
Examining the Robustness of Learning-Based
DDoS Detection in Software Defined Networks

Ahmed Abusnaina†?, Aminollah Khormali†?, DaeHun Nyang‡, Murat Yuksel†, Aziz Mohaisen†
†University of Central Florida ‡Inha University ?Contributed equally (ordered alphabetically)

Abstract—With the rapid development of Software-Defined
Networking (SDN) advocating a centralized view of networks, ef-
ficient and reliable Distributed Denial of Service (DDoS) defenses
are necessary to protect the centralized SDN controller. Recently,
an amalgamation of work has realized such defenses using Deep
Learning (DL) based algorithms. Although DL-based algorithms
are generally prone to adversarial learning attacks, the extent to
which those attacks are applicable to DDoS defenses in SDN is
unexamined. In this work, we explore the robustness of DL-based
DDoS defenses in SDN against adversarial learning attacks. First,
we investigate generic off-the-shelf adversarial attacks to test the
robustness of DDoS defenses in SDN, and demonstrate that while
they lead to misclassification, these attacks do not preserve the
characteristics of flows. As a result, we propose Flow-Merge
for realistic adversarial flows while achieving a high evasion
rate, with both targeted and untargeted misclassification attacks.
The proposed Flow-Merge is able to force the DL-based DDoS
defenses to misclassify 100% of benign flows as malicious, while
preserving original characteristics of flows. Using state-of-the-
art defenses, we show that the adversarial flows generated using
Flow-Merge are difficult to detect, with only 49.31% detection
rate when using adversarial training.

Keywords-Intrusion Detection Systems; Deep Learning; Adver-
sarial Machine Learning; Software Defined Networking

I. INTRODUCTION

Software Defined Networking (SDN) overcomes scalability
challenges in network management by a centralized view of a
network with many components. A programmable controller
in SDN can see all switches and endpoints in a network and
manage flows between them, providing a better and easier
network monitoring and enhancing security compared to tra-
ditional networks [1], [2]. On the other hand, it has been shown
that SDNs are vulnerable to Distributed Denial of Service
(DDoS) attacks, which target the centralized controller [3],
[4]. Those attacks flood services with malicious or undesirable
traffic, disallowing them from processing legitimate requests

To address those attacks, several studies develop anomaly
detectors for SDN using Machine Learning (ML) techniques,
including Deep Learning (DL). Niyaz et al. [5] proposed a DL-
based DDoS detection system for SDN. Abubaker et al. [6]
introduced a flow-based IDS for SDN using machine learning.
Tang et al. [7] proposed a gated recurrent unit RNN-based
IDS over SDN-based networks. Ahmed et al. [8] introduced
SDN-based networks as a solution for mitigating DDoS attacks
using deep packet inspection at a centralized controller. Wu et
al. [9] studied IDS methods over massive networked systems
that require real-time operation. Although these DL defenses
offer high accuracy [10], their robustness is untested, and while

plausible that they are vulnerable to adversarial attacks [11],
the practicality of such attacks on them is unclear.

The increasing use of DL incentivizes manipulation attacks,
where the DL output is an adversary’s desired output. The
adversary achieves this goal by applying small perturbations
to the input, resulting in adversarial examples [12], [13]. The
crafted adversarial examples are very similar to the original
ones, and are not necessarily outside of the training data
manifold, making them hard to distinguish from legitimate
ones. In the context of IDSs in SDN, the failure of the anomaly
detector may result in disastrous consequences, such as the
failure of the entire network since a successful DDoS on the
centralized controller effectively brings all the switches down.
Goal. The main goal of this study is to investigate the
robustness of DL-based IDS in SDN against adversarial learn-
ing attacks. First, we incorporate generic adversarial attack
methods into the anomaly detection systems. Through our
analysis, we found that such adversarial learning algorithms
are not applicable to the SDN, as their output adversarial
flows are not realistic. Therefore, we propose Flow-Merge, an
approach that is specifically designed to force DL-based IDSs
in SDN to both targeted and untargeted misclassification while
maintaining practical flows with malicious effects (payload).
Flow-Merge combines the features of the original and a mask
flow by either: accumulating or averaging.
Contributions. We make the following contributions. 1) We
investigated applying generic adversarial learning methods
on DL-based IDS in SDN. Our experiments demonstrate
that although these methods can achieve high evasion rate,
the generated adversarial flows are not realistic, precluding
the applicability of generic approaches to DL-based IDSs in
SDN. 2) We propose Flow-Merge, an approach specifically
designed to fool DL-based IDSs in SDN, while maintaining
the characteristics of original flows. Flow-Merge is able to
achieve both targeted and untargeted attacks.
Organization. In Section II, we provide a brief background on
SDN and adversarial learning. The proposed approach for gen-
erating practical adversarial flows is described in Section III.
The performance of the proposed approach, evaluated through
intensive experiments and defenses, is in Section IV. Finally,
concluding remarks and future work are in Section V.

II. PRELIMINARIES

A. Software-Defined Networking

SDN separates the control plane from data plane in network
devices, which are referred to as “switches.” This architecture

enables the network to implement policies from a single point,
i.e., the SDN controller, thus improving security, management,
and decision making, as the controller has a global view of
the network. SDN administrators have the capability to run
applications inside the controller’s platform, which in turn
enables them to program switches for specific purposes [14].
The general SDN architecture and its basic traffic flow are
shown in Figure 1(a) and Figure 1(b), respectively.

A typical SDN setup consists of a controller and one or more
switches. Each switch is connected to a number of hosts and
other switches. The controller communicates with the switches
using a standard application program interface (southbound
interface). The most common southbound interface is the
OpenFlow (OF) protocol [15]. SDN applications communicate
with the controller using the northbound interface (which is
typically an HTTP-based interface such as REST or NET-
CONF), whereas a controller may communicate with another
controller using the east-westbound interface, which has not
been standardized yet. The controller and switches exchange
various types of messages using OpenFlow. Each switch has
flow tables defining flow entries of matching policy and actions
to handle traffic flows within the network. Such flow tables are
limited in size and populated by the controllers.

Switches take actions once an incoming packet matches a
flow entry in their flow table. When a match does not exist, the
packet header is directed to the controller to analyze and make
a global decision, e.g., adding a new entry into the flow table.
When a packet goes to the controller, this typically means
the packet belongs to a flow that either was aged out or not
seen before, and the controller must add an entry so that more
packets from that flow do not arrive at the controller. If the
packet belonged to a benign flow, the delay should be avoided,
and an entry needs to be added to the flow table so that
subsequent packets of the flow are properly forwarded. If the
packet belongs to a malicious or disallowed flow, a flow table
entry should be also added to drop subsequent packets at the
switch before they get forwarded to the controller. Handling
data packets at the switch and reducing the number of packets
sent to the controller is key to ensuring the controller is not
overloaded. Yet, merely responding to new malicious flows
and adding new flow table entries is a suboptimal strategy.

Since it has a global view of the network, the controller
can swiftly block attacks, specifically DDoS attacks, utilizing
anomaly detection systems. On the other hand, the failure
of such centralized anomaly detection systems may have
disastrous consequences, e.g., the failure of an SDN controller
may take down an entire network. For instance, if an adversary
can forge a malicious packet that looks like a normal one, the
packet will be directed to the controller and may cause the
generation of a new flow entry in the flow table. Repeating
that may overwhelm the southbound interface, thus affecting
the entire network and not only the targeted service.

B. Adversarial Learning

Fooling a classifier is achieved by introducing a small
perturbation δ into the input domain [12]. Adversarial attacks

(a) General architecture (b) Basic traffic flow

Fig. 1. A general architecture of the SDN (1(a)) and its basic traffic flow
(1(b)). Here, S1:3 denotes OpenFlow Switch 1:3, C1:3 shows controller 1:3,
and H1:3 represents end host 1:3.

on classifiers can be categorized from multiple perspectives,
such as adversary’s goals and capabilities to achieve them [12].
Adversarial Goals. The adversary’s main goal can be char-
acterized based on the inherent nature of the incorrectness
into three main groups, including confidence reduction, non-
targeted misclassification, and targeted misclassification.
• Confidence reduction: The adversary’s goal is to reduce

the confidence of the model such that the prediction’s
ambiguity increases. It should be noted that the model
output does not necessarily need to be incorrect.

• Non-targeted misclassification: The adversary’s goal is
to generate Adversarial Examples (AEs) x′ by applying
small perturbations to the input domain x, such that
the model’s output f(.) yields any class other than the
original one (f(x′) 6= f(x)). Note that generated AEs
are similar to the original sample.

• Targeted misclassification: The adversary’s goal is to
craft AEs x′ that force the model f(.) to generate the
adversary’s desired output f(x′) = t. Note that this type
of attack is more complex than the other two.

Adversarial Capabilities. Attacks can be categorized based
on the adversary’s capabilities at the test time into two
categories: white-box and black-box attacks. Other attacks are
characterized by information accessed by the adversary:
• Model and training data: The adversary has full access

to the training dataset and the model, including the model
architecture, link weights, activation functions, etc.

• Oracle: The adversary has no prior knowledge about the
structure of the model, but he has an oracle access to the
model allowing him to conduct queries to the model to
infer the relationship between input and output instances.

• Sample: The adversary can collect inputs/outputs pairs of
an unknown model, but cannot infer the input’s impact
on the model’s output. Note that this attack is practical
only when there is a sufficient number of samples.

Threat Model. We assume an adversary with full knowledge
about the baseline model, which is a convolutional neural net-
work. Moreover, we assume the adversary’s goal is to conduct

both targeted and non-targeted misclassification attacks.

III. APPROACH

Several DL-based approaches are proposed for IDSs in
SDN [5], [6]. While it has been shown that DL models are
prone to adversarial attacks, a comprehensive exploration on
the impact of adversarial attacks on DL-based IDSs is lacking.
Challenges. Launching adversarial attacks on flow-based IDSs
in SDN is challenging because 1) the generated adversarial
flows should be realistic, can be observed by an actual
packets flow, and 2) the flow-based features are highly inter-
dependent. Existing generic adversarial attacks are applicable
into domains where features are independent, e.g., images,
necessitating adversarial attack methods designed specifically
for flow-based IDSs in SDN, as the perturbation generated by
generic attacks is applied directly into the feature space.
Approach. We use two approaches: generic and Flow-Merge.
The first approach uses generic off-the-shelf adversarial attack
methods to generate AEs. We design the Flow-Merge approach
to generate adversarial flows in SDN that are more realistic.
For both approaches, two configurations are used: misdetection
and misclassification. The first configuration does not consider
the DDoS attack type, unlike the second configuration.

A. Generic Adversarial Attacks

Generic adversarial attacks were developed for image mis-
classification by small perturbation to the input, leading to
incorrect model output. In this study, we utilized five ad-
versarial attack algorithms: Carlini & Wanger (C&W) [16],
ElasticNet [17], DeepFool [18], Momentum Iterative Method
(MIM) [19], and Projected Gradient Decent (PGD) [20].
Carlini & Wagner (C&W) Method. The C&W method [16]
is a gradient-based adversarial attack that optimizes the penalty
and three distance metrics: L∞, L2, and L0 norms. The AE
generation in C&W is expressed as:

min ||δ||2p: g (x+ δ) = y′ , x+ δ ∈ X,

where x is the input, y′ is the targeted class, δ is a perturbation
parameter, and g(.) is the objective function. Based on C&W,
the added perturbation needs to be small, and a non-targeted
misclassification attack can be launched using:

min ||δ||2p: g (x+ δ) 6= y , x+ δ ∈ X.

Smaller L2 corresponds to a smaller perturbation to the input,
so we utilize the L2-based C&W attack to generate AEs, and
the perturbation δ is defined as δ = 1/2 (tanh (w) + 1) − x,
where tanh(.) and w are the hyperbolic tangent function and
an auxiliary variable. The value of w is optimized using:

min
w
||1/2 (tanh (w) + 1) ||2+c · g (1/2 (tanh (w) + 1)) ,

where c is a constant. The goal of C&W is to increase
the generated adversarial example and the original sample
similarity by minimizing the Lp norm distance between them.
DeepFool Method. DeepFool is an iterative non-targeted
adversarial attack, introduced by Moosavi-Dezfooli et al. In
DeepFool, the neural network is a linear model. In the AE

generation process, the distance between the input and the
corresponding class increases every iteration, and the class k
with the highest probability is considered as the output of the
objective function fk(x), defined as k̂(x) = argmaxkfk(x).

For classifier f(x) = WTx + b, the required perturbation
to misclassify input x can be computed using:

argmax
r
||r||2: ∃k : wTk (x0 + r) + bk ≥ wTk̂(x0)

(x0 + r) + bk̂(x0)
,

where wk is mapped to the k-th column of W . DeepFool can
be generalized to multi-class non-linear structure using

l̂ (x0) = argmin
k 6=k̂(x0)

(|fk (x0)− fk̂(x0)
(x0) |)/||wk − wk̂(x0)

||2,

where the output is the next closest class to x0. Once the
minimum perturbation value δ is found using

δ (x0) =
|fl̂(x0)

(x0)− fk̂(x0)
(x0) |

||wl̂(x0)
− wk̂(x0)

||22

(
wl̂(x0)

− wk̂(x0)

)
,

the adversarial example can be crafted as x′ = x+ δ.
ElasticNet Method. Inspired by C&W, ElasticNet [17]
launches L1 distance-based non-targeted attacks. ElasticNet
benefits from the same objective function as C&W, and the
AE generation process is expressed as:

f (x) = max{[logit (x)]y0 −max
j 6=y0

[Logit (x)]j ,−k},

where f is the loss function, y0 is the original sample x0’s la-
bel, j is the current sample’s label, and logit(x) = log(x/(1−
x)). In ElasticNet, the model’s output is manipulated using
two regularization factors, β ≥ 0 and c, corresponding to
perturbation δ = x− x0 and loss function f :

min
δ

c.f (x, y) + β||δ||1+||δ||22.

Momentum Iterative Method (MIM). MIM [19] is inspired
by the Fast Gradient Sign Method (FGSM) [21], where the
goal is to preserve the performance over black-box models.
MIM applies momentum gradients in every iteration as:

argmax
x′

J (x′, y) , s.t. ||x′ − x||∞≤ ε

where J is a loss function and ε is a maximum distortion
control. The momentum gradient (Mg) is calculated as:

Mgt+1 = µMgt +
∇xJθ (x′t, l)
||∇xJθ (x′t, l) ||

,

where ∇ and µ are gradient function and a decay factor,
respectively. In MIM, x′ is updated at each iteration using:

x′t+1 = x′t + ε · sign (Mgt + 1) .

Once it reaches its termination criteria, MIM returns x′t+1 as
the AE for input x. The initial values of x′0 and Mg0 are
considered as the original input and 0, respectively.
Projected Gradient Descent (PGD) Method. PGD [20]
benefits from an Empirical Risk Minimization (ERM) method
to craft AEs while reducing the empirical risk with a trade-
off of high performance using E(x,y)∼D[L (x, y, θ)], where

L is the loss function and y is the label corresponding to
the original input x. In PGD, the adversary is able to apply
perturbation of scalar value S to the input x, and we can
update the representation of the ERM to:

min
θ
ρ (θ) : ρ (θ) = E(x,y)∼D[max

δ∈S
L (x+ δ, y, θ)],

where δ denotes the added perturbation and ρ (θ) is the
objective function. We note that PDG is an iterative method,
where x′ is updated in each iteration.
Practicality Limitations. Although the aforementioned meth-
ods excel on images, they were not designed to consider fea-
ture dependencies. For instance, manipulating a feature derived
from a set of features independently may cause practicality
issue as the generated feature space may not be possible to
observe (due to lost dependency). Moreover, these methods
focus on misclassification, regardless of the functionality, i.e.,
a malicious adversarial flow may be misclassified as benign
with a feature space representing zero packets, resulting in
functionality preserving issues.

B. Flow-Merge

Approaches discussed so far for generating AEs consider
features independent of one another, and attempt to alter
them in a way that would result in a misclassification. In
reality, however, those features are very highly dependent
on one another. For example, changing the count of TCP
packets as a feature would immediately alter the ratio-based
features related to TCP. As such, we need a mechanism for
changing the features by altering the associated flows in a
consistent manner, which we achieve by Flow-Merge. Flow-
Merge crafts adversarial flows that fool the DL-based DDoS
defense while preserving characteristics of realistic flows.
Flow-Merge modifies a flow with a representative mask flow
from a selected target class. As a result of Flow-Merge, the
features of the original and the mask flows are combined using
one of two approaches: accumulating or averaging. The count-
based features, such as the number of incoming/outgoing
TCP flows, are accumulated, while the ratio-based features,
such as the fraction of TCP flows over the total number of
incoming/outgoing flows, are averaged in a weighted form.

The weights for each ratio-based feature are protocol-
specific. For instance, the number of incoming TCP flows
determine the weight of the fraction of TCP flows with the
SYN flag set. At the feature level, let X = {x1, . . . , xk} be
the features of the original flow, and Y = {y1, . . . , yk} be the
features of the mask flow. A feature vector of the masked flow
(modified one) is then calculated as Z = {z1, . . . , zk} such
that zi = [n/(n + m)]xi + [m/(n + m)]yi, where n is the
number of packets associated with the studied protocol in the
first flow, and m is the number of packets associated with the
same protocol in the second flow. The count-based features
are simply accumulated (i.e., zi = xi + yi). Flow-Merge’s
design is shown in Figure 2. Z can be targeted and non-
targeted; while the former requires the classifier’s output to
be a desired targeted class the latter only requires an incorrect

Fig. 2. A general architecture of Flow-Merge. Here, n and m are number
of the TCP packets in original flow X and mask flow Y , respectively. In this
figure, W1 = (n/(n+m)) and W2 = (m/(n+m)), while α2 and α4 are
the ratio-based features of X and Y , respectively.

output (i.e., an output other than the true class). Flow-Merge
simulates the actual merge of two flows’ packets, preserving
the functionality and practicality of each flow.

IV. EVALUATION AND DISCUSSION

A. Dataset

For benchmarking, we use the dataset in [5] to evaluate
the performance of the methods in this study. To collect the
dataset, traffic traces of various online activities, including web
browsing, audio/video streaming, real-time messengers, and
online gaming were collected using tcpdump [22] on a Linux
system and using port mirroring on a Wi-Fi access point for
72 hours. The first 48 hours were used as normal flows and
the rest were mixed with attack traffic. To collect the attack
traffic, a private network consisting of 10 DDoS attackers
and 5 victim hosts in a segregated laboratory environment
using VMWare ESXi host has been created. The different
kinds of DDoS attacks with different packet frequencies and
sizes were launched using hping3 [23]. An SDN testbed on
the same ESXi host was created. The testbed consists of an
SDN controller, an OF switch, and a network host using the
Ubuntu Linux systems. POX [24] is used as the controller,
while OpenvSwitch [25] is used as the switch. The traffic
traces for normal and attack traffic were replayed, mixing the
last 24 hours of normal flow with the attack traffic, one at
a time, in the host system using tcpreplay [26]. The data is
saved using intervals of 60 seconds and divided into training
and test sets. The distribution of the dataset across different
classes is shown in Table IV and more information on the
data and its collection can be found in [5]. In total, a set of 68
statistical features, divided into TCP related features (Table I),
UDP related features (Table II), and ICMP related features
(Table III), were extracted for each record.

B. Experimental Setup

Evaluation system. All experiments were conducted using
Python 3.6 running on a Ubuntu 16.04 system with i5-8500
CPU (3.00GHz), 32GB DDR4 RAM, 512GB SSD storage,
and NVIDIA GTX980 Ti GPU for DL processing.

TABLE I
FEATURES EXTRACTED FROM TCP FLOWS. HERE, T REFERS TO TYPE OF

THE FEATURES: C REFERS TO COUNT-BASED FEATURES, R REFERS TO
RATIO-BASED FEATURES, (I) FOR INCOMING, AND (O) FOR OUTGOING.

T Feature Description # T Feature Description

1 C # TCP flows (i) 18 R src port entropy (i)
2 R TCP flows over total (i) 19 C # distinct dst ports (i)
3 C # TCP flows (o) 20 R dst ports entropy (i)
4 R TCP flows over total (o) 21 R dst ports ≤ 1024 (i)
5 R symmetric flows (i) 22 R dst port > 1024 (i)
6 R Asymmetric flows (i) 23 R Flows (i), SYN set
7 C # distinct src IP (i) 24 R Flows (o), SYN set
8 R src IP entropy (i) 25 R Flows (i), ACK set
9 R Bytes per flows (i) 26 R Flows (o), ACK set
10 R Bytes per flows (O) 27 R Flows (i), URG set
11 R # packets per flows (i) 28 R Flows (o), URG set
12 R # packets per flows (o) 29 R Flows (i), FIN set
13 C # distinct window size (i) 30 R Flows (o), FIN set
14 R Entropy of window size (i) 31 R Flows (i), RST set
15 C # distinct TTL values (i) 32 R Flows (o), RST set
16 R Entropy of TTL values (i) 33 R Flows (i), PUSH set
17 C # distinct src ports (i) 34 R Flows (o), PUSH set

TABLE II
FEATURES EXTRACTED FROM UDP FLOWS. HERE, T REFERS TO TYPE OF

THE FEATURES: C REFERS TO COUNT-BASED FEATURES, R REFERS TO
RATIO-BASED FEATURES, (I) FOR INCOMING, AND (O) FOR OUTGOING.

T Feature Description # T Feature Description

35 C # UDP flows (i) 45 R # packets per flows (i)
36 R UDP flows over total (i) 46 R # packets per flows (o)
37 C # UDP flows (o) 47 C # distinct src ports (i)
38 R UDP flows over total (o) 48 R src ports entropy (i)
39 R Symmetric UDP flows (i) 49 C # of distinct dst ports (i)
40 R Asymmetric UDP flows (i) 50 R dst ports entropy (i)
41 C # distinct src IP (i) 51 R dst ports ≤ 1024 (i)
42 R Entropy of src IP (i) 52 R dst port > 1024 (i)
43 R Bytes per flows (i) 53 C # distinct TTL values (i)
44 R Bytes per flows (i) 54 R TTL values entropy (i)

Intrusion Detection System. We trained two models for
detection and classification. The detection model is a two-
class classifier, while the classification model consists of eight
classes: one normal class, and seven DDoS attack types.
The models are based on CNNs, each of which consists of
multiple layers, including convolutional, activation, pooling,
and dropout. Our tested IDS consists of three main blocks:
convolutional block 1 (CB1), convolutional block 2 (CB2),
and classification block (CL). CB1 and CB2 are responsible
for deep feature extraction, while CL does the classification.
More detailed description of these blocks is in the following.
CB1: The input (X) convolves with 68 filters F1

′ of size 1×3
in C1 layer with padding, resulting in a 2D tensor of size
68×68. The tensor is fed into C2, which is 1D convolutional
layer without padding and 68 filters of size 1×3, resulting in
a 2D tensor C2

′′ of size 66×68. A max pooling with size
and stride of 2 and dropout with probability of 0.25 are then
applied, resulting in a 2D tensor S1 of size 33×68.
CB2: This block is similar to CB1 except that the number of
filters in the convolutional layers is doubled. The output of
CB1 Sb1 is fed into a 1D convolutional layer with padding
and 136 filters of size 1×3, convolving over the data with
a stride of 1, resulting in a 2D tensor C3

′′ of size 33×136.
The tensor is fed into C4, which is a 1D convolutional layer

TABLE III
FEATURES EXTRACTED FROM ICMP FLOWS. HERE, T REFERS TO TYPE OF

THE FEATURES: C REFERS TO COUNT-BASED FEATURES, R REFERS TO
RATIO-BASED FEATURES, (I) FOR INCOMING, AND (O) FOR OUTGOING.

T Feature Description # T Feature Description

55 C # ICMP flows (i) 62 R src IP entropy (i)
56 R ICMP flows over total (i) 63 R Bytes per flows (i)
57 C # ICMP flows (o) 64 R Bytes per flows (o)
58 R ICMP flows over total (o) 65 R # packets per flows (i)
59 R Symmetric ICMP flows (i) 66 R # packets per flows (o)
60 R Asymmetric ICMP flows (i) 67 C # distinct TTL values (i)
61 C # of distinct src IP (i) 68 R TTL values entropy (i)

TABLE IV
PER-CLASS FLOW RECORDS DISTRIBUTION.

Class types # of records
Train Test

Normal 49,179 21,076

DDoS attacks

TCP 5,471 2,344
UDP 5,273 2,260
ICMP 1,602 686
TCP & UDP 4,694 2,011
TCP & ICMP 4,739 2,031
UDP & ICMP 4,437 1,902
All (TCP & UDP & ICMP) 5,615 2,407

Total 81,010 34,717

without padding and 136 filters of size 1×3, resulting in a
2D tensor C4

′′ of size 31×136. A max pooling with size and
stride of 2 and dropout with probability of 0.25 are applied,
resulting in a 2D tensor S2 of size 15×136.

CL: The output of CB2 is fed into a classification block,
flattened and fed into a dense layer of size 512, resulting into
a fully connected feature map layer FCL. FCL is fed into
a dropout with a probability of 0.5 followed by a softmax
classifier. The output of the softmax is evaluated based on
standard evaluation metrics, e.g., accuracy rate (AR), false
negative rate (FNR), and false positive rate (FPR).

We used Rectified Linear Units (ReLU) activation function
for both the convolutional and fully-connected layers. To
prevent model over-fitting, we used dropout. The general
design of our baseline DL-based IDS is depicted in Figure 3.
More information regarding CNNs can be found in [27].

Adversarial Attacks Configuration. The goal of the attacks
is to fool the DL-based IDS by crafted AEs, while maintaining
their practicality: (1) preserving the functionality of the flow
and (2) can be extracted from a designed flow. The following
are configurations of the attacks we used in our evaluation.
All of the attacks are implemented using Cleverhans [28].
C&W: We use the L2 distance iterative method by setting the
number of iterations and learning rate to 200 and 0.1.
ElasticNet: AEs are generated based on L1 distance and using
the same loss function of the C&W. To generate AEs, we set
the iterations number to 250 with 0.1 learning rate.
DeepFool: We set the number of iterations and overshooting
value to 250 and 0.02.
MIM: We set the number of iterations to 250 with ε of 0.3.
PGD: To generate AEs using PGD, we set the number of
iterations and distortion (ε) rate to 250 and 0.3, respectively.

Fig. 3. The internal design of our DL-based IDS, which consists of multiple
convolutional layers followed by a softmax classifier. Here, number of filters
(A) and their size (BxC) are shown as A@BxC.

C. Results and Discussion

We present our results: the DL-based IDS (baseline), the
generic adversarial attacks, and our Flow-Merge attack.
DL-based IDS. We designed two configurations: the anomaly
detection and the anomaly classification. The detection model
distinguishes malicious flows from normal flows, regardless
of the attack type, while the misclassification model classifies
flows as normal traffic or one of the seven types of network
attacks (TCP, UDP, ICMP, or their combinations). The models
are trained over 68 statistical features extracted from traffic
flows directed to the SDN controller. In the detection model,
we achieved an accuracy rate of 99.83% with FNR of 0.05%
and FPR of 0.34%. Our classification model achieved an
accuracy rate of 96.05% with FNR of 8.18% and FPR of
0.54%. Note that the classification accuracy is slightly less
than the detection accuracy, because different attack types
share similar patterns, making them difficult to differentiate.
Generic Adversarial Attack. We implemented five generic
adversarial learning methods. Using those methods, we were
able to generate AEs that erroneously classify malicious flows
as benign flows and vice versa. Our evaluations demonstrate
that we can achieve a misdetection rate as high as 99.84%
using the ElasticNet method and as low as 62.78% using the
DeepFool adversarial learning method. Moreover, the achieved
misclassification rate varies between 99.26% and 47.14%,
using both PGD and DeepFool, respectively.

Except with DeepFool, all other attack methods achieve high
misclassification rates, showing the vulnerability of DL-based
IDSs in SDN. The lower misclassification rate of DeepFool is
explained by its attempt to minimize the distance between the
crafted AE and the original samples through minimizing the
perturbation size. The higher performance of other algorithms,
such as MIM and PGD, is due to their intrinsic characteristics.
MIM, for example, is an iterative method that adds small
perturbations in each iteration until it reaches misclassification
or the maximum iterations. PGD, on the other hand, tries
to craft AEs under minimized empirical risk with a trade-

TABLE V
MISCLASSIFICATION RATE OF EACH MODEL AGAINST ADVERSARIAL

ATTACKS. ACC REFERS TO THE ACCURACY OF THE BASELINE MODEL, EN
REFERS TO ELASTICNET METHOD, D. CONF. REFERS TO THE DETECTION

MODEL., AND C. CONF. REFERS TO THE CLASSIFICATION MODEL.

Model Baseline Model(%) Attack Misclassification Rate (%)
Acc FNR FPR C&W EN DF MIM PGD

D. Conf. 99.83 0.05 0.34 98.92 99.84 62.78 93.65 99.76
C. Conf. 96.05 8.18 0.54 95.24 97.13 47.14 88.57 99.26

TABLE VI
MISCLASSIFICATION RATE OF THE MODEL OVER EACH ATTACK CLASS.

HERE, All∗ CONTAINS ALL TCP, UDP, AND ICMP FEATURES.

Method Attack Misclassification Rate (%)
TCP UDP ICMP TCP/UDP TCP/ICMP UDP/ICMP All∗

C&W 98.76 99.29 99.27 82.39 84.24 96.84 88.57
ElasticNet 98.40 99.24 99.27 83.40 84.83 97.10 90.19
DeepFool 86.05 90.48 70.26 72.55 79.03 78.97 82.09

MIM 99.83 100 100 99.40 97.30 99.94 99.58
PGD 99.70 100 100 96.42 96.65 100 95.93

off of high performance cost. The detailed distribution of the
misclassification rate of the classification approach over each
class for each attack method is shown in Table VI.
Flow-Merge. Given the main objective of Flow-Merge, we
focus on a targeted misclassification attack by masking classes
using a target class. The masks are selected based on the
dominance of the flows as either TCP, UDP, or ICMP pro-
tocols. The experiments are carried out for both detection
and classification. For detection, the goal is to misclassify the
malicious flow into benign and vice versa, this is done by
merging the features of the original flow with the selected flow
from the targeted class using Flow-Merge. Table VII shows
the detailed results of misdetection rates using Flow-Merge for
each dominant flow. The results show that while the adversary
can easily forge a malicious flow classified as a benign flow
for all three dominant flows, the adversary can only forge a
TCP dominant benign flow classified as malicious. The reason
for this outcome is that the number of TCP dominant flows
(65.81%) is far more than the number of UDP (20.45%) and
ICMP (13.72%) dominant flows. It should be noted that the
larger number of TCP dominant flows may result in better
learning of the DL-based IDSs, while perturbation of such
flows increases the chance of the adversary to achieve higher
misclassification rate, as our findings clearly demonstrate.

For misclassification, we observed that it is difficult to force
the model to yield specific outputs. For example, forcing the
model to label a TCP attack record as a UDP attack record is
almost impossible (misclassification rate of 0%). The reason
behind this performance is the nature of the TCP attack, which
is different from the UDP attack, in aspects concerning, among
others, packet header flags, demonstrated by the associated
group of features. We also observed a misclassification rate
of 100% in other cases, i.e., misclassifying all attack classes
to benign or All∗ attack. The reason behind this behavior is
that both classes contain all protocols (TCP, UDP, and ICMP)
within their flows, which leads to a higher success rate of
misclassifying a single or multiple protocol attacks to these

TABLE VII
MISDETECTION USING FLOW-MERGE FOR EACH DOMINANT FLOW.

COLUMNS ARE ORIGINAL LABELS, AND ROWS ARE PREDICTED CLASSES.

Flow type Benign Malicious

TCP Benign 0.003 0.986
Malicious 0.997 0.014

UDP Benign 0.888 0.818
Malicious 0.112 0.182

ICMP Benign 0.892 0.939
Malicious 0.108 0.061

TABLE VIII
MISCLASSIFICATION TO BENIGN USING TCP, UDP, AND ICMP

DOMINANT FLOWS. COLUMNS REFER TO THE ORIGINAL LABEL AND ROWS
REFER TO THE PREDICTED CLASSES. C0 REPRESENTS A NORMAL FLOW,

WHILE C1-C7 REPRESENT THE DDOS ATTACKS IN TABLE IV.

Flow type C0 C1 C2 C3 C4 C5 C6 C7

TCP C0 1 1 1 1 1 1 1 1
C1–C7 0 0 0 0 0 0 0 0

UDP

C0 1 1 1 1 0.989 0.996 1 0.999
C1 0 0 0 0 0 0 0 0
C2 0 0 0 0 0.004 0 0 0.001
C3 0 0 0 0 0.004 0 0 0

C4–C5 0 0 0 0 0 0 0 0
C6 0 0 0 0 0.001 0.004 0 0
C7 0 0 0 0 0.002 0 0 0

ICMP
C0 1 1 1 1 0.999 1 1 1

C1–C6 0 0 0 0 0 0 0 0
C7 0 0 0 0 0.001 0 0 0

classes. The detailed results of misclassification rates using
Flow-Merge are shown in Table VIII, Table IX, and Table X,
where the columns and rows represent the actual and predicted
labels, respectively. In these tables, C0 represents a normal
flow, while C1-C7 represent the DDoS attacks in Table IV.

D. Defense via Adversarial Training

To investigate how the generated AEs through Flow-Merge
are able to evade detection, we implemented a defense config-
uration. The main goal of the defense configuration is to im-
prove the robustness of the IDSs against adversarial examples,
even those crafted by Flow-Merge. There are several defensive
methods in the literature, including defensive distillation [29]
and adversarial training [21], [30], [31]. In this work, we used
adversarial training, which is one of the most successful robust
methods by far [32], to investigate the robustness of our IDS
against attacks. The idea of adversarial training is to inject
AEs into the model’s training phase to increase its robustness
against those AEs [32]. The goal of the adversarial training is
to solve the following adversarial empirical risk minimization:

min
θ

E(x,y)∼D̃ [maxδεS L(x+ δ, y; θ)] ,

where x is the input, y is the model output, θ is the model
parameters, and δ is a small perturbation. In our analysis, we
considered two different assumptions: 1) where the defender
knows the characteristics of the mask (a more realistic as-
sumption), and 2) where the defender does not know anything
about the mask. We conducted our analysis considering both
single class and all classes in adversarial training.

TABLE IX
MISCLASSIFICATION TO All ATTACK USING A TCP, UDP, AND ICMP
DOMINANT FLOWS (ABBREVIATIONS ARE SIMILAR TO TABLE VIII).

Flow type C0 C1 C2 C3 C4 C5 C6 C7

TCP

C0 0.007 0 0 0 0 0 0 0
C1–C4 0 0 0 0 0 0 0 0

C5 0.002 0 0 0 0 0 0 0
C6 0 0 0 0 0 0 0 0
C7 0.99 1 1 1 1 1 1 1

UDP
C0 0.006 0 0 0 0.001 0.001 0 0

C1–C6 0 0 0 0 0 0 0 0
C7 0.993 1 1 1 0.999 0.999 1 1

ICMP

C0 0.023 0 0 0 0 0 0 0
C1–C3 0 0 0 0 0 0 0 0

C4 0 0 0 0 0 0.001 0 0
C5–C6 0 0 0 0 0 0 0 0

C7 0.977 1 1 1 0 0.999 1 1

TABLE X
MISCLASSIFICATION TO TCP ATTACK USING A TCP, UDP, AND ICMP

DOMINANT FLOWS (ABBREVIATIONS ARE SIMILAR TO TABLE VIII).

Flow type C0 C1 C2 C3 C4 C5 C6 C7

TCP

C0 0.207 0 0.648 0.209 0.292 0.261 0.841 0.645
C1 0.793 1 0.267 0.041 0.581 0.321 0 0.152
C2 0 0 0 0 0 0 0 0
C3 0 0 0 0 0 0.001 0 0
C4 0 0 0 0.372 0.032 0.116 0.005 0.046
C5 0 0 0.006 0.119 0.003 0.177 0.002 0.016
C6 0 0 0 0.026 0 0.033 0 0.002
C7 0 0 0.079 0.232 0.091 0.091 0.152 0.139

UDP

C0 0.993 0.033 1 1 0.365 0.356 0.999 0.402
C1 0.007 0.967 0 0 0.024 0.008 0 0
C2 0 0 0 0 0.001 0 0 0
C3 0 0 0 0 0.003 0.001 0 0
C4 0 0 0 0 0.523 0.014 0 0
C5 0 0 0 0 0.051 0.427 0 0.013
C6 0 0 0 0 0 0 0 0
C7 0 0 0 0 0.034 0.194 0.001 0.585

ICMP

C0 0.993 0.033 1 1 0.365 0.356 0.999 0.402
C1 0.007 0.967 0 0 0.024 0.008 0 0
C2 0 0 0 0 0.001 0 0 0
C3 0 0 0 0 0.003 0.001 0 0
C4 0 0 0 0 0.523 0.014 0 0
C5 0 0 0 0 0.051 0.427 0 0.013
C6 0 0 0 0 0 0 0 0
C7 0 0 0 0 0.034 0.194 0.001 0.585

Our results are shown in Table XI, where it is evident that
the adversarial training approach is able to improve the robust-
ness of the model only for those types of AEs considered in the
adversarial training. For example, when retraining the model
with AEs of class C0, the model is able to detect 89.90%
of the AEs of the same class. The model, however, fails to
detect AEs of other classes (15.05%). Moreover, changing
the mask would decrease the robustness of the model, i.e.,
training on AEs generated by a specific mask, and classifying
AEs generated by another mask from the same class. The
overall performance of the adversarial training approach once
all types of AEs (C0 to C7) are considered in the adversarial
training are not promising (63.01% and 49.31% for known and
unknown masks, respectively), highlighting the effectiveness
of the generated AEs of our proposed Flow-Merge approach,
and leaving customized defenses as a potential future work.

V. CONCLUSION

We investigated the robustness of DL-based DDoS defenses
in SDN against adversarial attacks, whereby an adversary

TABLE XI
RESULTS OF ADVERSARIAL TRAINING APPROACH. THE FLOW-MERGE IS ABLE TO REMAIN UNDETECTED OVER ADVERSARIAL TRAINING APPROACH.

Mask Crafted AEs C0 C1 C2 C3 C4 C5 C6 C7 C0-C7

Known Same class 89.90 81.58 61.83 75.89 87.39 93.09 85.77 98.01 63.01Other classes 15.05 40.43 44.88 45.18 37.07 34.17 42.09 34.24

Unknown Same class 67.57 81.60 39.38 47.60 85.48 89.30 52.44 95.07 49.31Other classes 19.38 21.95 27.97 29.20 22.13 20.25 28.11 18.89

attempts to force the DL model into misclassification by
introducing small perturbations. Because generic AE gen-
eration algorithms are shown to produce unrealistic flows,
Flow-Merge was proposed. Flow-Merge utilizes a weighted
merging technique over ratio-based features to craft adversarial
inputs. The evaluation results show a high misclassification
rate of 99.84% using generic adversarial attacks for untargeted
misclassification. Moreover, Flow-Merge produces realistic
adversarial flows for targeted misclassification with a success
rate of 100%. Adversarial training, a widely used defense
mechanism against AEs, is shown effective on generic attacks,
although limited against Flow-Merge. In the future, we will
explore effective defense mechanisms against Flow-Merge.

Acknowledgement. This work is supported in part by NRF-
2016K1A1A2912757 and NVIDIA GPU Grant, and NSF
awards 1647189, 1814086, and 1643207.

REFERENCES

[1] L. Schehlmann, S. Abt, and H. Baier, “Blessing or curse? revisiting
security aspects of software-defined networking,” in Proceedings of the
Network and Service Management, 2014, pp. 382–387.

[2] S. Shin, L. Xu, S. Hong, and G. Gu, “Enhancing network security
through software defined networking (sdn),” in International Conference
on Computer Communication and Networks, 2016, pp. 1–9.

[3] K. Kalkan, G. Gur, and F. Alagoz, “Defense mechanisms against ddos
attacks in sdn environment,” IEEE Communications Magazine, vol. 55,
no. 9, pp. 175–179, September 2017.

[4] Q. Yan, F. R. Yu, Q. Gong, and J. Li, “Software-defined networking
(sdn) and distributed denial of service (ddos) attacks in cloud com-
puting environments: A survey, some research issues, and challenges,”
IEEE Communications Surveys Tutorials, vol. 18, no. 1, pp. 602–622,
Firstquarter 2016.

[5] Q. Niyaz, W. Sun, and A. Y. Javaid, “A deep learning based ddos detec-
tion system in software-defined networking (SDN),” ICST Transactions
on Security and Safety, 2017.

[6] A. Abubakar and B. Pranggono, “Machine learning based intrusion
detection system for software defined networks,” in Proceedings of the
Seventh International Conference on Emerging Security Technologies
(EST), 2017, pp. 138–143.

[7] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M. Ghogho,
“Deep recurrent neural network for intrusion detection in sdn-based
networks,” in Proceedings of the 4th IEEE Conference on Network
Softwarization and Workshops (NetSoft), 2018, pp. 202–206.

[8] M. E. Ahmed, H. Kim, and M. Park, “Mitigating dns query-based
ddos attacks with machine learning on software-defined networking,”
in Proceedings of Military Communications Conference, 2017.

[9] K. Wu, Z. Chen, and W. Li, “A novel intrusion detection model for
a massive network using convolutional neural networks,” IEEE Access,
2018.

[10] H. Alasmary, A. Khormali, A. Anwar, J. Park, J. Choi, A. Abusnaina,
A. Awad, D. Nyang, and A. Mohaisen, “Analyzing and Detecting
Emerging Internet of Things Malware: A Graph-based Approach,” IEEE
Internet of Things Journal, 2019.

[11] A. Abusnaina, A. Khormali, H. Alasmary, J. Park, A. Anwar, and
A. Mohaisen, “Adversarial learning attacks on graph-based iot malware
detection systems,” in Proceedings of the 39th IEEE International
Conference on Distributed Computing Systems, ICDCS, 2019.

[12] N. Papernot, P. D. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,” in
Proceedings of the IEEE European Symposium on Security and Privacy,
2016, pp. 372–387.

[13] S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: A simple
and accurate method to fool deep neural networks,” in Proceedings of
the 2016 IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 2574–2582.

[14] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[15] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[16] N. Carlini and D. A. Wagner, “Towards evaluating the robustness of
neural networks,” in Proceedings of the IEEE Symposium on Security
and Privacy, 2017, pp. 39–57.

[17] P. Chen, Y. Sharma, H. Zhang, J. Yi, and C. Hsieh, “EAD: elastic-
net attacks to deep neural networks via adversarial examples,” in
Proceedings of Conference on Artificial Intelligence, 2018, pp. 10–17.

[18] S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: A simple
and accurate method to fool deep neural networks,” in Proceedings of
the 2016 IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 2574–2582.

[19] Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li, “Boosting
adversarial attacks with momentum,” in Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp. 9185–9193.

[20] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” in Proceedings of
the 2018 International Conference on Learning Representations., 2018.

[21] C. S. Ian J. Goodfellow, Jonathon Shlens, “Explaining and harnessing
adversarial examples,” in Proceedings of International Conference on
Learning Representations., 2015.

[22] Tcpdump, “Tcpdump/libpcap public repository,” Sep 2010. [Online].
Available: http://www.tcpdump.org/

[23] “Home – hping network security tool.” [Online]. Available: http:
//wiki.hping.org/

[24] [Online]. Available: https://openflow.stanford.edu/display/ONL/
POXWiki

[25] “Production quality, multilayer open virtual switch.” [Online]. Available:
http://www.openvswitch.org/

[26] [Online]. Available: http://tcpreplay.appneta.com/
[27] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification

with deep convolutional neural networks,” in Proceedings of Advances
in neural information processing systems, 2012, pp. 1097–1105.

[28] N. Papernot, N. Carlini, I. Goodfellow, R. Feinman, F. Faghri,
A. Matyasko, K. Hambardzumyan, Y.-L. Juang, A. Kurakin, R. Sheatsley
et al., “cleverhans v2. 0.0: an adversarial machine learning library,” arXiv
preprint arXiv:1610.00768, 2016.

[29] N. Papernot, P. D. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation
as a defense to adversarial perturbations against deep neural networks,”
in Proceedings of IEEE Symposium on Security and Privacy, SP, 2016,
pp. 582–597.

[30] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” in Proceedings
of International Conference on Learning Representations., 2014.

[31] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,” in
Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security, 2017, pp. 506–519.

[32] D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, and A. Madry, “There
is no free lunch in adversarial robustness (but there are unexpected
benefits),” arXiv preprint arXiv:1805.12152, 2018.

http://www.tcpdump.org/
http://wiki.hping.org/
http://wiki.hping.org/
https://openflow.stanford.edu/display/ONL/POX Wiki
https://openflow.stanford.edu/display/ONL/POX Wiki
http://www.openvswitch.org/
http://tcpreplay.appneta.com/

	Introduction
	Preliminaries
	Software-Defined Networking
	Adversarial Learning

	Approach
	Generic Adversarial Attacks
	Flow-Merge

	Evaluation and Discussion
	Dataset
	Experimental Setup
	Results and Discussion
	Defense via Adversarial Training

	Conclusion
	References

