
ilable at ScienceDirect

Digital Investigation 14 (2015) 17e35
Contents lists ava
Digital Investigation

journal homepage: www.elsevier .com/locate/d i in
Andro-AutoPsy: Anti-malware system based on similarity
matching of malware and malware creator-centric
information

Jae-wook Jang a, Hyunjae Kang b, Jiyoung Woo a, Aziz Mohaisen c,
Huy Kang Kim a, *

a Graduate School of Information Security, Korea University, Republic of Korea
b Enterprise Risk Services, Deloitte Anjin LLC, Republic of Korea
c Computer Science and Engineering Department, State University of New York at Buffalo (SUNY Buffalo), USA
a r t i c l e i n f o

Article history:
Received 12 October 2014
Received in revised form 24 June 2015
Accepted 27 June 2015
Available online 16 July 2015

Keywords:
Similarity matching
Profiling
Android malware
Malware classification
Certificate
* Corresponding author. Tel.: þ82 2 3290 4898.
E-mail addresses: changkr@korea.ac.kr (J.-w. Jang

com (H. Kang), jywoo@korea.ac.kr (J. Woo), moha
Mohaisen), cenda@korea.ac.kr (H.K. Kim).

http://dx.doi.org/10.1016/j.diin.2015.06.002
1742-2876/© 2015 Elsevier Ltd. All rights reserved.
a b s t r a c t

Mobile security threats have recently emerged because of the fast growth in mobile
technologies and the essential role that mobile devices play in our daily lives. For that, and
to particularly address threats associated with malware, various techniques are developed
in the literature, including ones that utilize static, dynamic, on-device, off-device, and
hybrid approaches for identifying, classifying, and defend against mobile threats. Those
techniques fail at times, and succeed at other times, while creating a trade-off of perfor-
mance and operation. In this paper, we contribute to the mobile security defense posture
by introducing Andro-AutoPsy, an anti-malware system based on similarity matching of
malware-centric and malware creator-centric information. Using Andro-AutoPsy, we
detect and classify malware samples into similar subgroups by exploiting the profiles
extracted from integrated footprints, which are implicitly equivalent to distinct charac-
teristics. The experimental results demonstrate that Andro-AutoPsy is scalable, performs
precisely in detecting and classifying malware with low false positives and false negatives,
and is capable of identifying zero-day mobile malware.

© 2015 Elsevier Ltd. All rights reserved.
Introduction

The explosive growth in the number of mobile devices
running the Android platform has attracted the attention of
malware creators because a vast amount of private infor-
mation (e.g., contacts, short messages, and e-mails) is
usually stored on these devices. The availability of this in-
formation in many mass-market mobile devices renders
them a desirable target for malware creators, making the
), janetk1004@gmail.
isen@buffalo.edu (A.
security of mobile devices one of the most important, yet
challenging, areas of research.

Mobile as well as traditional malware analysis for
detection and classification falls into two broad types: dy-
namic and static. Dynamic analysis aims to provide
methods for effectively and efficiently extracting the
unique patterns of each malware family based on its
behavior. If malware programs (or samples) behave in a
unique way under a specific condition, this type of analysis
fails to detect them because it does not recognize their
intended malicious behavior. Dynamic analysis techniques,
on the other hand, analyze malware on an emulator or a
mobile device without the human interaction, providing
autonomous installation and execution. On one hand, this
type of analysis has several limitations with respect to

mailto:changkr@korea.ac.kr
mailto:janetk1004@gmail.com
mailto:janetk1004@gmail.com
mailto:jywoo@korea.ac.kr
mailto:mohaisen@buffalo.edu
mailto:cenda@korea.ac.kr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2015.06.002&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2015.06.002
http://dx.doi.org/10.1016/j.diin.2015.06.002
http://dx.doi.org/10.1016/j.diin.2015.06.002


J.-w. Jang et al. / Digital Investigation 14 (2015) 17e3518
analyzing malware embedding updates, drive-by down-
loads, or C&C (Command & Control) attacks (Zhou and
Jiang, 2012). Furthermore, for capturing the unique
behavior of malware accurately, dynamic analysis needs to
roll back the emulator or mobile device into its clean state
whenever the analysis of a piece of malware is complete.
On the other hand, using static analysis, strings of bytes
associated with malware samples are discovered through
reverse engineering and used as a signature for identifying
malware. In spite of effective characteristics, static tech-
niques are often prone to high false positive rates because
of the evolution in the code basis and code repackaging
often associated with malware. Static analysis techniques
require more efforts in reverse engineering to generate
reliable and meaningful signatures. Furthermore, recent
and new malware families have utilized embedding
obfuscation techniques, such as proguard, which change
the calling order or the method names of variables and
functions, and thus hinder the transformation of the mal-
ware itself into source code, making such defenses
ineffective.

Despite the efforts of antivirus (AV) vendors, the
amount of malware is increasing exponentially. According
to a report by McAfee, 2.47 million new pieces of mobile
malware and a total of 3.73 million pieces of malware
appeared in 2013 (McAfee, 2013). Between the end of 2012
and 2013, the total amount of malware increased by nearly
200%. To address this trend, AV vendors analyze a large
number of malware samples every day in order to prevent
their widespread dissemination and to guide users on
disinfection and risk management by classifying malware
into broad families. However, malware-centric analysis,
including both static and dynamic analysis, is limited, and
is not keeping pace with the trends increasing numbers of
malware and their families. Existing malware analysis
method focuses on codes and functions of malware. In
particular, static analysis takes a long time to parse mean-
ingful code patterns in disassembled or decompiled codes,
and dynamic analysis requires an irritating amount of
analyst-guided pre-analysis time for operations such as
roll-back of emulator or mobile devices.

The added contents reads as follows: The “Trojan horse
defense” surfaced in 2003 in several cybercrime cases
brought in the United Kingdom is a good example of how
our work can relate to the digital investigation community;
the incident pertains to the claim that a malware creator
ran malicious codes on victim's device without the device
owner's consent (Brenner et al., 2004). The defense
attributed actions to malware and has presented a chal-
lenging issue to the forensics community: the accurate
assessment and investigation to determine whether a
person is innocent or guilty. Technically, investigators
needed to determine if a system was compromised, and if
so what are the implications of such compromise and what
unapproved activity was the device doing. To this end, our
proposed method incorporates malware creator informa-
tion as well as malware-centric information to attribute
malware. Our method identifies direct evidence of mali-
cious behaviors of malware creators to detect malware
created by them and analyzes the malicious behavior and
attacker's intent.
To overcome the drawbacks inherent in previous
malware-centric methods and help investigators answer
these questions, we propose a novel and feature-rich anti-
malware system based on profiling, called Andro-AutoPsy.
Our system is a novel hybrid malware detection and clas-
sification method based on similarity matching of profiles.
Our proposed profiling system, which comprises mobile
devices and a remote server, is analogous to criminal
profiling. In the real world, criminal profiling, also known
as offender profiling, is a methodology that is intended for
helping investigators accurately predict and profile the
characteristics of unknown criminal subjects or offenders
(Kocsis, 2009; Nykodym et al., 2005; Rogers, 2003). We
adopt criminal profiling methodology in the malware
analysis domain. In order to respond to malware more
efficiently and effectively, malware analysts need to check
the target of an attack, since it reflects the attack's intent of
the malware creator. Such process tries to achieve the end
goals by answering the following questions. 1) What do
malware creators want to obtain? 2) How do malware
creators attack the victim? 3) What do malware creators
need for an attack? By answering these questions, analysts
can understand malware creators' attack pattern.

For understanding the intent of malware creator, we
exploit integrated footprints, including opcodes in .smali,
meta-data in Androidmanifest.xml, and the serial number of
a certificate as feature vectors for malware characteriza-
tion. We observe that a) malware samples have unique
malicious behavior patterns and characteristics, b) the
malicious behavior of malware samples is determined by
operation codes (opcodes) and requires a particular
permission set, and c) such an opcode set influences the
behavior of the malware. To operate our system at scale, we
represent malware characteristics using Bayer's profiling as
described in Bayer et al. (2009). We prepare a representa-
tive profile that combines multiple features. For that, and
for each malware family, we characterize it by integrated
footprints using static analysis features. Then, by
comparing the profiles, we detect and classify malware
samples into similar groups.

Contribution:

1. We propose an “Integrated Malware Analysis System”

which considers malware-centric information as well as
malware creator-centric information. Using the serial
number of a certificate simplifies the process of malware
detection and classification.

2. We demonstrate the operational relevance of our sys-
tem. Our system enables AV vendors to react to many
species of malicious samples by quickly and efficiently
conducting similarity matching between these and
previously detected samples. Our system facilitates the
detection of new malware, including existing malware's
variants and zero-day exploits. This is further high-
lighted through in-depth experiments using real-world
malware samples. Our system implements an efficient
malware detection and classification method. Despite
using static analysis, it requires only 72 s/MB to detect
and classify malware into similar groups.



Table 1
Various malware detection/classification methods in previous works.

Approach Method Feature Previous works

Detection on mobile device Permission Permission Enck et al. (2009)
Pearce et al. (2012)

Footprint System resources Bugiel et al. (2012)
Shabtai and Elovici (2010)

Taint tracing Enck et al. (2010)
Event log, System call Bose et al. (2008)

Detection outside mobile device Permission Permission Peng et al. (2012)
Wang et al. (2013)

Footprint System call Lin et al. (2013)
System call, Disassembled code Blasing et al. (2010)
System call, Interaction log Reina et al. (2013)
System call Zheng et al. (2013)
System/API call, Taint tracing Rastogi et al. (2013)

Permission þ Footprint Permission, API call Arzt et al. (2014)
Cao et al. (2015)
Yang et al. (2012)
Yang et al. (2015)

Permission, API call,
System call,
XML information,
Disassembled code

Spreitzenbarth et al. (2013)
Weichselbaum et al. (2014)
Yan and Yin (2012)
Zhou et al. (2012)

Permission, Network traffic Vidas et al. (2014)
Hybrid Footprint System call Burguera et al. (2011)

Isohara et al. (2011)
Function call Schmidt et al. (2009)

J.-w. Jang et al. / Digital Investigation 14 (2015) 17e35 19
3. Our proposed method can accommodate additional
features that depict the unique footprint patterns of
malware. While our method mainly utilizes the static
analysis technique for malware classification, it is also
flexible in utilizing dynamic analysis technique to cap-
ture the malicious behavior.

Organization

The rest of this paper is organized as follows. In Section
Related work, the related work is reviewed. In Section
Profiling modeling, we present our profiling system for
malware analysis. Data exploration to find meaningful
features for anti-malware system is presented in Section
Data exploration. In Section Andro-AutoPsy: An Anti-
Malware System, we present our anti-malware system,
Andro-AutoPsy. In Section Performance evaluation, the
performance evaluation results are provided. In Section
Limitations, we discuss the limitation of our proposed
method. Finally, we discuss future research directions and
conclude with Section Conclusion and Future Work.
Related work

Based on where the scan and monitoring of the mobile
malware takes place, malware analysis methods can be
classified into three types: detection methods on the mo-
bile device, detection methods outside the mobile device,
and hybrid detection methods. We classify the studies in
the literature based on the type of the malicious behavior
into permission- and footprint-based methods. Footprint-
based methods include system call-based, API call-based,
disassembled code-based, and XML information-based
methods. The detection methods on a mobile device scan
malicious behavior patterns on the device and return the
analysis results to the user. However, these approaches do
not consider resource constraints of the mobile device,
which may affect their usability and the user experience
upon the operation of such systems: low computing power
and battery life are two fundamental properties.

The detection methods applied outside the mobile de-
vice execute detection algorithms on an emulator or a real
device running the targeted applications, and conduct
static or dynamic analysis to determine the nature of the
applications. While these approaches do not need to
consider the aforementioned resource constraints, they
cannot respond quickly to new malware families. To over-
come the drawbacks of both approaches, hybrid ap-
proaches have been introduced inmobilemalware analysis.
The client module on the mobile device is instrumented to
collect information related to the applications installed on
it and to send the information to a remote server. The
remote server then analyzes log files using their detection
algorithms, while not impeding usability or degrading the
user experience at the mobile device. Table 1 summarizes
the various malware detection or classification methods in
the literature falling under those categories. In the
following, we elaborate on some of the relatedwork in each
category.
Detection methods on mobile devices

Previous works in this category have introduced mal-
ware detection methods that can execute relevant appli-
cations on devices, providing online detection.

Enck et al. (2009) proposed the Kirin security service,
which performs lightweight certification of applications to
mitigate malware at installation time. Kirin examined the
requested permissions of applications, compared them



J.-w. Jang et al. / Digital Investigation 14 (2015) 17e3520
with self-defined security rules, and determined whether
or not malicious activities were executed. Requested
permission-based methods rely almost completely on the
permissions given in a manifest file, Androidmanifest.xml.
However, application developers tend to declare an
excessive number of permissions in a manifest file,
although the application does not in fact need them all.
Thus, these methods' ability to detect and classify malware
with a high accuracy is limited. Pearce et al. (2012) intro-
duced AdDroid; they separated advertising permissions for
the Android platform. In AdDroid, the host application and
the core advertising code run in an isolated environment,
where applications using AdDroid no longer send sensitive
information to advertisement servers. However, AdDroid
very rarely reacts to information leakage unrelated to
advertisement, which applies to the majority of mobile
malware.

Bugiel et al. (2012) proposed Xmandroid, a system-
centric and policy-driven runtime monitoring system that
regulates communications between applications. Accord-
ing to a heuristic analysis, the authors identified attack
patterns and classified malicious applications. Shabtai and
Elovici (2010) proposed Andromaly, a behavior-based
detection framework for Android-based mobile devices.
Andromaly is a host-based intrusion detection system that
continuously monitors various resources and classifies
malicious applications using a machine-learning algorithm.
These proposed methods, however, require a significant
hardware capacity (e.g., CPU, RAM, and battery life) in order
tomonitor all resources comprehensively. Enck et al. (2010)
proposed Taintdroid, an extension to the Android mobile-
phone platform that tracks the flow of sensitive informa-
tion through third-party applications. If tainted data leave
the Android device, Taintdroid provides a report logging
the leaked data, where it was sent and which application
leaked it. Taintdroid focuses on information leakage. An
emulator, such as Droidbox, embeds Taintdroid and tracks
information leakage. Bose et al. (2008) proposed a
signature-based detection method for the Symbian oper-
ating system. The method constitutes a two-stage mapping
technique consisting of an extraction and a representation
process that construct signatures at run-time from the
monitored system events and system calls. The method
uses temporal logic to detect malicious activity over time
that matches a set of signatures represented as a sequence
of events. However, the method needs to obtain root
privileges to access a kernel, and requires sufficient hard-
ware capacity to extract system calls and convert related
features into signatures.

Detection methods outside mobile devices

Previous studies in this category introduced malware
detection methods that execute the relevant applications
outside the device, providing offline detection. These
methods execute their detection algorithms on an emulator
or a real device other than the host device, and thus they are
not subject to the constraints of real devices and do not
impede usability or degrade the user experience.

Peng et al. (2012) used probabilistic generativemodels for
risk scoring schemes, ranging from the simple Naïve Bayes to
advanced hierarchical mixture models. Their proposed
methods compute a real risk score of Android applications
based on the requested permissions, and differentiate be-
tween malware and benign applications. Wang et al. (2013)
proposed DroidRisk, a framework for quantitative security
risk assessment of Android permissions and applications
based on requested permissions. By using the quantitative
risk levels of applications, they showed that a reliable risk
signal could be generated to warn potential malicious activ-
ities. However, application developers tend to declare an
excessive amount of permissions in a manifest file, requiring
the method to rely on other criteria to achieve higher detec-
tion and classification accuracy.

Lin et al. (2013) proposed a System Call Sequence Droid
(SCSdroid), which adopted the thread-grained system call
sequences invoked by applications. SCSdroid first captures
the system call sequence, extracts the common sub-
sequences of malware, and adopts Bayes theorem to detect
malware. SCSdroid then extracts system calls by exploiting
Strace (Strace, 2013); however, Strace executes its function-
ality after installation. Thus, SCSdroid cannot detect mali-
cious behavior during the installation process, and depends
on the functionality of Strace. Blasing et al. (2010) proposed
an Android Application Sandbox (AASandbox), which en-
ables static and dynamic analysis on the Android platform. In
the static analysis phase, AASandbox decompresses instal-
lation files and disassembles intended executable files, and
then, compares themwith pre-definedmalicious patterns. In
the dynamic analysis phase, it hijacks system calls for log-
ging and builds a frequency table of system calls. However,
the dynamic analysis methods based on the frequency of
system calls need a more elaborate and redefined process in
order to improve their detection or classification accuracy;
the function name of the system call as well as the argu-
ments used in the system call need to be considered. Reina
et al. (2013) introduced Copper-Droid, an approach built on
top of QEMU to automatically perform dynamic analysis of
Android malware. CopperDroid conducts a unified analysis
to characterize low-level OS-specific and high-level
Android-specific behaviors (e.g., information leakage,
sending SMSs) by observing and analyzing system call in-
vocations, and IPC and RPC interactions. Zheng et al. (2013)
introduced a systematic approach, called DroidAnalytics, a
signature-based analytic system for automatically collecting,
managing, and analyzing malware. Their system allows an-
alysts to retrieve, associate, and revealmalicious logics to the
opcode level. They only focused on detecting malware,
leaving a lot to be desired in classifying and clustering
malware into families. Rastogi et al. (2013) proposed Apps-
Playground, a framework for automatic dynamic analysis,
which executes a suspicious application on an emulator built
on top of QEMU, and determines whether or not malicious
activities are carried out by tracking information leakage and
monitoring sensitive API and system calls.

Arzt et al. (2014) proposed a static taint-analysis sys-
tem, FlowDroid, which is context-, flow-, object-, and
field-sensitive and lifecycle-aware taint analysis for
Android applications. By handling Android-specific char-
acteristics such as lifecycle of an application or callback
methods, FlowDroid successfully conducted information
flow analysis. Cao et al. (2015) proposed a novel static



J.-w. Jang et al. / Digital Investigation 14 (2015) 17e35 21
analysis tool, EdgeMiner, which is to systematically
address the challenge of implicit control flow transitions.
Their system applied automated program analysis
methods to identify the callbacks and their registration
methods on the Android platform. Yang et al. (2012)
introduced a systematic approach, called Money-Guard,
to detect stealthy money-stealing applications in the
Android market. Money-Guard checks API calls and
billing-related permissions to detect stealthy money-
stealing malware, but cannot identify various malicious
behavioral patterns, except for malware sending
premium-rate SMSs. Yang et al. (2015) proposed a mal-
ware detection method, AppContext, based on the context
of a security-sensitive behavior. AppContext constructed a
self-defined call graph from an apps binary through static
analysis and generated the complete contexts as
leveraging identified activation events and context com-
ponents. Then, AppContext classified the security-
sensitive behaviors by using the extracted contexts, and
detected malware. Spreitzenbarth et al. (2013) proposed
Mobile-Sandbox, a static and dynamic analyzer for
Android applications, like in AASandbox. In the static
analysis phase, Mobile-Sandbox parses a manifest file,
decompiles the application, and checks whether or not
suspicious permissions have been used. In the dynamic
analysis phase, they execute the application on Droidbox,
log every operation of the application, and record native
library calls executed by the processes. They extract the
native library calls by exploiting ltrace (ltrace, 2014); ltrace
executes its functionality after installation process is
completed. Weichselbaum et al. (2014) introduced
ANDRUBIS, a fully automated analysis system based on
static and dynamic analysis approach, to analyze an
Android application. In the static analysis phase, ANDRU-
BIS extracted information from a manifest file and its
actual bytecode. In the dynamic analysis phase, ANDRUBIS
executed the application in an emulated environment.
While executing the application, ANDRUBIS monitored its
actions at both the Dalvik VM and the system level. Yan
and Yin (2012) proposed DroidScope built on top of
QEMU and allowed the OS-level and Java-level semantic
views to be reconstructed simultaneously. They analyzed
malware by collecting native/Dalvik instruction traces,
API-level activity, and information leakage. Zhou et al.
(2012) proposed DroidRanger, which identifies malicious
behavior through both a permission-based behavioral
footprint scheme for the detection of known malware and
a heuristic-based filtering scheme for the detection of
zero-day malware. Vidas et al. (2014) presented A5, a fully
automated analysis system based on static and dynamic
analysis approach. In the static analysis phase, A5 extrac-
ted information from a manifest file and its actual byte-
code. In the dynamic analysis phase, A5 executed malware
in a sandbox environment, recorded network threats, and
generated network intrusion detection system signatures.

Hybrid methods

In hybrid detection methods, clients collect information
related to applications installed on the device and send the
information to a remote server. The remote server then
analyzes the log files using the proposed detection algo-
rithm. This approach compensates for the drawbacks of the
online and offline detection methods. However, users have
to agree in advance on which client module will be used to
send user information to the remote server.

Burguera et al. (2011) proposed a lightweight client called
Crowdroid, which monitors system calls, makes a frequency
table using the system calls, and sends them to a centralized
server. The remote server then identifies malicious behavior
in a statistical manner and detects malware utilizing a K-
means algorithm. Crowdroid extracts system calls by
exploiting Strace. However, Strace executes its functionality
after installation. Thus, Crowdroid cannot detect malicious
behavior during the installation process, and depends on the
functionality of Strace. Isohara et al. (2011) proposed a
kernel-based behavior analysis system that consists of a
system call log collector on an Android device and a log
analyzer on a remote server. The client collects system calls
generated at the installation time and sends the logs to a
remote server. The remote server then compares patterns in
the logs with 16 pre-defined patterns. Since the pre-defined
behavior patterns focus mainly on malicious behaviors, such
as restricted information leakage, jailbreak, and abuse of root
privileges, their system cannot detect malicious behavior
such as sending a premium-rate SMS and calling premium-
rate code. Furthermore, their approach does not guarantee
sufficient scalability.

Schmidt et al. (2009) proposed a collaboration mecha-
nism for Android platform security comprising a log col-
lector on the device and a remote analyzer. In their
proposed system, the client monitors the behavior of the
malicious application at installation time, runs an analysis
based on the similarity of the function call set used, ex-
changes the results of the analysis with neighboring de-
vices, and performs collaborative malware detection.
Profiling modeling

Overview

In the real world, the criminal profiling process uses two
approaches: inductive and deductive. Inductive profiling is
a bottom-up approach and relies on generalizing behav-
ioral patterns from a statistical analysis of the data of
convicted offenders. The profilers make generalized
behavior patterns by analyzing the correlation between a
crime and a criminal's characteristics (e.g., job, education
level, and income level). Deductive profiling, on the other
hand, does not rely on generalities from sample groups.
Deductive profiling is a top-down approach based on
deductive logic and argues from the specific to the general
(Rogers, 2003). As illustrated in Fig. 1, we adopt the Federal
Bureau of Investigation (FBI) profiling approach, following
the inductive profiling, for mobile malware analysis. Our
profiling method consists of a four-stage process: 1) data
assimilation, 2) malicious behavior definition, 3) malware
attack scenario sketch, and 4) profile generation.

Data assimilation: In this stage, we gather malware-
centric and malware creator-centric information from
multiple resources (e.g., AV technical reports, web-



Fig. 1. Overall malware analysis process of Andro-AutoPsy.

J.-w. Jang et al. / Digital Investigation 14 (2015) 17e3522
crawling, malware repositories, community sites, and
malware). Table 2 shows the feasible information parsed
from an executable file of the malware.

Malicious behavior definition: Endpoint mobile de-
vices can be infected by malware through many routes,
usually as a downloaded application from the official
market, but also through visits to alternative markets,
spam, malicious SMSs, and malware-bearing advertise-
ments (McAfee, 2013). Behaviors of the malware after
invading a victim's device can be categorized according to
the main purpose of the creator's attack. Malicious behav-
iors are classified into privilege escalation, remote control,
financial charge, and information collection (Zhou and
Jiang, 2012). The malicious behaviors are listed as moneti-
zation, information stealing, mobile botnet, and root
Table 2
Candidate features for Malware analysis as a result of data assimilation.

Category Collected information Resources

Malware
creator-
centric

Certificate information,
Hash digest of a certificate

CERT.* or alias.*

Malware-
centric

Package name, Package version,
Minimum SDK version,
Requested permission

Android
Manifest.xml

API-related permission,
Content provider-related permission,
Intent-related permission,
URL information, System command,
Malicious API sequence,
Usage of dynamic loading method,
Usage of crypto method

Opcode of
disassembled code

Existence of forged file Asset, res, or lib
folder

Hash digest of .dex,
Hash digest of AndroidManifest.xml

MANIFEST.MF
privilege acquisition (Seo et al., 2014). Through examining
these behaviors, we define malicious behaviors that can be
used straightforwardly in our anti-malware system. As
shown in Table 3, the malicious behaviors we proposed in
this paper are categorized into malware creator-centric and
malware-centric features. The malware creator-centric
feature is built as the suspect list of the malware-creator.
The malware-centric features include financial fraud by
hiding SMS notification from the user, C&C attack by hiding
SMS notifications from the user, the usage of system com-
mands on root privilege for leveraging forged files, the
leakage of sensitive information, and the likelihood ratio of
critical permission.

Malware attack scenario sketch: We define and sum-
marize distinct behavioral characteristics of malware at the
malicious behavior definition stage. At the malware attack
scenario sketch stage, we generate a scenario of the events
that occurred during malware execution and analyze the
relation between the malicious behavior of malware and
the damage level at the victim's side (e.g., information
leaks, damage by premium-rate without users' consent).
We draw a flowchart based on the scenarios that utilizes a
rule-based algorithm, as illustrated in Fig. 2.
Table 3
Proposed features of malicious behaviors.

Category Proposed features of malicious behaviors

Malware
creator-
centric

The number of malware family or variant created by
one Serial Number > Threshold (TS)

Malware-
centric

Concealing C&C management SMS,
Concealing confirmation code SMS for premium-rate,
Usage of system command AND Existence of forged files,
Likelihood ratio of critical permission > Threshold (TL),
Leakage of system and personal information



J.-w. Jang et al. / Digital Investigation 14 (2015) 17e35 23
Profile generation: We finally construct the sketch of
malware at the profile generation stage. We explain the pro-
cess of profile generation in more detail in the following
subsection.
Profile generation

In the literature of traditional malware research related
to personal computers operating Microsoft Windows,
Bayer et al. (2009) proposed a method for scalable
behavior-based malware clustering. The method contrib-
utes to the theoretical foundations of malware analysis by
discussing behavior-based profiling formally. Given the
relevance of that study to ours, we review Bayer's defini-
tions of profiling for the completeness of our presentation,
and incorporate details specific to our proposed system in
the following.
Definition (profiling). A profiling P is defined by four
tuples as P ¼ ðO;OP;G;DÞ, where O is the set of all objects
and OP is the set of all operations, which is represented in
nested dictionary form as {name: {means: attribute}}.
G4ðO� OPÞ is a relation assigning one or several opera-
tions to each other, and D4ððO� OPÞ; ðO� OPÞÞ represents
the sequence-unrelated set, which is equivalent to inte-
grated footprints.

Object: An object represents an abstract functionality
that malware samples need for executing the malicious
behavior. We classify objects into a malware creator-
oriented object type and a malware-oriented object type.
The malware creator-oriented object type constitutes the
identification of the malware creator, and the malware-
oriented object type constitutes malicious behavior. We
formally define the objects as follows.
Operation: An operation represents a concrete mali-
cious behavior. Formally, an operation comprises
operation-name, operation-means, and operation-
attribute. Operation-name acts as the identifier for mali-
cious behavior. Operation-means is the attack method of
malware, such as usage of the system command and the
existence of forged files. Operation-attribute is a mean-
ingful value that the malware wants to obtain. When we
define the usage of system commands for leveraging forged
files as operation-name, operation-means is a system
command, and operation-attribute is chmod and su. We
formally define an operation as follows.
For example, we represent the profile (D) of a malware
as follows: (Identification of malware
creator) � ({Information of malware creator: {Serial num-
ber of a certificate: ‘93:6e:ac:be:07:f2:01:df’}}), (Malicious
behavior) � ({Critical permission set: {Requested critical
permission: {‘RECEIVE_SMS’, … ,‘SEND_SMS’}}}).

Data exploration

In order to estimate the behavior pattern of malware, we
adopt the serial number of a certificate, malicious API se-
quences, permission distributions, usage of system



Fig. 2. If-then rule-base for malicious behavior detection.

J.-w. Jang et al. / Digital Investigation 14 (2015) 17e3524
commands, existence of forged files, URL information, usage
ofdynamic loading,usageof cryptomethods, andhashdigests
of files as feature vectors. We determine metrics for malware
analysis according to the data exploration. We used 9990
malware samples and 109,193 benign samples in our
experiments.

Serial number of a certificate: When released to the
Google Market, an application is signed with the application
creator's private key, and a standard certificate of the public
key is generated. There are blanks for writing the creator's
name, organization, and location, when generating a certifi-
cate. However, the application creator canfill the blankswith
false information, since the process has no confirmation
steps. The certificate receives a unique serial number ac-
cording to theRFC2459,1X.509 standard. Thus, onecan check
whether certificates are the same or not by comparing the
serial number. We notice that there may be certain serial
numbers that are detected in many malware samples. We
explore the serial numberofa certificateasa feature.With the
dataset of malware samples, we extracted the serial number
of the certificate in each sample and found the distribution of
the serial numbers. A total of 1834 serial numbers were
observed inall themalware samples,butonly86uniqueserial
numbers comprised 70% of the samples. Surprisingly, 50% of
malware samples were assigned 17 serial numbers. This
means that malware creators frequently use particular serial
numbers. Among the 1864 serial numbers, 370 numbers
generated more than 2 families or variants of malware. For a
fast primary screening, we made a blacklist of 370 serial
numbers. This list takesmuch less time in screening than the
more inclusive list of 1864 serial numbers. Moreover,
‘93:6e:ac:be:07:f2:01:df’ and ‘b3:99:80:86:d0:56:cf:fa’ were
deleted fromthe list, since theyconstitute a serial numberof a
1 http://www.rfc-editor.org/rfc/rfc2459.txt.
standard test key for native applications that are built on a
device or an emulator. As a result, a serial number blacklist
having 368 numbers was constructed.

Malicious API sequence: We explore the Application
Programming Interface (API), as documented inAndroid SDK,
as a feature. The API is a set of functions provided to control
the principal actions of Android platform conveniently. It is
much more efficient to consider certain APIs often used by
malware thantoextract all theAPIs fromthesourcecodeof an
application. Seo et al. (2014) analyzed malware samples and
determined the malicious APIs frequently used by malware.
They listedmaliciousAPIs and compared theusage frequency
of their malware samples and benign applications. We
manually collected additional APIs by checking all the APIs in
Android SDK that might operate in a similar way to the ma-
licious APIs determined by Seo et al. (2014). These APIs are
involved in collecting the user's personal information or the
device information,accessingWebsites, sendinganddeleting
SMS, accessing and reading the content provider, etc. The
details of the malicious APIs we defined are listed in the ap-
pendix. A malicious API sequence represents the behavior
pattern of malware. Although malicious profiles seem to be
similar to eachother, theAPIs used inmalwarevaryaccording
to the malware creators. Therefore, we chose malicious API
sequences as a feature for malware analysis.

Permission distribution: We explore the permission
distribution as a feature. About 100 permissions are provided
on the Android platform to inform the user of what actions
will be performed and which resources will be accessed by
the application to be installed. Sarma et al. (2012) compared
two datasets, applications from the Android Market and
malicious applications obtained from malware repositories,
and analyzed the distribution of permissions requested by
each dataset. They determined 26 risky permissions that are
critical in terms of security andprivacy.We also used only the
aforementioned 26 permissions in our system. However, one

http://www.rfc-editor.org/rfc/rfc2459.txt


J.-w. Jang et al. / Digital Investigation 14 (2015) 17e35 25
of the permissions, INTERNET, was excluded, since this
permission is required by most of the applications. We
considered that the relatively small difference in the ratio of
permissions of Android Market applications and malware
does not play an important role in detecting malware.
INSTALL_PACKAGES, apermissionusuallyused for installinga
new package downloaded from a server, is included instead.
While requested permissions are notified before installation,
there are other methods of extracting permission specifica-
tion by analyzing an API call-graph (Felt et al., 2011; Au et al.,
2012). The requested permissions declared in Androidmani-
fest.xml are not in fact necessary for the application func-
tionality. Au et al. (2012) brought the current permission
system into question, and stated that it was incomplete. For
this reason, the study specified the list of permissions
required for every API call and provided the permission
mappings. In our system, we leveraged only 26 critical per-
missionswhen applying PScoutmappingwhich is amapping
table that lists up permissions required to use in an API (Au
et al., 2012), along with the requested permission. We
named this feature API-related permission. Benign applica-
tions and malware applications have different tendencies of
requesting permissions. Malware often requests more per-
missions than benign applications, or often requests per-
missions that have risks related to privacy or monetary
problem. In Sarma et al. (2012), it is stated that there is clearly
a difference between the two groups in terms of the fre-
quency of requesting permissions, such as SEND_SMS or
READ_PHONE_STATE. We analyzed the distribution of the
critical permissions in each benign and malware sample to
calculate the likelihoodof thepermissions.Thedistributionof
the critical permissionsdependson theapplication's category
(benign or malware).

InTable4, thepercentagesof critical permissions foreach
category, requested and API-related, in benign samples and
malware samples are presented. The permissions in Table 4
are listed in accordance with the percentage value and the
difference in values of benign and malware. Using the
probabilities and applying a Naïve Bayes classifier, we can
calculate the likelihoodof thepermissions for each category.
Peng et al. (2012) used the critical permissions, applying
Naïve Bayes models to score the risk of an application. The
permissions should be relatively independent in order to
multiplyeachprobability of permission. In Au et al. (2012), it
was shown that most of the Android permissions have no
correlation with other permissions from the perspective of
API usage. They recognized that only 15 pairs of permissions
have a dependence level among all the permission sets.
Most of the critical permissions we used are not included in
these pairs; only one pair (ACCESS_COARSE_LOCATION and
Table 4
Critical permission distribution in benign and malware samples (%).

Permission Requested permission

Benign M

ACCESS_COARSE_LOCATION 19.55 5
ACCESS_FINE_LOCATION 18.92 4
SEND_SMS 1.44 4
READ_PHONE_STATE 25.96 9
RECORD_AUDIO 3.00 1
ACCESS_FINE_LOCATION) is high correlated each other. In
order to reduce the complexity of computation, we also
assume that they are relatively independent from the
perspective of API usage.

Let n and m be number of applications and number of
critical permissions respectively. The permission vector for
application i is ai ¼ ðai;1; ai;2;…; ai;mÞ, where

ai;j ¼
�
1 if application i uses critical permission j
0 otherwise

which are independent variables because all critical permis-
sions are relatively independent. In addition we put
ci2{benign, malicious} which indicates the category of
application i.

Then,

PðcijaiÞ ¼ Pðci
��ai;1; ai;2;…; ai;mÞ ¼

Ym
j¼1

P
�
ci
��ai;j�

Using Bayes' Theorem, the conditional probability of
category ci given variable ai;j, which informs about the
usage of the critical permission, can be written as:

P
�
ci
��ai;j� ¼ P

�
ai;j

��ci�,PðciÞ
P
�
ai;j

�
Then, the ratio of probabilities is calculated as:

P
�
malicious

��ai;j�
P
�
benign

��ai;j� ¼ P
�
ai;j

��malicious
�
,PðmaliciousÞ

P
�
ai;j

��benign�,PðbenignÞ
We assume Pðci ¼ maliciousÞ ¼ Pðci ¼ benignÞ; i.e., there

is no information about the category of the application, and
therefore the application is supposed to have a variable of
any category value following a uniform distribution. By
multiplying the probabilities of m permissions, the likeli-
hood ratio L is:

LðaiÞ ¼ Pðci ¼ maliciousjaiÞ
Pðci ¼ benignjaiÞ ¼

Ym
j¼1

P
�
ai;j

��ci ¼ malicious
�

P
�
ai;j

��ci ¼ benign
�

If one of the conditional probabilities is zero, then the
whole multiplication becomes zero. To avoid the case that a
denominator becomes zero, the conditional probabilities
are calculated using the Laplace estimator (Leung, 2007),

P
�
ai;j

��ci� ¼
Pn

i¼1ai;j þ 1
nþ 2

When the likelihood of a malicious application increases
as compared to that of the benign application, the value of L
increases. Malware can be detected by comparing the
API-related permission

alware Benign Malware

2.31 22.17 56.32
5.65 19.92 55.83
2.28 1.49 35.69
6.85 12.20 69.94
6.29 2.84 15.58



J.-w. Jang et al. / Digital Investigation 14 (2015) 17e3526
likelihood ratio using some predefined threshold value TL.
Therefore, we choose the likelihood ratio (L) as a feature for
malware detection.

Intent: Android applications do not have the unique
entry that programs usually have on other operating sys-
tems. Android applications are made up of Android com-
ponents: activity, service, broadcast receiver, and content
provider. Activity is a UI component related to the screen,
while service is a background process that is invisible to the
user. Broadcast receiver waits for the signals from the sys-
tem and wakes up the appropriate activities. Content pro-
vider plays the role of an intermediate unit for sharing data
between applications. These four components work indi-
vidually, and each component delivers messages to other
components to allow cooperation. The deliveredmessage is
called “intent”. Intent transfers from one activity to other
activities, containing specific instructions about what the
application wants. We checked the intent-specific infor-
mation to detect malware that conceals SMS notifications.
These malware receive a notification of SMS with the
highest priority, and then prevent the delivery of the mes-
sage to other applications. This malicious behavior can be
found by searching the intent filters in Androidmanifest.xml.

Usage of system commands: We explore the usage of
system command as a feature. The commands commonly
usedbymalware are listedby Seo et al. (2014).We rearranged
the list by excluding the commands used in only a few mal-
ware samples of our dataset.We found that ‘chmod’, ‘insmod’,
‘su’, ‘mount’, ‘bash’, ‘killall’, ‘reboot’, ‘mkdir’, ‘getprop’, ‘ln’, and
‘ps’ are commands often used by malware, and they run on
rootedAndroid devices. If these strings are extracted from the
source code of an application, we mark the application as a
malware. The commands are executed after the malware
obtains the root privilege of the device. In addition, our list
contains gingerbreak and rageaginstthecage that are root
exploit codes.

Existence of forged files: When the extension of a file is
different fromthemagicnumberof itsheader information,we
regard the target file as a forged file. If the actual magic
number of the header information is .elf, .apk, or .jar, although
the extension of a target file is that of a graphics file, such as
.jpg, .gif, and .png, we call the targetfile a forgedfile. In order to
evade the detectionmethods of AV vendors, mobilemalware,
like traditional malware, hides script, including the execution
of malicious behavior, in a normal-looking file, and executes
the malicious behavior by loading that file. However, some
benign applications change the extension of the updating file
(e.g., .elf, .zip) to another extension (e.g., .so, .dat) for security
reasons. In that case, the falsepositives due tofile forging tend
to be high. In order to reduce the false positives, we consider
the intersection of the usage of a system command and the
existence of a forged file as a feature for malware detection.
Forged files containing executable exploit codes are usually
located in the assets, lib, and res folder, and malware needs
system commands for executing the exploit code (Seo et al.,
2014). Therefore, the intersection of the usage of system
commands and the existence of forged files is a good metric
for detecting malware that overcomes the aforementioned
shortcoming.

MISC (miscellaneous): We explore other footprints as
features: URL information, usage of dynamic loading, usage
of crypto methods, and hash digests of files. We cannot
generalize URL (or destination) information as a malware
detection rule, since the difference in one bit (or one letter)
represents a different destination; i.e., that can effect only
perfect string matching. Accordingly, URL information as a
featurehas no significant effect on thedetection ofmalware.

The Android platform supports dynamic loading
methods for binary and native machine code. Although
dynamic loading methods for other binary files (.dex or
.jar) may be misused for loading malicious code, benign
applications leverage dynamic loading methods for flex-
ible memory allocation or the extension of dynamic func-
tionality during runtime execution. In order to enhance the
performance or for other capabilities, some application
developers use native code on JNI (Java Native Interface).
JNI is a programming framework that enables a Java Virtual
Machine (JVM) to interact with native applications and li-
braries written in the C language. Dynamic loading
methods for native machine code appear in benign appli-
cations and malware. We found the crypto methods in
benign samples, since application creators use these
methods for ensuring data confidentiality and integrity,
while malware creators use them for concealing victims'
hijacked information. Thus, the usage of cryptomethods as
a feature has no significant effect on the detection of
malware. Hash digest based on malware detection
methods is prone to high false negatives, since the differ-
ence in a single bitmakes a new file name different from its
origin. In short, none of the features described in this
subsection is sufficient to allow the detection of malware.

Summary: As a result of data exploration, we choose five
footprints as features: the serial number of a certificate, ma-
licious API sequence, permission distribution (critical perm
ission set, likelihood ratio), intent, and the intersection of the
usage of system commands and the existence of forged files.

Andro-AutoPsy: an anti-malware system

In the following, we review the design and operation of
Andro-AutoPsy, a hybrid system for malware analysis. In
subsection Overview, we provide an overview of our system.
In subsection Integrated footprints extraction process, we
review the extractionprocessof integrated footprints used for
ourprofiling phase. In subsectionDecisionprocess,we review
the decision process for determining the nature of an appli-
cation based on the profiling.

Overview

As illustrated in Fig. 3,wepropose a hybrid anti-malware
system that consists of a client application on a mobile de-
vice andaprofilingandanalysis systemona remoteserver. A
client application on themobile device collects the installed
application's information, and sends it to a remote server;
the client application sends only application-centric infor-
mation such as the hash digest of .apk files and package
name. If the remote server cannot crawl that application, the
client application sends the applicationpackagefile (.apk) to
the remote server. The remote server analyzes themalicious
application anddecideswhether or not it ismalicious, based
on integrated footprints.



Fig. 3. Overall procedure of Andro-AutoPsy.

J.-w. Jang et al. / Digital Investigation 14 (2015) 17e35 27
The remote serverconsistsof three components: a crawler,
a repository, and an analyzer. The crawler component crawls
applications acquired from repositories, such as official and
alternativemarkets. The crawled applications are thenpassed
to the repository component,which runs a duplication test by
comparing the hashdigests of the .apk fileswith each other. If
the crawled application is a duplicate, it is discarded; other-
wise, the repository component sends the application to the
analyzer component. After completing the analysis, the
analyzer component sends the analysis results to both the
repository component and the client application. Upon
receiving the analysis results from the remote server, the
client application displays the result on the screen to the user.
The repository component searches in its database as soon as
the repository component receives an analysis request from
the client. If the repository component does not have analysis
results that satisfy the client's request, it fetches the crawler
component. The analyzer component has two processes: an
integrated footprints extraction process and a decision pro-
cess. The integrated footprints extractionprocess is composed
of a profiling engine, and the decision process is composed of
two engines: a detection engine and a classification engine. In
the following, we review the extraction and decision
processes.

Integrated footprints extraction process

Profiling Engine: The Profiling Engine (PE) disassembles
an apk file, which is an Android package that comes as a
compressed file that usually contains four folders (META-INF,
lib, res, and assets), and three files (AndroidManifest.xml,
classes.dex, and resources.arsc). The serial number is extracted
from theMETA-INF folder which includes information of the
serial number of each application and the hash digest of each
file. The PE extracts the package name, requested permission,
component name and intent in AndroidManifest.xml, and
disassembles the classes.dexfile into .smali code in the formof
opcode by exploiting Apktool (Apktool, 2010). Apktool is
known-well integrated solution that can decode resources to
nearly original form. We used the latest version of Apktool.
Our system sorts parsed components in ascending order. For
efficiently searching and parsing significant information, our
system searches only files with the same component name
and all files in the folder including the files with the same
component name. In addition, our system checks whether or
not a forged file exists in assets, res, and lib folders. Malware
behavesmaliciously, by hidingmalicious script in forgedfiles.
For example,malwaredisguises itself as a benignapplication:
if the user clicks the fake application icon, it executes the
malicious script hiding in the forged files (Paganini, 2013).
Often, such malware replaces the legitimate banking appli-
cation to steal sensitive information and monitor victim's
device in the background. By following the codes used by
components, the system extracts malicious APIs, system
commands, and API-related permissions. When retrieving
forged files, our system compares the file extensionwith the
magicnumberof thefileheader, anddecideswhetherornot it
is forged. After capturing the integrated footprints of a mali-
cious application, the PE creates the profile of each malware
as a dictionary structure of the Python language for an effi-
cient membership test, as explained in Section Profile
generation, and passes it to the Detection Engine.

Decision process

The decision process consists of two modules: detection
engine, classification engine. In the following we elaborate
on each of those modules.

Detection engine
Our detection engine (DE) decides whether a given

application is malicious or not based on the behavior pat-
terns. The DE contains detection rules which are composed
of the serial number list of malware creator, rule of
checking the usage of system commands for leveraging
forged files, rule of checking concealing received SMS
notification, rule of checking leakage of sensitive informa-
tion, and likelihood ratio of requested and API-related



J.-w. Jang et al. / Digital Investigation 14 (2015) 17e3528
critical permission. Also, our engine contains rules of
detecting smishing (SMS phishing) applications.

The pseudo code in Algorithm 1 shows how the DE
decides whether it is malicious or not. The detection al-
gorithm starts by comparing the serial number of each
application against the blacklist for a fast scanning. In our
dataset, there are applications that are signed by the same
serial number in a blacklist but do not exploit anymalicious
APIs as in Section Data exploration. In this case, we exclude
these applications to avoid over-detection.

Secondly, the algorithm checks the usage of the sys-
tem commands for leveraging forged files. These com-
mands, which can be run on a rooted device, are usually
found in malicious codes. The next detection step is
finding malware that conceals received SMS notification.
The purpose of malware that behaves in this manner is to
subscribe to premium services that confirm and notify
using SMS, or by receiving an SMS for a command and
control (C&C) message. These applications use API
methods, such as getOriginatingAddress(), getMessage-
Body(), and the getDisplayMessageBody() of SmsMessage
class, to receive SMSs. In addition, they request highest
priority for SMS receiving intent, and call abortBroadcast()
to hide a notification of SMSs sent to other applications
and the users.

The step checks whether or not an application uses the
aforementioned methods and an intent filter to detect
malicious behavior. Similarly to premium-rate SMS, a
smishing application receives SMSs for C&C from a remote
server, sends hijacked sensitive information (e.g., contacts,
SMS content, call logs, certificate for financial transaction in
South Korea). In this case, the smishing application



Table 5
Similarity metric for each behavior factor.

Behavior factor Contents Similarity metric Update

Malicious API
sequence

Information retrieving-related API
(System info., Personal info.),
Transmission-related API
(Data network, SMS, Call),
Dynamic loading-related API

Needleman-Wunsch algorithm [0, 1] X

Usage of system
commands for
leveraging
forged files

Privilege escalation commands,
File/Directory ownership commands,
Execution commands,
Process commands

Jaccard coefficient ½0;1� O

Usage of critical
permission

Requested critical permissions,
API-related critical permissions

Levenshtein distance
½0;1�

O

2 Let X and Y be two strings; the length of X is n and that of Y is m. In

J.-w. Jang et al. / Digital Investigation 14 (2015) 17e35 29
conceals the received SMS notification after the malicious
behavior is executed.

In the final step, the algorithm calculates the likelihood
ratio under the given critical permissions. Two likelihood
ratios are obtained using the requested critical permissions
and the API-related critical permissions. If the values are
both higher than a threshold TL, then the application is
determined to be malware. To compensate for the limita-
tion of the permission-based detection method, the algo-
rithm checks whether or not an application sends SMSs,
calling abortBroadcast(), or transmits two more sensitive
items of information, such as bookmark, device ID, phone
number, serial number of SIM card, and location of the
device. The use of APIs collecting more than two kinds of
information and transmitting information is determined to
be a sufficiently suspicious behavior, concluding that the
application is malicious.

Classification engine
The appropriate similarity metrics are applied to

different types of behavior factors. The classification engine
(CE) computes the similarity score between the profile of a
malicious application and the representative profile of each
malware family. The CE then assigns the malicious appli-
cation to the most similar group. The representative profile
of each malware family has to depict the unique and
common behavior patterns of each malware family. Then,
the CE chooses one of the methods for updating the
representative profile as follows:

1. AutoPsy-INT: The first update method is the intersec-
tion. The representative profile for each malware family
is updated by the intersection of the profiles of members
in each subgroup. In the update method of AutoPsy-INT,
as the number of members of each malware family in-
creases, the representative profiles decrease.

2. AutoPsy-UNI: The second update method is the union.
The representative profile for each malware family is
updated by the union of the profiles of the members in
each subgroup. In the update method of AutoPsy-UNI, as
the number of members of each malware family in-
creases, the representative profiles increase.

We define the similarity score as the weighted sum of
the similarity of three behavior factors. The similarity score
between the profile of a malicious application and a
representative profile for each malware family is given by:

S ¼
X
i

wi,BFSi where
X
i

wi ¼ 1; (1)

where BFSi andwi are the similarity and weight of behavior
factor i, respectively. The behavior factor similarity (BFS) is
composed of three parts: similarity of malicious API
sequence, usage of system commands for leveraging forged
files, and usage of critical permission set, including
requested and API-related permissions. We chose to set the
weight (wi) at 1/3, which is the arithmetic mean.

Table 5 shows the similarity metric to apply to each
behavior factor. We compute the similarity score for each
behavior factor as follows:

1. We compute the similarity score for a malicious API
sequence. According to a pre-defined malicious API
dictionary, we create a unique API sequence of each
malicious application. In order to compare the malicious
API sequence of the target with the others, we transform
the API method into ASCII (American Standard Code for
Information Interchange) code. The transformed letter
sequence represents the behavior pattern of each mali-
cious application. In bioinformatics, a sequence align-
ment algorithm is a method of arranging the DNA, RNA,
or protein to identify the regions of similarity that may
be a consequence of functional, structural, or evolu-
tionary relationships between the sequences (Mount,
2004). Sequence alignment algorithms are classified
into global alignment and local alignment algorithms.
The global alignment algorithm attempts to find the
longest path between vertices ð0;0Þ2 and ðn;mÞ in the
edit graph, whereas the local alignment algorithm at-
tempts to find the longest path among pairs between
arbitrary vertices ði; jÞ and ði0; j0Þ in the edit graph. In the
case of malware analysis, the similarity comparison be-
tween malicious API sequences refers to the similarity of
the global sequence rather than the local sequence. We
adopted a global alignment algorithm, the Needleman-
Wunsch algorithm (Needleman and Wunsch, 1970), in
our study, which uses a dynamic programming
order to leverage dynamic programming, we apply tabulation on an (n,
m) matrix of the edit distance.



Table 6
The summary of malware and benign samples.

Category Family Quantity Family Quantity

Malware (9990) AdWo 2807 DroidKungFu 112
Boxer 2138 Mseg 103
Dowgin 936 SmsReg 103
AirPush 495 FakeBattScar 99
Gappusin 487 GingerMaster 94
SMStado 288 FakeNotify 86
Counterclank 276 PremiumSMS 63
Wapsx 273 JiFake 53
OpFake 240 Boqx 52
SMSAgent 202 DroidDream 51
Kuguo 192 Plankton 49
Ropin 192 DroidRooter 46
SmsPay 183 SMSSend 46
Youmi 173 Agent 20
Kmin 119 Utchi 12

Benign (109,193) Application 91,304 Game 17,889

J.-w. Jang et al. / Digital Investigation 14 (2015) 17e3530
algorithm to find the optimal global alignment of two
sequences. The value of the similarity score is ½0;1�.

2. We compute the similarity score for the usage of mali-
cious system commands by applying the Jaccard coeffi-
cient. The Jaccard coefficient is defined as the number of
elements in an intersection divided by the number of
elements in a union. The order of the malicious com-
mand is not under consideration. We define the mali-
cious system commands as: ‘chmod’, ‘insmod’, ‘su’,
‘mount’, ‘bash’, ‘killall’, ‘reboot’, ‘mkdir’, ‘getprop’, ‘ln’, and
‘ps’. The value of the similarity score is [0, 1].

3. We compute the similarity score for the usage of critical
permissions as the average of the similarity for reques-
ted critical permissions and API-related critical permis-
sions. We calculate the similarity of the critical
permission set by applying the Levenshtein distance.
This metric calculates theminimumnumber of character
edits required to make two strings same. It is meaning-
less to consider the order of critical permissions, and
therefore, we applied the Levenshtein distance after
sorting the strings. A value of similarity is calculated as
the number of edits over the maximum length of two
strings. The value of the similarity score is ½0;1�.

The CE classifies a malicious application into the group
with the highest similarity score, which is at least 0.70. We
assume that 0.70 is a sufficiently high score to determine
that two signatures are similar based on empirical tests.
Whenever a new malware sample is queued into our anti-
malware system for inspection, the CE continuously up-
dates the representative profile according to the pre-
chosen update method.

Performance evaluation

In the following, we demonstrate the performance of
Andro-AutoPsy by highlighting aspects of its implementa-
tion and testing it on various real-world mobile malware
samples.

Implementation

Our anti-malware system is composed of a mobile de-
vice and a remote server. The client application was
installed on a mobile device (Vega IM-A870S) running on
Android 4.1.2, and three components e a crawler, a re-
pository, and an analyzer e were installed on the remote
server. The remote server had an Intel(R) Xeon(R) X5660
processor and 8 GB of RAM with a 64-bit Microsoft Win-
dows 7 Enterprise operating system. We performed all
experiments in a hypervisor-based virtualization environ-
ment.3 We implemented our anti-malware system using
Python high-level programming language (as scripts). The
client component on the mobile device was implemented
in the form of an application and communicated with the
remote server. The crawler component sent the package
name to GooglePlay and downloaded the target applica-
tion. The repository component stored the profile of each
3 VMWare ESXi; http://www.vmware.com/.
application in a database. The remote server was composed
of the PE, DE, and CE. Among these, the PE was imple-
mented as Python script coupled with Apktool.

Experimental setup

For performance evaluation, 9990 malware samples4

consisting of 30 malware families were collected from
January 2013 to April 2014 through malware repositories
such as VirusShare (VirusShare, 2014), Contagio (Contagio,
2011), and 109,193 benign samples were collected through
GooglePlay for the same periods. In the real world, malware
comprises a small fraction of all Android applications, and
therefore, it is reasonable to use a larger set of benign
samples to mimic a realistic scenario. Duplicate malware
samples were eliminated according to SHA 256, and
duplicate benign samples were also eliminated according
to SHA 256. Establishing a ground truth for malware sam-
ples and their labels is a difficult problem. A common way
used in the literature for establishing a consensus is by
limiting studied samples to those detected by at least a
certain number of scanners. To this end, we choose mal-
ware samples diagnosed by at least 10 antivirus vendors
included in the VirusTotal dataset (VirusTotal, 2013). We
used the textual description of malware produced by F-
Secure (F-Secure, 2013). The statistics of the dataset we
used are shown in Table 6.

Our system was configured with TL ¼ TS ¼ 1. It is
reasonable to set the likelihood ratio of critical permission
(TL) to 1, which means the likelihood of malware is greater
than that of benign applications. It is also reasonable to set
TS to 1, according to data exploration in Section Data
exploration.

For the validation of our work, we used 5-fold cross-
validation to evaluate the performance in our experi-
ments. The k-fold cross-validation randomly partitions the
dataset into k equal size sub-sample set. A single sub-
sample set was used as the validation data for testing the
model, while the other k� 1 sub-sample sets were used as
4 Our dataset is available at http://ocslab.hksecurity.net/andro-autopsy.

http://www.vmware.com/
http://ocslab.hksecurity.net/andro-autopsy


Table 8
The number of detected samples for each detection rule.

Detection rule Malware Benign

Blacklist of serial number 7311 358
Usage of the sys' commands for

leveraging forged files
37 71

Concealing received SMS 275 84
Pattern of smishing 1 8
Likelihood ratio 2241 14
Total detected malware 9865 535

Bold text indicates the effect of author-based feature in our experiments.

J.-w. Jang et al. / Digital Investigation 14 (2015) 17e35 31
training data. We repeated the cross-validation process five
times and averaged the performance over the five
experiments.

In the machine learning literature, there is no single
answer for what is best for the value k in a k-fold-cross-
validation scheme. In particular, overfitting is a side effect
of a larger k, which results in a higher precision than a
smaller k for the particular dataset used in an experiment.
In the security literature, both 5 and 10 are used, and 5 is
widely used when evaluating systems under aggressive
settings. To that end, we choose k ¼ 5, knowing that k ¼ 10
would provide higher precision.
Table 9
The change of detection decline rate by each feature attribute set (e.g.,
malware).

Case Feature attribute set Detect Decline rate (%)
Experimental results and analysis

Our performance evaluation focused on the effective-
ness and the efficiency of malware detection and classifi-
cation. We demonstrate that our system performs precisely
in detecting and classifying malware families.

Effectiveness of malware detection
We demonstrate that our proposed method provides an

effective metric for distinguishing malware from benign
samples. Table 7 is a confusion matrix that shows the
performance of the detection algorithm. As a result, 535
benign samples, corresponding to 0.05% of all benign
samples, were detected as malware, and 125 malware
samples, corresponding to 1.25% of all malware samples,
were detected as benign. When designing an anti-malware
system, one important factor, which we should also
consider, is its ability to discriminate betweenmalware and
benign applications. Anti-malware systems must detect
malware with small errors in terms of false positive and
false negative.

Explaining false detections: As shown in Table 8, to
find the reason for which some of the benign samples were
determined as malicious in our system, we conducted an
in-depth analysis. Interestingly, we found that some benign
samples had suspicious codes that exploited system com-
mands with forged files (71), related to the malicious
behavior of concealing received SMSs (84). Moreover, we
found that other benign samples had a pattern of smishing
(8), and a likelihood ratio of critical permission of more
than TL (14). To understand whether or not other anti-
malware systems and scanners considered these benign
applications to be malware, we uploaded these suspected
GooglePlay samples to VirusTotal (VirusTotal, 2013) and
checked the scanning results of various anti-virus vendors.
We found that 161 out of the suspicious benign samples
(accounting for about 30.1%) were diagnosed as malware.
The high rate of misclassification of benign applications is,
Table 7
Confusion matrix of malware detection.

Category Actual class

Malware Benign

Estimated class Malware 9865 535
Benign 125 108,658

Bold text indicates the number of misclassified samples in our experiments.
however, understandable, given the various potential rea-
sons for such an infiltration of gray area applications into
the market place. Malware creators can exploit hijacked or
fraudulent developer accounts of GooglePlay by buying a
verified developer account for 100$, and easily acquire
malicious code generation kits from the black market
(Krebs, 2013). We also conducted an in-depth analysis to
understand the false negatives produced by Andro-
AutoPsy. Most of the false negatives bypassed our defined
pattern rules. When we adjusted tight rules for reducing
false negatives, our system produced more false positives,
which represents the trade-off between false positives and
false negatives. In the case of some false negatives, our
system could not find malicious behavior in parsed foot-
prints. However, the false negative rate is low; about 1%.

Author-based feature and fast scanning: Additionally,
we evaluated our proposedmethod based on the only serial
number in a certificate to demonstrate the effectiveness of
serial number-based detection. 7311 malware samples,
corresponding to 73.18% of all the malware samples, were
filtered as malicious, and 358 benign samples, corre-
sponding to 0.32% of all the benign samples, were unfor-
tunately filtered as malware. Further, we conduct a multi-
factor analysis to determine what feature sets are rela-
tively more significant in detecting malware. We measure
the detection decline rate by each feature attribute set
against the 9990 malware samples. Table 9 shows how
much each feature attribute has an effect on detecting
malware. The base case we use (case 0) corresponds to the
scenario where all feature sets are utilized. In the first case
(case 1; which means the feature set indicated by the
attribute set is removed) the rate is degraded by 34.83%
compared to the base case, which corresponds to the
largest decline; highlighting that this feature set is themost
0 SNa, APIb, Permsc, Intent, Commandsd 9865 e

1 API, Perms, Intent, Commands 6429 34.83
2 SN, API, Intent, Commands 7624 22.72
3 SN, API, Perms, Commands 9590 2.79
4 SN, API, Perms, Intent 9828 0.38

a Serial number of a certificate.
b Malicious API sequence.
c Permission distribution.
d Intersection of the usage of system commands and the existence of

forged files.



Table 10
Classification performance for 9990 malware and 109,193 benign samples.

Category Family AutoPsy-INT AutoPsy-UNI

FPs FNs FPs FNs

Malware (9990) AdWo (2807) 596 295 556 253
Boxer (2138) 177 161 190 43
Dowgin (936) 253 249 246 150
AirPush (495) 339 92 343 114
Gappusin (487) 121 232 102 259
SMStado (288) 32 16 37 6
Counterclank (276) 84 184 84 196
Wapsx (273) 90 103 88 103
OpFake (240) 76 47 56 115
SMSAgent (202) 26 6 26 3
Kuguo (192) 105 99 92 85
Ropin (192) 111 119 103 120
SmsPay (183) 43 74 26 56
Youmi (173) 86 102 64 73
Kmin (119) 16 0 11 0
DroidKungFu (112) 23 60 21 27
Mseg (103) 64 15 41 18
SmsReg (103) 42 21 16 18
FakeBattScar (99) 1 2 3 4
GingerMaster (94) 10 69 10 71
FakeNotify (86) 58 1 43 1
PremiumSMS (63) 4 31 4 33
JiFake (53) 25 12 12 19
Boqx (52) 11 31 11 34
DroidDream (51) 24 28 24 41
Plankton (49) 8 34 8 38
DroidRooter (46) 23 11 25 15
SMSSend (46) 15 15 24 15
Agent (20) 2 13 2 13
Utchi (12) 5 0 5 0

Benign (109,193) 125 535 125 535
Average 84 86 77 79

* FPs, FNs refer to False Positives, False Negatives.

J.-w. Jang et al. / Digital Investigation 14 (2015) 17e3532
significant. The rest of the feature sets are shown in a
descending order with their contribution to the accuracy.

Effectiveness of malware classification
We demonstrate that our proposed method provides an

effective metric for classifying malware samples into
similar subgroups. Table 10 shows that Andro-AutoPsy
performs precisely in classifying malware families, having
about 80 false positives and false negatives, regardless of
the update method. Malware families, such as SMStado,
SMSAgent, Kmin, FakeBattScar, and Utchi, were classified
with low false positives rate and false negative rate. How-
ever, the performance for classifying malware families,
such as Counterclank, GingerMaster, and Plankton, was low.

Some factors may have affected the classification per-
formance of our system. GingerMaster contains the ginger-
break root exploit code, which is located on a forged file.
Since the malicious behavior of GingerMaster constitutes
only privilege escalation, if there are other malware fam-
ilies containing gingerbreak root exploit code, our system
could not definitely classify each other. Plankton repack-
aged in a legitimate application runs a background service.
This service fetches a drive-by download attack; a remote
server sends the victim a malicious URL that points to a jar
file with executable codes. Since our system could not
analyze a downloaded payload directly and could find only
system commands to execute exploit code, our system
could not classify effectively malware families with system
commands. Counterclank does not have distinctive mali-
cious behavior. Our system misclassifies it, but perfectly
detects it as malware.

Effectiveness of detecting zero-day malware
We demonstrate the effectiveness of detecting zero-day

malware detection. We define an application as a zero-day
malware if it has malicious behavior and cannot be detec-
ted by AV vendors. The malicious behavior of zero-day
malware is up-to-date smishing. We leveraged 16 mal-
ware samples offered by the Korea Internet Security
Agency (KISA). We uploaded them (as samples) to the
VirusTotal, and checked the scanning results of various
anti-virus (AV) vendors, such as F-Secure, Kaspersky, Cla-
mAV, and Avast. We noted that none of the submitted
samples was reported as malware when we conducted our
experiment. The results of our experiment using Andro-
AutoPsy showed that it captured smishing characteristics
and performed precisely in detecting 15 malware samples,
corresponding to 93.8% of 16 zero-day malware samples.
The missed smishing sample leveraged only the method of
the DevicePolicyManager class, such as Androi-
d.app.admin.DevicePolicyManager;/isAdminActive(), and
did not send hijacked sensitive information (e.g., contacts,
SMS content, call logs, certificate for financial transaction in
Korea), so our systemwas thus unable to detect that sample
as malware.

Efficiency of malware classification
Our proposed system takes only 72 s/MB to detect and

classify each malware. The majority of this time is
consumed creating the profile; it takes only 0.3 s on
average to classify malware into similar groups. Our system
has the limitation that the analysis time cannot be reduced,
since it is dependent on Apktool. We need to directly parse
feature vectors in binary code for faster analysis.

Limitations

Andro-AutoPsy has a few limitations, since it uses in-
tegrated footprints as feature vectors and employs static
analysis techniques to capture malware's behavior foot-
print. First, it is difficult for our system to analyze malware
embedding anti-malware analysis techniques, such as
packing and binary code encryption. A code packing tech-
nique transforms a program into a packed program by
compression or encryption (Kang et al., 2007). Unfortu-
nately, recently reported smishing applications embedded
code packing technique, such as Apkprotect (Apkprotect,
2013), and therefore, our system cannot unpack and
analyze this malware. Moreover, since our system has been
implemented with Apktool, malware that specifically un-
dermines Apktool will likewise affect our system. Second,
our system has a limitation in analyzing malware embed-
ding encryption methods for binary code such as DES. In
this case, our system cannot disassemble the executable file
of the malware, and thus, fails to analyze it. However, these
drawbacks are common in static analysis methods and are
addressed in the literature at some expense. When we



J.-w. Jang et al. / Digital Investigation 14 (2015) 17e35 33
combine the dynamic analysis component in Andro-
AutoPsy in future work, we can overcome this drawback.

In Vidas and Christin (2013), it is stated that there are
some alternative markets solely to distribute malware.
Some of these markets actually sign all applications using
their private key; that means that the serial numbers are
same. If a large set of samples including malware are
sourced from these types of markets, our serial number-
based detection is going to be heavily biased. This draw-
back is resolved by incorporating other features as our
system does. Moreover, an active adversary may down-
grade the results of our system by considering the forgery
of a certificate (e.g., private key leakage or the vulnerability
of the signature algorithm). It would only affect the part
corresponding to the fast scanning, and other features
utilized for our system act to mitigate the disadvantage.
Furthermore, low-level certificate-related features stay
unchanged, despite the forged signature.

Conclusion and future work

In this paper, we proposed Andro-AutoPsy, an anti-
malware system based on similarity matching of
malware-centric and malware creator-centric information.
Using Andro-AutoPsy, we classified malware samples into
similar subgroups by exploiting the profiles extracted from
integrated footprints, which are implicitly equivalent to
distinct behavior characteristics. Andro-AutoPsy is capable
of distinguishing benign and malicious applications and
classifying malicious applications into similar behavior
groups. Furthermore, Andro-AutoPsy is capable of detect-
ing zero-day threats, which are missed by antivirus scan-
ners. In particular, our system only misses 1 smishing
Appendix A. Malicious API list

Table 11
Malicious API list which we defined

Category Class

Retrieving system information (11) TelephonyMa

UUID
WifiInfo
WifiManager

Retrieving personal information (19) LocationMana

e

ContentResol
Browser
CallLog.Calls
Contacts.Phon
CommonData
Contacts
Audio.Media
Images.Media
application of 16 zero-day smishing applications reported
in South Korea.

Our experiments demonstrated that Andro-AutoPsy
performs precisely in detecting and classifying malware
families with low false positives and false negatives,
regardless of the updatemethod. Our system hence enables
AV vendors to react to many species of malicious samples
by detecting and matching them with previous ones
effectively and efficiently. Our experimental results indi-
cate that it takes 72 s/MB to analyze a malware sample on
average, with many opportunities for improving on the
scalability using vertical expansions (utilizing the full array
of parallelism and virtualization).

There are several directions that we will pursue in the
future. First, we will integrate a malware analysis system
with static and dynamic analysis methods and provide a
free online service to at the Korea University Malware
Center. Furthermore, wewill implement an automatic anti-
malware system for analyzing the malware embedding
anti-malware analysis techniques, such as packing and bi-
nary code encryption, noted in Section Limitations.
Acknowledgments

This research was supported by the MSIP(Ministry of
Science, ICT and Future Planning), Korea, under the ITR-
C(Information Technology Research Center) support pro-
gram (IITP-2015-H8501-15-1003) supervised by the IITP
(Institute for Information & communications Technology
Promotion). In addition, this workwas also supported by the
ICT R&D Program of MSIP/IITP. [14-912-06-002, The Devel-
opmentof Script-basedCyberAttackProtectionTechnology].
Method(field, URI, string)

nager getDeviceId()
getLine1Number()
getNetworkOperator()
getSimOperatorName()
getSimSerialNumber()
getSubscriberId()
getCallState()
toString()
getMacAddress()
getConnectionInfo()
getWifiState()

ger getLastKnownLocation()
requestLocationUpdates()
content://mms-sms
content://sms
content://browser/bookmarks

ver query(), delete()
BOOKMARKS_URI
CONTENT_URI

es CONTENT_URI
Kinds.Phone CONTENT_URI

CONTENT_URI
getContentUriForPath()
getContentUri()
EXTERNAL_CONTENT_URI

(continued on next page)



Table 11 (continued )

Category Class Method(field, URI, string)

INTERNAL_CONTENT_URI
Video.Media getContentUri()
e getContentResolver()
Uri parse()

Sending or Receiving SMS (10) SmsManager getDefault()
sendTextMessage()
createFromPdu()
getDisplayMessageBody()
getMessageBody()
getOriginatingAddress()
getUserData()

gsm.SmsManager sendTextMessage()
createFromPdu()
getDisplayMessageBody()

Calling (2) telephony.ITelephony endCall()
e NEW_OUTGOING_CALL

Recoding (3) AudioRecord startRecording()
MediaRecorder start(), stop()

Data transmission (7) HttpURLConnection getOutputStream()
URLConnection getInputStream()

getOutputStream()
ssl.HttpsURLConnection getOutputStream()
client.HttpClient execute()
client.DefaultHttpClient execute()
JSONObject put()

Device policy management (3) DevicePolicyManager isAdminActive(), lockNow()
DeviceAdminReceiver e

Dynamic loading (8) AssetManager getAssets()
DexClassLoader loadClass()
SecureClassLoader e

URLClassLoader e

Runtime exec(), getRuntime()
System load(), loadLibrary()

Encryption (4) crypto.Cipher doFinal()
getInstance()

crypto.KeyGenerator generateKey()
SecretKeySpec e

Reflection (2) Class getDeclaredMethod()
reflect.AccessibleObject setAccessible()

ETC (13) PendingIntent getBroadcast()
e abortBroadcast
FileOutputStream e

ZipOutputStream close()
PackageManager setComponentEnabledSetting()
Environment getExternalStorageDirectory()
Environment getExternalStorageState()
String equalsIgnoreCase(), split()
ActivityManager restartPackage()
AudioManager setVibrateSetting()

setRingerMode()
Context getSystemService()

J.-w. Jang et al. / Digital Investigation 14 (2015) 17e3534
References

Apkprotect. Apkprotect. Apkprotect e Android APK security Protection/
Encryption/Guard. 2013. http://www.apkprotect.com/. accessed Mar.
19, 2014.

Apktool. Android-apktool. android-apktool e a tool for reverse engi-
neering Android APK files. 2010. http://code.google.com/p/android-
apktool/. accessed Mar. 19, 2014.

Arzt S, Rasthofer S, Fritz C, Bodden E, Bartel A, Klein J, et al. FlowDroid:
precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for Android apps. In: Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation;
2014. p. 259e69. PLDI '14.

Au KWY, Zhou YF, Huang Z, Lie D. PScout: analyzing the android
permission specification. In: Proceedings of the 2012 ACM Conference
on Computer and Communications Security; 2012. p. 217e28. CCS '12.

Bayer U, Comparetti P, Hlauschek C, Kruegel C, Kirda E. Scalable, behavior-
based malware clustering. In: Proceedings of the 16th Annual
Network and Distributed System Security Symposium; 2009. NDSS
'09.

Blasing T, Batyuk L, Schmidt A-D, Camtepe S, Albayrak S. An Android
application sandbox system for suspicious software detection. In: 5th
International Conference on Malicious and Unwanted Software
(MALWARE); 2010. p. 55e62.

Bose A, Hu X, Shin KG, Park T. Behavioral detection of malware on mobile
handsets. In: Proceedings of the 6th International Conference on
Mobile Systems, Applications, and Services; 2008. p. 225e38. Mobi-
Sys '08.

Brenner SW, Carrier B, Henninger J. The Trojan horse defense in
cybercrime cases. Santa Clara Comput High Technol Law J 2004;21(1):
1.

Bugiel S, Davi L, Dmitrienko A, Fischer T, Sadeghi A-R, Shastry B. Towards
Taming privilege-escalation attacks on android. In: Proceedings of the
19th Annual Symposium on Network and Distributed System Secu-
rity; 2012. NDSS '12.

Burguera I, Zurutuza U, Nadjm-Tehrani S. Crowdroid: behavior-based
malware detection system for android. In: Proceedings of the 1st

http://www.apkprotect.com/
http://code.google.com/p/android-apktool/
http://code.google.com/p/android-apktool/
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref3
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref3
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref3
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref3
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref3
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref3
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref4
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref4
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref4
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref4
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref5
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref5
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref5
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref5
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref6
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref6
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref6
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref6
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref6
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref7
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref7
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref7
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref7
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref7
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref8
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref8
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref8
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref9
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref9
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref9
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref9
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref10
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref10


J.-w. Jang et al. / Digital Investigation 14 (2015) 17e35 35
ACM Workshop on Security and Privacy in Smartphones and Mobile
Devices; 2011. p. 15e26. SPSM '11.

Cao Y, Fratantonio Y, Bianchi A, Egele M, Kruegel C, Vigna G, et al. Edge-
Miner: automatically detecting implicit control flow transitions
through the android framework. In: Proceedings of the ISOC Network
and Distributed System Security Symposium (NDSS); 2015. NDSS '15.

Contagio. Contagio mobile-mobile malware mini dump. 2011. accessed
Mar. 19, 2014, http://contagiominidump.blogspot.kr/.

Enck W, Gilbert P, Chun B-G, Cox LP, Jung J, McDaniel P, et al. TaintDroid:
an information-flow tracking system for realtime privacy monitoring
on smartphones. In: Proceedings of the 9th USENIX Conference on
operating systems design and implementation; 2010. p. 1e6. OSDI'10.

Enck W, Ongtang M, McDaniel P. On lightweight mobile phone applica-
tion certification. In: Proceedings of the 16th ACM Conference on
Computer and Communications Security; 2009. p. 235e45. CCS '09.

F-Secure. F-secure, 25 years of the best protection in the world. 2013.
http://www.f-secure.com/en/web/labs_global/. accessed Mar. 19,
2014.

Felt AP, Chin E, Hanna S, Song D, Wagner D. Android permissions
demystified. In: Proceedings of the 18th ACM Conference on Com-
puter and Communications Security; 2011. p. 627e38. CCS '11.

Isohara T, Takemori K, Kubota A. Kernel-based behavior analysis for
android malware detection. In: 7th International Conference on
Computational Intelligence and Security (CIS); 2011. p. 1011e5.

Kang MG, Poosankam P, Yin H. Renovo: a hidden code extractor for
packed executables. In: Proceedings of the 2007 ACM Workshop on
Recurring Malcode; 2007. p. 46e53. WORM '07.

Kocsis RN. Applied criminal psychology: a guide to forensic behavioral
sciences. Charles C Thomas Publisher; 2009.

Krebs B. Mobile malcoders pay to (Google) play. Krebs on security. March
2013. http://bit.ly/1kranE5.

Leung KM. Naive Bayesian classifier. Polytechnic University Department
of Computer Science/Finance and Risk Engineering; 2007.

Lin Y-D, Lai Y-C, Chen C-H, Tsai H-C. Identifying android malicious
repackaged applications by thread-grained system call sequences.
Comput Secur 2013;39:340e50.

ltrace. The Debian Project. 2014 (accessed 19.03.14), https://packages.
debian.org/search?keywords¼ltrace.

McAfee. McAfee Labs threat s report, Fourth Quarter 2013. 2013 (accessed
19.03.14), http://www.mcafee.com/au/resources/reports/rp-
quarterly-threat-q4-2013.pdf.

Mount DW. Bioinformatics: sequence and genome analysis. 2nd ed. Cold
Spring Harbor Laboratory Press; 2004.

Needleman SB, Wunsch CD. A general method applicable to the search for
similarities in the amino acid sequence of two proteins. J Mol Biol
1970;48(3):443e53.

Nykodym N, Taylor R, Vilela J. Criminal profiling and insider cyber crime.
Digit Investig 2005;2(4):261e7.

Paganini. Android Wroba banking trojan targeted Korean users. October
2013 (accessed 19.03.14), http://securityaffairs.co/wordpress/19041/
malware/android-wroba-trojan-korea-banks.html.

Pearce P, Felt AP, Nunez G, Wagner D. AdDroid: privilege separation for
applications and advertisers in android. In: Proceedings of the 7th
ACM Symposium on Information, Computer and Communications
Security; 2012. p. 71e2. ASIACCS '12.

Peng H, Gates C, Sarma B, Li N, Qi Y, Potharaju R, et al. Using probabilistic
generative models for ranking risks of android apps. In: Proceedings
of the 2012 ACM Conference on Computer and Communications Se-
curity; 2012. p. 241e52. CCS '12.

Rastogi V, Chen Y, Enck W. AppsPlayground: automatic security analysis
of smartphone applications. In: Proceedings of the Third ACM Con-
ference on Data and Application Security and Privacy; 2013.
p. 209e20. CODASPY '13.

Reina A, Fattori A, Cavallaro L. A system call-centric analysis and stimu-
lation technique to automatically reconstruct android malware be-
haviors. In: Proceedings of the 6th European Workshop on System
Security (EUROSEC). Prague: Czech Republic; April 2013.
Rogers M. The role of criminal profiling in the computer forensics process.
Comput Secur 2003;22(4):292e8.

Sarma BP, Li N, Gates C, Potharaju R, Nita-Rotaru C, Molloy I. Android
permissions: a perspective combining risks and benefits. In: Pro-
ceedings of the 17th ACM Symposium on Access Control Models and
Technologies; 2012. p. 13e22. SACMAT '12.

Schmidt A-D, Bye R, Schmidt H-G, Clausen J, Kiraz O, Yuksel K, et al. Static
analysis of executables for collaborative malware detection on
android. In: IEEE International Conference on Communications, 2009;
2009. p. 1e5. ICC '09.

Seo S-H, Gupta A, Mohamed Sallam A, Bertino E, Yim K. Detecting mobile
malware threats to homeland security through static analysis. J Netw
Comput Appl 2014;38:43e53.

Shabtai A, Elovici Y. Applying behavioral detection on android-based
devices. 2010. p. 235e49.

Spreitzenbarth M, Freiling F, Echtler F, Schreck T, Hoffmann J. Mobile-
Sandbox: having a deeper look into android applications. In: Pro-
ceedings of the 28th Annual ACM Symposium on Applied Computing;
2013. p. 1808e15. SAC '13.

Strace. Strace e useful diagnostic, instructional, and debugging tool. 2013
(accessed 19.03.14), http://freecode.com/projects/strace.

Vidas T, Christin N. Sweetening android lemon markets: measuring and
combating malware in application marketplaces. In: Proceedings of
the Third ACM Conference on Data and Application Security and
Privacy; 2013. p. 197e208. CODASPY '13.

Vidas T, Tan J, Nahata J, Tan CL, Christin N, Tague P. A5: automated analysis
of adversarial android applications. In: Proceedings of the 4th ACM
Workshop on Security and Privacy in Smartphones & Mobile Devices;
2014. p. 39e50. SPSM '14.

VirusShare. VirusShare.com e Because sharing is caring. 2014 (accessed
19.03.14), http://virusshare.com/.

VirusTotal. VirusTotal e free online virus, malware and URL scanner. 2013
(accessed 19.03.14), https://www.virustotal.com/en/.

Wang Y, Zheng J, Sun C, Mukkamala S. Quantitative security risk assess-
ment of android permissions and applications. In: Data and Appli-
cations Security and Privacy XXVII. Lecture Notes in Computer
Science; 2013. p. 226e41.

Weichselbaum L, Neugschwandtner M, Lindorfer M, Fratantonio Y, van
der Veen V, Platzer C. Andrubis: android malware under the magni-
fying glass. Vienna University of Technology; 2014. Tech. Rep. TRI-
SECLAB-0414e001.

Yan LK, Yin H. DroidScope: seamlessly reconstructing the OS and Dalvik
semantic views for dynamic android malware analysis. In: Pro-
ceedings of the 21st USENIX Conference on Security Symposium;
2012. p. 29. Security'12.

Yang C, Yegneswaran V, Porras P, Gu G. Detecting money-stealing apps in
alternative android markets. In: Proceedings of the 2012 ACM Con-
ference on Computer and Communications Security; 2012. p. 1034e6.
CCS '12.

Yang W, Xiao X, Andow B, Li S, Xie T, Enck W. AppContext: differentiating
malicious and Benign Mobile app behaviors using context. In: Pro-
ceedings of the International Conference on Software Engineering
(ICSE); 2015.

Zheng M, Sun M, Lui JCS. Droid analytics: a signature based analytic
system to collect, extract, analyze and associate android malware. In:
Proceedings of the 2013 12th IEEE International Conference on Trust,
Security and Privacy in Computing and Communications; 2013.
p. 163e71. TRUSTCOM '13.

Zhou Y, Jiang X. Dissecting android malware: characterization and evo-
lution. In: Security and Privacy (SP), 2012 IEEE Symposium on; May
2012. p. 95e109.

Zhou Y, Wang Z, Zhou W, Jiang X. Hey, you, get off of my market:
detecting malicious apps in official and alternative android markets.
In: Proceedings of the 19th Annual Symposium on Network and
Distributed System Security; 2012. NDSS '12.

http://refhub.elsevier.com/S1742-2876(15)00071-7/sref10
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref10
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref10
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref11
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref11
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref11
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref11
http://contagiominidump.blogspot.kr/
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref13
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref13
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref13
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref13
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref13
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref14
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref14
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref14
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref14
http://www.f-secure.com/en/web/labs_global/
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref16
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref16
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref16
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref16
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref17
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref17
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref17
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref17
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref18
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref18
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref18
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref18
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref19
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref19
http://bit.ly/1kranE5
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref21
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref21
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref22
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref22
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref22
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref22
https://packages.debian.org/search?keywords=ltrace
https://packages.debian.org/search?keywords=ltrace
https://packages.debian.org/search?keywords=ltrace
http://www.mcafee.com/au/resources/reports/rp-quarterly-threat-q4-2013.pdf
http://www.mcafee.com/au/resources/reports/rp-quarterly-threat-q4-2013.pdf
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref25
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref25
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref26
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref26
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref26
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref26
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref27
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref27
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref27
http://securityaffairs.co/wordpress/19041/malware/android-wroba-trojan-korea-banks.html
http://securityaffairs.co/wordpress/19041/malware/android-wroba-trojan-korea-banks.html
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref29
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref29
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref29
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref29
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref29
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref30
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref30
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref30
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref30
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref30
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref31
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref31
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref31
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref31
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref31
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref32
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref32
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref32
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref32
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref33
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref33
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref33
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref34
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref34
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref34
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref34
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref34
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref35
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref35
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref35
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref35
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref35
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref36
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref36
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref36
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref36
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref37
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref37
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref37
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref38
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref38
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref38
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref38
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref38
http://freecode.com/projects/strace
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref40
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref40
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref40
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref40
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref40
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref41
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref41
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref41
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref41
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref41
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref41
http://virusshare.com/
https://www.virustotal.com/en/
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref44
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref44
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref44
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref44
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref44
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref45
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref45
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref45
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref45
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref45
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref46
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref46
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref46
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref46
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref47
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref47
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref47
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref47
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref47
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref48
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref48
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref48
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref48
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref49
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref49
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref49
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref49
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref49
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref49
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref50
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref50
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref50
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref50
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref51
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref51
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref51
http://refhub.elsevier.com/S1742-2876(15)00071-7/sref51

	Andro-AutoPsy: Anti-malware system based on similarity matching of malware and malware creator-centric information
	Introduction
	Related work
	Detection methods on mobile devices
	Detection methods outside mobile devices
	Hybrid methods

	Profiling modeling
	Overview
	Profile generation

	Data exploration
	Andro-AutoPsy: an anti-malware system
	Overview
	Integrated footprints extraction process
	Decision process
	Detection engine
	Classification engine


	Performance evaluation
	Implementation
	Experimental setup
	Experimental results and analysis
	Effectiveness of malware detection
	Effectiveness of malware classification
	Effectiveness of detecting zero-day malware
	Efficiency of malware classification


	Limitations
	Conclusion and future work
	Acknowledgments
	Appendix A. Malicious API list
	References


