improve
classification by about 10% to 12%.

We note that the classification for the Darkness/DDoS mal-
ware family was less accurate than with other families, even
when considering baseline features. This speaks to the way
Darkness infects a host machine and uses it as a bot. Darkness
creates no files (which would trigger many of our baseline
features) and does most of its characteristic manipulations
inside the registry. While possible to do order-based evaluation
of registry events, having the access to monitor a host registry
in real-time presents privacy and complexity hurdles which are
not present in a network-only system.

A. Meeting Design Requirements

In the following we highlight how CHATTER meets the
design requirements outlined in Section II-A:

• Cost-effectiveness: CHATTER’s cost-effectiveness is
two-fold: (1) It uses only a single class of (network)
artifacts, and (2) It abstracts features from curated
event traces rather than raw interface dumps. Prior
literature has shown a system characterizing malware
using only network artifacts can run an order of
magnitude faster than a system that looks at a large
spectrum of features. For example, AMAL [8] is a
fully-featured infrastructure that ideally utilizes 128
virtual machines towards processing 23,000 malware
samples daily. CHATTER, on the other hand, could
process 370,000 malware samples per day using the
same infrastructure. This number significantly exceeds
the sample quantity Verisign’s operations receive and
analyze on a daily basis. Indeed, the number is also

2014 IEEE Conference on Communications and Network Security

287



1 2 3 4 5 6 7 8

40
50

60
70

80
90

n values

A
cc

ur
ac

y ●
● ● ●

● ● ● ●

● K Nearest Neighbor (KNN)
Support Vector Machine (SVM)
Decision Trees Classifier

(a) Accuracy

1 2 3 4 5 6 7 8

40
50

60
70

80
90

n values

F
−

1 
S

co
re ●

● ● ●

● ● ● ●

● K Nearest Neighbor (KNN)
Support Vector Machine (SVM)
Decision Trees Classifier

(b) F1 Score

1 2 3 4 5 6 7 8

40
50

60
70

80
90

n values

P
re

ci
si

on

●
● ● ●

● ● ● ●

● K Nearest Neighbor (KNN)
Support Vector Machine (SVM)
Decision Trees Classifier

(c) Precision

1 2 3 4 5 6 7 8

40
50

60
70

80
90

n values

R
ec

al
l

●

● ● ●

●
● ● ●

● K Nearest Neighbor (KNN)
Support Vector Machine (SVM)
Decision Trees Classifier

(d) Recall

Fig. 4. Performance measures for the Darkness DDoS malware family with network artifact classification using CHATTER atop a baseline classifier

1 2 3 4 5 6 7 8

40
50

60
70

80
90

n values

A
cc

ur
ac

y

●
● ● ● ● ● ● ●

● K Nearest Neighbor (KNN)
Support Vector Machine (SVM)
Decision Trees Classifier

(a) Accuracy

1 2 3 4 5 6 7 8

40
50

60
70

80
90

n values

F
−

1 
S

co
re

●
● ● ●

● ● ● ●

● K Nearest Neighbor (KNN)
Support Vector Machine (SVM)
Decision Trees Classifier

(b) F1 Score

1 2 3 4 5 6 7 8

40
50

60
70

80
90

n values

P
re

ci
si

on

●
● ● ● ●

● ● ●

● K Nearest Neighbor (KNN)
Support Vector Machine (SVM)
Decision Trees Classifier

(c) Precision

1 2 3 4 5 6 7 8

40
50

60
70

80
90

n values

R
ec

al
l

● ●
● ●

● ● ●
●

● K Nearest Neighbor (KNN)
Support Vector Machine (SVM)
Decision Trees Classifier

(d) Recall

Fig. 5. Performance measures for the SRAT malware family with network artifact classification using CHATTER atop a baseline classifier

greater than the 250,000 samples a popular antivirus
provider like Sophos detects and analyzes daily [19].

• Less-invasiveness: Dependency on network features
also makes CHATTER less invasive. The network
events of interest can be gleaned on the network
without having to reside on the host machine. How-
ever, this capability is also susceptible to noise from
other system processes using the network interface
in parallel with the malware sample. This could be
limited by running the malware and the host in a
monitored mode of operation.

• Generalization and flexibility: CHATTER’s ability to
evolve with malware binaries is straightforward given
its operational context. Because novel malware is
being created, analyst efforts continue to be brought
to bear on samples’ reverse-engineering and analysis.
Family labels are a cheap side-effect of this ongoing
demand, resulting in a wealth of expert-annotated
and longitudinal ground-truth that can be utilized via
periodic retraining.

• Accuracy: In isolation, CHATTER’s accuracy is less
than that of full featured systems, e.g., AMAL [8].
However, we still contend that our performance is
operationally acceptable. The contexts in which one
needs to make a family classification are very different
then when determining the presence of malware. Re-
member also that accuracy can be improved by using
more expensive techniques (possibly as a second-pass
if CHATTER’s models indicate low classification con-
fidence). This work is also interested in the trade-off
between complexity, accuracy, and operational costs.

B. System Limitations

Discussion next acknowledges our proposal’s shortcomings
and examines how a knowledgeable attacker could utilize
gamesmanship to circumvent our classification strategy.

Noised features: Like most behavior-based systems for mal-
ware classification CHATTER performs best when malware
samples do not produce extra information to disguise their be-
havior and manipulate machine learning algorithms. However,
unlike systems that make use of exact matching of behavior
profiles, CHATTER provides some flexibly in the grouping
patterns based on n-gram features. The problem is a generic
one which we address in two ways:

• We emphasize that not all the features generated
by a malware sample need to be used by learning
algorithm: a feature selection algorithm can be used
to reduce the impact of the noised features.

• Regardless of injected noise, certain events in the
operation of a malware sample must happen in the
same partial order. Our future work to address this
limitation is to derive features concerning those events
as they happen in their partial order by filtering out the
noise between them. While this might seem to require
deep understanding of the studied malware families
and their expected behavior, well understood signal
processing techniques show potential in this domain.

Adaptive malware: Certain forms of malware are capable of
changing their behavior based on the environment in which
they are run. This creates issues for CHATTER as it does for
other behavior-based sandboxes. We address this in two ways:

2014 IEEE Conference on Communications and Network Security

288



• AUTOMAL, the sandbox environment for CHATTER

generates patches to deceive malware samples by pro-
viding registry values indicating execution is occurring
on bare metal.

• For sophisticated malware that does not respond to
those patches, malware samples are actually run on
bare metal (or using hardware virtualization). Of
course, this a problem specific to the generation of be-
havior profiles, whereas actual operation is unaffected
by such manipulations.

Continuous training and cost of labeling: Because of the
evolution of malware samples, continuous training is needed
in our system to adapt to changes in artifacts generated. While
this issue might seem an inherit shortcoming for machine
learning based techniques, it is addressed naturally in CHAT-
TER. As mentioned earlier, many of the malware samples
fed into CHATTER belong to customers and require reverse
engineering, deep analysis, and manual inspection. To that end,
this process provides a natural venue for obtaining features,
labels, and training sets for CHATTER.

C. Other Applications

While the main application we used in CHATTER relies
on transforming behavioral profiles into documents and using
them for understanding the behavior of malware utilizing n-
gram techniques, the concept is generic and can be applied to
a wide variety of applications. In the following we identify
several potential applications which can benefit from CHAT-
TER: (1) Process-based DDoS detection: While our system
studies a specific DDoS malware family, our system can be
generalized to understand any process-based DDoS attack by
observing traffic on the wire, generating sufficient artifacts
that can be used to derive features and footprint such attacks.
(2) Advanced persistent threats: Often such threats (process-
based) result in many artifacts that are generated over a long
period of time, rendering research systems less effective in
characterizing them. One potential area of improvement is to
rely on the inter-event patterns they generate, using CHATTER.

V. RELATED WORK

The literature is rich with work on malware analysis and
classification [6], [11], [20]–[28]. Broadly, the literature is
divided into two schools of thought: signature based and
behavior based techniques, with our work belonging to the
latter, and most similar in nature to [6], [21], [22], [29].
These works and others can be organized according to their
relationship with techniques utilizing: machine learning for
malware, general behavior-based analysis, memory signatures,
network-related features, evasion prevention, n-grams, and
event ordering. In the following, we elaborate on research in
each of those classes.

Machine learning for malware. The use of machine
learning techniques to automate classification of behavior of
codes and network traffic have been thoroughly studied in the
literature. Readers can refer to recent surveys in [9] and [13].

Behavior-based Analysis. The work of Bailey et al. in [11]
has motivated many of the related works on behavior-based
malware classification. In [6], [21], the authors use similar

techniques for extracting features and leverage SVM for clas-
sifying malware samples. Our work distinguishes itself in two
respects. First, although we share similarity with their high
level grouping of features, our system relies on the order of
events, which exposes richer behavior. Second, we use analyst-
vetted labels for evaluation, whereas the other authors use
heuristics over AV-returned labels.

Memory signature and reverse engineering. While we
do not describe the use memory signatures in the CHATTER

methodology, great potential can be seen in such a direction.
Accordingly, Willems et al. introduced CWXDetector [30]
which detects illegitimate code by analyzing memory sections
that cause memory faults – artificially triggered by marking
those section non-executable. The work can be integrated into
our system, although at cost: the mechanism is intrusive to
other running processes in the memory. Our current system,
on the other hand, does not require any memory modifications.
Kolbitsch et al. [31] introduced Inspector, which is used
in automatically reverse engineering and highlighting code
sections responsible for “interesting” behavior. Related to that,
Sharif et al. [32] proposed understanding code-level behavior
by reverse-engineering code emulators. It is noteworthy that
this and the previous work do not generate malware artifacts
other than memory-related signatures, which by themselves
have limited insight into characterizing generic samples.

Traffic analysis for malware classification. Related to our
use of network features is a line of research on traffic analysis
for malware and botnet detection. Such works include [33]–
[37], with others paying particular attention to the use of fast
flux techniques [38], [39]. Support for our use of DNS features
for malware analysis come in the form of [18], [40], [41]. None
of those studies are concerned by behavior-based analysis
beyond the use of remotely collected network features for
inferring malicious activities and intent. Our system operates at
network interface granularity to extract malware intelligence.

Evasion detection. Also related to our work are systems for
overcoming malware evasion/obfuscation techniques. In [42],
K-Tracer is introduced for extracting kernel malware behavior
and mitigating the circumvention of loggers deployed in the
kernel by rootkits. In [43], MacBoost is used for prioritizing
malware samples by distinguishing benign and malicious code
segments. A system to prevent drive-by-malware based on
behavior, named BLADE, is introduced in [44]. A nicely
written survey on such systems and tools is found in [45].

Leveraging n-grams Using n-grams for malware classifi-
cation is not new. However, work in the literature has looked
at extracting features from executables (e.g., sequences of
bytes in the binary files [21]) or streams of communication
traffic [46]), but not higher-level sequence of events occuring
while executing a malware sample. Other examples of low-
level granularity attempts can be found in [43], [46]–[48].
Of particular interest is the concurrent work in [46], which
derives n-gram network features for purposes of intrusion de-
tection. Using network artifacts for identification of malicious
activities, like botnets, is investigated in [35]–[37], [49], [50].
Further applications of characterizing malicious domain names
using network traffic and artifacts (DNS queries, among others)
are reported in [18], [26], [51].

2014 IEEE Conference on Communications and Network Security

289



Event ordering The basic idea of using event order to
characterize processes was first explored by Forrest et al. in
their seminal work [14]. There, it was demonstrated effective
for the detection of process-level intrusions. However, that
work differs from ours in three respects: (1) It is concerned
with detection rather than classification, (2) it uses system calls
rather than networks features, and (3) it uses whole sequences
as a single feature that is easy to manipulate, rather than sub-
sequences (as in n-grams) and their frequency.

VI. CONCLUSION

Motivated by the need for deriving new and easy-to-obtain
features, we introduced CHATTER, a behavior-based malware
classification system. CHATTER uses behavioral artifacts gen-
erated by malware samples at runtime to characterize malware.
At its core, CHATTER considers the order in which behavioral
events occur. We notice that order-based features can be
captured and analyzed using the n-gram technique widely
used in document classification. With its many advantages
enumerated in Section II, and using three malware families,
CHATTER is shown to be reasonably accurate at classifying
malware samples into their respective families.

Future work. This paper considered order-based behavioral
features for classification of malware samples in its simplest
form. Addressing the limitations outlined in Section IV-B
is pressing future work. In particular, we would like to ex-
plore partial-order features for fingerprinting malware samples.
Those features would address noised features (both intentional
obfuscation by malware authors, and unintentional, due to
mixed signals on-the-wire). Realizing the applications listed
in Section IV-C using theCHATTER methodology is another
future work that we would like to explore.

ACKNOWLEDGEMENTS

A shorter version of this work appeared as a poster in the
Proceedings of IEEE CNS 2013 [52]. We would like to thank
the iDefense team at VeriSign for providing data and technical
support, and the reviewers for their valuable comments.

REFERENCES

[1] J. Halliday, “Hackers attack european governments using ’miniduke’
malware,” http://bit.ly/16bVldV, February 2013.

[2] New York Times, “Nissan is latest company to get hacked,” http://nyti.
ms/Jm52zb, April 2013.

[3] A. Mohaisen, O. Alrawi, M. Larson, and D. McPherson, “Towards a
methodical evaluation of antivirus scans and labels,” in The 14th Inter-
national Workshop on Information Security Applications (WISA2013).
Springer, 2013.

[4] D. Caselden, A. Bazhanyuk, M. Payer, S. McCamant, and D. Song,
“Hi-cfg: Construction by binary analysis and application to attack
polymorphism,” in ESORICS, ser. Lecture Notes in Computer Science,
J. Crampton, S. Jajodia, and K. Mayes, Eds., vol. 8134. Springer,
2013, pp. 164–181.

[5] H. Yin, D. X. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama:
capturing system-wide information flow for malware detection and
analysis,” in ACM Conference on Computer and Communications
Security, 2007.

[6] K. Rieck, T. Holz, C. Willems, P. Düssel, and P. Laskov, “Learning
and classification of malware behavior,” in Detection of Intrusions and
Malware, and Vulnerability Assessment, 2008, pp. 108–125.

[7] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Krügel, and E. Kirda,
“Scalable, behavior-based malware clustering,” in NDSS, 2009.

[8] A. Mohaisen, O. Alrawi, and M. Larson, “Amal: High-fidelity, behavior-
based automated malware analysis and classification,” Verisign Labs,
Tech. Rep., 2013.

[9] R. Sommer and V. Paxson, “Outside the closed world: On using
machine learning for network intrusion detection,” in IEEE Symposium
on Security and Privacy, 2010.

[10] D. Kong and G. Yan, “Discriminant malware distance learning on
structural information for automated malware classification,,” in ACM
KDD, 2013.

[11] M. Bailey, J. Oberheide, J. Andersen, Z. Mao, F. Jahanian, and
J. Nazario, “Automated classification and analysis of internet malware,”
in RAID, 2007.

[12] G. Yan, N. Brown, and D. Kong, “Exploring discriminatory features for
automated malware classification,” in 10th Conference on Detection of
Intrusions and Malware & Vulnerability Assessment (DIMVA), 2013.

[13] C. Rossow, C. J. Dietrich, C. Grier, C. Kreibich, V. Paxson,
N. Pohlmann, H. Bos, and M. van Steen, “Prudent practices for
designing malware experiments: Status quo and outlook,” in IEEE Sec.
and Privacy, 2012.

[14] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A sense
of self for unix processes,” in Security and Privacy, 1996. Proceedings.,
1996 IEEE Symposium on. IEEE, 1996, pp. 120–128.

[15] A. Mohaisen and O. Alrawi, “Unveiling zeus: automated classification
of malware samples,” in WWW (Companion Volume), 2013, pp. 829–
832.

[16] D. Alperovitch, “Revealed: Operation shady rat.”
[17] —, “Yara Project: A malware identification and classification tool,” http:

//bit.ly/3hbs3d, May 2013.
[18] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi, “Exposure: Finding

malicious domains using passive dns analysis,” in NDSS, 2011.
[19] Sophos, “Volume of malware threatens security,” http://bit.ly/17UVQ19,

Mar 2014.
[20] R. Tian, L. Batten, R. Islam, and S. Versteeg, “An automated classifica-

tion system based on the strings of trojan and virus families,” in IEEE
MALWARE, 2009.

[21] K. Rieck, P. Trinius, C. Willems, and T. Holz, “Automatic analysis
of malware behavior using machine learning,” Journal of Computer
Security, vol. 19, no. 4, pp. 639–668, 2011.

[22] Y. Park, D. Reeves, V. Mulukutla, and B. Sundaravel, “Fast malware
classification by automated behavioral graph matching,” in CSIIR Work-
shop. ACM, 2010.

[23] R. Tian, L. Batten, and S. Versteeg, “Function length as a tool for
malware classification,” in IEEE MALWARE, 2008.

[24] J. Kinable and O. Kostakis, “Malware classification based on call graph
clustering,” Journal in computer virology, vol. 7, no. 4, pp. 233–245,
2011.

[25] M. Ramilli and M. Bishop, “Multi-stage delivery of malware,” in
MALWARE, 2010.

[26] N. Provos, D. McNamee, P. Mavrommatis, K. Wang, N. Modadugu
et al., “The ghost in the browser analysis of web-based malware,” in
USENIX HotBots, 2007.

[27] H. Binsalleeh, T. Ormerod, A. Boukhtouta, P. Sinha, A. Youssef,
M. Debbabi, and L. Wang, “On the analysis of the zeus botnet
crimeware toolkit,” in Privacy Security and Trust, 2010.

[28] A. G. West and A. Mohaisen, “Metadata-driven threat classification of
network endpoints appearing in malware,” in DIMVA, 2014, pp. 152–
171.

[29] H. Zhao, M. Xu, N. Zheng, J. Yao, and Q. Ho, “Malicious executables
classification based on behavioral factor analysis,” in IC4E, 2010.

[30] C. Willems, F. C. Freiling, and T. Holz, “Using memory management
to detect and extract illegitimate code for malware analysis,” in ACSAC,
2012.

[31] C. Kolbitsch, T. Holz, C. Kruegel, and E. Kirda, “Inspector gadget:
Automated extraction of proprietary gadgets from malware binaries,”
in IEEE Sec. and Privacy, 2010.

[32] M. I. Sharif, A. Lanzi, J. T. Giffin, and W. Lee, “Automatic reverse
engineering of malware emulators,” in IEEE Sec. and Privacy, 2009.

[33] G. Jacob, R. Hund, C. Kruegel, and T. Holz, “Jackstraws: Picking
command and control connections from bot traffic,” in USENIX Sec.
Symposium, 2011.

[34] C. Gorecki, F. C. Freiling, M. Kührer, and T. Holz, “Trumanbox:
Improving dynamic malware analysis by emulating the internet,” in
SSS, 2011.

[35] G. Gu, R. Perdisci, J. Zhang, and W. Lee, “Botminer: clustering
analysis of network traffic for protocol- and structure-independent

2014 IEEE Conference on Communications and Network Security

290



botnet detection,” in USENIX Sec. Symposium, 2008.
[36] G. Gu, J. Zhang, and W. Lee, “Botsniffer: Detecting botnet command

and control channels in network traffic,” in NDSS, 2008.
[37] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee, “Bothunter:

Detecting malware infection through ids-driven dialog correlation,” in
USENIX Sec. Symposium, 2007.

[38] T. Holz, C. Gorecki, K. Rieck, and F. C. Freiling, “Measuring and
detecting fast-flux service networks,” in NDSS, 2008.

[39] J. Nazario and T. Holz, “As the net churns: Fast-flux botnet observa-
tions,” in MALWARE, 2008, pp. 24–31.

[40] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, and N. Feamster,
“Building a dynamic reputation system for dns,” in USENIX Sec.
Symposium, 2010.

[41] M. Antonakakis, R. Perdisci, W. Lee, N. V. II, and D. Dagon, “De-
tecting malware domains at the upper dns hierarchy,” in USENIX Sec.
Symposium, 2011.

[42] A. Lanzi, M. I. Sharif, and W. Lee, “K-tracer: A system for extracting
kernel malware behavior,” in NDSS, 2009.

[43] R. Perdisci, A. Lanzi, and W. Lee, “Mcboost: Boosting scalability
in malware collection and analysis using statistical classification of
executables,” in ACSAC, 2008.

[44] L. Lu, V. Yegneswaran, P. Porras, and W. Lee, “Blade: an attack-
agnostic approach for preventing drive-by malware infections,” in ACM
CCS, 2010, pp. 440–450.

[45] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A survey on
automated dynamic malware-analysis techniques and tools,” ACM
Comput. Surv., vol. 44, no. 2, pp. 6:1–6:42, Mar. 2008. [Online].
Available: http://doi.acm.org/10.1145/2089125.2089126

[46] C. Wressnegger, G. Schwenk, D. Arp, and K. Rieck, “A close look on
n-grams in intrusion detection: anomaly detection vs. classification,” in
2013 ACM workshop on Artificial intelligence and security. ACM,
2013, pp. 67–76.

[47] J. Z. Kolter and M. A. Maloof, “Learning to detect and classify
malicious executables in the wild,” The Journal of Machine Learning
Research, vol. 7, pp. 2721–2744, 2006.

[48] M. G. Schultz, E. Eskin, F. Zadok, and S. J. Stolfo, “Data mining
methods for detection of new malicious executables,” in Security and
Privacy, 2001. S&P 2001. Proceedings. 2001 IEEE Symposium on.
IEEE, 2001, pp. 38–49.

[49] W. T. Strayer, D. E. Lapsley, R. Walsh, and C. Livadas, “Botnet
detection based on network behavior,” in Botnet Detection, 2008.

[50] R. Perdisci, W. Lee, and N. Feamster, “Behavioral clustering of
http-based malware and signature generation using malicious network
traces,” in USENIX NSDI, 2010.

[51] L. Bilge, D. Balzarotti, W. K. Robertson, E. Kirda, and C. Kruegel,
“Disclosure: detecting botnet command and control servers through
large-scale netflow analysis,” in ACSAC, 2012.

[52] A. Mohaisen, O. Alrawi, A. G. West, and A. Mankin, “Babble:
Identifying malware by its dialects,” in Communications and Network
Security (CNS), 2013 IEEE Conference on. IEEE, 2013, pp. 407–408.

[53] E. Alpaydin, Introduction to machine learning. MIT press, 2004.

APPENDIX

In the following appendix we review the machine learn-
ing techniques used in this study, and sketchy the accuracy
measures used in our evaluation.

MACHINE LEARNING ALGORITHMS

Support Vector Machines (SVM):

Given a training set of labeled pairs (xi, yi) for 0 < i ≤ �,
xi ∈ Rn, and yi ∈ {1,−1}, the (L2-regularized primal) SVM
solves:

min
w,b,ξ

1

2
wTw + C

�∑

i=1

ξi

subject to yi(w
Tφ(xi) + b) ≥ 1− ξi,

ξi ≥ 0

where the training vectors xi are mapped into a higher
dimensional space using the function φ, and the SVM finds a
linear separating hyperplane with the maximal margin in this
space. C > 0 is the penalty parameter of the error term (set
to 0.01 in our work). ξ(w, x, yi) is called the loss function,
where we use the L2-loss defined as

ξ(w,x, yi) = max(1− yiw
Txi, 0)

2.

Decision Trees:

We utilize a single split tree for two-class classification
using all of the features provided by CHATTER. For the target
class label Y = y1, . . . , yn and a set of feature vectors
x1 . . . ,xn, at each internal node of the tree – and for the
training set – we apply a test to one of the inputs, namely
xi, determining whether to go either left or right in the tree
branches based on the outcome of the test. When running over
all of the training feature vectors, we mark the leaf nodes as
the aggregate (mean) of all the training samples (to one of
the class labels in Y ). For testing, we do the same and assign
the label of the leaf to that of the sample feature vector used
to reach the leaf. We omit further details and refer the reader
to [53] for more description. There are variations of decision
trees in the literature, purported to provide better results (e.g.,
random forests). We did not try any of those techniques, since
the technique we utilized already provided reasonable results.
We leave integration of such techniques as future work.

k-Nearest-Neighbor

The k-NN is a non-linear classification algorithm. In the
training phase, we provide the algorithm two labels and a set of
training samples. In the testing phase, for each sample vector a,
we provide the label most frequent among the training samples
nearest to it. Given spatial limitations, we refer the reader to
a textbook explanation of the technique in [53].

EVALUATION METRICS

For a binary classification problem, in which it is required
to determine if a given malware sample belongs to the class
of interest S, we define the following possibilities: (1) True
positives (Tp) are those samples correctly identified by the
machine learning algorithm to belong to the class S. (2) False
positives (Fp) are those samples incorrectly marked by the ma-
chine learning algorithm to belong to S. (3) True negative (Tn)
are those samples marked by the machine learning algorithm
correctly not to belong to S. (4) False negative (Fn) are those
samples incorrectly marked by the machine learning algorithm
not to belong to S (they are actually in S). Using these
four outcomes and their associated magnitudes, the precision,
recall, accuracy, and F1 score are defined as Precision =

Tp

Tp+Fp
,Recall =

Tp

Tp+Fn
,Accuracy =

Tp+Tn

Tp+Tn+Fp+Fn
, and

F1 score = 2× precision×recall
precision+recall

.

2014 IEEE Conference on Communications and Network Security

291


