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ABSTRACT

Successful software authorship identification has both software forensics applications and privacy

implications. However, the process requires an efficient extraction of quality authorship attributes.

The extraction of such attributes is very challenging due to several factors such as the variety of

software formats, number of available samples, and possible obfuscation or adversarial manipula-

tion. We focus on software authorship identification from three central perspectives: large-scale

single-authored software, real-world multi-authored software, and the robustness assessment of

code authorship identification methods against adversarial attacks. First, we propose DL-CAIS,

a deep Learning-based approach for software authorship attribution, that facilitates large-scale,

format-independent, language-oblivious, and obfuscation-resilient software authorship identifica-

tion. DL-CAIS incorporates learning deep authorship attribution using a recurrent neural network

and identifying programmers using ensemble random forest. We demonstrate the effectiveness of

DL-CAIS under different experimental settings and scenarios for identifying programmers of both

source code and software binaries. Second, we propose Multi-χ, a fine-grained multi-author identi-

fication system of programmers in single code files. Multi-χ incorporates code segmentation, code

representation, authorship verification, code integration, and authorship identification. We eval-

uate Multi-χ with several Github projects (Caffe, Facebook’s Folly, TensorFlow, etc.) and show

remarkable accuracy. We examine the performance of Multi-χ against multiple dimensions and

design choices, and demonstrate its effectiveness. Finally, we propose Author-SHIELD to exam-

ine the robustness of six state-of-the-art code authorship attribution approaches against adversarial

examples. We define three adversarial attacks on attribution techniques—confidence reduction,

a programmer imitation, and evasion attacks—and realize them in targeted and non-targeted ad-

versarial code perturbation. Our experiments demonstrate the vulnerability of current authorship

attribution methods against adversarial attacks.
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CHAPTER 1: INTRODUCTION

Authorship identification of natural language text is a well-known problem that has been studied

extensively in the literature [64, 97, 65, 68]. However, far fewer works are dedicated to authorship

identification in structured code, such as the source code of computer programs [30]. Software

authorship identification is the process of software developer identification by associating a pro-

grammer to a given code based on the programmer’s distinctive stylometric features. A code of

software can be presented with the original source code or the executable binaries, which can be

decompiled to generate pseudo-code as higher level construction of the binary instructions [87, 32].

The problem is, however, difficult and different from authorship identification of natural language

text. This difficulty is chiefly due to the inherent inflexibility of the presented code expressions

established either by the syntax rules of compilers or the reverse engineering of binaries.

Software authorship identification relies on extracting features from software code that a pro-

grammer produces based on the programmer’s preferences in structuring and developing software

pieces. Given these features, the main objective of software authorship identification is to correctly

assign programmers to software codes based on the extracted features. Being able to identify soft-

ware authors is both a risk and a desirable feature. On the one hand, software authorship identifica-

tion poses a privacy risk for programmers who wish to remain anonymous, including contributors

to open-source projects, activists, and programmers who conduct programming activities on the

side. Thus, in turn, this makes software authors identification a de-anonymization problem. On

the other hand, software authorship identification is useful for software forensics and security an-

alysts, especially for identifying malicious code (such as malware) programmers; e.g., where such

programmers could leave source code in a compromised system for compilation, or where features

of programmers could be extracted from decompiled binaries. Moreover, authorship identifica-

tion of software is helpful with plagiarism detection [27], authorship disputes [105], copyright
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infringement [48], and software integrity investigations [72].

This work explores the problem of software authorship identification in three main directions.

Firstly, this work presents, DL-CAIS, a technique that uses deep learning as a method for learning

data representation. DL-CAIS attempts to answer the following questions. (i) How can deep

learning techniques contribute to the identification of software authors? (ii) To what extent does an

authorship identification approach based on deep learning scale in terms of the number of authors

given a limited number of program samples per author? (iii) Can deep learning help identify

authorship attributes that go beyond language specifics in an efficient way and without requiring

prior knowledge of the language? (iv) Will deep authorship representation still be robust when the

program is obfuscated? (v) Can deep authorship representation help identify authors of executable

binaries?. (vi) Will these representation still be robust when different toolchain provenance is used

to generate the binaries?

Secondly, addressing real-world open-source projects, we present, Multi-χ, fine-grained method

for identifying multiple authors contributing to a single source file. Multi-χ is lightweight since

(i) it does not produce a large number of sparse features of code samples, but a small number of

compact representations in proportion to the sequence size, (ii) it does not require code parsing,

syntax tree extraction, nor explicit feature selection. Multi-χ takes advantage of RNN-based deep

learning techniques to generate discriminative features.

Thirdly, since recent code authorship identification techniques are based on machine learning, ad-

versaries are expected to develop incentives to manipulate the input data to force the identification

models to generate specific desired output, e.g., misclassification. We propose Author-SHIELD to

investigate the impact of attacks on software authorship identification systems. Author-SHIELD

involves generating adversarial software examples on the source code level to hinder the authorship

identification while preserving the code’s functionality. Such attacks will not only fool a classifier
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to misidentify programmers but also establish a targeted attack, such as imitating or mimicking of

a specific programmer. Investigating such capabilities by understanding the robustness of software

authorship attribution against adversarial examples allows a finer understanding of the state-of-the-

art methods in uniquely capturing authorship traits in code, and help us shed light on the shortcom-

ings of those algorithms, especially with the increasing reliance on machine learning methods to

recognize the coding style of programmers [5, 31].

1.1 Research Statement

The software authorship identification task is challenging and faces several obstacles that prevent

the development of practical identification mechanisms. In the case of source code authorship

identification, first, programming “style” of programmers continuously evolves as a result of their

education, their experience, their use of certain software engineering paradigms, and their work

environment [29]. Second, the programming style of programmers varies from language to an-

other due to external constraints placed by managers, tools, or even languages. Third, while it is

sometimes possible to obtain the source code of programs, sometimes it is not, and the source code

is occasionally obfuscated by automatic tools, preventing their recognition. In the case of binary

code authorship identification, first, the toolchain provenance used to produce the binaries must be

identified since numerous resultant binaries for the same program can be generated by using dif-

ferent compilation processes. Second, most software binaries, especially malicious programs, are

obfuscated making it difficult to be analyzed for authorship. To address those challenges, recent

attention to software authorship identification has revived more than two-decade old work [95, 69]

by proposing several techniques [30, 31]. However, there are several limitations to the prior work.

Namely, (i) most software features used in the literature for author identification are not directly

applicable to another language; features extracted in Java cannot be directly used as features in C
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or in Python for identifying the same author, (ii) techniques used for extracting software authorship

features do not scale well for a large set of authors, and (iii) the extracted features are usually large

and not all of them are relevant to the identification task, necessitating an additional procedure for

feature evaluation and selection [42].

Moreover, most of the existing code authorship identification techniques assume a single author per

code sample, an assumption that does not always hold. For example, modern software projects are

often the result of collaborative efforts, even with malware development due to shared code [75].

Unlike the single author identification, multi-author identification in a single code sample raises

more challenges, such as defining the boundaries of code pieces to be analyzed for authorship

attributions. Further, the number of contributing programmers to a code sample could be arbitrar-

ily large, and a multi-author identification system should be capable of identifying code authors

even with a single line of code. Identifying programmers given such limited information requires

powerful tools and abstractions to capture authorship attributes for accurate identification.

Investigating the robustness of authorship identification systems against adversarial examples re-

quires designing a framework for generating software adversarial examples. Generating source

code-level adversarial examples is a challenging task since the generated adversarial source code

should be syntactically correct, preserve the program’s functionality, and not be easily detected.

This can be done by a code transformation process [73, 84], similar to author obfuscation whereby

authorship traits are hidden in the transformed code. However, code transformation requires ana-

lyzing and changing the code to target features from different categories including layout features,

lexical and syntactic features, and control-flow and data-flow features. On the other hand, a code

perturbation approach provides an effective alternative for targeted and non-targeted attacks, by

generating adversarial code samples to meet a specific attack goal. Therefore, adversarial attacks

on authorship identification systems should be designed specifically to meet the objectives of the

adversaries using code perturbations applied directly to the software code.
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1.2 Motivation

Code authorship identification has many useful applications and can be either binary- or source

code-based identification. Binary-based techniques [32, 75, 88, 11] are applicable to applications

such as malware, proprietary software, and legacy code [75]. Source code-based techniques are

applicable when the source code is available, e.g., in software copyright infringement [48], code

authorship disputes [105], plagiarism detection [27], and code integrity investigations [72]. More-

over, such techniques could help in identifying malware authors who could leave source code in

a compromised system for compilation or where some source-code fragments could be recovered

from the decompiled binaries. Real-world examples of such codes (or leaked source) include Mirai

and derivatives, Dendroid, Betabot, GMbot, Mazar, TinyNuke, etc. (all available on Github).

Moreover, considering a multi-author and fine-grained identification from small segments of code

within a single file is essential for several forensic applications. Auto-executable code in Java Ap-

plets, ActiveX controls, pushed content, plug-ins, and scripts are widely used as an attack vector,

and they can benefit from fine-grained identification operating on smaller snippets. Recent studies

show that more than 87% of Alexa top 75k sites use JavaScript code, which is subject to several at-

tacks, including Cross-Site Scripting (XSS) and Cross-site Request Forgery (CSRF). Such attacks

are executed using scripts in their source forms [90, 10, 81]. Being able to identify malicious code

at a fine-granularity would help in attributing programmers contributing to malicious software.

Since recent code authorship identification techniques are based on machine learning, adversaries

are expected to develop incentives to manipulate the input data to force the identification models

to generate specific desired output, e.g., misclassification. One line of work for general machine

learning algorithms has been utilizing small perturbations to the input domain, resulting in ad-

versarial examples [79]. Those examples are very similar to the original ones, making it hard to

distinguish them and posing serious threats to machine learning algorithms. Investigating such
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capabilities by understanding the robustness of software authorship attribution against adversarial

examples allows a finer understanding of the state-of-the-art methods in uniquely capturing au-

thorship traits in code, and help us shed light on the shortcomings of those algorithms, especially

with the increasing reliance on machine learning methods to recognize the coding style of pro-

grammers [5, 31]. Understanding the robustness of software authorship attribution can serve as a

building block in maintaining the privacy of programmers in spite of identification techniques, al-

though a rigorous definition and quantification of the privacy falls out of the scope of this research.

1.3 Contributions

In this dissertation, we make contributions to the field of software authorship identification form

three central perspectives, 1) large-scale single-authored software using DL-CAIS, 2) real-world

multi-authored software using Multi-χ, and 3) the robustness assessment of code authorship iden-

tification methods against adversarial attacks using Author-SHIELD. We summarize the main con-

tributions of this dissertation in multiple directions as follows

Contributions of DL-CAIS. First, we design a feature learning and extraction method using a

deep learning architecture with a recurrent neural network (RNN). The extraction process is fed

by a complete or an incomplete program code to generate high quality and distinctive code au-

thorship attributes. The prior work considers preprocessing data transformations which resulted

in high-quality features for effective code authorship identification. However, this feature engi-

neering process is usually dependent on human prior knowledge of the programming language

addressed in a given task. Our approach utilizes a learning process of large-scale software author-

ship attribution based on a deep learning architecture to efficiently generate high-quality features.

Also, as input to the deep learning network, we use the TF-IDF (Term Frequency-Inverse Docu-

ment Frequency) that is already a well-known tool for textual data analysis [26, 65, 49]. Thus, our
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approach does not require prior knowledge of any specific programming language or high-level

translations of program binaries, thus it is more resilient to language specifics when the source

code is available and more robust to compilation settings when the target code is in binary format.

When conducting experiments on large-scale source code dataset, we found that top features are

mostly for keywords of the used programming language, which implies that a programmer cannot

easily avoid being identified by simply changing the variable names but by dramatically changing

his programming style. With this feature learning and extraction method, we were able to achieve

comparable accuracy to (and sometimes better than) the state-of-the-art. For example, compared to

100% accuracy in detecting authorship over a small sample (35 C++ programmers) using features

extracted from the abstract syntax tree of the source code [31], we provide a similar accuracy over

a larger dataset (150 C++ programmers) and close to that accuracy (99%) for other programming

languages using our scalable deep learning-based approach.

Second, we experimentally conduct a large scale code authorship identification and demonstrate

that our technique can handle a large number of programmers (8,903 programmers) while main-

taining a high accuracy (92.3%). To make our authorship identifier work at a large scale, Random

Forest Classifier (RFC) is utilized as a classifier of a TF-IDF-based deep representation extracted

by RNN. This approach allows us to utilize both deep learning’s good feature extraction capability

and RFC’s large scale classification capability. Compared to our work, the largest scale exper-

iment in the literature used 1,600 programmers and achieved a comparable accuracy of 92.83%

using nine files per author as shown in Table 9 of [31]. While our dataset includes more than 5.5

times the number of the programmers in the prior work, our technique required less data per author

(only seven files) for the same level of accuracy at a lower computational overhead. Our experi-

ments are complemented with various analyses. We explore the effect of limited code samples per

author and conduct experiments with nine, seven, and five code samples per author. We investigate

the temporal effect of programming style on our approach to show its robustness.
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Third, we show that our approach is oblivious to language specifics. Applied to a dataset of authors

writing in multiple languages, our deep learning architecture is able to extract high quality and

distinctive features that enable code authorship identification even when the model is trained by

mixed languages. We based our assessment on an analysis over four individual programming

languages (namely, C++, C, Java, and Python) and three combinations of two languages (namely,

C++/C, C++/Java, and C++/Python).

Fourth, we investigate the applicability of our approach to identify programmers from executables.

Several previous works have shown that authorship attribution can be extracted from executable

binaries, and identifying programmers of software binaries is possible [32, 88, 75]. We examine

our approach on capturing authorship traits from high-level translations of binaries generated by

simple straightforward reverse engineering process. The proposed approach achieves an accuracy

of 98.4% and 95.74% for identifying 250 and 1,500 programmers of software binaries, respec-

tively. We extend our experiments and analysis to examine the effects of different compilation

settings such as levels of optimization and removal of symbol information in stripped binaries.

Fifth, we investigate the effect of obfuscation methods on the authorship identification and show

that our approach is resilient to both simple off-the-shelf obfuscators, such as Stunnix [99], and

more sophisticated obfuscators, such as Tigress [102] under the assumption that the obfuscators

are available to the analyzer. We achieve an accuracy of 99% for 120 authors with nine obfuscated

files, which is better than the previously achieved accuracy in [31].

Finally, we examine our approach on real-world datasets and achieve 95.21% and 94.38% of ac-

curacy for datasets of 142 C++ programmers and 745 C programmers, respectively.

Contributions of Multi-χ. We propose Multi-χ, a fine-grained method for identifying multiple

authors contributing to a single source file. We evaluate Multi-χ using a large dataset of multi-
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author source-code files collected from Github and show its accuracy. We evaluate Multi-χ across

multiple dimensions and design choices. Multi-χ enables multi-author verification and identifica-

tion on small fractions of code; i.e., it can identify multiple authors line-by-line. We examine the

effect of code representation on modeling authorship attributions. We use a word2vec technique

to generate distributed representations of code terms that enable authorship verification on small

segments (e.g., segments with one line of code). Moreover, we also use TF-IDF technique to repre-

sent larger segments for the authorship identification task. Multi-χ is lightweight since (a) it does

not produce a large number of sparse features of code samples, but a small number of compact

representations in proportion to the sequence size, (b) it does not require code parsing, syntax tree

extraction, nor explicit feature selection. Multi-χ takes advantage of RNN-based deep learning

techniques to generate discriminative author features. Using a large dataset of real open-source

projects, our approach achieves high accuracy on the three targeted tasks:

• Code Authorship Verification: using word2vec representations of code segments with one

line of code, the RNN model of Multi-χ can achieve an F1-score exceeding 88% in deter-

mining whether two subsequent segments are written by the same programmer. The F1-score

reaches 93.85% when using deeper (multi-layer) bi-directional RNN.

• Code Segment Authorship Identification: using ground-truth data, we examine the suf-

ficient size and number of samples per author needed to identify authors. Our approach

achieves an accuracy of 92.12% for 479 authors when the number of samples is ten per au-

thor and the size of each sample is at least ten lines of code. This accuracy increases to 94.4%

when the sample count increases to 30 samples per author. Moreover, the accuracy increases

when using TF-IDF representations instead of word2vec, to reach 92.82% when the sample

count is 10, and 96.14% when the sample count is 30 samples per author.

• Code Authorship Identification: for the overall system evaluation, we were able to identify

9



multiple authors in 5,321 code files including 562 programmers with an Authorship Example-

Based Accuracy (A-EBA) of 86.41% and an overall per-code-segment authorship identifica-

tion accuracy of 93.18%.

Contributions of Author-SHIELD. We propose adversarial attacks on code authorship identifica-

tion using code perturbation. This approach does not change the original code, but add carefully-

crafted code blocks that change the authorship attributes of the resulting code and lead to confi-

dence reduction, identification evasion, and programmer imitation. We target six programmers’

identification systems for our evaluation: RNN-based DL-CAIS [3], CNN-based WE-C-CNN,

WE-S-CNN, TF-IDF-C-CNN, and TF-IDF-S-CNN [5], and Code Stylometry [31]. Using a dataset

of 2,000 programmers, our results show that code perturbations allowed a misidentification rate ex-

ceeding 98.5% and decreasing the models’ confidence to levels below 40%. Moreover, the results

show successful programmers’ imitation with a rate exceeds 48% for all targeted systems when

using sufficient amount of code perturbation. The results show the feasibility of adversarial attacks

using code perturbations, and without any complex code transformations.

1.4 Dissertation Organization

This dissertation encompasses material from four papers, two published papers by the author [3, 4],

and two other paper under submission. Chapter 2 uses materials from the four papers, especially

reference [3, 4], to highlight the related work in the field of software authorship identification.

We organized the chapter of related work as follows. Section 2.1 provides the related work on

authorship identification methods of single-authored source code files. Section 2.2 provides the

related work on authorship identification methods of software binaries. We explore the methods

for authorship attribution of multi-authored software in Section 2.3. For related work on adversarial

attacks against authorship identification systems, we provide Section 2.4.
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Chapter 3 uses material from reference [3], coauthored with Tamer AbuHmed, David Mohaisen,

and DaeHun Nyang, which proposes the Deep Learning-based Code Authorship Identification

System (DL-CAIS). Chapter 3 is organized as follows. We provide the motivation in Section 3.1

and the system design in Section 3.2. We provide the experiments addressing attributing authors

from the source code in Section 3.3, from the binary code in Section 3.4, Obfuscated code in

Section 3.5. Real-world scenarios are addressed in Section 3.6. We highlight the limitations in

Section 3.7 and conclude in Section 3.8.

Chapter 4 uses material from reference [4], coauthored with Tamer AbuHmed, DaeHun Nyang,

and David Mohaisen which proposes the deep learning-based approach for multi-author identifi-

cation in source code (Multi-χ). Chapter 4 is organized as follows. We describe our approach in

Section 4.1 and provide the experiments and evaluation in Section 4.2. We highlight the limitations

in Section 4.3 and conclude in Section 4.4.

Chapter 5 uses material from under submission work, coauthored with DaeHun Nyang and David

Mohaisen which proposes Author-SHIELD to examine the robustness of different code authorship

attribution approaches against adversarial examples. Chapter 5 is organized as follows. We de-

scribe our approach in Section 5.1 and provide the experiments settings in Sections 5.2 and the

evaluation in Section 5.3. We provide the discussion in Section 5.4 and conclude in Section 5.5.
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CHAPTER 2: RELATED WORK

Broadly related to our work is the attribution of unstructured text. Authorship attribution for un-

structured textual documents is a well-explored area, where earlier attempts to match anonymously

written documents with their authors were motivated by the interest of settling the authorship of

disputed works, such as The Federalist Papers. Through the last two decades, studies of author-

ship attribution have focused on determining indicative features of authorship using the linguistic

information (e.g., length and frequency of words or pairs of words, vocabulary usage, sentence

structure, etc.). Recent works have shown high accuracy in identifying authors of various datasets

such as chat messages, e-mails, blogs, and micro-blogs entries. Abbasi and Chen [2] proposed

writeprints, a technique that demonstrated a remarkable result in capturing authorship stylometry

in diverse corpora including eBay comments and chat as well as e-mail messages of up to a hun-

dred unique authors. Uzuner and Katz [104] provided a comparative study of different stylometry

methods used for authorship attribution and identification. Afroz et al. [8] investigated the possi-

bility of identifying cybercriminals by analyzing their textual entries in underground forums, even

when they use multiple identities. Stolerman et al. [98] considered using classifiers’ confidence to

address the open-world authorship identification problem. Another body of work has investigated

authorship attribution under adversarial settings either for the purpose of hiding the identity or im-

personating (i.e., mimicking) other identities. Brennan et al. [24] studied three adversarial settings

to circumvent authorship identification: obfuscation, imitation, and translation.

Addressing authorship attribution for structured data, such as source code, presents a challenge

and another interesting body of work in the field of authorship attribution. A summary of the

related work is in Table 2.1, with a comparison across four variables: the number of authors, the

programming language, the accuracy, and the used technique.
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2.1 Authorship Attribution of Source code

The method commonly followed in the literature for code authorship identification research has

two main steps: feature extraction and classification. In the first step, software metrics or fea-

tures representing an author’s distinctive attributions are processed and extracted. In the second

step, those features are fed into an algorithm to build models that are capable of discriminating

among several authors. While the second step is a straightforward data-driven method, the first

step leads to major challenges and has become the focus of several research works for more than

two decades. Designing authorship attributions that reflect programmers’ stylistic characteristics

has been investigated by multiple works, since the early work of Krsul et al. [69].

Existing code authorship attribution methods include extracting features from different levels of

programs, depending on the targeted code for analysis. These features can be as simple as byte-

level or term-level features [49], or as complex as control and data flow graphs [75, 88, 11] or even

abstract syntax tree features [82, 31]. The quality of extracted authorship attributes significantly

affects the identification accuracy and the extent to which the proposed method can scale in terms

of the number of authors. Krsul and Spafford [69] were the first to introduce 60 authorship stylistic

characteristics categorized into three classes: programming layout characteristics (e.g., the use of

white spaces and brackets), programming style characteristics (e.g., average variable length and

variable names), and programming structure characteristics (e.g., the use of data structures and

number of code lines per function). MacDonell et al. [71] adopted only 26 authorship stylistic

characteristics extracted using custom-built software IDENTIFIED. Some of these characteristics

were extracted by calculating the occurrence of features per line of code.

Frantzeskou et al. [49] introduced Source Code Author Profiles using byte-level n-grams features

for authorship attribution. Their work was inspired by the success of using n-gram in text au-

thorship identification. Moreover, using n-gram have made the approach language-independent,
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an issue that limited preceding works. Lange and Mancoridis [70] were the first to consider a

combination of text-based features and software-based features for code authorship identification.

Their work used feature histogram distributions for finding the best combination of features that

achieve the best identification accuracy. Elenbogen and Seliya [44] considered six features to es-

tablish programmers’ profiles based on personal experience and heuristic knowledge: the number

of comments, lines of code, variables’ count and name length, the use of for-loop, and program

compression size. Burrows et al. [28] used a combination of n-gram and stylistic characteristics

of programmers for authorship identification.

Caliskan-Islam et al. [31] showed the best results over a large dataset (1,600 programmers), tak-

ing advantage of abstract syntax tree node bigrams. Their approach included an extensive feature

extraction process for programmer code stylometry resulting in large and sparse feature representa-

tions and dictating a further feature evaluation and selection process. After authorship attributions

have been introduced, most of the previous works on code authorship identification have adopted

either a statistical analysis approach, a machine learning-based classification, or a ranking approach

that is based on similarity measurements in order to classify code samples [30]: Statistical analy-

sis methods are considered for limiting the feature space to discover highly-indicative features of

authorship. Krsul and Spafford [69], MacDonell et al. [71], and Ding and Samadzadeh [42] used

discriminant analysis for identifying authors. As for machine learning, various approaches are used

for source code authorship identification: case-based reasoning [71], neural networks [71, 30], de-

cision trees [44], support vector machine [82, 30], and random forest [31]. As a general approach

of similarity measurement, a ranking approach based on similarity measurements can be used to

compute the distance between a test instance and candidate instances in the feature space. Us-

ing a k-nearest neighbor approach is one way to assign instances to authors with similar instances.

Lange and Mancoridis [70], Frantzeskou et al. [49], and Burrows et al. [28] tested different ranking

methods based on similarity measurements.
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2.2 Authorship Attribution of Binary Code

Code authorship identification could also be done on binary code, which is addressed in the liter-

ature. Binary-level techniques [32, 75, 88, 11] are advocated as a viable tool for malware, propri-

etary software, and legacy software attribution [75].

Rosenblum et al. [88] explored authorship attributions of program binary code in two tasks, author-

ship identification, and authorship clustering. The authors extracted a large number of authorship

stylistic features from software binary code to enable attributing programmers efficiently to iden-

tify them or categorize them based on extracted features. These features include n-grams, idioms,

graphlets, supergraphlets, call graphlets, and library calls. Using these features, Rosenblum et

al. [88] achieved 81% accuracy for identifying ten programmers and 51% for identifying almost

200 programmers. Alrabaee et al. [11] proposed a binary authorship identification method called

OBA2, which extracts syntax-based and semantic-based features related to authorship.

Caliskan-Islam et al. [32] have introduced a different approach to extract authorship attribution

from binary code by using simple straightforward reverse engineering process to obtain higher

translations of program binary code. Using code stylometry features extracted from decompiled

pseudo-code, their method achieved an accuracy of 96% for identifying 100 programmers and

an accuracy of 83% for 600 programmers. Using the approach introduced by Caliskan-Islam et

al. [32], the authors provided evidence that authorship stylometry features survive the compila-

tion process and it is possible to identify programmers of binaries even if the binary codes were

generated by compilation process included optimization and/or stripping of symbol information.

Meng et al. [75] explored the possibility of identifying multiple authors of binary code. The authors

introduced a fine-grained approach to identify authors on the basic-block level. Meng et al. [75]

evaluated their approach using real-world projects to achieve an accuracy of 65% for identifying
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284 programmers as the first guess and accuracy of 82% when the author is from top ten suspects.

While very useful, binary-level techniques work under the assumption that a toolchain provenance

is used to generate the binary code, including the operating system, compiler family, version,

optimization level and source language are known to the analyzer. Source-level techniques, on

the other hand, are more flexible and equally useful, especially in addressing incomplete pieces of

code (which cannot be compiled). Even when operating on binaries, code-like artifacts are what

is being actually analyzed. For example, Caliskan-Islam et al. [32] showed that a simple reverse

engineering process of binary files can generate a pseudo-code that can be treated as a source code

for code authorship identification. In our experiments on identifying the programmers of binaries,

we adopt the approach of [32] by analyzing the decompiled code for authorship attribution.

2.3 Authorship Attribution of Multi-Authored Code Files

Identifying multiple authors of source code is related to multi-label learning, in which multiple

labels are to be given to an unlabeled sample. Techniques for multi-label learning are well ex-

plored in several domains, including document classification and image recognition. The literature

of multi-author identification is limited to the context of textual documents [80, 41, 89, 51], source

code [40], and program executable binaries [75]. Payer et al. [80] introduced deAnon, a frame-

work for de-anonymizing authorship of academic submissions. Using ensemble classifier, deAnon

achieved an accuracy of 39.7% for identifying 1,405 possible authors from the first guess, and an

accuracy of 65.6% from the first ten guesses. Dauber et al. [41] applied stylometry features to iden-

tify multi-authored documents from Wikia. The authors extended their analysis to include different

possible application scenarios when using both relaxed classification and multi-label classification

techniques. Sarwar et al. [89] proposed Co-Authorship Graph (CAG) technique to attribute dif-

ferent parts of documents to multiple authors. Using dataset of academic papers, CAG technique
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Table 2.1: Comparison between our work using deep learning for authorship identification and
various related works from the literature, over the used classification techniques, used languages,
and approaches. MDA=Multiple Discriminant Analysis, FFNN=Feed Forward Neural Network,
RNN=Recurrent Neural Network, CNN=Convolutional Neural Network, KNN=K-Nearest Neigh-
bor. Results are excerpted from references.

Authorship identification based on source code

Reference # Authors Languages Accuracy (%) Classification Technique

Pellin [82] 2 Java 88.47% Machine learning (SVM with tree kernel)
MacDonell et al. [71] 7 C++ 81.10% Machine learning (FFNN). Statistical analysis (MDA)
MacDonell et al. [71] 7 C++ 88.00% Machine learning (case-based reasoning).
Frantzeskou et al. [49] 8 C++ 100.00% Rank similarity measurements (KNN)
Burrows et al. [28] 10 C 76.78% Information retrieval using mean reciprocal ranking
Elenbogen & Seliya [44] 12 C++ 74.70% Statistical analysis (decision tree model)
Lange & Mancoridis [70] 20 Java 55.00% Rank similarity measurements (nearest neighbor)
Krsul & Spafford [69] 29 C 73.00% Statistical analysis (discriminant analysis)
Frantzeskou et al. [49] 30 C++ 96.90% Rank similarity measurements (KNN)
Ding & Samadzadeh [42] 46 Java 62.70% Statistical analysis (canonical discriminant analysis)
Burrows et al. [30] 100 C, C++ 79.90% Machine learning (neural network classifier)
Burrows et al. [30] 100 C, C++ 80.37% Machine learning (support vector machines)
Caliskan-Islam et al. [31] 229 Python 53.91% Machine learning (random forest)
Caliskan-Islam et al. [31] 1,600 C++ 92.83% Machine learning (random forest)
Abuhamad et al. [5] 1,600 C++ 96.2% Machine learning (CNN)
Abuhamad et al. [5] 1,500 Python 94.6% Machine learning (CNN)
Abuhamad et al. [5] 1,000 Java 95.8% Machine learning (CNN)

DL-CAIS 566 C 94.80% Machine learning (RNN with random forest)
DL-CAIS 1,952 Java 97.24% Machine learning (RNN with random forest)
DL-CAIS 3,458 Python 96.20% Machine learning (RNN with random forest)
DL-CAIS 8,903 C++ 92.30% Machine learning (RNN with random forest)

Authorship identification based on binary code

Reference # Authors Languages Accuracy (%) Classification Technique

Rosenblum et al. [88] 10 Binary 81% Machine learning (SVM)
Meng et al. [75] 284 Binary 65% Machine learning (random forest)
Caliskan-Islam et al. [32] 600 Binary 83% Machine learning (random forest)

Authorship identification based on Multi-authored code

Reference # Authors Languages Accuracy (%) Classification Technique

Meng et. al. [75] 284 C, C++ 65% SVM and random forest
Dauber et. al. [40] 106 C++ 73% Random Forest
Dauber et. al. [40] 106 C++ 99% Random Forest

Our work (Multi-χ) 282 C, C++ 97.31% RNN with random forest
Our work (Multi-χ) 843 C, C++ 88.89% RNN with random forest
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enabled accurate identification of 707 authors with an accuracy of 72.17%.

For source-code multi-author identification, the most closely related work is Dauber et al.’s seminal

work in [40], which extends the work of Caliskan-Islam et al.’s [31] by attributing programmers

of small code samples using a dataset obtained from Github considering multiple programmers for

code files. The main difference between our work and Dauber et al.’s is as follows: First, their

work used the stylometry features extraction process of [31], a process is shown to produce high-

dimensional sparse representations, to extract the code features. Moreover, their feature extraction

process requires code parsing, syntax tree extraction, and explicit feature evaluation and selection.

Our work reduces the burden of feature extraction by taking advantage of deep learning to generate

high-quality authorship attributions that enable large-scale identification. Our feature extraction

relies on an RNN-based architecture that does not require additional steps nor feature selection

process. Second, their work achieved an identification accuracy of 99% for 106 programmers given

that each programmer has at least 150 code samples when considering multiple-sample attribution

(by aggregating attributes of 50 samples). The authors addressed the multiple-sample attribution

assuming that code segments can be collected from platforms with a version control system and

accounts, e.g., Github, Gitlab, etc. The collection of segments for the same author can be attributed

and aggregated to contribute to successful identification. Another suggested way to collect code

samples for the same user is by clustering. Under this assumption, the presented results show a

promising direction to identify multiple authors of source code. However, aggregating multiple

samples (such as 50 samples) could limit the applicability of this method in practice. Our work

considers identifying authors of source code based on a single-sample attribution and raising the

challenge to scale even to more authors in open-source projects.
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2.4 Adversarial Attacks on Authorship Attribution

Brennan et al. [24] proposed adversarial stylometry to circumvent authorship identification of tex-

tual documents. The authors present a framework to create adversarial documents for two pur-

poses: obfuscation, where an author of a document attempts to hide his identity, and imitation,

where an author attempts to imitate the style of another author. Both approaches are conducted

manually with human involvement. For code authorship attribution, Simko et al. [93] conducted

quantitative and qualitative approaches to evaluate authorship identification under adversarial code

forgeries. Their study included programmers to create code forgeries and human code analysts to

detect and evaluate the forgeries. Meng et al. [74] have introduced adversarial attacks on binary-

code authorship identification system using adversarial binaries that correspond to feature vector

modifications calculated to meet goals of attacks. Matyukhina et al. [73] and Quiring et al. [84]

proposed a transformation process to hide programmers’ coding style or to imitate a specific pro-

grammer’s coding style.

Studying adversarial examples, Yuan et al. [106] explored various approaches for generating ad-

versarial examples along with possible applications and corresponding countermeasures. Since

we address the code authorship identification, the closest applications can be found in the fields

of natural language processing and malware analysis. Adversarial examples in the NLP domain

are limited to perturbation at the word level, where charters of a word can be flipped or changed

so that it will be unrecognizable. The number of changes should be as small as possible so that

the attacks are undetectable by humans. While this approach has been shown to be effective in

generating adversarial examples, it is inapplicable to source code for several reasons. For instance,

the perturbation, in this way, will be only restricted to variable names since changing a language-

specific keyword would result in an error. This is important since Abuhamad et al. [3] showed that

the top TF-IDF features are the programming language keywords. Moreover, changing a variable
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name in one position should be followed by changing that variable name in all other positions

where the variable name appears. In the field of malware detection, deep learning has been used

to provide static and dynamic patterns that enables detecting zero-day malware [107]. However,

recent studies showed the effect of adversarial examples on evading such deep learning-based mal-

ware detection methods [6, 7, 9, 54, 60]. Studying adversarial examples for malware detection

can help us understand effective methods of developing adversarial examples to evade authorship

identification of codes.
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CHAPTER 3: DL-CAIS: DEEP LEARNING-BASED CODE

AUTHORSHIP IDENTIFICATION SYSTEM 1

Successful software authorship de-anonymization has both software forensics applications and pri-

vacy implications. However, the process requires an efficient extraction of authorship attributes.

The extraction of such attributes is very challenging, due to various software code formats from

executable binaries with different toolchain provenance to source code with different programming

languages. Moreover, the quality of attributes is bounded by the availability of software samples

to a certain number of samples per author and a specific size for software samples. To this end, this

chapter proposes DL-CAIS, a deep learning-based approach for software authorship attribution,

that facilitates large-scale, format-independent, language-oblivious, and obfuscation-resilient soft-

ware authorship identification. This proposed approach incorporates the process of learning deep

authorship attribution using a recurrent neural network, and ensemble random forest classifier for

scalability to de-anonymize programmers.

Comprehensive experiments are conducted to evaluate our approach over the entire Google Code

Jam (GCJ) dataset across all years (from 2008 to 2016) and over real-world code samples from

1987 public repositories on GitHub. The results of our work show high accuracy despite requiring a

smaller number of samples per author. Experimenting with source-code, our approach allows us to

identify 8,903 GCJ authors, the largest-scale dataset used by far, with an accuracy of 92.3%. Using

the real-world dataset, we achieved an identification accuracy of 94.38% for 745 C programmers on

GitHub. Moreover, the proposed approach is resilient to language-specifics, and thus it can identify

authors of four programming languages (e.g., C, C++, Java, and Python), and authors writing in

1Part of this content was reproduced from the following article: Mohammed Abuhamad, Tamer AbuHmed, Aziz
Mohaisen, DaeHun Nyang, “Large-scale and Language-oblivious Code Authorship Identification,” In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security, (CSS), 2018.
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mixed languages (e.g., Java/C++, Python/C++). Finally, DL-CAIS is resistant to sophisticated

obfuscation (e.g., using C Tigress) with an accuracy of 93.42% for a set of 120 authors.

Experimenting with executable binaries, our approach achieves 95.74% for identifying 1,500 pro-

grammers of software binaries. Similar results were obtained when software binaries are gener-

ated with different compilation options, optimization levels, and removing of symbol information.

Moreover, our approach achieves 93.86% for identifying 1,500 programmers of obfuscated bina-

ries using all features adopted in Obfuscator-LLVM tool.

3.1 Background and Motivation

In this work, the analysis for software authorship attribution is done on source code or code-like

artifacts extracted from executable binaries using a reverse engineering process. Authorship attri-

butions are extracted from code files using a two-step process, i.e., TF-IDF as initial representation

and then deep authorship representation using deep learning method. The extracted authorship

attributions enable the identification of programmers using ensemble classifier. This section high-

lights the motivation and the underlying concepts of different used methods in our proposed system

for software authorship attribution and identification.

3.1.1 Term Frequency-Inverse Document Frequency (TF-IDF)

TF-IDF is a well-known tool for text data mining. The basic idea of TF-IDF is to evaluate the

importance of terms in a document in a corpus, where the importance of a term is proportional

to the frequency of the term in a document. However, it is highly likely to be emphasized by

documents which have a very common term over a corpus. Therefore, how specific a given

term is over a corpus should be considered. It can be quantified as an inverse function of the
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Figure 3.1: The TF-IDF of top-30 terms for five programmers. The value of a term is different
among authors who use the same term. The terms are: (‘ans’, ‘begin’, ‘begin end’, ‘bool’, ‘break’,
‘char’, ‘cin’, ‘cin int’, ‘cmath’, ‘cmath include’, ‘const’, ‘const int’, ‘continue’, ‘cout’, ‘cout case’,
‘cstdlib’, ‘cstdlib include’, ‘cstring’, ‘cstring include’, ‘define’, ‘define pb’, ‘double’, ‘end’, ‘endl’,
‘false’, ‘freopen’, ‘include cmath’, ‘include cstdlib’, ‘include cstring’, ‘include map’).

number of documents in which it appears. In building the data preprocessing component of

our technique, a term t in a document d of a corpus D is assigned a weight using the formula

TF-IDF(t, d,D) = TF(t, d) × IDF(t,D), where TF(t, d) is the term frequency (TF) of t in d and

IDF(t,D) = log(|D|/DF(t,D)) + 1, where |D| is the number of documents in D and DF(t,D) is

the number of documents containing the term t.

Using TF-IDF as initial representation for code files is motivated by its wide-range applications

on processing textual data. Terms and n-grams features (frequency) are commonly used in infor-

mation retrieval and have been adopted for code authorship identification [26, 65, 49]. TF-IDF

features describe an author’s preferences on using certain terms, or his/her preference for specific

commands, data types, and libraries. Figure 3.1 illustrates the mean TF-IDF values of the top-30
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terms used by five programmers in nine C++ files of code. Even with slight difference for some

terms, the TF-IDF value differs from one programmer to another presenting its validity to be used

as initial representation of code files. If the values are composed into one vector for each program-

mer, then we can distinguish more distinctively each author by observing the distribution of the

values. Another observation is that the top features are for keywords of the used programming lan-

guage. Such observation suggests that a programmer cannot easily avoid being identified by simply

changing the variable names but rather by dramatically changing the programming style itself. For

example, it seems that ‘cout’ should not have such a high TF-IDF score because it is a common

command for printing out a message, but it has. This is because ‘cout’ has been used by only

a small number of programmers solving problems in GCJ, which makes the keyword distinctive.

Thus, frequent use of ‘cout’ can be regarded as some programmer’s programming style.

3.1.2 Deep Representation of TF-IDF Features

Software authorship identification can be formulated as a classification problem, where authors are

classified based on their distinctive authorship attributes. The performance of machine learning

methods relies on the quality of data representation (features or attributes), which requires an ex-

pensive feature engineering process. This process is sometimes labor-intensive and heavily depen-

dent on human prior-knowledge in the classification application field [17]. Identification of a large

number of authors using TF-IDF directly cannot be easily achieved as can be seen in Figure 3.2(a).

Recently, representation learning has gained increasing attention in the machine learning com-

munity and has become a field in and of itself dedicated to enabling easier and more distinctive

feature extraction processes [18]. Among several representation learning methods, deep learning

has achieved a remarkable success in capturing more useful representations through multiple non-

linear data transformations. Deep learning representations have enabled several advancements in

many machine learning applications such as speech recognition and signal processing [57, 38, 22],
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(a) PCA visualization of TF-IDF.
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(b) Deep representation visual.

Figure 3.2: The PCA visualization of TF-IDF and deep representation of software attributions for
five programmers.

object recognition [35, 86], natural language processing [15, 21], and multi-task and transfer learn-

ing [16, 53]. Since the breakthrough work of Hinton et al. [58], multiple representation techniques

using deep learning were presented in the literature. Those techniques have been employed in

many fields, with various applications, as reported in [17, 16]. One potential application that was

not previously explored is code authorship identification, which we explore in this work. The tech-

niques used include LSTM (Long Short-Term Memory) and Gated Recurrent Units (GRU) that are

sorts of Recurrent Neural Network (RNN) among various Deep Neural Networks (DNN).

Deep LSTMs and GRUs [92] with multiple layers demonstrated a remarkable capability to gen-

erate representations from long input sequences. In this work, we investigate both LSTM and

GRU capabilities of extracting software authorship attributions from TF-IDF code representations,

which are a good fit because of the scale of our problem. We will elaborate on this investigation

in Subsection 3.2.2. The TF-IDF representations are fed into our deep learning structure as one
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sequence per software sample to generate high quality representations that enable accurate au-

thorship identification. To examine the characteristics of TF-IDF, we visualized TF-IDF values of

top-30 terms of five authors. For visualizing code samples of a programmer, we used the Principal

Components Analysis (PCA). The PCA is a statistical tool that is widely used as a visualization

technique that reflects the difference in observations of multidimensional data for the purpose of

simplifying further analysis [14, 45]. Figure 3.2 shows PCA visualizations of code samples for

five programmers with nine samples each. In Figure 3.2(a), code samples are represented with

the TF-IDF features, which are insufficient to draw a decision boundary for all programmers. In

Figure 3.2(b), however, the deep representations have increased the margin for decision boundary

so distinguishing programmers has become easier. This visualization of the representations space

(TF-IDF features and deep representations) illustrates the quality of representations obtained using

deep learning techniques.

3.1.3 RFC over Deep Representations

To identify authors, we need a scalable classifier that can accommodate a large number of pro-

grammers. However, the deep learning architecture alone does not give us a good accuracy (e.g.,

86.2% accuracy for 1,000 programmers). Instead of using the softmax classifier of the deep learn-

ing architecture, we use RFC [23] for the classification, and by providing the deep representation

of TF-IDF as an input. RFC is known to be scalable, and our target dataset has more than 8,000

authors (or classes) to be identified. Such a large dataset can benefit from the capability of RFC.

Our authorship identifier is built by feeding a TF-IDF-based deep representation extracted by RNN

and then classifying the representation by RFC. This hybrid approach allows us to take advantage

of both deep representation’s distinguishing attribute extraction capability and RFC’s large scale

classification capability.
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Figure 3.3: A high-level illustration of the proposed deep learning-based software authorship iden-
tification system. This illustration shows the three phases of preprocessing (TF-IDF feature repre-
sentation), better representation through learning (using the RNN and fully-connected layers), and
the classification (using 300 trees in a random forest classifier).

3.2 DL-CAIS: System Design

Our approach for large-scale software authorship identification has three phases: preprocessing,

representation through learning, and classification. We briefly highlight those phases in the follow-

ing and explain each phase of the proposed approach in more details in the subsequent subsections.

Preprocessing. Based on the available code format, the preprocessing phase aims to define the

target code to be analyzed. For the source code of different programming languages, the prepro-

cessing phase entails cleaning and preparing the code samples for the initial TF-IDF representa-

tions. On the other hand, for executable binary code, the preprocessing phase includes defining

the toolchain provenance such as compiler family and version, compilation optimization level,

and source code language, etc. After defining the toolchain provenance of the presented binary

code, a reverse engineering process takes place to obtain pseudo-codes as the higher translation

of the program binary code. These pseudo-codes are then analyzed for authorship attribution and
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represented with the TF-IDF initial representations.

The initial representations of code samples are later fed into a deep learning architecture to learn

more distinctive features. Finally, deep representations of code authorship attributions are used to

construct a robust random forest model. Figure 3.3 illustrates the overall structure of our proposed

system. In the first phase, a straightforward mechanism is used to represent source code files based

on a weighting scheme commonly used in information retrieval.

Representation by Learning. This phase includes learning deep representations of authorship

from less distinctive ones. Those representations are learned using an architecture with multiple

RNN layers and fully-connected layers.

Classification. After training the deep architecture, the resulting representations are used to con-

struct a random forest classifier with 300 trees grown to the maximum extent.

3.2.1 Data Preprocessing

The first phase of the proposed system is to handle available software samples to ensure an efficient

initial representation process. This process varies considering the available code format, i.e., source

code is a subject to a different preprocessing phase compared to executable binary code. However,

both source and binary code files are represented initially with TF-IDF features by the end of the

preprocessing phase. Note that previous works e.g., [32, 31, 28, 71, 69, 70] have used TF-IDF or

a variation TF-IDF as part of the feature extraction of authorship attributes. In this work, we only

use TF-IDF representation as an initial representation for a deep learning model which is trained

to extract more robust and distinctive authorship traits. The following describes the preprocessing

phase with respect to the available code format.
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Preprocessing for source code. The source code is processed to eliminate comments, copyright

headers, program description, layout restrictions and features (such as tabs, spaces, and lines),

stop words. Since only n-grams are considered for the TF-IDF representation of code samples,

the layout features and stop words are irrelevant and therefore they are excluded from the initial

representation. This work conducts experiments on the source code of four programming lan-

guages. Moreover, obfuscated code using code-to-code obfuscation tools, e.g., Tigress or Stunnix,

are treated as source code following the same procedure as source code.

Preprocessing for binary code. When the available code is in a binary format, the first step is to

identify the toolchain provenance such as compilation tools and settings. We assume the toolchain

provenance of the presented binary codes is known since the current state-of-the-art tools have this

capability with a high degree of accuracy [87]. Being able to identify the source of the binary

code, there are powerful tools to reverse engineer the binary code to higher level constructs via

disassembly or/and decompilation process.

Both disassemblers and decompilers are capable of generating textual translations of binary code

that can be an easier subject of analysis. On the one hand, disassemblers provide a straightforward

one-to-one translation of binary instructions to instruction mnemonics. Among many powerful

disassemblers available on the field, radare2 [85] and IDA-Pro [61] are the most commonly utilized

disassemblers with a wide-range of utilities. On the other hand, decompilers generate even higher-

level translations of the binary code with concise C-like pseudocode. Compared to disassemblers,

decompilers generate five to ten times shorter outputs for the same binary program, e.g., typical

binary program with size (400KB-5MB) can generate a decompiled code of size mostly less than

10MB. Therefore, we use a decompilation process to generate high-level translations of software

binaries. In our experiments on authorship attribution of executable binary code, we use Hex-

Rays [56], a state-of-the-art commercial decompiler. The generated decompiled pseudo codes via
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a decompilation process are often larger in size than the original source code. However, we treat

the generated pseudo code similarly as the source code in our analysis.

Both source and decompiled code files are represented by TF-IDF. TF-IDF is a standard term

weighting scheme commonly used in information retrieval and document classification communi-

ties. While we could have used TF instead, we use the TF-IDF to minimize the effect of frequent

terms in a given corpus. This is due to the observation that more distinctive terms appear in certain

documents (code files) rather than in most of the corpus. In our implementation, we use several

methods for optimizing the representation of documents, such as eliminating stop words, normal-

izing representations, and removing indistinctive features. We note that TF-IDF representations

cover word unigrams, bigrams, and trigrams in the presented code files, meaning a term can be a

term of one, two, or even three words. As such, the input vector for a document di to the deep

learning model is represented as follows:

[TF-IDF(t1, di,D),TF-IDF(t2, di,D), . . . ,TF-IDF(tn, di,D))] ,

where n is the total number of terms in the corpus D. To train our model, a set of documents for

each user is used to calculate the above vector. However, targeting a corpus of thousands of code

files may lead to high-dimensional vector representations (i.e., too many terms). Several feature

selection methods that reduce the dimensionality using statistical characteristics of features exist.

In this work, we investigated different feature selection methods for representing code files to be

further fed into the deep learning model, and we found that all approaches lead to similar results.

For every term ti and every document di, we calculate

xi =
⋃

j=1,...,|D|

TF-IDF(ti, dj,D), (3.1)

where ∪ is a feature selection operator such as the order of term frequency, chi-squared (χ2) value,
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mutual information, or univariate feature selection. Using equation (3.1), xi’s for all terms in the

corpus are calculated.

Feature Space. Among the n features, we choose the top-k terms for which xi’s are the largest

to reduce the dimensionality and form an input vector to the learning model. For simplicity, we

adopt the embedded function of selecting the top-k features by the TF-IDF vectorizer available by

the scikit-learn package, which uses the order of term frequencies across all files. With TF-IDF

as the method used to represent code files, the feature space needs to be sufficient to distinguish

files’ authors. For large dataset containing thousands of files (e.g., more than 1,000 programmer

with nine files each), the top-k features (for a fixed k) may or may not be sufficient to enable the

model to identify authors accurately. As such, we investigated the number of features considered

to represent code files as an optimization problem of accuracy. This experiment suggested that

2,500 features are sufficient for the subsequent experiments.

The high dimensionality is likely to introduce overfitting issues, but we addressed the overfitting

issues by two regularization techniques, and also conducted all the experiments by repeated k-

fold cross validations. Figure 3.4(a) shows the impact of feature selection, using four different

approaches, on the accuracy of our approach using TF-IDF features in identifying code authors. In

this experiment, we use 1,000 features to identify authors in a 250 C++ programmers experiment.

The results demonstrate a substantial accuracy rate (of over 96%) for the given problem size.

Figure 3.4(b) demonstrate the impact of the number of the selected TF-IDF features on the accuracy

of the classifier. We note that accuracy increases up to some value of the number of features after

which it decays quickly. The accuracy, even with smallest number of features, is relatively high.
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Figure 3.4: Feature selection analysis.

3.2.2 Deep Representation of Code Attributes

For deep representations, we used multiple RNNs and fully-connected layers in a deep learning

architecture. For our implementation, we used TensorFlow [1], an open source symbolic math

library for building and training neural networks using data flow graphs. We ran our experiments

on a workstation with 24 cores, one GeForce GTX TITAN X GPU, and 256GB of memory. We

note that our use of the GeForce GTX TITAN X GPU is purely performance driven, and the specific

platform does not affect the end-results. Upon the release of our scripts and data, our findings can

be reproduced on any other experimental settings.

Addressing Overfitting. To control the training process and prevent overfitting, two different reg-

ularization techniques were adopted. The RNN layers in our deep learning architecture included

a dropout regularization technique [96]. In essence, this technique randomly and temporally ex-
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cludes a number of units on the forward pass and weight updates on the backward pass during

the training process. The dropout regularization technique has been shown to enable the neural

network to reach better generalization capabilities [96].

The second technique concerns the fully-connected layers. For that we use the L2 regularization,

which penalizes certain parameter configurations: given a loss function loss(θ, D) = 1
n

∑n
i=1 d(yi, ŷi),

where θ is the set of all model parameters, D is the dataset of length n samples, and d() indi-

cates the difference between DNN’s output ŷi and a target yi, the regularization loss becomes

Regloss(θ,D) = 1
n

∑n
i=1 d(yi, ŷI

′
i) + [λ× Reg(θ)], where λ is a constant controls the importance

of regularization and Reg(θ) = (
∑|θ|

j=0|θj|p)
1
p , where p = 1 or 2 (hence, L1 and L2 nomenclature).

Selecting Layers. The parameters of our final architecture of the deep learning model were cho-

sen after various iterations of experiments, upon which we chose three RNN layers with dropout

keep-rate of 0.6, followed by three fully-connected layers with ReLU activation. Each of the

fully-connected layers has 1024 units except the last layer, which has 800 units representing the

dimensionality of code authorship features for a given input file. During the representation learn-

ing process, this architecture is connected to the softmax output layer that represents the class of

authors to direct the training process. The training process follows a supervised learning approach,

where only the intended model is meant to provide a data transformation that leads to the best

probability of its correct class label.

Targeting a large-scale code authorship identification process with thousands of programmers

(thousands of classes), the deep learning architecture alone does not accurately identify program-

mers (86.2% accuracy for 1000 programmers). Thus, we use the output of layer Lk−1 (where the

Lk is the softmax layer) to be the deep representations of code authorship features. Deep represen-

tations of code authorship features are then subjected to a classification process using RFC, which

is proven to be robust and scalable for large datasets. The weights of the learning network were
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initialized using a normal distribution of small range near 0, a small variance, and mean of 0.

Training Procedure. To train our deep learning architecture, we used TensorFlow’s Adaptive

Moment estimation (Adam) [66] with a learning rate of 10−4, and without reducing the learning

rate over time. Adam is an efficient stochastic optimization method that only requires first-order

gradients with little memory requirements. Using estimations of the first two moments of the

gradients, Adam assigns different adaptive learning rates for different parameters. This method

was inspired by combining the advantages of two popular stochastic optimization methods, Ada-

Grad [43], which is efficient for handling sparse gradients, and RMSProp [101], which is efficient

for on-line and non-stationary settings [66].

Further Optimizations. In the training process of the deep learning architecture, we used a

mini-batch size ranging from 64 to 256 observations. The idea of using mini-batches reduces

the variance in gradients of individual observations since observations may be significantly differ-

ent. Instead of computing the gradient of one observation, the mini-batch approach computes the

average gradient of a number of observations at a time. This approach is widely accepted and com-

monly used in the literature [92]. The training termination mechanism was either to reach 100,000

iterations or to achieve an early termination threshold for the loss value.

3.2.3 Code Authorship Identification

Using deep authorship features, we construct an RFC for code authorship identification. In doing

so, and based on various experiments, we select 300 decision trees for an RFC—this configuration

has shown to provide the best trade-off between model construction time and its accuracy [31].

Implementation. We used scikit-learn to implement the RFC using the default settings for build-

ing and evaluating features on each split, and all trees were grown to the largest extent without
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pruning. Following the approach adopted by [31], we report results of test accuracy using strati-

fied k-fold cross-validation [67], where k depends on the number of observations per class in the

dataset (i.e., 9-fold used for 9 files per author, 7-fold for 7 files per author, and so on). The k-fold

cross-validation technique aims to evaluate how well our model will generalize to an independent

dataset. In this model, the original dataset is randomly partitioned into k equal-sized subsets. Of

the k subsets, a single subset is used for testing, and the remaining k − 1 subsets are used for

training. This cross-validation is repeated k times, where each subset is given a chance to be used

for testing the model built from the k − 1 subsets, and the evaluation metric (e.g., accuracy) is the

computed as average of the k validations.

Parameters Tuning. Through various experiments we confirm that choosing less than 300 trees

(and as few as 100 trees) may degrade the accuracy by only 2%.

3.3 Authorship Identification of Source Code

In this section, we present the results of several experiments to address various possible scenarios

of our identification approach. In our evaluation, we deliver the following: (1) We present results of

code author identification over a large dataset. We demonstrate our central results for programmer

authorship identification and how our approach scales to 6,635 programmers with nine files each

and to 8,903 programmers with seven files each. Our experiments cover the entire Google Code

Jam dataset from 2008 to 2016, an unprecedented scale compared to the literature (see Table 2.1).

(2) We investigate our system’s performance with fewer code files per author and demonstrate its

viability. (3) We evaluate the robustness of our identification system under programmers’ style

evolution and change in development environment, and demonstrate that changes minimally affect

the performance of our approach. We complement this study by exploring the temporal effects

of programming style on our approach of identification. (4) We push the state of identification
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evaluation by looking into mixed language identification. Particularly, we show results using two

language files for programmers (C and C++, Java and C++, and Python and C++). (5) We examine

how off-the-shelf obfuscators affect our system’s performance. Our results are promising: we

show that it is possible to identify authors with high accuracy, which may have several privacy

implications for contributors who want to stay anonymous through obfuscation. (6) We investigate

the applicability of our approach using real-world dataset collected from Github, including two

programming languages (e.g., C and C++).

3.3.1 Source Code Dataset

The Google Code Jam (GCJ) is an international programming competition run by Google since

2008 [62]. At GCJ, programmers from all over the world use several programming languages

and development environments to solve programming problems over multiple rounds. Each round

of the competition involves writing a program to solve a small number of problems—three to

six, within a fixed amount of time. We evaluate our approach on the source code of solutions to

programming problems from GCJ. The most commonly used programming languages at GCJ are

C++, Java, Python, and C, in order. Each of those languages has a sufficient number of source code

samples for each programmer, thus we use them for our evaluation. For a large-scale evaluation,

we used the contest code from 2008 to 2016, with general statistics as shown in Table 3.1. The

table shows the number of files per author across years, with the total number of authors per

programming language and the average file size (lines of code, LoC). For evaluation, we create the

following three dataset views (Tables 3.1–3.3):

1. Dataset 1: includes files across all years from 2008 to 2016 in a “cross-years” view, as

shown in Table 3.1.
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Table 3.1: Datasets used in our study with the corresponding statistics, including the number of
authors with at least a specific number of files across all years.

Competition
Year

Author
Files

No. of Authors for Languages
C++ C Python Java

Across Years 9 6635 327 2300 1279
Across Years 7 8903 566 3458 1952
Across Years 5 12411 1156 5525 3345
Average Lines of Code 71.53 65.20 44.44 86.70

Table 3.2: Two datasets with the corresponding author counts for authors who had seven files at
the Google Code Jam (GCJ) 2015 and 2016 competitions.

Competition
Year

Author
Files

No. of Authors for Languages
C++ C Python Java

2015 7 2241 41 398 132
2016 7 1744 21 390 317

across 3 years* 7 292 NA 44 50

*Programmers participated in 2014, 2015 and 2016

2. Dataset 2: consists of code files for participants drawn from 2015 and 2016 competitions

for four programming languages, as shown in Table 3.2.

3. Dataset 3: consists of programmers who wrote in more than one language (i.e., Java-C++,

C-C++, and Python-C++) as shown in Table 3.3.

Number of Files. In [31], the use of nine files per programmer is recommended. Our approach

provides as good–or even better–accuracy with only seven files, as shown in Subsection 3.3.3.
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Table 3.3: A dataset used in our study to demonstrate identification across multiple languages. The
dataset includes authors with nine files written in multiple languages.

Competition
Year

No. of Authors for Multiple Languages
C++-C C++-Java C++-Python

Across Years 1897 855 626
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Figure 3.5: Accuracy of authorship identification of programmers with nine sample code files per
programmer in four programming languages (C++. Java, Python, and C). Notice that the accuracy
is always higher than 92% even with the worst of the two options of classifiers, and decay in the
accuracy is insignificant despite a significant increase in the number of programmers.

3.3.2 Large-scale Authorship Identification

In this experiment, we used dataset 1 in Table 3.1. There are four large scale datasets corresponding

to four different programming languages with programmers who have exactly nine code files (first

row in Table 3.1). The number of code files per author in this experiment was suggested by [31]

to be sufficient for extracting distinctive code authorship attribution features. In our experiment,

we started each dataset with a small number of programmers and increased this number until we

included all programmers in the dataset. In particular, we used an RFC with stratified 9-fold cross

validation to evaluate the accuracy of identifying programmers. We repeated the k-fold cross

validation five times with different random seeds and reported the average.
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Figure 3.6: Accuracy of authorship identification of programmers with seven sample code files per
programmer in four programming languages (C++. Java, Python, and C). Notice that the accuracy
is always high even with large number of programmers.

Evaluation Metric. For evaluation, we use the accuracy, defined as the percentage of code files

correctly attributed over the total number of tested code files. Using the accuracy instead of other

evaluation metrics (e.g., precision and recall) is enough because the classes are balanced in terms

of the number of presented files per class in the dataset.

Results. Figure 3.5 shows how well our approach scales for a large number of programmers, and

for the different programming languages. The results report the accuracy when using different

RNN units in learning code authorship attribution and RFC for authors identification (i.e., using

either LSTM-RFC or GRU-RFC unit). In Figure 3.5(a), the LSTM-RFC performance results show

that our approach achieves 100% accuracy for 150 C++ programmers with randomly selected nine

code files. We note here that FPR is trivially computed as (1 - accuracy), because the dataset is

balanced. As we scale our experiments to more programmers, the accuracy remains high, with

92.2% accuracy for 6,635 programmers. Given the same experimental configuration, similar re-

sults are obtained for the Java programming language, as illustrated in Figure 3.5(b) with 100%

accuracy when the number of programmers is 50 programmers. Upon scaling the experiments

to more programmers, we achieve 99.42% accuracy for 150 programmers, and 95.18% accuracy
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Figure 3.7: Accuracy comparison of authorship identification of programmers in case of five,
seven, and nine sample code files per programmer in four programming languages (C++. Java,
Python, and C). Notice that the accuracy is always higher than 92%, and regardless of the number
of authors. While best results are achieved for the larger number of files, the lowest number of files
(of 5) still provides ∼ 92% in the worst case.

for 1,279 programmers. For the Python language dataset, our approach achieved an accuracy of

100% for 100 programmers, 98.92% for 150 programmers, and 94.67% for 2,300 programmers,

as shown in Figure 3.5(c). Finally, for the C programmers, Figure 3.5(d) shows that the accuracy

reaches 100% for 50 programmers, 98.56% for 150 programmers, and 95.2% for the total of 327

programmers. These results indicate that both deep LSTMs and GRUs are capable of learning

deep representations of code authorship attribution that enable achieving large scale authorship

identification regardless of the used programming language.

3.3.3 Effect of Code Samples Per Author

The availability of more code samples per author contributes to better code authorship identifica-

tion, whereas less code samples restrain the extraction of distinctive features of authorship [31, 29].

Experiment 1: Seven Files per Author. For this experiment, we created two datasets with seven

and five code samples per programmer for four different languages, as shown in Table 3.1 (second
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Table 3.4: Results of the accuracy of our approach in authorship identification for programmers
who solved seven problems using the C++ programming language.

Competition Year # Authors LSTM-RFC GRU-RFC

2015

150 98.98 98.24
300 98.64 97.94
450 98.1 97.6
600 97.56 97.21
750 97.28 96.67
900 96.34 96.4

1000 96.32 95.98
1500 95.88 95.22
2000 95.67 94.9
2241 95.23 94.67

2016

150 99.12 98.67
300 98.34 98.31
450 98 97.62
600 97.54 96.84
750 97.28 96.18
900 96.7 95.64

1000 96.37 94.88
1500 95.66 94.14
1744 95.17 93.54

row). We used RFC with stratified 7-fold cross validation to evaluate the accuracy of identifying

programmers at the dataset with seven files per programmer. As the number of available code

samples per author decreased, we found that the number of authors increased (Table 3.1). The goal

of this experiment is to investigate the effects of having less files per author on the accuracy.

Results. Figure 3.6 illustrates the results of our approach using the dataset of all programmers

with seven code samples for four different programming languages. Figure 3.6(a) shows an accu-

racy of 98.24% when using LSTM-RFC for 150 C++ programmers, and an accuracy of 92.3% for

8,903 programmers. Figure 3.6(b) shows an accuracy of 99.26% for 150 Java programmers when

using LSTM-RFC, and 97.24% accuracy when scaling the experiment to 1,952 programmers. Fig-
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ure 3.6(c) shows an accuracy of 98.24% when using LSTM-RFC for 150 Python programmers, and

an accuracy of 96.2% when scaling the experiment to 3,458. Finally, Figure 3.6(d) shows the result

for C programmers, where LSTM-RFC is used: an accuracy of 96.71% for 150 C programmers,

and 93.96% for 566 C programmers.

Comparison. Compared with the experimental result of identifying authors using nine code sam-

ples per author, as in Subsection 3.3.2, the accuracy does not degrade even when using less code

samples per author. Moreover, the results show that our approach is still capable of achieving high

accuracy even with more authors compared to the previous experiments. This result presents the

largest-scale code authorship identification by far, indicating that seven files per author are still

sufficient for extracting distinctive features.

Experiment 2: Five Files per Author. We created a dataset with five source code samples per

programmer in the four different programming languages, as shown in Table 3.1 (third row). We

used RFC with stratified 5-fold cross validation to evaluate the accuracy of identifying program-

mers at the dataset with five files per programmer. As the number of available code samples per

author decreased, we found that the number of authors increased (Table 3.1). The goal is to further

investigate the effects of having even lesser files per author on the accuracy of our approach.

Results. Figure 3.7 shows the results for 1,000 programmers, demonstrating the effect of decreas-

ing the number of sample files for each author. Figure 3.7(a) shows that our approach provides

an accuracy of 96.77% for attributing authors in 150 C++ programmers when using LSTM-RFC.

Comparing the results of those datasets with the nine and seven source code samples for each pro-

grammer, the accuracy loss was only 3.23% and 1.47%, respectively. As we scale to 1,000 C++

programmers, our approach achieves an accuracy of 94.84%. This result proves that our approach

still achieves high accuracy even with fewer sample files per programmer. The results of accu-

racy with smaller number of files per author generalize to other programming languages. Using
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the same approach and settings as above, Figure 3.7(b) shows an accuracy of 98.1% and 96.42%

for 150 and 1,000 Java programmers, respectively. Figure 3.7(c) show an accuracy of 97.1% and

94.32% for 150 and 1,000 of Python programmers. Finally, Figure 3.7(d) shows an accuracy of

94.67% and 92.12% for 150 and 1,000 C programmers, respectively.

Using only five code samples per author, the accuracy of our approach does not significantly de-

grade. From those experiments we conclude that learning deep code authorship features using

either deep LSTMs or GRUs enables large scale authorship identification even with limited avail-

ability of code samples per author.

3.3.4 Effect of Temporal Changes

The literature suggests that temporal effect is a challenge for code authorship identification, since

the programming style of programmers evolves rapidly with time due to their education and ex-

perience [31, 29, 55]. We investigate the impact of temporal effect on source code authorship

identification. The experiments include two parts: 1) exploring the existence of such impact on the

identification process, 2) examining our approach against such effect.

Experiment 1: Temporal Effect on Accuracy. This experiment answers the following question:

Do temporal effects influence the accuracy of code authorship identification?

To answer this question, we conducted an experiment where results from identifying authors from

the same year is compared with results across different years throughout the competition. We ex-

amined our approach using a dataset of source codes written by programmers within one competi-

tion year, where all programmers solve the same set of problems. Two datasets of GCJ competition

of the 2015 and 2016 code samples were created individually with seven code files per program-

mer, as shown in Table 3.2. In this experiment, we used a random forest and stratified 7-fold cross
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validation to evaluate the accuracy of identifying programmers.

Results. Table 3.4 summarizes the results of this experiment when applying LSTM-RCF and

GRU-RCF for C++ programmers in two separate years. The accuracy of code authorship identifi-

cation reaches 95.23% for 2,241 C++ programmers and 95.17% for 1,744 C++ programmers from

2015 and 2016 competitions, respectively. Our approach also shows high accuracy results for Java,

Python, and C programming languages, as shown in Table 3.5, Table 3.6, and Table 3.7.

In comparison with the cross-year dataset, results of this experiment are shown to provide better

accuracy, which indicates that temporal effects impact the accuracy of code authorship identifica-

tion. However, these effects are insignificant—e.g., only 0.74% (=98.98%-98.24%) for C++ with

seven files in the case of the year 2015. This is part due to the power of our approach in learning

more distinctive and deep features of the studied domain.

Experiment 2: Testing Different Year’s Dataset from Training Dataset. In this experiment

we attempt to answer the following question: If temporal effects do exist, can a model trained on

data from one year identify authors given data from a different year? To answer this question, we

collected a dataset of sample codes for programmers who participated in three consecutive years

from 2014 until 2016. The dataset include seven code files per programmer in each year. The total

number of programmers included in the dataset of different languages is shown in Table 3.2.

Results. We trained our models (LSTM-RFC and GRU-RFC) on data from the year 2014 and used

the data from 2015 and 2016 as a testing set. As a result, Table 3.8 shows that our approach of code

authorship identification is resilient to temporal changes in the coding style as it achieves 100%

accuracy for both Python and Java languages and 97.65% for the 292 C++ programmers.
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Table 3.5: The accuracy of authorship identification for programmers with seven samples problems
(programs) using the Java programming language.

Competition Year # Authors LSTM-RFC GRU-RFC

2015 132 99.64 99.12

2016
150 99.4 98.62
300 98.34 97.56
317 98.18 96.98

Table 3.6: The accuracy of authorship identification for programmers with seven programs using
the Python. Note that the accuracy is always above 96%.

Competition Year # Authors LSTM-RFC GRU-RFC

2015
150 98.96 97.6
300 98.18 97.42
398 98 97.1

2016
150 99.1 98.6
300 98.67 97.34
390 97.94 96.47

3.3.5 Identification with Mixed Languages

Here, we investigate code authorship identification for programmers writing in multiple program-

ming languages. In particular, in this section we attempt to answer the following question: is it

possible to identify programmers writing in multiple languages using one model trained with mul-

tiple languages? Some programmers develop programming skills in multiple languages and use

the preferable one based on the problem or the job at hand.

To this end, we attempt to understand whether learning about a programmers’ style in multiple

languages without recognizing languages contributes in identifying the programmer given codes

written in multiple languages. Despite the natural appeal to this problem and its associated research
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Table 3.7: The accuracy of authorship identification for programmers who solved seven problems
using the C programming language. Notice the accuracy is always close to 100%.

Competition Year # Authors LSTM-RFC GRU-RFC

2015 41 100 99.44

2016 21 100 100

Table 3.8: The accuracy of authorship identification for programmers who solved seven problems
from three different years (2014–2016). The identification models were trained on data from 2014
and tested on data from 2015 and 2016.

# Authors LSTM-RFC GRU-RFC

C++ 292 97.65 96.43
Python 44 100 100

Java 50 100 100

questions, there is no prior research work on this problem. Thus, we proceed to understand the

potential of identification for multiple languages using our approach.

Experiment 1. We use dataset 3 (Table 3.3), which corresponds to authors with nine files (selected

randomly) written in multiple programming languages across all years. For training, we fed code

files in two languages without letting it know the languages (thus, the training process is oblivious

to the language itself). For testing, we also fed code files to the system without indicating what

language they are written in (thus, the testing process is oblivious to the language too). Therefore,

we aim to examine our system under this (stronger) mixed model.

Results. Figure 3.8 shows the accuracy of our approach with three datasets: C++/C, C++/Java,

and C++/Python. Figure 3.8(a) shows an accuracy of 96.34% for a dataset of 626 C++/C program-

mers with LSTM-RFC, and its accuracy of 97.52% when used with LSTM-RFC on 855 C++/Java

programmers, as illustrated in Figure 3.8(b). For the C++/Python dataset, Figure 3.8(c) shows that
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our approach provides an accuracy of 97.49% for 1,879 programmers.

Key Insight. The reported test accuracy follows a stratified cross-validation, where every code

file has been tested and contributed to the reported accuracy by being used in building the model.

Therefore, the model is tested to identify programmers based on code samples written in a language

that might not be present in the training data. This experiment shows that our approach is oblivious

to language specifics. Addressing a dataset of authors writing in multiple languages, our deep

learning architecture is able to extract high quality and more distinctive features, preserving code

authorship attributions through different programming languages.

Another observation is the non-monotonic results achieved using LSTM-RFC and GRU-RFC when

extending the number of included authors in the dataset. As both models are parametric models,

their performance depends on finding the best parameters within a fixed number of training iter-

ations. Thus, the random initialization at the beginning might help the model converge to better

results faster than the other (if at all). The non-monotonic results (1-2% difference) are explained

by this optimality and convergence in independent runs with the fixed iterations.

Experiment 2. Another experiment was conducted to show the capability of our approach in

identifying authors where the identification features are entirely extracted from a different pro-

gramming language. The aim of this experiment is to answer the following question: Given

samples of code written by programmers in one language (e.g., C++), is it possible to identify

those programmers when writing in a different language (e.g., C)? From the 1,897 programmers

who used C++ and C in dataset 3 (Table 3.3), we extracted a dataset of 224 programmers, where

70% of the samples per author are written in C++ while the remaining 30% are written in the C

language. Using our approach, we trained an LSTM-RFC using the 70% of samples written by

the 224 programmers in C++ and tested the LSTM-RFC model on the remaining 30% of C sam-

ples. As a result, our approach achieved 90.29% of accuracy for identifying programmers with
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Figure 3.8: The accuracy of the authorship identification of programmers with sample codes of
two programming languages.

features extracted from code written by them in a different programming language, highlighting

its language-agnostic identification capabilities.

3.4 Authorship Identification of Binary Code

We examine the robustness of our approach in identifying authors of executable binaries. Previous

research by Rosenblum et al. [88] extracted authorship features directly from the binary code to

enable the identification of 161 programmers with 51% accuracy, while the work of Caliskan-Islam

et al. [32] improved this accuracy to 92% using features extracted from different levels of the de-

compilation process. Caliskan-Islam et al. [32] extracted features from assembly code and abstract

syntax tree of decompiled code. These features enabled the binary code authorship identification

of 600 programmers with an accuracy of 83%. The authors used an approach of four steps to iden-

tify programmers of binary code, namely: disassembly, decompilation, dimensionality reduction

and classification. In this work, we use a similar approach without the requirement of extracting

features from different levels. Instead, we use Hex-Rays, a commercial powerful decompiler, to
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Figure 3.9: The accuracy of the authorship identification of programmers using their binary sam-
ples compiled with no optimization.

decompile executable binaries to generate C-like pseudo code. The generated pseudo code can be

described as a translation of the program instructions using higher level constructions that preserve

the program’s control structures such as loops and branches. These features have shown a high de-

gree of significance in attributing programmers in previous works. Therefore, we conduct several

experiments to evaluate our approach in identifying programmers of executable binaries.

Assumptions. We assume the availability of binary samples of authors to be identified. Addition-

ally, we examine our approach to identify authors of tested executable binary programs under the

assumption of knowing the toolchain provenance such as compiler family and version, compilation

optimization level, and source code language, etc. These assumptions consistent with the litera-

ture of identifying programmers of software binary code [32]. Moreover, state-of-the-art tools and

methods can identify with high accuracy the toolchain provenance of a given exactable binary [87].

Therefore, we assume that such techniques are used to define the toolchain provenance of a given
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binary code and use our models that are trained using samples compiled with same settings.

3.4.1 Binary Code Dataset

Using a dataset of 6,962 C and C++ programmers participated in GCJ from 2008 to 2016 with at

least nine files, we created a dataset of executable binaries for 1,500 programmers to evaluate our

approach in identifying authors using binary format. We used GNU Compiler Collection’s GCC or

G++ to compile C and C++ source codes, respectively, into 32-bit Intel 80386 Unix binaries with

Executable and Linkable Format (ELF). Moreover, we also use different compilation optimization

levels to examine the effects of resultant binaries in the authorship identification process. GNU

Compiler provides different optimization levels corresponds to different flags such as O1, O2, O3

and Os flags. When an optimization flag is turned on, the compiler generates different binaries that

vary in some attributes such as code size, execution time, memory utilization, etc. Using a higher

level of compilation optimization results in advanced binary code. However, compilation with

optimization requires more time and memory resources than compilation with no optimization.

3.4.2 Authorship Identification of Binary Code

In this experiment, we processed the dataset of 1,500 programmers with at least nine binary sam-

ples produced from a compilation without optimization process. Figure 3.9 shows that our ap-

proach accurately identified programmers on a large-scale binary dataset. Using 9-fold-cross-

validation LSTM-RFC, our approach achieved an accuracy of 98.4% for identifying 250 program-

mers. when increasing the scale of our experiment to include 1,500 programmers, our approach

achieved an accuracy of 95.74%. These results show that our approach can identify programmers

of executable binaries more accurately and on a larger scale than previous approaches.
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(a) O1 optimization.
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(b) O2 optimization.
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(c) O3 optimization.
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(d) OS optimization.

Figure 3.10: The accuracy of the authorship identification of programmers using their binary sam-
ples compiled with different optimization options, showing promising accuracy results even with
decompiled binary samples.

3.4.3 Effect of Compilation Optimization

Since our approach achieved high accuracy in identifying programmers of binary code generated

from a compilation process without optimization, this experiment explores the effects of different

optimization levels on the code authorship identification using our approach. There are different

optimization levels that can be incorporated with the compilation process to advance the optimiza-

tion of certain attributes of an executable program. The optimization techniques transform a given

program to a semantically equivalent program that is more efficient than the original program. For

this experiment, we use four levels of optimization that can be turned on by O1, O2, and O3, Os

flags for GCC compiler family. Using different optimization techniques that generates different bi-

naries enables a better understanding of their effects on authorship attribution. Figure 3.10 shows

the result of our approach in identifying 1,500 programmers with nine binary samples generated

with different optimization level. Figure 3.10(a) shows the results of our approach using 9-fold-

cross-validation on a dataset generated by a compilation process with level-1 optimization. The

LSTM-RFC approach achieved 98.1% accuracy for identifying 250 programmers, and 95.75% for

identifying 1,500 programmers. Compared to the result obtained when no optimization is used, this
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Figure 3.11: The accuracy of the authorship identification of programmers using stripped binaries.

result shows no accuracy degradation as the optimization technique is introduced. Using level-2

optimization, Figure 3.10(b) shows that our approach achieves an accuracy of 97.8% for identify-

ing 250 programmers and an accuracy of 95.6% for identifying 1,500 programmers. Similar results

are obtained when using O3 optimization flag, Figure 3.10(c) shows that LSTM-RFC achieved an

accuracy of 97.4% for identifying 250 programmers and an accuracy of 94.57% for identifying

1,500 programmers of binary code generated from a compilation with O3 optimization. Figure

3.10(d) shows that using Os optimization does not affect the identification accuracy as LSTM-

RFC achieved 96.8% identification accuracy of 250 programmers and an accuracy of 93.82% for

1,500 programmers. The results achieved by different binary datasets generated from compilation

with different optimization options show that our system is robust to different optimization and

capable of capturing relevant authorship attributes that enabled accurate authorship identification.
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3.4.4 Identification with Stripped Binary Code

In this experiment, we investigate the effects of stripping the symbol information from the binary

code on the identification accuracy of our system. Using a fully stripped binary code, where all

symbol table and relocation information are stripped using the GNU strip option, we show the

effect of symbol information on authorship attribution. Figure 3.11 shows that the system was

capable of generating high-quality deep representations that enabled accurate authorship identifi-

cation. Comparing to the previous works by [32, 88], our approach shows robustness to different

compilation settings including stripping symbol information. Even when symbol information is

completely missing, the deep learning architecture is capable of transforming the input information

presented in binary samples to robust deep representations of authorship attribution. Unlike other

works that attempt to generalize features across different compilation settings, the deep learning

architecture tune parameters that allow best representations based on a given input data or set-

tings. For example, Caliskan-Islam et al. [32] showed that attempting to identify programmers of

stripped binary code using the same feature set used for unstripped binaries can cause an accuracy

degradation of 24%.

3.5 Authorship Identification of Obfuscated Software

The basic assumption for the operation of our approach is that TF-IDF can be extracted from

the original software program, presumably from an unobfuscated code. As such, one potential

way to defeat our approach of authorship analysis (e.g., in a malware attribution application) is

to obfuscate the code. In such a scenario, the underlying model would be built (in the training

phase) using a certain dataset, and in the actual operation an obfuscated file would be presented

to the model for identification. Our approach, if implemented in a straightforward manner, would

possibly fail to address this circumvention technique. Thus, a central question is, if the model is
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(a) C++ obfuscated with Stunnix.
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(b) C code obfuscated with Tigress.

Figure 3.12: The accuracy of authorship identification with obfuscated source code, showing
promising results even with the more sophisticated obfuscation approach (Tigress).

trained with obfuscated codes, will it be able to identify authors correctly if obfuscated codes are

presented for testing?

Assumption. We examine how obfuscation affects our approach, and whether it would be possible

to still get attribution on obfuscated files for testing obfuscated files. This requires the assumption

that we know what obfuscation technique was used, and we transform the training set before build-

ing the model, which is a clear limitation of our approach. Deciding what obfuscation technique is

used is out of scope of this paper, but every obfuscation tools have a unique technique to amplify

obfuscation effect, which would be a hint to find the obfuscator.

The availability of several obfuscation tools and methods can allow programmers to attempt ob-

fuscation as a method to ensure privacy and evade identification. Moreover, programmers might

adopt obfuscation on the source code level or the binary level. In the following subsections, we
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show the effects of different obfuscation approaches on the software authorship identification.

3.5.1 Software Source Code Obfuscation

In this experiments, we investigate the effects of code-to-code obfuscation on authorship attribu-

tion. Different obfuscation tools are available, and two among them were chosen to evaluate our

approach: Stunnix [99] and Tigress [102]. The main reason for choosing these two obfuscation

tools is because each represents a different approach for code-to-code obfuscation. Stunnix is a

popular off-the-shelf C/C++ obfuscator that gives code a cryptic look while preserving its func-

tionality and structure. Tigress, on the other hand, is a more sophisticated obfuscator for the C

language; it implements function virtualization by converting the original code into an unreadable

bytecode. For our experiment on code authorship identification of Tigress-obfuscated code, we

turned on all of the features of Tigress.

Experiment 1: Stunnix. The first experiment is targeted towards a C++ dataset of 120 authors

with nine source code files obfuscated using Stunnix. Our approach was able to reach 98.9%

accuracy on the entire obfuscated dataset of 120 authors and 100% accuracy on an obfuscated

dataset of 20 authors. Figure 3.12(a) shows the accuracy achieved using our approach on different

Stunnix-obfuscated C++ datasets ranging from 20 to 120 authors using two different RNN units.

The results indicate that our approach is robust and resistant to off-the-shelf obfuscator.

Experiment 2: Tigress. We use a C dataset of 120 authors with nine source files each, obfuscated

using Tigress. Even with this sophisticated obfuscator, our approach achieves 93.42% on the entire

dataset while maintaining an accuracy of over 98% on a subset of 20 authors. Figure 3.12(b)

shows the achieved accuracy on different Tigress-obfuscated C datasets ranging from 20 to 120

authors using two different RNN units. The results also indicate the resilience of our approach to
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sophisticated obfuscators such as Tigress. Despite the unreadability of the obfuscated code using

Tigress, which makes such obfuscated code unreadable, the result of our experiment highlights

that code files are no longer unidentifiable.

3.5.2 Software Binary Code Obfuscation

In this experiment, we investigate the effects of binary obfuscation on the identification accuracy.

Among many tools for software binary obfuscation, we use Obfuscator-LLVM [63] to generate

obfuscated binary code using different features. The Obfuscator-LLVM provides different levels

of obfuscation including control flow flattening, instruction substitution, bogus code injection, etc.

The aim of this experiment is to examine the robustness of our approach in identifying program-

mers of obfuscated binary code even when different obfuscation levels are introduced.

For this experiment, we use the same dataset of 1,500 programmers used for the experiments on

authorship identification of software binaries in section Section 3.4. Programmers might adopt

several techniques to circumvent authorship identification on the binary level of a program using

control flow flattening, instruction substitution, bogus code injection or all options combined to

make it difficult for analysis and authorship attribution. We address these different scenarios of

obfuscation and show their effects on software authorship identification. Figure 3.13 shows results

of different experiments conducted using different obfuscated binaries.

Experiment 1: control flow flattening. Obfuscation through control flow flattening aims to hide

the flow structure of a program using code transformations that target all basic blocks of a program.

One way to achieve control flow flattening is to split all the program’s basic blocks, e.g., functions,

loops, branches etc., in a certain way that can be grouped inside one single infinite loop that

operates on switch statement to control program’s flow. This technique of obfuscation complicates
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the understanding of the program structure that can be indicative of authorship. We used the

control flow flattening option in Obfuscator-LLVM tool to examine the effects of this technique on

authorship attribution. Figure 3.13(a) shows the results of authorship identification of control flow

flattened binaries using our approach. The results show that our approach still resilient to this kind

of obfuscation by achieving an accuracy of 97.2% in identifying 250 programmers and accuracy

of 94.22% for 1,500 programmers.

Experiment 2: instruction substitution. Obfuscation through instruction substitution is a straight-

forward technique aims to replace standard instruction with a series of functionally equivalent in-

structions. This technique of obfuscation increases the code size and can be simply evaded by

an optimization process. Therefore, such a technique alone might not be the optimal choice for

obfuscation but it can add complication when used with other obfuscation techniques. Using in-

struction substitution obfuscation, Figure 3.13(b) shows similar results for our approach with an

accuracy of 97.42 % for identifying 250 programmers and an accuracy of 94.36% for identifying

1,500 programmers.

Experiment 3: full Obfuscator-LLVM obfuscation. In this experiment, we allowed all obfusca-

tion options offered by Obfuscator-LLVM, including, control flow flattening, instructions substitu-

tion, and bogus control flow. Using a dataset of fully-obfuscated binary code, our approach shows

remarkable resilience by achieving high identification accuracy on different scales as presented in

Figure 3.13(c). In Figure 3.13(c) shows that our approach achieved an accuracy of 96.98% for

identifying 250 programmers and an accuracy of 93.86% when increasing the experiment scale to

include 1,500 programmers.
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(a) Control flow flattening.
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(b) Instructions substitution.
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(c) Full obfuscation.

Figure 3.13: The accuracy of authorship identification with obfuscated binary code using different
Obfuscator-LLVM options.

3.6 Authorship Identification in the Real-world

This section explores the robustness of our system using real-world scenarios. We examine our

approach using a dataset collected in the wild from the code sharing platform (GitHub). Moreover,

we show possible ways of handling the open-world assumption to identify new programmers who

might not be seen by the model before. Handling such situations allows the model to have a certain

validity when applied in the real world as the model might be tested on samples of programmers

who have not included in the training process. Another possible application of our system is

malware attribution. Although malware attribution is a challenging task due to the lack of ground-

truth dataset, it is possible to apply deep authorship representation to assign malware to families

and groups that enable sufficient analysis.
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(a) GitHub C++ dataset.
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(b) GitHub C dataset.

Figure 3.14: The accuracy of the authorship identification of programmers using GitHub dataset,
showing promising results even with real-world code samples.

3.6.1 Software Authorship Identification In The Wild

This section investigates the applicability of our approach when the code samples are collected

from public code sharing platforms such as GitHub. Handling software authorship attribution in the

wild adds some challenges as there are no guarantees on the ground truth of authorship. The code

reuse and multiple collaboration on software projects make attributing software much challenging.

Since we had such success in identifying programmers participated in GCJ, we examine our system

on a dataset collected in the wild.

The collected dataset includes code samples from 1987 public repositories on GitHub, which list C

and C++ as the primary language written by one contributor. After processing the repositories and

removing incomplete data, the collected C++ and C datasets included 142 and 745 programmers,

respectively, with at least five code samples each. Since some authors have more than 10 samples,
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we have randomly selected 10 samples per author. For the ground truth of our dataset, we collected

repositories with a single contributor under the assumption that the collected samples are written

by the same contributor of the repository. We acknowledge that this assumption is not always valid,

because parts of the code samples might have been copied from other sources [39]. Even under

those acknowledged limitations of the ground truth, our evaluation is still conservative with the

respect to the end results: it attempts to distinguish between code samples that may even include

reused codes across samples.

Experiment 1: Source code authorship identification in the wild. For this experiment, we

process the collected dataset using the source code files. Figure 3.14 shows the results of our

approach using GitHub C++ and C datasets. Figure 3.14(a) shows an accuracy of 100% when

using LSTM-RFC for 50 C++ programmers and 95.21% for 147 programmers. Figure 3.14(b)

shows an accuracy of 94.38% for 745 C programmers using LSTM-RFC. This result shows that

our approach is still effective when handling a real-world dataset.

Experiment 2: Binary code authorship identification in the wild. For this experiment, we com-

piled code files of the collected dataset in the wild using the same compilation options presented in

Section 3.4. Using code files of 142 (C++) and 745 (C) programmers, we successfully generated

a dataset of a total of 241 programmers who have at least nine files that we were able to com-

pile. For the compilation process, we generated binaries with level O3 optimization and removed

all debugging symbols. Using the dataset of binary code, our approach achieves an accuracy of

92.13% in identifying 241 programmers. This result demonstrates that using deep representations

of authorship attribution enables accurate authorship identification in the wild.

Key Insight. The reported results using the GitHub dataset show some accuracy degradation in

comparison with the results obtained using GCJ dataset given the same number of programmers.

This degradation in the accuracy might be because of the authenticity of the dataset ground truth.
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The assumption behind establishing the ground truth for our dataset is only true to some extent

since the contributor of a GitHub repository could copy code segments or even code files from

other sources. Such ground truth problem influences the result of the authorship identification

process. In real-world applications, this problem does not occur much often since most scenarios

entails having authentic dataset.

3.6.2 Software Authorship Identification In The Open World

Authorship identification using open-world assumption is applicable in a real-world scenario when

attempting to identify the author of a given software, who might not be included in the suspect set.

In contrast to the conventional machine learning approach, in which the model evaluation is based

on unseen samples of labels that the model trained on during the training phase, addressing open

world problem raise another challenge in indicating whether a given tested sample belongs to a

new unseen label. This setting is more reasonable for software forensics since analysts aim to

attribute pieces of software, e.g., malware, that can possibly be created by new programmers who

are not part of the suspect set. Previous works by Caliskan et al. [32] and Dauber et al. [39] have

addressed the problem of authorship identification in an open world scenario. The authors used

classification confidence as an indicator of sample-label-membership, where high classification

confidence demonstrates a high probability of classified labels, whereas low confidence signals

model hesitation of the classification decision. In ensemble classifier, such as the adopted RFC,

the percentage of voted trees for a certain label reflects the model classification confidence. For an

author (Ai), the classification confidence of a RFC identification model is estimated by percentage

of trees voted for (Ai) when testing a sample, and it can be formulated asConf(Ai) =
∑

j V otej(Ai)

‖T‖ ,

where V otej(Ai) is the vote of tree j for Ai and ‖T‖ is the total number of trees in RFC model.

Addressing open world identification requires setting up a confidence threshold where classifi-
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cations with higher confidence level are accepted, while classifications below the threshold are

rejected and reported as possible membership of new unseen labels. One way of estimating the

confidence threshold for a classifier is by classification margin defined by the difference between

the highest and second highest Conf(Ai) of a given sample [32].

Experiment 1: Setting confidence threshold. To establish a confidence threshold for our RFC

identification models, we used a dataset of 1,000 C++ programmers with nine files each. Using the

training set, we estimated the confidence threshold be averaging all confidence levels of classified

samples as 1
n

∑n−1
j=0 Confj(Ai), where Confj(Ai) is the confidence of classifying sample j for

an author Ai, and n is the total number of samples. Using the RFC model of 300 trees trained

to identify 1,000 C++ programmers with an accuracy of 96.2%, we adopted a stratified 9-folds

cross-validation to calculate and evaluate the classification confidence threshold. Among the 9,000

code samples in the dataset, 8,658 code sample were correctly classified with average confidence

of 32.12%. The other 342 code samples were misclassified with average confidence of 28.46%.

Using this observation, we can set a confidence threshold to accept and reject classification based

on the model confidence in assigning programmers to code samples.

Experiment 2: Identification in the open world. Setting a confidence threshold results in accept-

ing and rejecting model decision on programmers identification. We can evaluate a certain thresh-

old by calculating the recall and precision of accepting and rejecting model decisions. For example,

accepting decisions for “out-of-world” samples is considered as a false positive (i.e., wrong deci-

sion to accept). On the other hand, rejecting decisions for “in-world” samples is considered as false

negative. The precision and recall are then calculated as: precision = truepositive
truepositive+falsepositive

and

recall = truepositive
truepositive+falsenegative

. Based on the desired precision-recall trade-off, a designer decide

on a confidence threshold that satisfies the system requirement. In this work, we report the result

of assessing different thresholds by the F1− score = 2× precision×recall
precision+recall

as the harmonic average
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of the precision and recall metrics.

To simulate the open world experiment, we used 9,000 “out-of-world” samples and test them with

RFC model trained on 9,000 “in-world” samples. We passed all samples to classifier an observed

the results achieved by adopting several confidence thresholds. We started by a low confidence

threshold of 25% to achieve 71.4 precision, 62.3% recall, and 66.54 F1-score. When adopting a

high confidence threshold of 40%, the results do not change significantly with a precision of 74.8%,

recall of 68.1%, and F1-score of 71.29%. The obvious choice of selecting a threshold is by finding

the best estimation between the average of confidence levels of “in-world” correct classification

and the average of “out-of-world” misclassification. In our experiments, we found that 29% level

of confidence to be the best threshold to achieve the best results with precision of 94.13%, recall

of 88.2%, and F1-score of 91.1%.

3.7 Limitations

While our work provides a high accuracy of code author identification across languages, it has

several shortcomings which we outline in the following.

Multiple authors. All experiments in this work are conducted under the assumption that a single

programmer is involved in each source code sample. One shortcoming of our work is that this

assumption does not always hold in reality, since large software projects are often the result of

collaborative work and team efforts. The involvement of multiple authors in a single source code

is almost inevitable with the increasing use of open development platforms. Using our approach to

identify multiple authors can be an interesting direction for future work.

Authorship confusion. Since this work adopts a machine learning approach to identify program-

mers, it will only succeed if similar patterns from the training data are captured in the test dataset.
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As a pathological case, consider the authorship confusion attack or mimicry attack where the tested

samples are contaminated to evade identification. Such contamination in the code could cause sub-

stantial changes of the programming style, thus making it difficult (if not impossible) to correctly

identify the involved programmer.

Code size. The experiments in this work are conducted using datasets of source code samples

that exhibit sufficient information (i.e., adequate average lines of code) to formulate distinctive

authorship attribution for programmers. However, we have not investigated the minimal average

lines of code to be considered as sufficient to distinguish programmers. For example, one could

imagine that even though a small sample of code (e.g., with less than 10 lines of code) can present

enough information to correctly identify the programmer, it is difficult to generalize this observa-

tion broadly. Investigating the sufficient code size to identify programmers is not examined in this

work, and is an interesting future direction.

Binary Code. Our experiments on binary code show that deep representations assist identifying

programmers with higher accuracy and on a larger scale than state-of-the-art methods. However,

the validity of our approach relies on the ability of successfully identifying the toolchain prove-

nance of investigated executable binaries. Using specialized compilers that generate nonstandard

binary code may obstruct our approach, especially when failing to fingerprint the used compiler.

Moreover, the ground-truth assumption when assigning one programmer to a binary code makes

it easier to track programmers of decompiled codes. This process becomes more complicated

when multiple programmers are involved since it requires to trace authorship through the reverse

engineering process. We leave this challenge to future work.
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3.8 Conclusion

This work contributes to the extension of deep learning applications by utilizing deep representa-

tions in authorship attribution. In particular, we examined the learning process of large-scale code

authorship attribution using RNN, a more efficient and resilient approach to language-specifics,

number of code files available per author, and code obfuscation. Our approach extended author-

ship identification to cover the entire GCJ dataset across all years (2008 to 2016) in four program-

ming languages (C, C++, Java and Python). Our experiments showed that the proposed approach

is robust and scalable, and achieves high accuracy in various settings. We demonstrated that deep

learning can identify more distinctive features from less distinctive ones. More distinctive features

are more likely to be invariant to local changes of source code samples, which means that they

potentially possess greater predictive power and enable large-scale code identification. One of the

most challenging problems that authorship analysis confronts is the reuse of code, where program-

mers reuse others’ codes, write programs as a team, and when a specific format is enforced by the

work environment or by code formatters in the development environment.
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CHAPTER 4: MULTI-X: IDENTIFYING MULTIPLE AUTHORS FROM

SOURCE CODE FILES 1

Most authorship identification schemes assume that code samples are written by a single author.

However, real software projects are typically the result of a team effort, making it essential to

consider a fine-grained multi-author identification in a single code sample, which we address

with Multi-χ. Multi-χ leverages a deep learning-based approach for multi-author identification in

source code, is lightweight, uses a compact representation for efficiency, and does not require any

code parsing, syntax tree extraction, nor feature selection. In Multi-χ, code samples are divided

into small segments, which are then represented as a sequence of n-dimensional term representa-

tions. The sequence is fed into an RNN-based verification model to assist a segment integration

process which integrates positively verified segments, i.e., integrates segments that have a high

probability of being written by one author. Finally, the resulting segments from the integration

process are represented using word2vec or TF-IDF and fed into the identification model. We

evaluate Multi-χ with several Github projects (Caffe, Facebook’s Folly, TensorFlow, etc.) and

show remarkable accuracy. For example, Multi-χ achieves an authorship example-based accu-

racy (A-EBA) of 86.41% and per-segment authorship identification of 93.18% for identifying 562

programmers. We examine the performance against multiple dimensions and design choices, and

demonstrate its effectiveness.

1This content was reproduced from the following article: Mohammed Abuhamad, Tamer Abuhmed, DaeHun
Nyang, David Mohaisen, “Multi-χ: Identifying Multiple Authors from Source Code Files,” In Proceedings of the
20th Privacy Enhancing Technologies Symposium, (PETS), 2020.
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Figure 4.1: The general outline of the proposed approach. The code authorship verification in-
cludes processing code segments represented by word2vec to the verification model. The code
authorship identification includes integrating code segments based on the verification process to be
represented using word2vec or TF-IDF for the identification model.

4.1 Multi-X: System Design

Multi-χ contributes to solving the multi-author code authorship identification problem using an

RNN-based system that incorporates five processes, which are: code processing and segmentation

(Subsection 4.1.2), code sequence representation (Subsection 4.1.3), code authorship verification

(Subsection 4.1.4), code segment integration (Subsection 4.1.5), and code authorship identification

(Subsection 4.1.6). The overall process operates is shown in Figure 4.1. First, code samples are

divided into small segments, then code segments are represented as a sequence of n-dimensional

term representations. The word2vec representations are then fed into an RNN-based verification

model to assist the segment integration process which integrates positively verified segments, i.e.,

integrate segments that have a high probability of being written by one author. Finally, the resulting
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segments from the integration process are represented using word2vec or TF-IDF embedding and

fed into the authorship identification model. However, before delving into the details of our RNN-

based identification system, we first define some notations required for understanding the code

multi-author identification task that we address in this work (Subsection 4.1.1).

4.1.1 Notations and Definitions

We treat the source-code sample C as a sequence of terms, t0, t1, . . . , tl−1 where ti ∈ Z is the

i-th term in the sequence. For example, a term can be a reserved keyword, a variable name, or

an operator. We denote m segments in a sample code by S0, S1, . . . , Sm, where a segment is a

sequence of terms. Two segments can overlap if necessary. Terms of a segment Si are labeled

as Si,t0 , Si,t1 , . . . , Si,tl−1
. Segments are written by authors a0, a1, . . . , an−1, where segment Si is

assigned to a single author ai who contributed the most in writing it. Note that we defined the

source code as segments of a set of terms, rather than functions. Therefore, Multi-χ can handle

incomplete codes without requiring a parser to extract functions or the abstract syntax tree (AST).

Task Definition. Given a source-code sample C without any information about the authors (a0,

. . . , an−1) of this sample, the following tasks are defined:

• Code Authorship Verification: Given two subsequent segments of code Si and Si+1, deter-

mine whether the segments belong to the same author ai.

• Code Segment Authorship Identification: Given Si, identify ai who wrote the segment.

• Code authorship identification: Given code C, identify contributing authors {a0, . . . , an−1}

who wrote C. In other words, we identify all authors involved in writing all segments of C.

• Open-World Identification: Given code C, find {a0, . . . , an−1, an+}, where an+ is one or
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more external authors who do not appear in the training data.

Code authorship identification is a superset of code authorship verification and segment authorship

identification, while open-world identification is a superset that includes all of the other tasks. The

foci of this work are the first three tasks; we leave the last as future work.

4.1.2 Code Processing and Segmentation

The first process for our fine-grained code authorship identification is segmentation. This process

is performed using a sliding window, similar to the method adopted by Fifield and Follan [47],

over the entire code sample. Applying a sliding window of sizeK and a strideR, the segmentation

process generates a set of M code segments {S0, S1, · · ·, Sm}, where each segment Si is assigned

to an author ai based on a ground-truth dataset. Consider a code C, presented as N pairs of

lines and their corresponding ground-truth authors, i.e., {(l0, a0), (l1, a1), . . . , (ln−1, an−1)}. The

segmentation divides C into M = N−K+p
R

+ 1 segments, where p is the number of empty lines

padded on the last segment (p = K − (N mod K)). For example, using K = 6 and R = 4 over a

code file with 86 lines would result in M = 86−6
4

+ 1 = 21 segments.

The purpose of this process is to divide the code into smaller segments for the verification task (i.e.,

checking whether two consequent segments belong to the same author). With the assumption that

this task is performed without any prior knowledge on the number of lines written by a single author

in a sample, the window size K can be a hyperparameter, tested and determined by experiments.

A segment is labeled based on the author who contributed most to it. Assigning authors in this

way comes with some caveats since a segment can include codes of multiple authors, resulting

in noise that may affect segments attribution. Thus, choosing the sliding window size is crucial.

In particular, the sliding window should be small enough to recognize authors, and large enough
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Figure 4.2: Number of segments written by one and multiple authors in nine open-source projects.

to be correctly assigned to the right author. We based our selection of the window size on the

experiments and statistics of real-world software projects.

Based on nine open-source libraries, Figure 4.2 shows that segments of code written by multiple

programmers are very common. In fact, segments of length greater than 12 lines are more likely

to be written by multiple programmers. This, in turn, motivates for introducing our fine-grained

technique to identify programmers of a given code. By further analyzing the authorship of code

segments, Figure 4.3 shows the number of segments written by a specific number of users. Even

with small segments, e.g., six lines of code, there is a possibility that more than four programmers

are involved. This possibility increases as the size of the segment increases. Therefore, defining the

segment size for authorship identification is a challenging task that motivates our code authorship

verification process prior to identification.
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Figure 4.3: Number of segments written by a specific number of authors in nine open-source
projects.

4.1.3 Code Sequence Representation

Code segments can be viewed as matrices, where each segment is a matrix with row represen-

tations, i.e., word embeddings, of tokens present in that segment. Given a large dataset, word

embeddings can be learned using a prediction-based approach or a frequency-based approach. Re-

cently, prediction-based methods, such as word2vec [103] and GloVe [83], have shown remarkable

results. The frequency-based approach, such as TF-IDF, Co-Occurrence representations, and vari-

ations of both, are also studied. This work utilizes two methods of representing code samples:

word2vec and TF-IDF.

Word2vec Representations. We use word2vec to represent code samples for deep learning mod-

els. Choosing the word2vec method is for several reasons. First, the word2vec approach provides

distributed representations of tokens in a vector space allowing us to group similar tokens. Such

a feature facilitates better language modeling [19]. Second, word2vec, as a learning method of

generating distributed representations of tokens, has shown remarkable success in a wide range of
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applications (e.g., [91, 77, 36, 94, 52]).

We consider segments of source code as sequences of terms and expressions for training a word2vec

model, which in turn is used to generate representations of code terms and expressions. Generating

code representations using word2vec model requires some consideration due to the unconstrained

and wide range of used terms. The source code includes variable names, language-specific key-

words, and special characters that are part of the language rules. Unlike natural language texts,

source codes include variable names that are not subject to syntactic or semantic rules. This results

in a high number of terms with very low frequency as shown in Figure 4.4. To this end, we used

around 153K unique terms out of a corpus of more than 26K C/C++ files to train a word2vec

model. The word2vec model encodes similarities between terms as the distance between their

representation vectors, where each term is represented as R128 vector of real values.

Representing segments of code as sequences of term representations, we aim to train RNN models

that are capable of distinguishing authorship traits even with small sequences. This benefits the
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performance of the verification process, where often small segments (e.g., can be limited to one

line of code) are targeted.

TF-IDF Representations. In TF-IDF, a term t in file d of a corpus D is assigned a weight using

TF-IDF(t, d,D) = TF(t, d)× IDF(t,D),

where TF(t, d) is the term frequency (TF) of t in d and

IDF(t,D) = log(|D|/DF(t,D)) + 1,

where |D| is the number of documents in D and DF(t,D) is the number of documents containing

the term t. In evaluation, code samples are represented by TF-IDF representations of uni-grams,

bi-grams, and tri-grams. Considering our dataset, the TF-IDF representations of code pieces are

sparse and high-dimensional. Therefore, we represent code segments with the top 3,000 TF-IDF

features based on the order of term frequencies across all code segments. Based on preliminary ex-

periments, the top 3,000 features are sufficient to represent code segments. Even with this feature

selection, small segments are represented in sparse vectors, thus we only use TF-IDF representa-

tions in the code identification.

Representation Learning. The word2vec models and TF-IDF vectorizers are constructed using

the training dataset only. When applying the representation scheme, out-of-vocabulary (OOV)

problem may occur during the validation and testing part of the experiment. There are several

approaches for handling the OOV problem [20]. In this study, unseen terms are represented with

zero-vectors when using word2vec and ignored in TF-IDF.
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Figure 4.5: Number of terms per code lines in our dataset. The maximum number of terms is
17,315, while the average is 7.6 ≈ 8.

4.1.4 Code Authorship Verification

Adapting a fine-grained approach to identify multiple authors of a code sample requires distin-

guishing the boundaries of code pieces written by different authors. To accomplish that, we pro-

pose a code authorship verification process. This process aims to determine whether two subse-

quent segments are written by the same author. This task requires training a model capable of

establishing a decision of whether a given segment Si+1 belongs to the same author of Si or not.

We utilize RNN to perform this task and investigate the performance of various RNN model ar-

chitectures under various experimental configurations. Given two subsequent code segments, Si

with length l and Si+1 with length k, the verification model takes vector representations of both

segments’ terms. Si,t0 , Si,t1 , . . . , Si,tl−1
and Si+1,t0 , Si+1,t1 , . . . , Si+1,tk−1

, as an input of size l + k

(terms) and generates a decision based on an output probability of a softmax function that signifies

whether the two segments are written by the same author. For this task, we preserve the order

of terms in a code segment to enable the recognition of a pattern change when two segments are

written by different authors.
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4.1.5 Code Segments Integration

Subsequent segments that are written by the same author can be integrated into one larger seg-

ment. This step is important as larger segments exhibits more indicative authorship attribution

than smaller segments. To automate the integration process using our fine-grained approach, we

use the authorship verification model to essentially decide whether two subsequent segments are

written by the same author. Subsequent segments that are positively verified for the same author

are then integrated into one piece. It is designed to include as many lines as possible for the same

author to help correctly identify the author since, intuitively, the more information available the

better the identification accuracy. When two subsequent segments are not assigned to the same

author, each segment is considered individually for the identification process.

Handling Small Segments. When choosing a small segmentation window (such as K = 1 line

of code), the expected number of terms per segment is equal to eight terms, on average, as illus-

trated in Figure 4.5. However, there exists a number of segments that are very small (e.g., with

length less than three terms). The intuitive reasoning behind such cases is that small segments

are not written individually but are rather written by the same author of the previous or follow-

ing segments. When looking at two subsequent segments with one line of code each, the chances

that these two subsequent segments are written by the same programmer is approximately 85% as

shown in Figure 4.2. Considering the distribution of the number of terms per line, these chances

increase significantly (to more than 99%) when the number of terms is equal to or less than three

terms. Therefore, when a small segment is presented, we integrate it with the previous one with-

out verification. We understand that this assumption does not always hold, but excluding small

segments from the code authorship verification positively enhances the overall performance, while

not giving up significantly the accuracy.
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4.1.6 Code Authorship Identification

The essential step in our system is to identify multiple authors of a single code sample. Our ap-

proach to achieving accurate multi-author code authorship identification is adopting a fine-grained

approach where the identification of code segments contributes to the overall identification ac-

curacy. Assigning authors to code segments is performed using RNN models trained to capture

distinctive authorship attributions to enable accurate identification. For this task, we investigate

two methods to represent code samples for the RNN model (i.e., the sequence of word2vec and

one vector of TF-IDF). For word2vec representation, segments with at least n lines and m terms

per lines are represented as a sequence of n ×m × d, where d is the dimension of term represen-

tation. Since the sequence length varies, we fix the length as the least number of lines n multiplied

by m = Linecommon = 20 number of terms. Therefore, code sequences are padded/truncated to fit

the fixed size. Other representation method for code segments is the TF-IDF. Unlike the verifica-

tion task, the identification task uses larger segments, each exhibits a sufficient number of terms.

Using TF-IDF representation, the input for the RNN model is one step sequence per sample.

Moreover, we investigate the performance of RNN models with both softmax classifier and a ran-

dom forest classifier (RFC) [23]. For scalability and robustness, several works [3, 31, 75, 40]

adopted RFC for code authorship identification. Therefore, we also use RFC over code sequence

embeddings that are generated from trained RNN-based models. In all experiments, we construct

RFC with 300 trees grown to the maximum extent. Based on the experiments, and using 300 trees

is a sufficient trade-off between accuracy and efficiency.

76



include

iostream

using

return

endl

… …

RNN

RNN

RNN

RNN

RNN

… Output

…

…

…

…

…

 
 
 

  
 

…

Term 
Representation

RNN Drop out 
Layer

Softmax 
Layer

(a) One layer RNN model

…… Output…

RNN

RNN

RNNRNN

RNNRNN

RNNRNN

RNN

RNN

…

…

…

…

…

 
 
 

  
 

…

include

iostream

using

return

endl

Softmax 
Layer

Bidirectional 
RNN

Drop out 
Layer

Term 
Representation

(b) Bidirectional RNN model

Term 
Representation

include

iostream

using

return

endl

Softmax 
Layer

Bidirectional 
RNN

Drop out 
Layer

…… Output

…

RNN

RNN

RNNRNN

RNNRNN

RNNRNN

RNN

RNN

…

RNN

RNN

RNNRNN

RNNRNN

RNNRNN

RNN

RNN

…
RNN

RNN

RNNRNN

RNNRNN

RNNRNN

RNN

RNN

…

…

…

…

…

 
 
 

  
 

…

(c) Multi-layer Bidirectional RNN
model

Figure 4.6: Different RNN model architectures used for code authorship verification and identifi-
cation.

4.1.7 RNN Models and Experiment Settings

Our method to capture code authorship attribution from a sequence of terms and expressions makes

RNN as a prime candidate for this modeling task. RNN models are well-known to handle input

sequences and capture temporal relations and distinctive patterns within the data. To this end,

Multi-χ explores the performance of different RNN structures namely, traditional simple RNN,

Long Short-Term Memory (LSTM) [59], and Gated Recurrent Unit (GRU) [34]. The reason for

investigating three units is that simple RNNs are efficient and capable of handling data sequences,

but result in poor performance under long-range temporal dependencies in long sequences. Han-

dling segments of code with a large number of terms could hinder the learning process of models

when suffering from known conditions such as vanishing or exploding gradients [59, 34]. Thus,

we extend our investigation to take advantage of the gating mechanism offered by LSTM and GRU

to handle such problems. Moreover, LSTM and GRU have shown remarkable results in model-

ing long sequences [3]. We use RNN models for both authorship verification and identification

tasks. Each model differs in purpose and structure since the output of each model is different (two

softmax units in the verification models, while n-units for n-classes in the identification models).

However, the general basic structure of the models includes one recurrent layer connected to a

softmax layer as illustrated in Figure 4.6(a). In this section, we explain the model architectures
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Figure 4.7: Performance of authorship verification models with different architectures and RNN
units. Notice that the performance enhances with bidirectional RNN and with more depth. All
percentage are F1-score.

adopted in this work as well as the procedure and considerations taken while training the models.

Bidirectional RNN. At each time step within the sequence, the simple RNN takes advantage of the

information learned from past states in generating the current state that will also be propagated to

future states. Learning sequential patterns in this way is important in many applications where the

temporal component of the input data should not be ignored (e.g., real-time speech or handwriting

recognition). However, for code authorship attribution, accessing the entire code sequence at once

could enable not only learning from past states but also from future states. This can be achieved

using bidirectional RNN, which incorporates two RNNs trained to make the output decision. The

first RNN operates from the beginning to the end of the sequence, while the other operates in the

opposite direction as in Figure 4.6(b).

Multi-layer RNN. Deep RNNs with multiple hidden layers have shown a remarkable capability

of capturing nonlinear patterns from long input sequences [92]. In this work, we also investigate

the performance of Multi-χ using multi-layer RNN. Figure 4.6(c) shows an example of an RNN

with multiple hidden layers.
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Table 4.1: Code authorship verification: summary of results using different RNN architectures and
different segment sizes.

Window
LSTM Bi-LSTM Multi-layer LSTM Multi-layer bi-LSTM

P R F1 P R F1 P R F1 P R F1

1 82.76 96.00 88.89 86.73 98.00 92.02 90.48 95.00 92.68 93.11 94.60 93.85
2 81.66 95.70 88.12 85.55 97.70 91.22 89.17 94.70 91.85 91.27 94.10 92.66
4 79.83 95.00 86.76 83.62 97.00 89.81 87.04 94.00 90.39 89.88 93.20 91.51
6 81.87 94.80 87.86 85.82 96.80 90.98 89.50 93.80 91.60 88.62 93.40 90.94
8 78.73 94.40 85.86 82.46 96.40 88.89 85.77 93.40 89.42 84.08 92.40 88.04

10 76.42 94.00 84.30 80.00 96.00 87.27 83.04 93.00 87.74 79.31 92.00 85.19
12 73.97 93.80 82.72 80.64 95.80 87.57 83.76 92.80 88.05 79.97 91.80 85.48
14 72.44 93.30 81.56 78.89 95.30 86.32 85.62 92.30 88.84 78.17 91.30 84.23
16 69.92 93.00 79.83 76.00 95.00 84.44 78.63 92.00 84.79 75.21 91.00 82.35
18 70.12 92.70 79.84 76.25 94.70 84.48 78.92 91.70 84.83 72.88 92.70 81.60
20 67.15 92.00 77.64 74.60 94.00 83.19 77.12 91.00 83.49 70.96 90.40 79.51

Model Training and Settings. Since RNN models are parameterized, the training process aims

to find appropriate parameters that enable the model to perform a given task. For authorship ver-

ification and identification, the model training is guided by minimizing the softmax cross-entropy

loss between the ground-truth labels and the model output. The training process starts by initializ-

ing the model with weights drawn from a normal distribution near zero with zero-mean and small

variance. Then, the optimization process is performed using the Root Mean Square Propagation

– RMSProp [101] algorithm, which is commonly used with RNN [92]. The optimization process

requires setting a learning rate that scales the entire gradient at each training step. Using a high

learning rate can cause a divergence, while using a very low value can lead to a slow convergence

or settling to a local optimum. In the literature, starting with a large learning rate and decreasing

it over time during the training process has been an efficient way of setting the learning rate. In

this work, we scale the learning rate to αn = αc × NI−
1
2 , where NI is the number of iterations,

αn is the new value, and αc is the current value. We set the starting learning rate at 10−2 and

the L2-regularization strength at 10−4. To control the training process and prevent overfitting, we

use the dropout regularization technique [96], which enables the neural network to reach better
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generalization capabilities. We set the dropout rate to 0.3 during the training of all RNN models.

The termination criterion of the training is set to concluding 1,000 training iterations. The training

hyperparameters are based on preliminary experiments on different tasks.

Dataset Handling and Splitting. Since we adopt a data-driven approach to obtain RNN-based

models, the dataset is split into three sets, 70% for training, 15% for validation, and 15% for testing.

The use of the three splits is straightforward, where the training set is used to train the model, the

validation is used to validated the model during the model optimization, and the testing set is used

to test the performance of the model on the targeted task. This mechanism is followed for training

the RNN-models in all experiments of the authorship verification (Subsection 4.2.2) and segment

authorship identification (Subsection 4.2.3) tasks. We note that the experiments in Subsection 4.2.2

and Subsection 4.2.3 aim to establish proper settings for fine-grained authorship identification

approach (using end-to-end identification as in Subsection 4.2.4) by investigating the effects of

code segment size, data representation, model structure, and experimental hyperparameters on

performed task. The code segments are collected and processed based on ground-truth dataset.

The collection of code segments is then shuffled and split into training, validation, and testing sets.

Handling Class Imbalance. To address the class imbalance in our dataset, we use class weights

(percentage) to penalize the wrong predictions and to scale the loss during the training process.

Handling Code Segments of Different Length. Since segments consist of lines of code with a

different number of terms, the resulting segments differ in length. The recurrent neural network

can process sequences with different lengths, using dynamic RNN or sequence padding/truncating

to a defined extent. Efficient handling of unequal input sequences may dictate using the mini-

batch approach, where a number of segments are packed into a matrix of predefined dimension

that becomes the dimension of the input sequences by padding short sequences or truncating long
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sequences. On the other hand, dynamic RNN computes gradients from one sample at a time

raising the challenge of reducing the effects of the large variance of computed gradients. Thus, we

adopt the mini-batch approach for efficiency since several segments are handled at once. In our

experiments, code segments with K lines of code are padded/truncated to size K × Linecommon,

where Linecommon is the line length threshold that most of the code lines satisfy. In our dataset,

we use Linecommon = 20 as illustrated in Figure 4.5.

4.2 Evaluation and Experiments

We evaluate Multi-χ using real-world open-source code samples collected from Github. The eval-

uation includes the code authorship verification task and the code authorship identification task

using various RNN-based models with different architectures and settings. All experiments are

conducted on a workstation with 24 cores, one GeForce GTX Titan X GPU, and 128 GB of mem-

ory. The specific platform does not affect the results.

4.2.1 Dataset

Multi-χ uses a real-world dataset of nine open-source projects available on Github, namely: Caffe

Library, Cosmos Algorithms Collection repository [37], Dyninst API tools for binary instrumen-

tation [25], Facebook Open-source Library (folly) [46], GNU Compiler Collection (GCC) [50],

Apache HTTP Server [12], Open Source Computer Vision Library (OpenCV) [78], Swift Pro-

gramming Language [13], and TensorFlow Library[100]. We use git-author [76] tool to collect the

ground truth for authors of all projects. Git-author returns the author for each line of code. We

process the code files to remove comments, empty lines, or files that do not have a code. After

processing and cleaning all code files, the collected dataset contains 26,607 code files (84.7% C
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files while the rest are C++ files) with an average of 114 lines per file. The total number of authors

is 2,220 programmers with an average of 1,377.9 code lines per programmer. We notice that the

number of code lines per programmer is not balanced: for example, there is a programmer with

195,948 lines, while 170 other programmers have only one line of code in the entire collection.

4.2.2 Code Authorship Verification

The purpose of this experiment is to obtain an authorship verification model that is able to distin-

guish segments from different authors. For this purpose, different architectures of RNN models are

explored using different window sizes (i.e., lines of codes per segment). Since the verification task

can be viewed as a binary classification, the results are reported using three evaluation metrics:

precision= TP
TP+FP

, recall= TP
TP+FN

and F1-score=2× P×R
P+R

, where TP , FP , FN , P , and R are the

true positive, false positive, false negative, precision, and recall respectively. Using these metrics

provides a realistic evaluation of the verification model as the dataset contains unbalanced labels.

For example, using a small segmentation window (e.g., one line of code) produces a dataset with a

large number of subsequent segments written by the same author, and thus the positive labels are

more prevalent than the negative labels. As F1-score provides a harmonic mean of precision and

recall, we train the models with special emphasis on improving the recall to increase the sensitivity

for negative verification. To this end, the class weights are used to weigh the loss function during

the training process.

Word2vec Input Representation. For this experiment, we feed the RNN model with code seg-

ments represented as a sequence of word2vec representations. Segments with n lines are rep-

resented as a sequence of size n × Linecommon × d, where d is the dimension of terms repre-

sentation. For example, a segment with one line is represented as tensor of size 1 × 20 × 128,

since Linecommon = 20 and the dimension of word2vec representations is 128. For the verifica-
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tion models, we use RNN with 64 hidden units and a maximum of two hidden layers when using

multi-layers RNN architectures.

Results. Table 4.1 reports the verification performance of different LSTM architectures (i.e., Basic

LSTM, Bi-LSTM, Multi-layer LSTM, and Multi-layer bi-LSTM) using datasets generated with

different segmentation windows. The results reveal that segments with one line of code enable the

best performance across different model architectures. We note that the best verification results

are obtained using multi-layer bi-LSTM with F1-score of 93.85% verifying one-line segments.

This can be because of the nature of the ground-truth, since labels are assigned to lines of code,

making segments with multiple lines more prone to noise that hinder the verification process. This

also explains the inferior results obtained with larger segments, e.g., 14.34% (= 93.85 − 79.51)

difference in F1-score between one-line segments and 20-lines segments.

The performance of different RNN units—simple RNN, LSTM, and GRU—is shown in Figure

4.7(a) using the F1-score. The results show that LSTM outperforms other units, especially when

the window size is small. The bi-directional RNN shows an improvement over uni-directional

RNN as in Figure 4.7(b). Moreover, deeper architectures with multiple layers achieve better results

as illustrated in Figure 4.7(c) and Figure 4.7(d).

4.2.3 Code Authorship Identification

In this experiment of code segment authorship identification, we use the ground-truth data to collect

code segments and the corresponding authors. Conducting experiments using the real ground-truth

data allows us to define a baseline for the end-to-end system evaluation. Moreover, the ground-truth

provides insights on the used methods at each phase and the sufficient amount of data required to

achieve accurate authorship identification (e.g., the number of samples and the minimum number
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Table 4.2: Number of authors in the dataset based on the least number of samples and the minimum
number of lines per sample.

Least # of lines per sample
4 6 8 10

#
of

sa
m

pl
es

6 843 730 660 608
10 689 606 529 479
20 525 459 393 346
30 452 376 316 282

of code lines per sample).

Collections of Code Samples. From the collected dataset, we created 16 subsets based on the

number of samples per author of varying sample sizes. Table 4.2 shows the datasets used in the

experiment. As we add more constraints to the dataset, the number of authors decreases. Using

the datasets of Table 4.2, we investigate the minimum number of samples per author—6, 10, 20,

and 30 samples—for successful authorship identification. Moreover, we also investigate the effect

of code size, i.e., the number of code lines in a code segment, on the authorship identification. We

consider segments with a minimum number of code lines, four to ten.

Model Architecture. Based on experiments and results obtained from the verification task in

Subsection 4.2.2, we utilize two-layers of bidirectional RNN with 512 hidden units connected to a

softmax layer. The experiments are conducted with traditional RNN, GRU, and LSTM units. We

use a large number of hidden units, i.e., 512 units, to allow the network to learn distinctive and

high-quality sequence embeddings of authorship traits. These sequence embeddings enable the

classifier, e.g., softmax classifier or RFC, to accurately identify programmers of presented code

samples. For example, Figure 4.8 shows the results of the identification task performed by RFC

using sequence embedding with different sizes. The reported results are produced using a dataset

of authors with at least 30 samples with 10 lines of code as the minimum size for a sample. The
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Figure 4.8: Accuracy of authorship identification achieved by RFC using different word2vec-RNN-
based embeddings sizes using a dataset of 282 programmers with at least 30 samples.
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(d) At least 30 samples

Figure 4.9: Accuracy of authorship identification for authors with at least specific number of sam-
ples with different sample sizes represented using word2vec. The RNN architecture is two-layers
bi-LSTM with 512 units connected to a softmax classifier.

results show an identification accuracy improvement when increasing the size of the embeddings,

e.g., by 4.79%(= 94.4− 89.61) when increasing LSTM-based embeddings size from 64 to 512.

Experiment 1: Effects of Input Representation. We investigate the effect of using different

representations of code samples on the accuracy of the proposed authorship identification task

(i.e.,word2vec and TF-IDF). Figure 4.9 shows the accuracy of our identification approach using
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Figure 4.10: Accuracy of authorship identification for authors with at least specific number of
samples with different sample sizes represented using TF-IDF. The RNN architecture is two-layers
bi-LSTM with 512 units connected to a softmax classifier.

word2vec representation with varying samples per author and varying sample sizes. In particular,

Figure 4.9(a) illustrates that our approach with LSTM unit is superior to other units and achieves

60.32% for 843 programmers with at least six code samples and four lines per sample. As the

number of lines per sample reaches 10, we achieve an accuracy of 73.16% for 608 programmers.

We also illustrate the impact of the number of samples per author on the performance of the iden-

tification process. Using LSTM, Figure 4.9(b) shows an accuracy of 75.94% for 479 programmers

when the number of samples is at least ten, with at least ten lines per sample. This accuracy

increases to 79.64% for 346 programmers when the number of samples is doubled as shown in

Figure 4.9(c). However, the accuracy slightly decreases when increasing the number of samples to

exceed 30 samples per author. Figure 4.9(d) shows an accuracy of 78.12% for 282 programmers

using LSTM. This decrease can be explained by the fixed training process for all experiments,

where the intuitive procedure for training a model with a large dataset required more time and a

deeper architecture.

Using TF-IDF representations with the same experimental settings, Figure 4.10 shows the impact

of using TF-IDF representation on the accuracy with a varying number of samples per author and

varying sample sizes. For instance, Figure 4.10(a) shows that our approach with LSTM unit is
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Figure 4.11: Accuracy of authorship identification for authors with at least specific number of
samples with different sample sizes represented using word2vec. The results are achieved by a
RFC constructed using sequence embeddings generated from a trained two-layers bi-LSTM model
with 512 units in each layer.

superior to other units and achieves 66.84% with at least six code samples and four lines per sam-

ple. As the number of lines per sample reaches to 10, we achieve an accuracy of 76.87%. We also

illustrate the impact of the number of samples per author on the performance of the identification

process. Using LSTM, Figure 4.10(b) shows an accuracy of 79.88% when the number of samples

is at least ten and when there are at least ten lines per sample. This accuracy increases to 81.11%

when the number of samples is doubled as shown in Figure 4.10(c). The best accuracy reaches

83.45% for 282 programmers when using LSTM.

Key Insight. The number of samples per programmer influences the accuracy of identification,

i.e., more samples means higher identification accuracy. However, the RNN model seems to learn

authorship attributions even with a small number of samples, e.g., ten samples. Also, input repre-

sentation affects the accuracy, i.e., TF-IDF shows better performance than word2vec.

Experiment 2: Identification with RFC. We conduct this experiment using the same setting as

in experiment 1. However, instead of relying on the softmax classifier, we use the sequence em-

beddings generated by the RNN model to construct an RFC classifier with 300 trees grown to the

maximum extent. We construct the RFC classifiers using the sequence embeddings of the same
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Figure 4.12: Accuracy of authorship identification for authors with at least a specific number of
samples with different sample sizes represented using TF-IDF. The results are achieved by RFC
constructed using sequence embeddings generated from a trained two-layers bi-LSTM model with
512 units in each layer.

training dataset used for training the RNN-based models. The RFC models are then evaluated

using the sequence embeddings of the test dataset. Similar to experiment 1, two different ini-

tial representations methods, namely, word2vec and TF-IDF, are used in this experiment. Using

word2vec as the initial code representation, Figure 4.11 shows the identification accuracy of RFC

over word2vec-based sequence embeddings generated with different RNN types. Figure 4.11(a)

shows the accuracy of different RNN types when the least number of samples per author is six. Us-

ing sequence embeddings generated by LSTM enabled the best accuracy, regardless of the sample

size, as it achieves 84.64% accuracy for 843 programmers. The improvement in accuracy becomes

clearer as the minimum lines per sample exceed ten lines of code to reach 90.61% for the available

608 programmers. Figure 4.11(b) shows an accuracy of 92.12% for 479 programmers when the

number of samples is at least ten with at least ten lines per sample. This accuracy increases to

92.87% for 346 programmers when the number of samples is doubled as shown in Figure 4.11(c).

A similar improvement of accuracy is achieved when we use more than 30 samples per author to

reach 94.4% as shown in Figure 4.11(d).

When using TF-IDF as our initial representation, the sequence embeddings seem to capture more

distinctive features of the code samples. This can be shown by the obvious improvement of the

88



obtained results illustrated in Figure 4.12. In Figure 4.12(a), LSTM-based sequence embeddings

with RFC achieve 86.84% for 843 programmers. Compared to results achieved using word2vec-

based sequence embeddings, the improvement in accuracy is 2.2% (= 86.84 − 84.64). When

considering the minimum number of lines per sample, the accuracy reaches 91.24% with samples

of more than ten lines. Figure 4.12(b) shows an accuracy of 92.82% when the number of samples

is at least ten and with at least ten lines per sample. This accuracy increases to 95.12% when the

number of samples is doubled as shown in Figure 4.12(c). The TF-IDF-based method seems to

generate more robust sequence embedding than the ones generated by the word2vec-based method.

This can be clearly seen in Figure 4.12(d) as it reaches to an accuracy of 96.14% when considering

at least 30 samples per author since the accuracy improvement reaches 1.74% (= 96.14− 94.4).

Key Insight. The reported results of this experiment show the impact of using robust classifier such

as the RFC. For instance, the improvement of the achieved accuracy in identifying programmers

for word2vec-based sequence embeddings using RFC compared to the softmax classifier is 16.28%

(= 94.4− 78.12) when considering programmers with at least 30 samples of minimum ten lines of

code. Similarly, the improvement of achieved accuracy in identifying programmers for TF-IDF-

based sequence embeddings using RFC compared to softmax classifier is 12.69% (= 96.14−83.45)

when considering authors with at least 30 samples of minimum ten lines.

4.2.4 End-To-End Identification

In this experiment, we make use of the observations learned from previous experiments to design an

overall system evaluation of Multi-χ. The main purpose of this evaluation is to demonstrate Multi-

χ’s effectiveness in general rather than its accuracy on an individual task. For this evaluation,

Multi-χ should operate through the five stages, code segmentation, code representation, segment

authorship verification, segment integration and finally authorship identification. The final end-
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to-end system evaluation depends on the performance of all incorporated stages, e.g., the segment

verification plays an important role in segment integration that itself influences the identification.

Experiment Settings. The setting of the experiment in a distinct stage is outlined as follows:

1. Code Segmentation: we use a one-line window.

2. Code Representation: firstly, code segments are represented as a sequence of 128-dimensional

word2vec representations for the authorship verification task, where the sequence length

equals to Linecommon. Secondly, the integrated code segments, generated by accumulating

positively verified code segments of a programmer, are represented with the top-2,500 TF-

IDF features for the identification task.

3. Code Authorship Verification: we use a two-layer bi-LSTM model with 64 hidden units for

each layer. The verification models are trained from scratch.

4. Code Segment Integration: using the verification model, we go through the testing code files

line by line integrating segments in an incremental manner.

5. Code Authorship Identification: we use a two-layer bi-LSTM with 512 units for each layer.

The identification models are trained from scratch using the integrated segments produced by

the verification. The identification models are fed with TF-IDF representations of the inte-

grated segments and generate deeper representations of authorship attributions. Using deep

representations of integrated segments, we construct RFC with 300 trees for identification.

Evaluation Metric. The traditional definition of accuracy, which corresponds to the exact pre-

diction of tested samples (guess-all authors per file), can be inefficient in describing the level of

correctness of our approach in identifying the authors of a source-code file [80, 41]. Therefore,

the evaluation of the overall system performance can be calculated using a similar metric as the
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example-based accuracy (EBA) used in [41], which corresponds to the average correctness of

the author assignments per code file. Since our system uses a fine-grained approach instead of

a multi-labeled example, we use the average sum of per-segment identification accuracy and the

author assignment accuracy for each code file. We call this evaluation metric as Authorship EBA

(A-EBA), which we define as follows:

A-EBA =
1

2n

n∑

i=1

s Ai + a Ai

where, (1) s Ai is the per-segment authorship identification accuracy, defined as the proportion of

correctly attributed segments in all tested segments for the sample file i. (2) a Ai is the authors per

example accuracy, defined as the proportion of correctly assigned authors in the total number of

authors of example i. (3) n is the total number of tested code files. Using a Ai or s Ai separately

does not provide high confidence in the overall system predictions. For example, consider a file

with four segments and two authors; if three segments are correctly attributed then s Ai is 75%,

and the a Ai can be either 50 or 100% depending on whether one or two authors are identified

resulting in A-EBA of 62.5% or 87.5% for the two cases, respectively. Therefore, averaging the

two measures can provide a better understanding of the system performance.

Results. For a real-world scenario, we run the evaluation on all code files in the testing set with-

out altering or omitting little code contributions, i.e., removing authors with few code segments.

Therefore, we split the dataset to 80% training set and 20% testing set, resulting in 21,286 sample

files in the training set and 5,321 sample files in the testing set. Since the code files are randomly

selected for the testing set, this might result in including files written (partially or entirely) by pro-

grammers who do not contribute to any sample in the training set. We exclude those programmers

since attempting to identify them is an open-world problem, which is out of the scope of this work.

The splitting of the dataset resulted in obtaining 617 programmers in the testing set, and only 562
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have appeared in the training set.

We run the evaluation ten times and report the average result. For 562 programmers, Multi-χ

achieved an A-EBA of 86.41% and an overall per segment authorship identification of 93.18%

and authors per example accuracy of 79.62%. Investigating the results further, we found that most

misattributed segments are less than three lines of code. This misattribution of code segments

factored on the authors per example accuracy, as authors with little contributions, e.g., one to three

lines of code, on a given code file are very difficult to be identified. Moreover, it also becomes more

challenging when the total number of contributions for an author is very small, e.g., less than six

segments of code in the training data, which makes it hard for the classifier to learn distinct features

for such an author. For example, in this experiment, the testing files include 109 programmers who

have less than six samples in the training data. However, the proposed fine-grained approach

achieved remarkable results with the utilization of term distributions and representations, deep

learning, sequence embeddings, and ensemble classifiers.

4.3 Limitations

This work demonstrates that sufficient authorship attributions can be extracted from the small-

est piece of code to enable accurate authorship identification. Nevertheless, Multi-χ has several

limitations concerning the ground-truth dataset, dealing with binary code, and obfuscated code.

Ground-Truth Assumption. This work assumes authorship of code lines based on the git-author

tool [76]. This means authorship is assigned to the Github committer of the project regardless of

any consideration of other authors who worked offline in the submitted project. Thus, working

with early commits of a project might not always allow authentic authorship. The continuous

improvements and the dynamics of open-source projects enable the collaboration among authors
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and reduce the ramifications of ground-truth error. We chose nine open source projects with 2,220

programmers, with an average of 1,378 code lines per programmer.

Binary Code. Previous work [32] showed that a pseudo-code generated from the decompilation

process of a binary can possess authorship traits of the binary program. The experiments were

reported using a dataset with a single author per program, which simplifies the authorship assign-

ment for the decompiled code. However, assigning multiple authors for a piece of decompiled

code is very challenging, and for the best of our knowledge, there have been no previous attempts

to map multiple authors to decompiled pseudo-code. We leave this investigation as future work.

Obfuscated Code. Previous work [3] showed that deep learning representation enabled accurate

code authorship identification for obfuscated code. Another work by Brennan et al. [24] has studied

adversarial stylometry to evaluate the performance of authorship identification when adversaries

attempt to evade identification by hiding or impersonating another identity. We acknowledge such

a limitation, and leave studying the effects of obfuscation or adversarial scenarios on identifying

multiple authors of source code as future work.

4.4 Conclusion

We have proposed Multi-χ, a fine-grained approach for multi-author identification from source

codes incorporating several techniques: code representation, recurrent neural networks, and en-

semble classifiers. To the best of our knowledge, our work is the first to attempt at identifying mul-

tiple authors of a single source file from a real-world dataset collected in the wild (from Github),

and in identifying authors line-by-line in source code. For the evaluation of Multi-χ, we have used

a large scale dataset including nine real-world open-source projects. Multi-χ achieves an author-

ship example-based accuracy of 86.41% and per-segment authorship identification of 93.18% for
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562 programmers. Our results show that programmers’ coding style is distinguishable even with

small fractions of codes, and it is possible to identify multiple authors in single source code. We

leave other representation techniques of code terms for higher accuracy for future investigation.
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CHAPTER 5: AUTHOR-SHIELD: CIRCUMVENTING CODE

AUTHORSHIP IDENTIFICATION USING ADVERSARIAL EXAMPLES

Authorship identification has become increasingly accurate, posing a serious privacy risk for pro-

grammers who wish to remain anonymous. In this chapter, we introduce Author-SHIELD to exam-

ine the robustness of different code authorship attribution approaches against adversarial examples.

We define three adversarial attacks on attribution techniques—confidence reduction, a programmer

imitation, and evasion attacks—and realize them in targeted and non-targeted adversarial code per-

turbation. We experiment with a dataset of 2,000 C++ programmers from the Google Code Jam

competition to validate our methods targeting six state-of-the-art authorship identification meth-

ods that adopt a variety of techniques for extracting authorship traits from source-code, including

RNN, CNN, and code stylometry. Our experiments demonstrate the vulnerability of current au-

thorship attribution methods against adversarial attacks. For the confidence reduction attack, our

experiments demonstrate the vulnerability of current authorship attribution methods against the

attack, and show a degradation of the identification confidence ranging from 20% to 60% when

introducing adversarial perturbations. This confidence reduction allowed a misidentification rate

that exceeds 98% for all targeted systems, even with the smallest perturbation (one line of code).

For the imitation attack, we show the possibility of impersonating a programmer using targeted-

adversarial perturbations with an imitation success rate ranging from 48% to 55% for different

authorship identification techniques. For authorship evasion, the results show a high evasion suc-

cess rate reaching to 58%.
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Figure 5.1: The workflow of source-code authorship identification, including four phases: prepro-
cessing, feature extraction, feature selection, and identification.

5.1 Author-SHIELD: Methods

The workflow of typical source-code authorship identification systems includes three stages: data

preparation and preprocessing, feature extraction, and authorship identification. The data prepara-

tion and preprocessing stage entails accessing software programs, removing undesired parts, e.g.,

comments, links to external resources, etc., and normalizing layout features, e.g., white spaces

and lines. The feature extraction stage, often referred to as authorship attributes extraction, entails

defining distinctive programmers’ coding traits. Extracting such traits requires designing features

that capture specific characteristics of different programming styles and methods. Such features

may include: (1) syntactic features in the program structure and the implementation choices, (2)

stylometric features in variables naming, documentation, language’s reserved keywords usage,
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Figure 5.2: An overview of the adversarial attacks adopted by Author-SHIELD on different code
authorship identification approaches.

etc., (3) layout features in white spaces and indentation usage, and (4) development environment

features in the usage of platforms, editors, programming languages, etc.

The availability of a wide range of candidate features in large-scale cross-language identification

tasks makes the feature selection process an important phase. The feature selection process typi-

cally includes evaluating the authorship attributes based on, for example, the information gain or

mutual information between attributes and authors to determine a small subset of prominent fea-

tures for identification. The final stage is the authorship identification, which is usually treated as

a classification problem. Using the extracted (or selected) features, classification models, such as

the Support Vector Machine (SVM) [82, 30], Random Forest Classifier (RFC) [3, 31], and neural

networks [30], are often trained to identify programmers in a supervised manner.

The general workflow of the authorship identification is shown in Figure 5.1, highlighting methods

used by the six approaches investigated in this study, namely: Code Stylometry (CSFS) [31] Deep

Learning-based Code Authorship Identification System (DL-CAIS) [5], TF-IDF-based Concate-

nated CNN (TFIDF-C-CNN TF-IDF-based Stacked CNN (TFIDF-S-CNN) [5], Word Embedding-
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based Concatenated CNN (WE-C-CNN) [5], and Word Embedding-based Stacked CNN (WE-S-

CNN)[5].

Our robustness assessment for the targeted approaches includes adding code perturbations at the

source code level rather than the feature space of authorship attributes, providing a more realistic

scenario; e.g., an adversary may have knowledge of the feature extraction techniques used by

the targeted system, but without the ability to manipulate the features after submitting the code

sample. This case only allows the adversary to manipulate the input samples on the source-code

level. Moreover, perturbing feature representations might not reflect actual changes in the source

code. To this end, we designed templates for code perturbation to inject into the source-code to

serve the adversarial attack’s objective. The configurations of different attacks are specified based

on different scenarios and requirements. For example, one adversary could generate an attack for

the purpose of misidentification, while another generates a different attack to imitate the coding

style of a specific programmer.

This chapter investigates several aspects regarding code authorship adversarial attacks, including

adversarial falsification (misclassification), adversarial specificity (imitation and evasion). Other

aspects regarding the introduced perturbation should be considered, such as the size of perturba-

tions, insights for defense, and adversarial perturbation detectability. Since the fundamental merit

behind adversarial examples is the undetectability by humans, the perturbation should be as small

as possible that make them imperceptible to a human. This can be a challenging task when work-

ing with source code samples since the adversarial examples should preserve the functionality and

follow the syntax-rules of the targeted programming language. This work studies the code pertur-

bation scope, limitation, and measurement. Figure 5.2 shows an overview of the approach adopted

by Author-SHIELD to generate adversarial attacks on different authorship attribution approaches.
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5.1.1 Code vs. Feature Perturbation

Adversarial perturbations are often introduced on the input feature space to allow enhanceing its

effect while decreasing its size. However, introducing perturbations on the feature representations

(i.e., attributions) assumes a white-box attack where the adversary has full control over all stages

of the system operation, limiting the approach’s practicality.

Our Approach. Assuming that the adversary has limited knowledge, we investigate adding per-

turbations to the input code directly by code injection. The code perturbations can be added as

variable declarations, loops and control statements, functions, etc. In reality, and for an author that

tries to evade detection, this approach would be implemented by the author who would have full

control over the source code. For preserving the functionality of the code, the added perturbations

are not meant for execution, and we achieve that by adding code perturbations as methods (func-

tion) that never get called or executed in the main code. To enhance the code perturbations: 1

we limit the size of perturbation to the minimum size that enables the attack, 2 the function code

should inherit the flow of the syntax rules of the programming language, 3 the statements of the

adversarial function should have the same size as other statements in the original code, 4 variable

names should be from the collection of vocabulary used by the programmers in the dataset.

Data used in our evaluation includes code samples written in C++, and perturbations are presented

as C++ functions following the C++ function structure with a function body that includes multiple

statements. Six major statements types are considered in the implementation: 1 variable declara-

tion and assignment, 2 arithmetic, relational, and logical operations, 3 IF, IF-ELSE statements,

4 SWITCH statement, 5 FOR loop statement, and 6 DO-WHILE, WHILE loop statement.

Each statement includes at least one line of code, e.g., a declaration, an assignment, or an oper-

ation. The selection of statements’ types and the naming criteria for variables and functions for

the code perturbations are conducted based on the underlying assumptions of the attack. For ex-
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ample in the imitation attack, we limit the considered names to the ones previously observed for

the targeted programmer, since using random names might result in an out-of-vocabulary problem

for approaches that use TF-IDF or word embeddings for representing the code sample. In such

cases, the names that are not previously seen during the training are not considered in the code

representation, and therefore they become useless in adding value to the perturbation. This work

investigates code authorship attribution under three adversarial scenarios: confidence reduction,

code style imitation, and evasion.

5.1.2 Identification Confidence Reduction

The confidence is defined as the probability distribution, P (yi|xi) ∀xi ∈ X and yi ∈ Y , of as-

signing programmers Y : {y0, y1, . . . , ym} to input data X : {x0, x1, . . . , xn}. For the targeted

approaches, confidence is defined as follows. DL-CAIS and CSFS adopt RFC where the confi-

dence is the number of decision trees voting for a given class. For an author yi, the identification

confidence is the percentage of trees voted for yi to be the programmer who wrote a given code

sample xi, and it is estimated as conf(yi) =
∑

j votej(yi)×‖T‖−1, where votej(yi) is the j-th tree

voting for yi and ‖T‖ is the total number of trees in RFC. On the other hand, CNN-based models

(WE-C-CNN, WE-S-CNN, TFIDF-C-CNN, and TFIDF-S-CNN) adopt softmax classifier where

the confidence is the softmax score for a given class. For an author yi, the identification confidence

is conf(yi) = eyi × (
∑

j e
yj)−1 ∀ j.

Goals. This technique aims to delude the identification model by manipulating the input code files

so that authorship attributes become ambiguous. More precisely, the goal is to decrease the con-

fidence in the models’ predictions to lead the model for misidentification or prediction rejection.

This is conducted by adding code perturbation δ ∈ Rd to the input code x ∈ Rd such as the gen-

erated adversarial code x̄ = x + δ serves the purpose of minimizing the confidence with at least
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ε > 0. Formally, the adversary goal is:

fδ,ε(x) = min
δ
{|δ| s.t. {conf(y|x)− conf(y|x̄)} ≥ ε}

The conf(y|x) is correct assignment of x to the rightful programmer y. If conf(y|x̄) < conf(ȳ|x̄),

then the adversarial sample x̄ is attributed to ȳ (misidentification).

Capabilities. To achieve the above goal of confidence reduction, we assume that the adversary

does not have knowledge at the level of the training data. Rather, the perturbation δ ∈ Rd is gener-

ated randomly regardless of the code representation scheme adopted by the targeted system. Note

that the adversary gains more advantage when having access to the training data since knowing the

space of code expressions used in the dataset and their possible impact on the authorship attribution

reduces significantly the size of δ.

5.1.3 Code Style Imitation

In this attack, we aim to fool the model to predict a specific class of interest (an author to imitated).

This kind of attack occurs when the targeted models are used to predict multiple classes. Using

the code authorship identification system, a targeted attack aims to maximize the probability of

adversarial code sample to be classified as the targeted adversarial class. If successful, this attack

will enable programmers to imitate the coding style of other programmers or at least mislead

the identification system to predict the targeted programmer. Since the identification decision is

the argmaxj conf(yj|x) ∀j, the model predictions can be changed based on the distribution of

classes. Using the same definition of conf(yj|x), the adversary aims to minimize the confidence of

predicting the right programmer and maximizing the probability of the target.

Goals. The goal of code style imitation is to maximize the confidence of the models’ predictions

towards a target class ȳ to lead the model to predict ȳ. Similar to the previous model, this is
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conducted by code perturbation δ ∈ Rd on x ∈ Rd such as the generated adversarial code x̄ = x+δ

serves the purpose of maximizing the confidence of predicting a targeted programmer ȳ. Thus, the

goal is formally defined as:

fδ(x) = min
δ
{|δ| s.t. {conf(ȳ|x̄) > {max

i
(conf(yi|x̄)) ∀yi 6= ȳ}}

If the argmaxj{conf(yj|x̄)} = conf(ȳ|x̄), the model predicts the targeted programmer to be the

author of x̄.

Capabilities. The imitation attack assumes the adversary knows the training data and the code

representation techniques without having any access to the system. The perturbation δ ∈ Rd

are generated based on the most representative features of the target programmer to enhance the

adversarial code sample’ probability to be assigned to the target programmer.

5.1.4 Code Style Disguise (Evasion)

In contrast to targeted attacks, the goal of this attack is to minimize the probability of assigning an

adversarial example to a specific class. In this case, the model can output an arbitrary class except

for the original one. For example, an adversary makes a given programmer’s coding style as any

other programmer so that it can be disguised to evade identification (evasion). Implementing this

attack can be easier compared to targeted attacks (imitation) due to the flexibility of the feature

space and options in assigning an adversarial class, especially when the number of classes is large.

Identification evasion can be conducted by generating adversarial examples in several ways. One

way is by confidence reduction with random perturbation. However, this method of conducting the

evasion attack does not guarantee the misidentification given a limited size of perturbation. On the

other hand, conducting the disguise adversarial attack by implementing targeted imitations of other
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classes that are most close to the adversarial code’s programmer. In other words, the adversary can

imitate or use the features of the closest coding style to generate limited perturbations.

Goals. This attack’s goal is to maximize the second highest confidence of the models’ predictions

so that conf(ȳ|x̄) > conf(y|x̄), where ȳ is the closest programmer in coding style to the adversarial

programmer. This does not necessarily mean that the final decision of the model is to predict ȳ

since argmaxj conf(yj|x̄) ∀j can be any class but y. First, the adversary needs to find the closest

programmer in coding style to be imitated. Let ∃ m programmers {y1, y2, . . . , ym} with n code

samples each. For yi, the closest programmer ȳ is the one with code samples that show the least

Euclidean distance to the original samples by yi. Let avg(x) =
∑

n(
∑

k x
(i)
k × k−1) × n−1 is

the average of all n code samples such as x(i) that belong to a given programmer. The closest

programmer ȳ to a programmer y is: ȳ = argminj{
√∑

k(avg(x)k − avg(xj)k)2}. After defining

the nearest programmer ȳ, the adversary retrieves the most influential features using the order

of features to be the source for the perturbation. Similar to the imitation attack, this attack is

conducted by adding code perturbation δ ∈ Rd to the input code x ∈ Rd such as the generated

adversarial code x̄ = x+ δ maximize the confidence of predicting the programmer ȳ.

Capabilities. Similar to the imitation attack, the evasion attack assumes the adversary knows the

training data and the feature extraction process without having any access to the system models.

The perturbation δ ∈ Rd is generated based on the most representative features of the target pro-

grammer selected based on the nearest proximity to the adversary.
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5.2 Evaluation Settings

5.2.1 Dataset

The evaluation of adversarial code samples on the authorship identification is conducted using

Google Code Jam (GCJ) competition [62]. GCJ is an international programming competition run

by Google since 2008. At GCJ, programmers use several programming languages and develop-

ment environments to solve programming problems over multiple rounds. The most common

languages at GCJ are C++, Java, Python, and C, in order. For this work, we use a dataset of 2,000

C++ programmers with nine code samples. The dataset of C++ samples is collected from GCJ

competition across all years from 2008 to 2016. The number of code samples, programmers, and

years are consistent with prior work.

5.2.2 Baseline and Implementation Details

DL-CAIS. For DL-CAIS, the input code files are initially represented with TF-IDF scheme. Fol-

lowing the implementation described earlier, we used the top 2,500 TF-IDF features as a single

step vector representation to the LSTM RNN for learning the deep representation. The LSTM ar-

chitecture includes three layers of 128 LSTM units followed with three fully-connected layers with

1024 units connected to a softmax layer with the size of the considered number of programmers

(classes). The LSTM model is trained in a supervised manner, where pairs of input code samples

and their corresponding authors are used to train the model by minimizing the softmax-cross-

entropy loss. After the training, the LSTM models are used to generate the deep representations

of authorship attributions of code samples as the output of the second-last layer of the model. The

deep representations of authorship attributes are used as 1024-dimensional vectors to construct

RFC with 150 trees grown to the maximum extent.
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CSFS. Using the implementation of Caliskan-Islam et al. [31], the input code samples are repre-

sented with the top 1024 IG-CSFS authorship attributes to construct RFC with 150 trees grown to

the maximum extent.

WE-C-CNN. We set the word embedding matrix to generate 128-word representations. The input

code samples are then represented as a matrix of n × 128 representations, where n is the number

of terms of the code sample. We set n = 256 to fix the length representations to the convolutional

layers as short samples are padded with zeros and long samples are truncated. For the convolutional

layers, three layers of 128 filters of different sizes (3, 4, and 5) are adopted to receive the input

representation. The outputs of the three convolutional layers are concatenated and connected to a

softmax layer with the same size as the number of the considered classes.

WE-S-CNN. Similar to the settings of WE-C-CNN, the code samples are represented as x ∈

R256×128 since the word embeddings are set to be 128 vector representations. The CNN model

architecture follows the typical stacked CNN layers with three consecutive layers each with 128

filters of different sizes (3, 4, and 5). For this architecture, we used max-pooling after each layer

to reduce the size of feature maps produced by the convolutional layer. The last max-pooling layer

is connected to the output softmax layer.

TFIDF-C-CNN. The input code samples are represented with the top 2500 TF-IDF features and

fed to 1-dimensional convolutional layers. Similar to WE-C-CNN, we use three filter sizes and

128 filters per layer. The feature maps produced by the three convolutional layers are concatenated

and connected to a softmax layer with the same size as the number of classes.

TFIDF-S-CNN. Similar to TFIDF-C-CNN, the input code samples are represented with the top-

2500 TF-IDF features and fed to three stacked 1-dimensional convolutional layers. All convolu-

tional layers consist of 128 filters and each layer has different filter size. We used max-pooling for
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the stacked CNN architecture and the last max-pooling layer is connected to a softmax layer with

the same size as the number of classes.

Deep-Learning Training. Both RNN-based and CNN-based models are trained using the Adam

optimizer [66] with a static learning rate of 10−4 to minimize the softmax-cross-entropy loss since

all models are trained in a supervised manner. The training process is terminated after 1,000

iterations. To prevent overfitting, we used dropout regularization with keep-rate of 70% and L2

regularization with λ regularization strength of 10−3. Moreover, we used mini-batch approach with

mini-batch size of 64 observations in training process of all deep learning-based architectures.

5.2.3 Evaluation Metrics

We evaluate the confidence reduction attack based on the degradation in the model confidence,

while the misidentification rate is used as an indication of the success rate for fooling the identifi-

cation model. When the predicted label argmaxk P (yk|x̄i) for the adversarial sample x̄i is not the

same as the correct class label yi of the original sample xi, this result is misidentification, and the

rate is calculated as:
1

n

∑

i

I(argmax
k

P (yk|x̄i) 6= yi).

We evaluate the imitation attack by the imitation success rate as the proportion of correctly classi-

fied adversarial samples to the targeted programmer to the overall attempts. For targeted class ȳ, if

the argmaxk P (yk|x̄i) = ȳ, then the attack succeeds. The imitation success rate is calculated as:

1

n×m
m∑

j

n∑

i

I(argmax
k

P (yk|x̄i) = ȳj).

We evaluate the evasion attack by its success rate: correctly misidentifying a specific program-
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mer to all presented code samples by that programmer, i.e., similar to the misidentification rate.

However, we adopted a targeted evasion attack where an adversarial code sample x̄i is attributed

to the closest programmer ȳ with respect to the original programmer yi, therefore we calculate the

evasion success rate similar to the imitation success rate.

Magnitude of Perturbation. We use `p to measures the magnitude of perturbation by p–norm

distance as:

‖δ‖p =

(
n∑

i=1

‖x̄i − xi‖p
) 1

p

For p–norm, studying the `0, `2 and `∞ is very common [33]. The `0 is the count of changes in

the adversarial example compared to the original sample, the `2 is the Euclidean distance between

the adversarial sample and the original sample, and `∞ is the maximum changes with respect to

all terms in the adversarial examples. In this work, we report the size of perturbation with respect

to the number of code lines or code statements when showing the results. However, we discuss

the magnitude of perturbation by p–norm when considering different attacks implemented with a

different number of code lines and statements in Section 5.4.

5.3 Experiments and Results

5.3.1 Confidence Reduction Attack

For this attack, we created a random function generator to inject perturbations to the original code.

The optimization of the code perturbation size follows the minimization of the probabilities of

assigning adversarial examples to the original programmers. That reflects on the number and types

of statements as well as the number, types, and names of variable declarations. To evaluate the

success of different adversarial attacks, we implemented different code authorship identification
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Figure 5.3: The accuracy and confidence of identification models of the baseline approaches before
and after launching the confidence reduction attack. The results before the attack are reported as
the average results of 9-cross-validation evaluation.

systems to be the target of the attacks. Using a dataset of 2,000 programmers, the baseline systems

have achieved remarkable results, outlined as follows.

Baseline Identification Results. Figure 5.3(a) shows that RNN-based deep representations adopted

by DL-CAIS has enabled an identification accuracy ranging from 95.31% for identifying 2,000

programmers to 99.42% for identifying 100 programmers. Code stylometry features adopted in
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(d) Confidence reduction / lines

Figure 5.4: The results of the confidence reduction attack: the misidentification rate and the con-
fidence reduction of the targeted approaches categorized by the added perturbations of code lines
(ranging from 1 to 10 per statement) and code statements (ranging from 1 to 10). Notice, the
impact of added code statements is larger than the considered code lines within the statements.

CSFS has achieved identification accuracy ranging from 88.1% to 98.92% for different datasets.

Using word embeddings to represent code files to CNN-based approaches, the WE-C-CNN and

WE-S-CNN architectures have achieved an identification accuracy of 81.12% and 77.91% for iden-

tifying 2,000 programmers, respectively. Using TF-IDF representations with CNN, have enhanced

the identification accuracy to reach to 86.22% and 82.13% for identifying 2,000 programmers
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using TFIDF-C-CNN and TFIDF-S-CNN, respectively. Figure 5.3(a) shows the identification ac-

curacy achieved for different sub-datasets with a different number of programmers using 9-fold

cross-validation evaluation of all targeted approaches.

This identification accuracy is accompanied with high identification confidence. Figure 5.3(b)

shows the average identification confidence of all targeted approaches when identifying different

numbers of programmers. For all identification techniques, the confidence exceeds 60% in all

settings. For systems that adopt RFC, such as DL-CAIS and CSFS, the model confidence is higher

than the systems that utilize softmax layer for classification such as the CNN-based systems (WE-

C-CNN, WE-S-CNN, TFIDF-C-CNN, and TFIDF-S-CNN). This is because the confidence of RFC

models is defined by the number of trees in the random forest that vote for a given class, while the

softmax layer captures the probability distribution of assigning the input data to all classes. In our

experiments, the identification confidence increases as the number of programmers increases as

shown in Figure 5.3(b).

Impact of Confidence Reduction Attacks. The results of this attack are shown in Figure 5.4

including the misidentification rate and the model confidence. For this attack, we use random code

injections to reduce the confidence and to improve the misidentification success rate of program-

mers. Figure 5.4 shows the misidentification success rate of targeted approaches using different

experimental settings. The attack allows an average misidentification success rate above 98.5% for

all targeted approaches using different settings and across different numbers of programmers. This

high misidentification accuracy is caused by the low confidence levels of identifying programmers

as shown in Figure 5.4(b) and Figure 5.4(d). The confidence scores, with a high point of 43.51%

achieved by CSFS and a low point of 10.14% achieved by WE-S-CNN, show the class ambiguity

caused by the code perturbations.

Number of Programmers’ Impact. Figure 5.4(a) shows the average targeted misidentification
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rate by changing the number of code statements. Even when using only one statement the average

achieved misidentification rate is higher than 98.5%, demonstrating the success of the confidence

reduction attack. The average misidentification accuracy per a number of statements is reported

for using a different number of lines per a statement ranging from one to ten lines. The smallest

size of perturbation is to inject a function with one statement that includes only a declaration, while

the largest size is to include ten statements with ten lines each. For 200 programmers, the average

misidentification rate when adding one statement of perturbations is 99.61%, 98.59%, 98.79%,

99.30%, 98.76%, 99.50% for the targeted attacks on DL-CAIS, CSFS, WE-C-CNN, WE-S-CNN,

TFIDF-C-CNN, and TFIDF-S-CNN, respectively. When increasing the size of perturbation to

ten statements, the misidentification rate becomes 99.52%, 98.63%, 98.83%, 99.34%, 98.80%,

and 99.54% for the targeted system DL-CAIS, CSFS, WE-C-CNN, WE-S-CNN, TFIDF-C-CNN,

and TFIDF-S-CNN, respectively. Increasing the dataset size to include 2,000 programmers re-

sults in increasing the misidentification rate as the results show an average misidentification rate

of 99.91%, 98.99%, 99.18%, 99.71%, 99.16%, and 99.90% for DL-CAIS, CSFS, WE-C-CNN,

WE-S-CNN, TFIDF-C-CNN, and TFIDF-S-CNN, respectively, when using one statement of code

perturbation. As the dataset size increases, the effects of increasing the perturbation size decreases;

an average misidentification rate of 99.95%, 98.97%, 99.17%, 99.69%, 99.14%, and 99.89% for

targeted system DL-CAIS, CSFS, WE-C-CNN, WE-S-CNN, TFIDF-C-CNN, and TFIDF-S-CNN.

Lines of Code’ Impact. Figure 5.4(c) shows the average misidentification rate with different lines

of code in the injected statements. Typically, the number of lines as a variable does not seem to

affect the overall performance of the attack, when using different numbers of statements, which is

explained by the fact that the perturbations are introduced by the usage of statements themselves.

The results of the experiments show that including a large number of lines of code within one

programming statement does not always help with the misidentification rate. For example, and

for the 2,000 programmers dataset, the difference in the achieved average misidentification rate
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for using one line of code per statement and ten line of code is (99.95-99.94= 0.01%), (98.98-

98.97=0.01%), (99.17-99.17=0%), (99.14-99.14=0%), (99.69-99.68=0.01%), and (99.89-99.89 =

0%) for the targeted systems DL-CAIS, CSFS, WE-C-CNN, WE-S-CNN, TFIDF-C-CNN, and

TFIDF-S-CNN, respectively. These results show that using random code perturbation cripples the

identification models’ capabilities for identifying programmers. Moreover, even when using the

smallest size of perturbation (one statement with one line of code), the achieved misidentification

rate exceeds 98.5% for all approaches when using a dataset of 2,000 programmers.

5.3.2 Imitation Attack

To evaluate this attack, we randomly selected a subset of 100 programmers to simulate different

experimental settings. In this experiment, we appointed each programmer in our subset dataset of

100 programmers to be the subject to the imitation attack while using all other programmers to

imitate the coding style of the subject programmer. Since our dataset includes nine code samples

per programmer, we generated (9 × 99 = 891) imitation code samples for each subject program-

mer, i.e., generating 89,100 adversarial code samples for each experimental setting considering

the hundred included programmers. Figure 5.5 shows the achieved results by this attack against

different code authorship identification systems using different settings. The results include the

imitation success rate and identification confidence.

Statements’ Impact. Figure 5.5(a) shows the effects of using different numbers of statements for

the adversarial code perturbation when implementing the imitation attack. The figure shows clearly

the increase in the imitation success rate as the number of statements increases. Using one state-

ment, the average imitation success rate, using a different number of code lines, exceeds 25% for

all targeted identification systems. Figure 5.5(a) shows that the average imitation success rates are

29.53%, 25.12%, 27.75%, 28.10%, 31.97%, and 32.35%, against DL-CAIS, CSFS, WE-C-CNN,
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Figure 5.5: The results of the imitation attack: the imitation success rate and the confidence reduc-
tion of the targeted approaches categorized by the added perturbations of code lines (ranging from
1 to 10 per statement) and code statements (ranging from 1 to 10). Notice, the impact of added
code statements is larger than the considered code lines within the statements.

WE-S-CNN, TFIDF-C-CNN, and TFIDF-S-CNN, respectively. While the average success rates

when using ten statements are 52.34%, 48.24%, 50.52%, 51.07%, 54.27%, and 55.28%, against

DL-CAIS, CSFS, WE-C-CNN, WE-S-CNN, TFIDF-C-CNN, and TFIDF-S-CNN, respectively.

This result shows that the vulnerability of the targeted identification systems against the authorship

imitation attack, since the average imitation success rate exceeds 48% when the perturbations in-
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Figure 5.6: The results of the evasion: the evasion success rate and the confidence reduction of
the targeted approaches categorized by the added perturbations of code lines (ranging from 1 to
10 per statement) and code statements (ranging from 1 to 10). Notice, the impact of added code
statements is larger than the considered code lines within the statements.

clude ten statements of code. Introducing the smallest perturbation of only one statement with one

code of line has enabled an imitation success rate of 21.89%, 17.82%, 20.14%, 20.59%, 22.48%,

and 26.35% for the targeted approaches DL-CAIS, CSFS, WE-C-CNN, WE-S-CNN, TFIDF-C-

CNN, and TFIDF-S-CNN, respectively. Even though the success rates vary when increasing the

code perturbation size, the identification models’ confidence levels are stable and significantly
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lower than the baseline confidence levels shown in Figure 5.3(b). Figure 5.5(b) shows that the

identification confidence is lower than 30% for all approaches and in all experimental settings.

Lines of Code’s Impact. Figure 5.5(c) shows the effects of using different numbers of code

lines per statement for the injected code perturbations for imitation attack. We use a range from

one line of code per statement to 14 lines throughout our experiments. Using only one line of

code per a statement, the average achieved imitation success rates, across different numbers of

statements—ranging from one to ten statements, are 43.28%, 39.50%, 41.37%, 41.87%, 45.48%,

and 46.56%, against DL-CAIS, CSFS, WE-C-CNN, WE-S-CNN, TFIDF-C-CNN, and TFIDF-S-

CNN, respectively. Increasing the included lines of code to 14 lines does not significantly increase

the imitation success rate, since using 14 lines of code results in imitation success rates of 47.32%,

43.23%, 46.10%, 45.62%, 49.65%, and 50.03%, against DL-CAIS, CSFS, WE-C-CNN, WE-S-

CNN, TFIDF-C-CNN, and TFIDF-S-CNN, respectively. Similarly, the confidence levels of the

identification models are not significantly influenced by the number of added lines of code for the

code perturbations since Figure 5.5(d) shows that all confidence scores are tapered at a level below

30% with slight improvement after including more than ten lines.

5.3.3 Evasion Attack

Similar to the imitation attack, the evaluation of this attack is conducted on a subset of 100 pro-

grammers. We appointed each programmer in our subset dataset of 100 programmers to be a

subject to the evasion attack while using all other programmers as possible disguise subjects. For

each programmer, we generate nine adversarial code samples based on the most influential features

of the targeted subject, i.e., generating (9× 100 = 900) samples for the selected 100 programmers

in our dataset. Figure 5.6 shows the achieved results for this attack using various settings.
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Statements’ Impact. Figure 5.6(a) shows an improvement in the evasion success rates as the num-

ber of statements increases. Using only one statement, the average evasion success rate exceeded

30% for all targeted authorship identification approaches. Figure 5.6(a) shows that the average suc-

cess rates of this attack using only one statement of code were 31.67%, 31.73%, 31.61%, 30.68%,

32.66%, and 31.77%, against DL-CAIS, CSFS, WE-C-CNN, WE-S-CNN, TFIDF-C-CNN, and

TFIDF-S-CNN, respectively. While using ten statements, the evasion success rates increase to

57.19%, 57.22%, 56.25%, 55.23%, 58.24%, and 58.09%, for the targeted approaches, DL-CAIS,

CSFS, WE-C-CNN, WE-S-CNN, TFIDF-C-CNN, and TFIDF-S-CNN. Even with the smallest size

of code perturbation—with one statement that includes only one line of code, the evasion success

rates are 23.90%, 23.91%, 23.90%, 22.91%, 24.88%, and 24.01%, for the targeted approaches,

DL-CAIS, CSFS, WE-C-CNN, WE-S-CNN, TFIDF-C-CNN, and TFIDF-S-CNN, respectively.

This attack has also shown a great impact on the identification confidence of all targeted identifica-

tion systems since all achieved levels of confidence are lower than 30%. Figure 5.6(b) shows

that the number of included code statements contributes to the identification confidence. Us-

ing one code statement, the achieved average levels of confidence are 21.33%, 21.36%, 21.29%,

20.24%, 22.21%, and 21.45%, for DL-CAIS, CSFS, WE-C-CNN, WE-S-CNN, TFIDF-C-CNN,

and TFIDF-S-CNN, respectively. While using ten statements, the achieved levels of confidence

are 27.26%, 27.12%, 26.18%, 25.27%, 27.96%, and 28.21%, for DL-CAIS, CSFS, WE-C-CNN,

WE-S-CNN, TFIDF-C-CNN, and TFIDF-S-CNN, respectively.

Lines of Code’s Impact. Figure 5.6(c) shows the evasion rate is not significantly affected by the

number of lines since the results are within the same range when increasing the number of lines

per statement. The average evasion success rates when using one line of code per statement are

46.67%, 46.74%, 46.07%, 45.25%, 47.66%, and 47.21%, for the targeted approaches, DL-CAIS,

CSFS, WE-C-CNN, WE-S-CNN, TFIDF-C-CNN, and TFIDF-S-CNN, respectively. Increasing
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Figure 5.7: The PCA visualization of code authorship attributions of 10 programmers with nine
code sample. The visualization shows the original authorship attributions along with the effects of
different adversarial attacks on the generated attributions using DL-CAIS.

the number of code lines in code statements results in slight improvement of the evasion success

rates since using 14 lines results in success rates of 50.98%, 51.05%, 50.30%, 49.48%, 51.98%,

and 51.60%, against DL-CAIS, CSFS, WE-C-CNN, WE-S-CNN, TFIDF-C-CNN, and TFIDF-S-

CNN, respectively, as confidence levels are below 30% Figure 5.6(d).
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5.4 Discussion

In the following, we explore the effects of adversarial perturbations on the authorship attributes

with different adversarial attacks. Second, we show the magnitude of perturbations when adding

code blocks to the original code. Finally, we list the limitations of this study.

5.4.1 Adversarial Authorship Attributions

We show that code authorship identification systems can be vulnerable to adversarial attacks. For

all attacks, the authorship attributes are greatly affected by the smallest size of perturbations. This

effect can be shown in the PCA visualization of the authorship attributes of code samples generated

by different adversarial settings, as shown visually in Figure 5.7 for code samples of ten program-

mers with nine code samples each in various adversarial settings. For this visualization, we used

the DL-CAIS system to demonstrate the effect of different attacks. Figure 5.7(a) shows the original

code representations of the ten programmers with nine code samples. It is clear that such author-

ship attributes are the reason for the accurate identification process since code samples of a certain

programmer are located within very close proximity. However, when introducing adversarial ex-

amples as in Figure 5.7(b) during the confidence reduction attack, the authorship features become

extremely scattered in the feature space so it is difficult to establish decision boundaries, and hence

the high misidentification rate and low confidence for this attack. Figure 5.7(c) shows the attempt

of all ten programmers to imitate one label (e.g.,Label 10 in this figure), which leads to partial

success as some programmers are still resilient with the same features as other programmers. The

figure shows also that most code samples are within the same proximity as the code samples of the

targeted programmer. However, some programmers have very distinct coding style such as Label

1, who has code samples that are not affected by the targeted perturbations. Other programmers

are partially affected, such as (Label 3 and label 7), who have some code samples that are close
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Figure 5.8: The p˙norms of perturbations with different sizes with respect to the initial represen-
tations of the code using different approaches. Small perturbations are generated by one code
statement, while large perturbations are generated by ten.

to the targeted programmer’s samples, while some others are afar. In Figure 5.7(d), we show the

effect of the evasion attack, in which the adversary aims to imitate the closest programming style

to adversary’s. In this figure, Label 1 imitates the coding style of Label 3 as their coding style is

the closest among others as also can be seen in Figure 5.7(a). We explained this attack as if Label

1 is using Label 3 as a disguise to evade identification.

5.4.2 Perturbation Size

The perturbations size can be measured by `p to show their magnitude using the p–norm distance.

Figure 5.8 shows the values of p–norm, ranging from p = 2 to p = 40, for small code perturbations

generated from one statement of code and for large perturbations from ten code statements. The
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results shown in the figure are drawn from the average perturbation size using random perturbations

generation (i.e., as used in the confidence reduction attack) on a dataset of 100 programmers with

nine code samples each. Generally, the effect of perturbations on the input representations varies

based on the underlying method used for representing the code. The effects are highest when using

word embeddings as initial representations, e.g., WE-C-CNN and WE-S-CNN, due to the high-

dimensional and compact representations of code sample using word embeddings, while the lowest

effects are exhibited by approaches using TF-IDF as initial representations, e.g., DL-CAIS, TFIDF-

C-CNN, and TFIDF-S-CNN. Figure 5.8(a) shows the `p of perturbations with one statement that

includes only one line of code. The `2 values are: 0.07, 1.27, 0.08, 0.08, 66.43, 79.30 for DL-CAIS,

CSFS, WE-C-CNN, WE-S-CNN, TFIDF-C-CNN, and TFIDF-S-CNN, respectively. Increasing

the value of p decreases slightly the value of the `p to reach `40 ≈ 3 for WE-C-CNN, and WE-

S-CNN. A similar observation is made using a large perturbation regarding the effect on the code

representations. The `p values are shown to be slightly higher, which is due to the introduced

size of code statements. However, these changes are not significant in magnitude, although they

influence the outcome of the model as seen in Figure 5.4.

5.4.3 Limitations and Future Work

Programming Languages. In this work, we only used a C++ dataset and followed a restricted

code injection scheme. We do not foresee any fundamental reason why the work at hand should

not generalize, although exploring whether the same attacks are possible on different programming

languages is yet a future direction. Moreover, it would be interesting to investigate the levels of

difficulty to establish adversarial attacks based on the used programming languages.

Confidence Levels. All the results by the attacks showed very low levels of confidence, which

can be an indication for out-of-world example typically to be excluded from the testing process.
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In other words, this low level of confidence can be a sign for adversarial input and a possible way

to detect the adversarial sample. An interesting future direction would be to investigate such an

observation as well as other defense mechanisms against adversarial code samples.

Perturbation Detectability. It is important for the perturbations to be undetectable before entering

the identification pipeline. This work uses a simple scheme to inject code perturbations, which

can be detectable by experts, through manual inspection, as a separate part in the original code.

Investigating methods to hide such perturbations, by compilation or obfuscation, is also to be

explored as a future direction.

5.5 Conclusion

This work investigates the robustness of several code authorship identification systems under ad-

versarial attacks utilizing code-level perturbation. We targeted six authorship identification sys-

tems with different underlying techniques and defined three attacks objectives—confidence re-

duction, imitation, and evasion. The adversarial attacks exploited code perturbations to hinder

authorship recognition while preserving the functionality of the code. The process of generat-

ing adversarial code samples included producing code perturbations (targeted or non-targeted) to

fulfill the adversaries’ objectives. Our results showed the impact of code perturbations on au-

thorship attributions, and how increasing the size of perturbation increases its effect, although the

targeted techniques could be fooled with the smallest size of perturbations (one line). Among the

approaches examined, the CSFS approach showed more robustness than the deep learning-based

approaches against the three conducted adversarial attacks. However, all authorship attributions

were compromised under adversarial scenarios such that the confidence levels of the identification

models were very low in comparison to the baseline performance.
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CHAPTER 6: CONCLUSION

At the beginning of this research, we studied authorship attribution of single-authored software

using a deep learning-based approach (DL-CAIS). Through comprehensive experiments, we in-

vestigated the learning process of large-scale code authorship attribution using various RNN-based

architectures. We show that DL-CAIS can produce deep representations of authorship features that

a more efficient and resilient to language-specifics, number of code files available per author, and

code obfuscation. For authorship attribution on the source code domain, we evaluated DL-CAIS

on a large-scale dataset covering the entire GCJ dataset across all years (2008 to 2016) in four

programming languages (C, C++, Java, and Python). Our experiments showed that our approach

achieves remarkable results in terms of accuracy in various settings, more specifically, it achieved

an accuracy of 92.3% for identifying 8,903 programmers with only seven files each.

We show that our approach is oblivious to language specifics, and therefore it can extract high-

quality features that enable code authorship identification even when the model is trained by mixed

languages. Moreover, we studied the effects of temporal changes and the availability of code

samples on the identification accuracy.

For authorship attribution on the binary code domain, we investigated the performance of our

approach on capturing authorship attributes from high-level translations of binaries produced by a

simple straightforward reverse engineering process. The results showed that DL-CAIS achieves an

accuracy of 95.74% for identifying 1,500 programmers of software binaries. Similar results were

obtained when applying different compilation settings for producing the binaries. Further, we

examined DL-CAIS on the attributing programmers on the obfuscation domain, using source code

obfuscation tools (such as Stunnix and Tigress) and binary obfuscation tools (such as Obfuscator-

LLVM). Our approach shows remarkable resilience to obfuscation by achieving high identification
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accuracy on different scales and obfuscation settings.

The most interesting experiments in this research are shown in real-world scenarios for evaluating

DL-CAIS. Those experiments evaluated the robustness of our approach in the wild using a dataset

of code samples from the code-sharing platform (GitHub). We also considered the open-world

assumption to identify new programmers who might not be seen by the model before. The results

of those experiments give insights into how authorship identification task can be performed in the

real-world. One of the most challenges that code authorship analysis confronts is 1) the reuse of

code, where programmers reuse others’ codes, 2) the collaborative efforts in writing a program as

a team, and 3) when a specific format is enforced by the work environment or by code formatters

in the development environment. Such challenges motivate for future work in this field.

The research extends the research on the field of software authorship attribution to multi-authored

software. We propose Multi-χ, a fine-grained method for identifying multiple authors contributing

to a single source file. This approach is more realistic to be applied for identifying programmers

in collaborative projects.

To evaluate Multi-χ, we obtained a large dataset of multi-author source-code files collected from

Github. The collected 26,607 code files belong to nine open-source projects and 2,220 involved

programmers. Besides the scalability challenge (attributing a large number of programmers in

multi-authored code samples), there are many challenges that we considered and explored such

as selecting the proper segmentation window of code samples, the data imbalance, and the code

representation and modeling techniques. For example, we observed that code segments of length

greater than 12 lines of code are more likely to be written by multiple programmers. While this

motivates for fine-grained approach, as Multi-χ, it makes it more challenging for the approach

to detect authorship attributes form small segments. After experimenting with different design

choices, Multi-χ showed remarkable results across multiple dimensions and experimental settings.
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For example, Multi-χ achieves a per-segment authorship identification accuracy of 93.18% for

identifying 562 programmers.

The dissertation also provides insights into the performance of authorship identification methods

under adversarial settings. We introduced Author-SHIELD to investigate the robustness of various

code authorship identification systems under different adversarial attacks (launched by adversarial

examples generated by added code-level perturbation). For our analysis, we targeted six authorship

identification systems with different underlying techniques and defined three attack objectives—

confidence reduction, imitation, and evasion.

The code-level perturbations are added to meet different adversarial objectives while preserving

the functionality of the code. Our experiments demonstrated the vulnerability of current authorship

attribution methods against adversarial attacks. For example, the smallest perturbation (one line

of code) can result in a misidentification rate that exceeds 98% for all targeted systems. This

motivates for further investigation on robust solutions for the authorship identification task against

adversarial attacks. Another direction for research is the detection of such adversarial examples

that manipulate the system to generating false output.
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