
STUDYING THE ROBUSTNESS OF MACHINE LEARNING-BASED MALWARE
DETECTION MODELS: ANALYSIS, DESIGN, AND IMPLEMENTATION

by

AHMED ABUSNAINA
M.S. University of Central Florida, 2021

B.S. An-Najah National University, Palestine, 2018

A dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy
in the Department of Computer Science

in the College of Engineering and Computer Science
at the University of Central Florida,

Orlando, Florida

Spring Term
2022

Major Professor: David Mohaisen

© 2022 Ahmed Abusnaina

ii

ABSTRACT

With the rise of the popularity of machine learning (ML), it has been shown that ML-based clas-

sifiers are susceptible to adversarial examples and concept drifting, where a small modification in

the input space may result in misclassification. The ever-evolving nature of the data, the behav-

ioral and pattern shifting over time not only lessened the trust in the machine learning output but

also created a barrier for its usage in critical applications. This dissertation builds toward analyz-

ing machine learning-based malware detection systems, including the detection and mitigation of

adversarial malware examples. In particular, we first introduce two black-box adversarial attacks

on control flow-based malware detectors, exposing the vulnerability of graph-based malware de-

tection systems. Further, we propose DL-FHMC, fine-grained hierarchical learning technique for

robust malware detection, leveraging graph mining techniques alongside pattern recognition for

adversarial malware detection. Enabling machine learning in critical domains is not limited to the

detection of adversarial examples in laboratory settings, but also extends to exploring the existence

of adversarial behavior in the wild. Toward this, we investigate the attack surface of malware

detection systems, shedding light on the vulnerability of the underlying learning algorithms and

industry-standard machine learning malware detection systems against adversaries in both IoT and

Windows environments. Toward robust malware detection, we investigate software pre-processing

and monotonic machine learning. In addition, we explore potential exploitation caused by actively

retraining malware detection models. We uncover a previously unreported malicious to benign

detection performance trade-off, causing the malware to revive and be classified as a benign or

different malicious family. This behavior leads to family labeling inconsistencies, hindering the

efforts toward malicious families’ understanding. Overall, this dissertation builds toward robust

malware detection, by analyzing and detecting adversarial examples. We highlight the vulnera-

bility of industry-standard applications to black-box adversarial settings, including the continuous

evolution of malware over time.

iii

To my mother.

iv

ACKNOWLEDGMENTS

This work would not have been possible without the support of so many individuals who have

enriched my personal and professional experience over the past years whom I would like to take

this opportunity to acknowledge.

First and foremost, I would like to dedicate this dissertation to my family: my mother, sister,

brother, and father, who all supported me unconditionally, and have always been by my side. In

particular, my mother, the person who motivated me to excel and never lost faith in me. A doctoral

program in computer science is not an easy endeavor by any means, with countless ups and downs

along the way. There has been many times when I faced dead-ends and contemplated dropping out

of the program, and it is only thanks to the continued support and belief of my mother that helped

me clear my thoughts, collect myself, and continue my course of study. I dedicate this dissertation

to my best friend and supporter, my mother. Despite all challenges in the past few years, physically

and emotionally, she always reminded me of the light at the end of the tunnel, and words cannot

describe my gratitude.

I would like to extend my gratitude to my doctoral advisor, Prof. David Mohaisen, for his continued

support and guidance during the past four years. Coming to the University of Central Florida, I

had no prior research experience, and working in the Security and Analytics Lab (SEAL) under

Dr. Mohaisen’s guidance helped me grow professionally thanks to his support, and I am grateful

for this opportunity. I would like to also thank my doctoral dissertation committee members, Prof.

Cliff Zou, Prof. Gita Sukthankar, Prof. Sung Choi Yoo, Prof. Shibu Yooseph, and Prof. Gary

Leavens, for their feedback at the different program’s milestones: the candidacy, proposal, and

final dissertation exam. Their critiques and feedback have been immensely helpful in improving

this work.

While working at SEAL, I had the opportunity to collaborate with, mentor, and learn from a lot of

the current and past amazing SEAL members whom I would like to thank (in no particular order):

v

Hisham, Afsah, Mohammad (Abuhamad), Rhongho, Saad, Ulku, Jinchun, Amin, Sultan, Jabbar,

and Mohammed (Alkinoon).

I would like to extend my gratitude to my collaborators inside and outside UCF: Prof. Murat Yuksel

(UCF), Prof. Saeed Salem (NDSU), Prof. Songqing Chen (GMU), Prof. DaeHun Nyang (Ewha),

and Prof. An Wang (CWRU). Finally, I would like to thank my mentors and collaborators at Visa

Research for two wonderful summers that have immensely cultivated my interest in a career in the

industry: Hao Yang, Maliheh Shirvanian, Mihai Christodorescu, Sunpreet Arora, Yizhen Wang,

and Yuhang Yu.

I would like to finally acknowledge the sponsors of the work reported in this dissertation: UCF’s

ORC (for a doctoral fellowship that supported my first year at UCF), National Science Founda-

tion (grant # CNS-1809000), National Research Foundation (grant # NRF-2016K1A1A2912757),

CyberFlorida (Collaborative Seed Grant), and NVIDIA (GPU Grant).

vi

TABLE OF CONTENTS

LIST OF FIGURES . x

LIST OF TABLES . xvi

CHAPTER 1: INTRODUCTION . 1

CHAPTER 2: LITERATURE REVIEW . 5

Malware Analysis & Detection . 5

Adversarial Machine Learning . 9

CHAPTER 3: DL-BASED FINE-GRAINED HIERARCHICAL LEARNING APPROACH

FOR ROBUST MALWARE CLASSIFICATION 11

Summary of Completed Work . 13

Graph Analysis: A Preliminary Overview . 13

Threat Model . 14

Data Representation & Learning . 20

DL-SSMC: Design and Evaluation . 27

DL-FHMC: Coping with AEs . 31

Discussion . 37

Summary & Concluding Remarks . 40

CHAPTER 4: SYSTEMATICALLY EVALUATING THE ROBUSTNESS OF ML-BASED

IOT MALWARE DETECTION SYSTEMS 41

vii

Summary of Completed Work . 42

Background . 44

Threat Model . 49

Dataset Overview . 53

Robustness Analysis . 53

Industry-Standard Detection Engines Robustness . 61

Threat Surface Reduction . 67

Summary & Concluding Remarks . 72

CHAPTER 5: EXPOSING THE LIMITATIONS OF MODEL RETRAINING IN MACHINE

LEARNING MALWARE DETECTION . 73

Summary of Completed Work . 75

Problem Statement . 76

Data Representation & Learning . 78

Malware Detection Temporal Robustness . 85

Malware Detection Model Retraining . 88

Online Detection Engines Are Vulnerable . 101

Overtime Family Labeling Inconsistency . 104

Lessons Learnt in Malware Detection . 111

Summary & Concluding Remarks . 113

CHAPTER 6: CONCLUSION & FUTURE DIRECTION 114

APPENDIX: PUBLICATIONS COPYRIGHT . 116

viii

LIST OF REFERENCES . 122

ix

LIST OF FIGURES

3.1 The generated CFG for the original sample and used for extracting graph-

based features (graph size, centralities, etc.) for graph/program classification

and malware detection. 15

3.2 The CFG for the selected target sample generated and used for extracting

graph-based features (graph size, centralities, etc.) for graph/program classi-

fication and malware detection. 15

3.3 The generated adversarial graph using GEA approach. Note that this graph

is obtained logically by embedding the graph in Fig. 3.2 into the graph in

Fig. 3.1, although indirectly done by injecting the code listings as highlighted

in Listings 1, 2, and 3. 16

3.4 SGEA pattern extraction and AE generation process. SGEA uses CORK to

extract discriminative subgraphs from each class. Then, the extracted sub-

graphs are embedded to generate the AEs. The process is terminated and the

AE is returned upon successfully misclassifying the model. 17

3.5 Sample of extracted discriminative subgraph from Gafgyt malicious family.

Here, the graph size is 7, and the labels are arbitrary. Ideally, connecting this

subgraph to a sample should lead the model to misclassify the sample into

Gafgyt. 18

3.6 The internal architectural of the DNN used for the detection and classifica-

tion tasks. The design consists of six fully connected layers, with dropout

operations and softmax activation function. 22

x

3.7 Internal design of the CNN architecture used for detection and classification

task. Notice that 46@1x3, for example, refers to applying 46 filters each of

size 1x3 on the input data. The design consists of four convolutional layers

with maxpooling and dropout operations. Then, a dense layer of size 512 is

used with a softmax activation function to output the model’s prediction. . . . 23

3.8 Confusion matrices of IoT malware classification systems. Here, each row

represents the actual class, whereas, columns represents the predicted labels.

Labels are Benign (B), Gafgyt (G), Mirai (M), and Tsunami (T). 24

3.9 GEA: Confusion matrices of IoT malware classification systems. Here, each

row represents the actual class, whereas, columns represents the predicted

labels. Labels are Benign (B), Gafgyt (G), Mirai (M), and Tsunami (T). . . . 25

3.10 SGEA: Confusion matrices of IoT malware classification systems. Here,

each row represents the actual class, whereas, columns represents the pre-

dicted labels. Labels are Benign (B), Gafgyt (G), Mirai (M), and Tsunami

(T). 25

3.11 DL-FHMC system flow. First, corresponding CFGs of the IoT software are

extracted, then, 23 algorithmic features are extracted from the CFGs. After-

ward, an IoT malware detection system classifies samples into benign and

malware, all malware samples are directed to IoT malware classification sys-

tem, while benign samples are directed into suspicious behavior detection

system (SBD) for further investigation. 31

xi

3.12 Suspicious behavior detection system design. The design consists of four

modules, a subgraphs mining module to extract frequent subgraphs from

three IoT malicious families. Afterward, the subgraphs are ranked by the

pattern selection module, where the top 10,000 patterns of each malicious

family are selected. Further, the CFG of each sample is redirected to the Sus-

picious Behavior Detector, and represented as a vector of size 30, 000. The

vector representation is fed to Suspicious Behavior Detector Model (SBDM)

to be classified into benign and suspicious. 32

3.13 DL-FHMC: RF-based suspicious behavior detector ROC performance over

GEA and SGEA attacks. 37

4.1 The system pipeline. The software binaries are (a) represented using different

state-of-the-art approaches, and (b) manipulated using functionality preserv-

ing operations, such as packing, stripping, and padding. The correspond-

ing representations of the original samples and manipulated ones are then (c)

tested against pre-trained ML-based malware detectors and industry-standard

detection engines. 43

4.2 Graph manipulated attack overview. The software is reverse-engineered and

(a) represented as CFG and corresponding adjacency matrix, (b) using the

pre-trained neural network, (c) white-box C&W-based perturbation is crafted

and applied to the CFG. 50

4.3 Binary padding attack overview. (a) The software is represented as an h×w

image. (b) The content of the image is then compressed into the size of h
2
×w.

(c) Using C&W attack, we generate perturbation on the remaining half h
2
×w

of the image. (d) The generated image perturbation is then rescaled to the

original size of the software, and then (e) reshaped to a 1-D vector represented

the binaries to be appended. 52

xii

4.4 Baseline classifiers evaluation under various Gaussian noise perturbation rates

(1%-100%). 57

4.5 The online engines’ detection rate of the original and binary manipulated IoT

malware samples. 61

4.6 Industry-standard detection engines robustness highlight. Binary packing

significantly reduces the detection rate of Malware software (“E — 2”). Bi-

nary stripping does not result in noticeable performance degradation, and

may increase the malware detection rate (“E — 22”). Simple binary padding

to the end of the file may cause significant degradation in the performance

(“E — 3” and “E — 22”). 66

4.7 The generic file format. Different attacks utilizes different attack channels to

cause misclassification . 68

5.1 Fig. 5.1a is the t-SNE visualization of zbot mutated malicious software in the

period January 2013 - June 2013. Fig. 5.1b is the illustration of the decision

boundary changing of two classes A (undetermined) and B (determined). . . 76

5.2 The first appearance date of the top-50 Windows malicious families in the

collected dataset. 80

5.3 The time distribution of the collected (filtered) malicious samples. Notice

that most of the samples were collected in 2013, and within the 2018-2020

duration. 82

xiii

5.4 The overtime malware detection performance evaluation using seven differ-

ent data representations. The baseline models are trained on 80% of the mal-

ware samples captured in the period 2017-2018, and evaluated on the remain-

ing samples on weekly-basis. The highlighted areas are the actual weekly

performances, while the lines represent the performance trends. The reported

confidence is the detection confidence of the malware detection model in de-

tecting malware. 83

5.5 The overtime detection performance evaluation after model’s retraining using

the hybrid confidence based approach. 94

5.6 The estimated mutations timeline for zbot malware family. Over the period

2008-2020, 31 mutations are detected. 95

5.7 The visualization of emerging family detection for three trails. For each trial,

the upper part (above the horizontal line) represent the steps at which each

family emerged, and the lower part represents when the OOD detector raise

the alarm regarding the family emergence. — The family emergence was

detected, — the step at which the family was detected, and — the detector

failed to detect the family emergence. 97

5.8 The emerging malware families detection metrics evaluation over the 1,000

trials. Each trail consist of different randomized configurations of malware

and family distributions over 100 steps. The average values of the evaluation

metrics accross the 1,000 trails are as follow: ADR is 74.55%, SDR is 5.20%,

and FAR is 4.17%. 99

5.9 The effects of varying the OOD detector’s sensitivity on the emerging mal-

ware detection. Increasing the sensitivity will result in higher detection rate

(ADR), but also cause higher false alarms (FAR). 100

xiv

5.10 The VirusTotal online malware detection engines average detection rate (TPR).

Unlike the common perception that new malware is hard to detect, malware

captured in the period 2015 – 2018 has the lowest detection rate (≈12%). . . 100

5.11 The detection rate of Windows malicious sample using VirusTotal before and

after padding one byte (0xFF) at the of the binaries. The new hash is not

recognized by VirusTotal, and therefore is re-analyzed. 101

5.12 The visualization of malware revival and re-spreading chains. — The mal-

ware first seen date, — the malware family (label), retrieved from VirusTotal,

did not change (i.e. similar to the one previously observed), — the malware

family (label) changed from the last time the malware was seen. 105

5.13 The malicious families that appeared in the malware re-spreading and revival

chains. A direct connection between two families indicate that a malware

appeared at different dates, and was labeled as both families. 106

5.14 The t-SNE distribution of the malware belonging to the families appeared in

the malware revival chains. Notice that while some samples create their own

clusters, samples of different families overlap within the feature space. 107

5.15 A sample Yara rule shared between gozi, zenpak, fareit, and trickbot mali-

cious families. 109

5.16 A breakdown of the malicious families connections within the revival chains

and extracted Yara shared patterns. 110

5.17 Shared malicious family origin analysis. Two malicious families are con-

nected if (i) at least five malicious samples were labeled as both families

across the studied period, and (ii) there is at least ten shared Yara rules among

the samples of these two families. 111

xv

LIST OF TABLES

3.1 Distribution of IoT samples across the classes. We split the dataset into 80%

training and 20% testing, with an overall 10,091 IoT samples (7,091 IoT

malware and 3,000 benign). 20

3.2 The distribution of extracted features. 23 algorithmic features are extracted

from the CFGs. These features are categorized into seven groups, including

number of nodes and edges, density, shortest path, and centralities. When

possible, the minimum, maximum, median, mean, and standard deviation

values are extracted, as in the shortest path group. 21

3.3 Evaluation (%) of the IoT malware detection systems on normal samples (i.e.

non-adversarial). 27

3.4 Evaluation (%) of the IoT malware classification systems on normal samples

(i.e. non-adversarial). 27

3.5 GEA: Malware to benign misclassification rate (%) over IoT detection systems. 28

3.6 GEA: IoT classification systems misclassification rates (%). The CNN-based

model perform the best, robustness-wise, under the small and median GEA

graph embedding attacks. 29

3.7 SGEA: Malware to benign IoT malware detection system evaluation. Here,

MR: misclassification rate, AVG. Size: the average subgraph size required to

achieve misclassification. 30

3.8 SGEA: Misclassification rate (%) over IoT classification systems. MR: mis-

classification rates. 30

xvi

3.9 DL-FHMC classifier evaluation (%) on clean dataset for IoT malware classi-

fication task. 35

3.10 DL-FHMC Suspicious Behavior Detector evaluation (%) on benign and ad-

versarial samples. DO refers to Data origin. 36

4.1 The CFG extracted algorithmic features, categorized into seven groups. When

possible, the minimum, maximum, median, mean, and standard deviation are

calculated. 46

4.2 The state-of-the-art static analysis representations used in this work. Most

of the representations require reverse-engineering (R.E.), while image-based

representation directly used the raw binaries (Bin.). CODE: features ex-

tracted from the disassemble binaries. 47

4.3 Accuracy (%) of the baseline models. Each representation is evaluated using

LR, RF, and NN-based classifiers. Note that almost all representations hold

high performance (up to 99%) in detecting IoT malware. 55

4.4 Baseline classifiers evaluation under white-box settings. Only realistic and

practical adversarial attacks are considered. All attacks are done on the NN

and transferred to the LR- and RF-based classifiers. 58

4.5 Baseline classifiers evaluation under binary manipulation (%). Packed*: op-

timized packing, L.A.: learning algorithm. 59

4.6 The online IoT malware detection engines evaluation (%). Packed*: opti-

mized packing. 63

4.7 The evaluation results (%) of the online IoT malware detection engines. . . . 64

xvii

4.8 IoT malware detection performance evaluation using gradient boosting model

with traditional and monotonic patterns learning under different software

cleaning and processing techniques. Notice that three feature representations

are rendered unusable after software processing, indicating that the extracted

patterns were associated with volatile features (i.e. non-robust). Unpadded

binaries include the intersection byte resetting. S&U: Both binary stripping

and unpadding were applied. 70

5.1 The distribution of the collected Windows binaries. After data filtration,

20,042 unique malicious binaries were considered for our evaluation. 79

5.2 The state-of-the-art representations used in this work. The image-based rep-

resentation uses the raw binaries, while other representations require reverse

engineering. Bin.: binary-based, R.E.: reverse-engineered. 82

5.3 The performance evaluation (%) of different malware detection systems. Ran-

dom: the data is randomly split into 80% training and 20% testing sets.

Meanwhile, other performances are reported for baseline models trained on

80% of the malware samples captured in the period 2017-2018. During:

refers to the performance (malware detection rate) on the remaining 20%

at the same period. 87

5.4 The malware detection performance evaluation using periodic retraining ap-

proach. BL: the baseline model’s malware detection rate without retraining

(%), T: model’s retraining frequency. 87

5.5 The malware detection performance evaluation using several retraining ap-

proaches. BL: the baseline model’s malware detection rate without retraining

(%), T: model’s retraining frequency. 88

xviii

5.6 The malware detection performance evaluation (%) on seen, unseen, and sin-

gleton samples after using several retraining approaches. Seen samples evalu-

ation refers to the detection rate of the model on samples of malware families

that it was trained on. Sing.: Singleton Windows malicious samples. 90

5.7 The evaluation (%) of using the hybrid approaches of 3-months-based re-

training and confidence-, OOD-, and MD-based retraining approaches. The

model is retrained if 1) last retraining occurred three months ago, or 2) the

approaches invoke the retraining process. T: model’s retraining frequency.

Sing.: performance on Singleton samples. 90

5.8 The retraining effects on the malware detection performance (%) using five

distance metrics for OOD approach, T: model’s retraining frequency. Per:

detection rate (%). 91

5.9 The model’s retraining effects on the benign detection rate (%). BL: the

baseline benign detection accuracy. 95

5.10 A comparison between the original assigned malware families and the new

assigned malware families as of January 2022. Notice that some families

were renamed, such as revetrat and rrat, while other samples’ assigned labels

are completely different (i.e. offerinstall to appster). 108

5.11 The most common strings among top five inter-family extracted Yara rules. . 108

xix

CHAPTER 1: INTRODUCTION

Deep learning techniques are being widely used in various domains, including malware detec-

tion [146, 150, 24, 21], computer vision [87, 58, 56, 61], natural language processing [57, 84], and

speech recognition [59, 63]. However, an extensive line of research has shown that an attacker can

manipulate the prediction of a deep learning-based classification system by adding a small pertur-

bation to the inputs fed to a deep learning model , intermediate embeddings [60, 131, 55], or by

inducing distribution shifts [62, 73]. These results highlight a major security issue for deep neural

network-based prediction systems, especially the ones deployed in critical applications, such as

access control, user authentication, and malware detection [153, 127].

To address this security concern, a variety of defence mechanisms have been proposed. These de-

fense mechanisms can be broadly categorized into two categories. The proactive approaches [76,

54, 136], mitigating the effects of known adversarial attack methods on the machine learning

frameworks, which increases model robustness to adversarial perturbation. In contrast, the reac-

tive approach aim to detect adversarial examples, and distinguish them from legitimate samples. In

particular, it builds a detector to detect adversarial examples in the test environment. This approach

is more suitable for already deployed systems, as no changes to the operating algorithm is needed.

In addition to detecting adversarial examples, analyzing and implementing defense mechanisms

can also help to identify security-compromised input sources, providing information regarding the

attack surfaces of the designed framework.

In this dissertation, we focus on analyzing the robustness of machine learning-based malware de-

tection frameworks. Bypassing the detection frameworks, via generating adversarial examples,

may cause diminishing returns to the implemented framework and environment, such as compro-

mising the system by misclassifying malware as benign. To this end, this dissertation makes three

different contributions in four different thrusts:

Thrust 1. Robustifying graph-based malware detection engines: We introduce DL-FHMC, a fine-

1

grained hierarchical learning approach designed for robust IoT malware detection. DL-

FHMC utilizes Control Flow Graph (CFG)-based behavioral patterns for adversarial IoT

malicious software detection. In particular, we extract a comprehensive list of behavioral

patterns from a large dataset of malicious IoT binaries, represented by the shared execution

flows, and use them as a modality for malicious behavior detection. Leveraging machine

learning and subgraph isomorphism matching algorithms, DL-FHMC provides state-of-the-

art performance in detecting malware samples and adversarial examples (AEs). We first

highlight the caveats of CFG-based IoT malware detection systems, which showed a detec-

tion accuracy of up to 99% in the literature, showing the adversarial capabilities in generating

practical functionality-preserving AEs with reduced overhead using Graph Embedding and

Augmentation (GEA) techniques. We then introduce Suspicious Behavior Detector, a com-

ponent that extracts comprehensive behavioral patterns from three popular IoT malicious

families, Gafgyt, Mirai, and Tsunami, for AEs detection with high accuracy. The proposed

detector operates as a model-independent standalone module, with no prior assumptions

about the adversarial attacks or their configurations.

Thrust 2. Analyzing the robustness of research- and industrial-standard malware detection sys-

tems under adversarial settings: We systematically examine the state-of-the-art IoT malware

detection approaches, which utilize various representation and learning techniques, under a

range of adversarial settings, including binary padding, stripping, and packing, alongside a

set of white-box practical adversarial attacks. Our analyses highlight the instability of the

state-of-the-art detectors in learning patterns that distinguish the benign from the malicious

software. The results show that software mutations with functionality-preserving operations,

such as stripping and padding, significantly deteriorate the accuracy of such detectors. Ad-

ditionally, our analysis of industry-standard malware detectors shows their instability with

respect to the malware mutations. Through experiments, we highlight the gap between the

capabilities of the adversary and that of the existing malware detectors. The evaluations

and analyses show that the optimal malware detection system is nowhere near, with existing

2

detection frameworks over-fitting on benign patterns and can be exploited toward misclas-

sification using pattern injection attacks. Toward addressing some of the issues, we explore

the threat surface of existing malware detection systems, providing root cause analysis of

the ongoing black-box adversarial malware examples, and uncovering the usage of volatile

exploitable features by online industry-standard detection engines, resulting in detection per-

formance reduction of up to 30%.

Thrust 3. Highlighting temporal inconsistencies in malware detection systems and their underly-

ing learning algorithms: We dive further into the robustness of existing malware detection

engines, questioning the effectiveness of malware detection retraining approaches by expos-

ing various limitations in the retraining approaches adopted by detection frameworks. We

show that model retraining only provides a marginal performance improvement for malicious

samples detection, while simultaneously degrading the benign samples detection accuracy.

Our analysis also shows that lapses in periodic retraining may not even provide the marginal

performance improvements, while continuously increasing the computation cost. We also

highlight the capabilities of out-of-distribution detection models in detecting the emergence

of new malware families. Further, inspired by our findings, we investigate the family labeling

inconsistencies within online detectors over time, unveiling family renaming inconsistency,

which affects thousands of shared malicious capabilities among malware families. While in-

tuitive, the shared capabilities increase the challenge of distinguishing the malicious families

among others, and limiting the understanding of their origin and unique capabilities.

In summary, this dissertation addresses the robustness of machine learning-based malware detec-

tion frameworks, by both designing robust solutions with adversarial detection capabilities, and

analyzing implemented systems highlighting their attack surface and possible exploitation and

vulnerabilities.

Organization. This dissertation is organized as follows: We review the literature and outline no-

table related works in chapter 2. Toward defending against the adversarial attacks, we introduce

3

DL-FHMC, robust and accurate graph-based malware detection framework, in chapter 3. In chap-

ter 4, we provide a large-scale analysis of attack surfaces existing within IoT malware detection

systems, a natural extension of such work is analyzing the threat surface of the attack vectors,

mitigating the adversarial attacks effects. In chapter 5, we discuss our efforts on analyzing the

robustness of Windows malware detection systems in terms of consistency and accurate learn-

ing, including the limitations and caveats of continuous model retraining. Finally, the dissertation

concludes in chapter 6, with concluding remarks and future work directions.

4

CHAPTER 2: LITERATURE REVIEW

In the following, we discuss notable related works relevant to this dissertation. We first discuss

the malware behavioral and temporal analysis and detection, followed by the literature on malware

detection and adversarial examples.

Malware Analysis & Detection

Malware Behavioral Analysis. While efforts have been put towards malware analysis and detec-

tion in general, IoT malware robustness analysis still lacks exploration and investigation. Among

the IoT malware studies, efforts towards the analysis and detection of malicious software are

limited, particularly, from the lens of CFG-based techniques. ManXu et al. [146] proposed a

CNN-based malware detection system for Android application from the semantic representation

of their control and data flow graphs representations. In addition, Yang et al. [150] identified

and detected Android malicious behaviors throughout generating two-level behavioral representa-

tions built from the CFG graph and call graphs of a program. Allix et al. [24] designed multiple

machine learning classifiers to detect Android malware using different textual representations ex-

tracted from the applications’ CFGs. Further, Alasmary et al. [21] conducted an in-depth CFG-

based comparative study for the Android and IoT malware.

Similarly, Pa et al. [108] established the first IoT honeypot and sandbox system, called IoTPOT,

that run over eight CPU architectures to capture the IoT attacks running over Telnet protocol.

Further, Caselden et al. [41] built an algorithm that generates an attack from the representation

of the hybrid information and CFG applied to the program binaries. Alam et al. [19] proposed a

metamorphic malware analysis and detection system that uses two different techniques that match

the CFGs of small malware and then address the change in the opcodes frequencies.

Moreover, Tamersoy et al. [132] proposed a malware detection algorithm that identifies the exe-

cutable files of the malware and then computes the similarities between them and the partial dataset

5

files from the Norton Community Watch. Then, they construct graphs based on the measurement

of inter-relationship between these files. In addition, Wuchner et al. [142] proposed a graph-based

detection system that uses quantitative data flow graphs generated from the system calls, and uses

the graph node properties, i.e., centrality metric, as a feature vector for the classification between

malicious and benign programs. Moreover, they extended the work by using a compression-based

mining technique applied to the quantitative data flow graphs for malware detection [141]. More-

over, Cen et al. [42] used Android API calls as features extracted from the decompiled source

code of the software, and proposed a probabilistic logistic regression-based model for malware

detection.

Furthermore, Qiu et al. [114] surveyed existing machine/deep learning-based Android malware

detection and classification systems. Their study shows a consistent trend of using neural network-

based architectures for extracting deep representations and characteristics of the Android malware

for the detection and classification tasks, which provide an improvement in comparison to the

handcrafted features.

While the over-time malware analysis is a well-studied domain, the effects of malware evolution on

machine learning-based malware detection frameworks is yet to be explored. In this dissertation,

we provide a wide-scale analysis of the limitations of machine learning under continuous malware

evolution, unveiling malicious practices that may exploit the detection frameworks and hinder

their learning process, including, but not limited to, malware revival and re-spreading, and family

labeling inconsistencies.

Malware Detection. The prior work in this space explores the potential of machine learning

algorithms for building effective malware detection systems [47, 22, 29, 137, 97]. The performance

of such systems largely depends on the choice of representations, generated by static and dynamic

analysis techniques.

With advances in learning theory, the application of learning algorithms to defend systems against

malware attacks has provided remarkable success. In order to apply advances in learning the-

6

ory, malware binaries are transformed into different representations that are machine learning-

compatible [89, 154]. For example, Cui et al. [48] introduced a malware detection method using

deep learning by transforming the malicious code into grayscale images, achieving an accuracy

rate of 94.5% on the Vision Research Lab dataset [104], and showing better performance than

static [81] and dynamic [18] feature-based representations. Similarly, Ni et al. [105] proposed

a malware detection system trained over 10,805 grayscale images associated with nine different

Windows malware families with comparable success. Fu et al. [65] proposed a malware detec-

tor using an RF model trained over colored images generated from malware binaries, achieving a

detection accuracy of 97.47% and a family classification accuracy of 96.85%.

Arp et al. [30] detected malicious android applications using machine learning models with manually-

engineered and statically extracted features. Pajouh et al. [72] detected ARM-based malware

targeting IoT devices using an LSTM-based architecture to model opcode sequences, achieving

detection an accuracy of 98.18%. Furthermore, Wang et al. [139] proposed an adversary-aware

neural network technique for malware detection by leveraging feature nullification. Li et al. [90]

leveraged a dataset of billions of program binary files to reliably identify malicious singleton mal-

ware samples using static features, with a false positive rate of as low as 1.4%. Shafiq et al. [123]

achieved a detection rate of 99% with less than 0.5% false alarm rates on Portable Executables.

The aforementioned literature aimed to identify malicious behavior using various representations.

In this dissertation, we leverage the aforementioned representations to analyze the robustness of

malware detection and classification tasks, particularly the robustness of static analysis-based fea-

ture representations.

Malware Temporal Analysis. Malware has significantly been analyzed to build defenses; e.g. the

aforementioned studies for malware detection and classification. Unfortunately, fewer efforts have

been dedicated to understand malware mutations, and even fewer were dedicated for understanding

the temporal aspects of malware evolution.

Graziano et al. [68] analyzed the malware samples submitted to public dynamic analysis sandboxes

7

before being used for malware campaigns in the wild. Their analyses show that malware appeared

on the public sandboxes months or even years before they are involved in targeted attacks.

Similarly, Bilge and Dumitras [35] noted that antivirus companies collect the malware involved

in attacks in advance (i.e., before they are used for such attacks), which allows address zero-day

attacks by identifying the malicious files exploiting a vulnerability before its public disclosure.

Mohaisen and Alrawi [101] systematically analyze the inconsistencies among the labeling fol-

lowed by malware detection vendors and their impact on the overall malware detection rate, ac-

curacy, and consistency. Their study highlights high dependency between the detection rate and

the family of the malware. Moreover, Bayer et al. [34] analyzed the reports of a public dynamic

analysis engine to study the trends and evolution of malicious behavior over a period of two years,

unveiling the common malicious behaviors among a diverse range of malicious software across

families.

Toward understanding malware temporal behavior, Alrawi et al. [26] introduced a large-scale study

of the current IoT malware threat landscape. By analyzing a total of 166,000 linux-based IoT ma-

licious software applications, they deduced that the IoT malware evolution follows trends similar

to the traditional malware by using exploits for infection. Lindorfer et al. [93] further studied

the evolution of well-known Windows malware families over time, by studying malware updating

process in disassembly. Their study enabled effective monitoring of the evolution of a malware’s

functional and behavioral components.

In this dissertation, we focus on a different aspect of malware behavior temporal shifting: the

resulted vulnerabilities and exploitation. In particular, we analyzed the model retraining in the

context of malware detection, a to-go solution for over time malware detection. Further, we studied

the reasons behind the family labeling inconsistencies, shedding light on shared malicious patterns

and capabilities among malware families, which can be used to understand the malware origin.

8

Adversarial Machine Learning

Machine/deep learning networks are widely used in security-related tasks, including malware de-

tection [28, 102, 100, 23]. However, it has been shown that deep learning-based models are vul-

nerable against adversarial attacks [99]. Unfortunately, such a behavior can be a critical issue in

malware detection systems, where misclassifying malware as benign may result in compromising

the underlying service [12, 15].

Various adversarial machine learning attack methods in the context of image classification have

been introduced to generate AEs. For example, Goodfellow et al. [67] introduced FGSM, a family

of fast method attacks to generate Adversarial Examples (AEs) that forces the model to misclassi-

fication. In addition, Carlini et al. [39] proposed three L-norm-based adversarial attacks, known as

C&W adversarial attacks, to investigate the robustness of neural networks and existing adversarial

defenses. Similarly, Moosavi et al. [103] proposed DeepFool, an L2 distance-based adversarial

iterative method to generate AEs with minimal perturbation.

Further, a critical application of the AEs is malware detection. Recent studies investigated gener-

ating AEs in the context of malware detection [129]. For instance, Grosse et al. [70] implemented

an augmented adversarial crafting algorithm to generate AEs, misleading a CNN-based classifier

to misclassify 63% of the malware samples to benign. Additionally, in the context of Android mal-

ware detection, Chen et al. [44] proposed a novel approach to evade the Android malware detection

systems by applying optimal perturbations onto Android APK using a substitute model, utilizing

the transferability characteristics of the AEs. This allows generating AEs to non-differentiable

models, such as support vector machines and random forest. Applying perturbation directly onto

APK’s Dalvik bytecode, they achieved a performance degradation of more than 95% against two

state-of-the-art detection approaches, MaMaDroid [107] and Drebin [31].

The detection of the AEs is challenging [38]. While work on detecting AEs in the context of IoT

malware detection is very limited, multiple studies attempt to detect them in the context of image

classification [144, 92, 98], achieving detection accuracy of 20% to 90%. In this dissertation,

9

we implemented various approaches for adversarial malware detection and mitigation, including

graph mining-based malicious behavior signaturing, and robust software pre-processing for volatile

features removal, achieving a state-of-the-art robust malware detection accuracy of up to 99% with

adversarial mitigation capabilities.

10

CHAPTER 3: DL-BASED FINE-GRAINED HIERARCHICAL

LEARNING APPROACH FOR ROBUST MALWARE CLASSIFICATION

There has been a large body of research work on the problem of malware analysis using both static

and dynamic approaches [102, 66, 78], and a few attempts on analyzing IoT malware in particular.

Recently, machine learning algorithms, specifically deep learning techniques, are actively utilized

for detecting/classifying malicious software from benign ones. However, it should be noted that the

research work on IoT malware analysis has been very limited not only in the size of the analyzed

samples, but also in the utilized approaches [32, 50, 125, 119]. Among the static analysis-based

approaches, one of the prominent approaches is to use abstract graph structures for IoT malware

analysis and detection, such as the control flow graph (CFG) [23, 20]. Previously, it has been

shown that the software graph-based analysis can be incorporated with machine learning methods

to introduce more powerful analysis tools [151, 28]. For the IoT malware detection, CFGs allow

defenders to extract plentiful feature representations that can be used to distinguish those malware

from benign, owing to their various properties, such as the degree distribution, centrality measures,

radius, etc.. [23]. Those properties can be represented as a feature vector that can be used to enable

machine learning algorithms to accurately detect and classify IoT malware samples. Proposed

by Alasmary et al., one such application is exploring IoT malware using both graph analysis and

machine/deep learning [23]. Their model not only can learn the representative characteristics of

the graph, but also can be utilized to build an automatic detection system for predicting the label

of the unseen software.

Using machine and deep learning techniques should first address the concerns and challenges re-

lated to their security and usability. Recent studies have shown that machine learning-based IoT

malware detection methods are prone to adversarial manipulation [110]. Adversarial machine

This work has been published at the IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUT-
ING, 2021.

11

learning has shown the fragile nature of those algorithms to perturbation and data poisoning at-

tacks, leading to misclassification. For example, an adversary can introduce a small modification

to the input sample to make the classifier misidentify the malware as benign (i.e. the adversary

introduces an AE). Such modification is usually crafted using small perturbation to make the AE

undetectable and very difficult to distinguish for the original sample.

We stress the importance of addressing the threat posed by the machine learning vulnerability to

AEs, particularly in security-sensitive applications. We undertake this challenge by (1) showing the

high potential of successful detection/classification of IoT malware using deep learning methods;

(2) assessing the robustness of such methods to AEs generated by different state-of-the-art CFG-

based AEs generation techniques; (3) introducing a fine-grained hierarchical approach to tackle

adversarial attacks by leveraging patterns extracted from the basic and elementary structure of the

tested software.

To this end, we start by investigating the robustness of DL-SSMC, Deep Learning-based Single

Shot Malware Classification approach, for accurate IoT malware detection and classification. DL-

SSMC utilizes machine learning techniques for IoT malware detection and classification, taking

feature representation as an input, and outputs the classification corresponding to the input, we

refer to this process as “single shot”, as it requires querying the system once, and no decisions are

taken outside of the machine learning model itself. Then, we examine the approach against AEs

generated by Graph Embedding and Augmentation (GEA) [13] and Sub-Graph Embedding and

Augmentation (SGEA) [12]. The GEA and SGEA are graph-based AEs generation approaches

that are proposed to bypass CFG-based malware detection systems.

To cope with adversaries and minimize their effects, we propose DL-FHMC, Fine-grained Hierarchical

Learning for Malware Classification, for detecting and classifying malware samples by operating

on a fine-grained level of structures and patterns extracted from the malicious software. DL-FHMC

utilizes the shared behavioral structures of the malicious IoT software from the same family to cre-

ate sub-graph signatures representing the execution flows of the malicious behavior. The extracted

12

signatures are then used to distinguish benign software and AEs with high accuracy. Our experi-

ments show the effectiveness of our proposed approach in detecting malware samples as well as a

high-degree of robustness against a variety of adversarial attacks.

Summary of Completed Work

1. Investigate the robustness of traditional CFG-based IoT malware detection systems. Through

comprehensive experiments, we show the effectiveness of GEA and SGEA in producing suc-

cessful AEs that can fool the machine learning-based malware detection system.

2. Propose robust and resilient CFG-based malware detection system. We propose DL-FHMC,

a fine-grained hierarchical learning for malware classification, that extracts potential mali-

cious behavioral patterns of IoT malicious families. We extracted 30,000 behavioral patterns

from three IoT malicious families.

3. Investigate the robustness of DL-FHMC under adversarial configurations. DL-FHMC oper-

ates by investigating the malicious subgraphs within the IoT malware, using subgraph min-

ing and pattern recognition to detect suspicious and malicious behaviors within the tested

samples, mitigating the effects of AEs and detecting up to 100% of malicious AEs.

Graph Analysis: A Preliminary Overview

Graph Analysis. The CFG is a graph representation of the program which shows all paths that can

be reached during the execution, as shown in Fig. 3.1. In a CFG, the set of nodes means the basic

blocks where each block is a straight-line instruction without any jump or jump target, while the

set of directed edges corresponds to the jump which traverses from the block to the other block at

the branch (if), loop (while, for), and the end of the function (return). Once the first instruction of

the basic block is executed, the rest of the instructions in the same block are necessarily executed

unless terminated by external interference. In general, CFG is used for the structural analysis of

13

the program. For example, from the perspective of optimization, the CFG is used to analyze the

reachability of each block. By constructing the CFG and evaluating the reachability, the flaws of

the program (infinite loop or unreachable codes) can be found and addressed.

CFG-based Analysis. In graph theory, there are various concepts that express the characteristics of

a graph. Given G = (V,E), for example, the number of vertices (|V |) means the order of G, while

the number of edges (|E|) corresponds to the size of G. The density of the graph can be defined as

D = |E|/(|V |∗(|V |−1)) for directed simple graph, which means the ratio of the number of edges

in G to the maximal number of edges in the complete graph. The centrality is measured for each

node v ∈ V , which shows how important a specific node is. In detail, there are several different

kinds of centrality, such as closeness centrality, betweenness centrality, Eigenvector centrality, etc..

These indicators (and further concepts not described above) can be considered the features of the

graph G. Moreover, the combination of those metrics can be a more deterministic characteristic

of the graph. Considering that a CFG is a kind of graph, it is true that each binary has not only

its unique graph representation but also the associated values, such as the order, size, and density

of CFG, and centrality for each vertex in CFG. On the other hand, the graph-based analysis can

provide the possibility for identifying the malware. Because it is highly likely that the binaries

in the same “family” share the structural similarity (even if there is a little difference), the CFG-

based features can be combined with the state-of-the-art machine learning technique to determine

whether a given binary is malicious or not.

Threat Model

The rapid reliance on machine learning methods in various applications has raised several security

and privacy concerns, especially in security-sensitive applications. It has become crucial to un-

derstand and assess the robustness of machine learning techniques to several adversarial settings.

These adversarial settings include AEs, where an adversary intends to fool or misguide the classi-

fication model with malicious inputs that are generated by applying a minimal perturbation to the

14

;-- main:
/ (fcn) sym.main 24
| sym.main ();
| ; var int local_4h @ rbp-0x4
| 0x004004d6 push rbp
| 0x004004d7 mov rbp, rsp
| 0x004004da mov dword [local_4h], 0

| 0x004004e1 add dword [local_4h], 1
| 0x004004e5 cmp dword [local_4h], 9
| 0x004004e9 jle 0x4004e1

| 0x004004eb nop
| 0x004004ec pop rbp
\ 0x004004ed ret

Figure 3.1: The generated CFG for the original sample and used for extracting graph-based features
(graph size, centralities, etc.) for graph/program classification and malware detection.

;-- main:
/ (fcn) sym.main 35
| sym.main ();
| ; var int local_8h @ rbp-0x8
| ; var int local_4h @ rbp-0x4
| 0x004004d6 push rbp
| 0x004004d7 mov rbp, rsp
| 0x004004da mov dword [local_8h], 0
| 0x004004e1 mov dword [local_4h], 0
| 0x004004e8 cmp dword [local_8h], 0
| 0x004004ec je 0x4004f6

| 0x004004f6 nop
| 0x004004f7 pop rbp
\ 0x004004f8 ret

| 0x004004ee mov dword [local_4h], 0xa
| 0x004004f5 nop

Figure 3.2: The CFG for the selected target sample generated and used for extracting graph-based
features (graph size, centralities, etc.) for graph/program classification and malware detection.

original sample [111]. These modifications misclassify the samples of the model from benign to

malware and vice versa and even misclassify the malware classes to another class. Such adversarial

attacks can be launched under different adversarial capabilities that allow for either black-box and

white-box attacks. In a white-box attack, the adversary has full knowledge of the inner networking

paradigm of the model, while in a black-box attack, the adversary has only access to the model via

an oracle and observes only the output of the model.

The literature on AEs and their effects includes numerous studies where the perturbation is applied

15

/ (fcn) main 66
| main ();
| ; var int local_10h @ rbp-0x10
| ; va0r int local_ch @ rbp-0xc
| ; var int local_8h @ rbp-0x8
| ; var int local_4h @ rbp-0x4
| 0x004004d6 push rbp
| 0x004004d7 mov rbp, rsp
| 0x004004da mov dword [local_ch], 1
| 0x004004e1 cmp dword [local_ch], 1
| 0x004004e5 jne 0x4004fa

| 0x004004fa mov dword [local_8h], 0
| 0x00400501 mov dword [local_4h], 0
| 0x00400508 cmp dword [local_8h], 0
| 0x0040050c je 0x400515

| 0x004004e7 mov dword [local_10h], 0

| 0x00400515 nop
| 0x00400516 pop rbp
\ 0x00400517 ret

| 0x0040050e mov dword [local_4h], 0xa

| 0x004004ee add dword [local_10h], 1
| 0x004004f2 cmp dword [local_10h], 9
| 0x004004f6 jle 0x4004ee

| 0x004004f8 jmp 0x400515

Figure 3.3: The generated adversarial graph using GEA approach. Note that this graph is obtained
logically by embedding the graph in Fig. 3.2 into the graph in Fig. 3.1, although indirectly done by
injecting the code listings as highlighted in Listings 1, 2, and 3.

to image pixels [111, 110, 138]. Unlike image AEs, the generated AEs from the IoT software

must preserve the original sample’s functionality and practicality in order to function properly.

Adversarial machine learning can be derived from two perspectives: targeted and non-targeted

attacks.

Targeted attacks. The focus of this attack is to generate AE x′ that forces the classifier f to

misclassify into a specific target class t. For instance, the adversary generates a set of malicious

IoT software samples, which are classified as benign. That is: x′ : [f (x′) = t] ∧ [∆ (x, x′) ≤ ϵ],

where f(.) represents the classifier’s output, ∆(x, x′) denotes the difference between x and the

crafted AE x′, whereas ϵ is a distortion threshold.

Non-targeted attacks. The focus of non-targeted attack is to generate an AE that forces the

classifier f to misclassify to any class other than the original class f(x), where x is the original

input. That is: x′ : [f (x′) ̸= f (x)] ∧ [∆ (x, x′) ≤ ϵ], where f(.) shows the classifier’s output,

∆(x, x′) represents the difference between x and x′, and ϵ is the distortion threshold.

In this study, we generate AEs from the IoT software based on code-level manipulation using

GEA [13] and SGEA [12]. In the following, we discuss each attack briefly.

16

Preprocessing

CFG Extraction

Disassembling
CORK

Feature
Extraction ClassifierGraph

Embedding

Benign

Gafgyt

Mirai

Tsunami

Figure 3.4: SGEA pattern extraction and AE generation process. SGEA uses CORK to extract
discriminative subgraphs from each class. Then, the extracted subgraphs are embedded to generate
the AEs. The process is terminated and the AE is returned upon successfully misclassifying the
model.

Graph Embedding and Augmentation (GEA). GEA generates realistic AEs, where the func-

tionality and practicality of the original binary are maintained. The key idea of GEA is combining

an original CFG with a targeted CFG. In the following, we briefly describe GEA using an example.

Practical Implementation. Assume an original sample (software) (xorg) and a selected target

sample (xsel), GEA combines xorg with a xsel while preserving the functionality and practicality of

xorg. The GEA process combines the two scripts while ensuring that xsel does not affect the process

and functionality of xorg. Note that the condition is set to execute only the functionality related

to xorg and preventing the processes of xsel from being executed. Prior to generating the CFG

for these algorithms, we compile the code using the GNU Compiler Collection (GCC) command.

Afterward, Radare2 [7] is used to extract the CFG from the binaries.

Fig. 3.1 and Fig. 3.2 show the generated CFGs for both xorg and xsel, respectively. As shown

in Fig. 3.3, the combined CFG consists of the two scripts sharing the same entry and exit nodes.

Therefore, the GEA approach adds modifications to the CFG for generating the AE. Given the

nature of the extracted features, the applied changes on the CFG are reflected upon the features,

regardless of the effects on the functionality and executability of the original sample. Following

the adopted approach in [13], we select three different-sized graphs from benign samples as xsel.

The selected graphs vary in size, where the size is the number of nodes in the graph. To generate

AEs, we selected a graph and connected it with all malicious samples.

17

2 3 4

51

0 6

Figure 3.5: Sample of extracted discriminative subgraph from Gafgyt malicious family. Here, the
graph size is 7, and the labels are arbitrary. Ideally, connecting this subgraph to a sample should
lead the model to misclassify the sample into Gafgyt.

Sub-GEA (SGEA). While GEA combines an original CFG to a selected CFG of the IoT samples

to misclassify the machine learning model, the SGEA approach aims to reduce the injection size

and achieve the adversarial objectives with minimal perturbation. More specifically, it uses deep

discriminative subgraph patterns extracted from the CFGs of each class using a correspondence-

based quality criterion (CORK) algorithm, which defines a submodular quality criterion that en-

sures a solution close to the optimal solution [133]. This is done by using subgraphs that appear

more frequently in one class than others, to fool the machine learning model in predicting that

class (e.g. when launching a targeted attack).

Let D denotes the CFGs of the training samples, D = {Gi}ni=1 and class labels C = {ci}ni=1 where

ci ∈ {+1,−1} is the class label of graph Gi. Also let D+ and D− denote the set of graphs in the

corresponding classes. For a multi-class dataset, we run the CORK algorithm once for each class

where all the graph that belong to the same class are included in D+ and the other graphs are in D−.

A graph Gi supports another graph S if S is a subgraph of Gi. Let DS = {Gi|S ⊆ Gi ∀ Gi ∈ D}

denote the supporting graphs of a subgraph S. Moreover, let D+
S and D−

S , denote the supporting

graphs of the subgraph in the positive and negative graphs, respectively.

CORK defines a submodular quality criterion, q, for a subgraph based on the set of supporting

graphs (‘hits’) and non-supporting graphs (‘misses’) in the two classes and is calculated as follows:

q(Gs) = −(|D+∼
S | ∗ |D−∼

S | + |D+
S | ∗ |D

−
S |). The best quality score is achieved when a subgraph

appears in all graphs of one class and not once in the graphs of the other classes. Pruning strategies,

as used in the quality criterion of CORK, are integrated into the gSpan algorithm [149] to directly

18

inc lude<s t d i o . h>
void main () {

i n t GEAVar1 = 0 ; / / b l o c k 0
i f (GEAVar1 == 1){ / / b l o c k 1

GEAVar1 += 1 ;
}
e l s e i f (GEAVar1 == 2){ / / b l o c k 2

GEAVar1 += 2 ;
}
i n t GEAVar2 = 0 ; / / b l o c k 3
i f (GEAVar2 == 0){ / / b l o c k 4

GEAVar2 += 1 ;
}
e l s e { / / b l o c k 5

GEAVar2 += 2 ;
}
i n t GEAVar3 = 0 ; / / b l o c k 6

}
Listing 3.1: C script of an example Gafgyt extracted subgraph. Each block is represented as a node
in the generated CFG. Appending this code to the source code of a sample will lead to producing
the subgraph shown in Fig. 3.5.

mine discriminative subgraphs. Once the set of discriminative subgraphs are mined, we employ

gSpan, a graph-based substructure mining pattern for mining frequent subgraphs of size five nodes

or higher.

Practical Implementation. SGEA combines xorg with the selected discriminative subgraph (xsel).

For example, Fig. 3.5 shows the discriminative subgraph extracted from the Gafgyt class and

listing 3.1 shows the equivalent C script to generate that subgraph, which can then be combined

with the xorg to generate an AE. Figure 3.4 shows the overview of patterns extraction and the

process of generating AEs in the SGEA approach. While GEA modifies the CFG by connecting

the selected graph with the original sample, SGEA connects a carefully generated subgraph with

the original sample to generate AE, reducing the injected graph size. To generate the subgraph, we

extracted the discriminative subgraph patterns from each class, with a size of five nodes or higher.

Then, in order to reduce the graph size needed to be embedded, we connect xorg with the subgraph

19

Table 3.1: Distribution of IoT samples across the classes. We split the dataset into 80% training
and 20% testing, with an overall 10,091 IoT samples (7,091 IoT malware and 3,000 benign).

Class
of Samples

% of Samples
Train # Test # Total

Benign 2,400 600 3,000 29.72

Malicious
Gafgyt 2,400 600 3,000 29.72
Mirai 2,400 600 3,000 29.72
Tsunami 872 219 1091 10.84

Overall 8,072 2,019 10,091 100

with minimum size. If the generated AE misclassifies, the process succeeds, and the AE will be

returned; else, we select the next subgraph in ascending order regarding the number of nodes in

the subgraph. In case none of the subgraphs cause misclassification, the original sample will be

returned as the process failed.

Constructing an AE. As shown in Figure 3.4, we extract a set of subgraphs from the targeted

class. Then, we combine the original sample with the smallest extracted subgraph of the targeted

class regarding the number of nodes. If the generated CFG fails to misclassify the model, another

subgraph is selected in ascending order with respect to the number of nodes in the set of generated

subgraphs and combined with the same original graph to generate another CFG. This process is

repeated until a subgraph successfully misclassifies the model. If no existing subgraph from the set

of targeted subgraphs causes misclassification, the original sample is returned, hence the process

failed in generating AE. In this study, we consider AEs that misclassify malware as benign, as such

AEs have huge risk on the users, and render the malware detector systems useless.

Data Representation & Learning

In this section, we discuss the utilized dataset, dataset representation, and learning algorithms,

including the experimental setup for DL-SSMC and DL-FHMC.

20

Table 3.2: The distribution of extracted features. 23 algorithmic features are extracted from the
CFGs. These features are categorized into seven groups, including number of nodes and edges,
density, shortest path, and centralities. When possible, the minimum, maximum, median, mean,
and standard deviation values are extracted, as in the shortest path group.

Feature category # of features
Betweenness centrality 5
Closeness centrality 5
Degree centrality 5
Shortest path 5
Density 1
of Edges 1
of Nodes 1
Total 23

Dataset. In this work, we collected binaries of two categories, IoT malicious and benign samples.

The malicious samples are collected from CyberIOCs [6], VirusTotal [8], and VirusShare [4] in the

period of January 2018 to late January of 2021, with a total of 7,091 samples that belong to three

malware families. Additionally, we assembled a dataset of 3,000 benign IoT samples compiled

from the source files on GitHub [52].

Ground Truth Class. The benign and malicious samples in our dataset were validated using

the VirusTotal [8]. We uploaded the samples on VirusTotal and gathered the scan results corre-

sponding to each sample. We then used AVClass [121] to classify the malicious samples into their

corresponding families. We summarize the dataset in table 3.1.

Data Representation . Samples of the IoT benign (3,000 sample) and IoT malware categories

(7,091 samples) were reverse-engineered using Radare2 [7], a reverse engineering framework that

provides various analysis capabilities, for obtaining the samples’ corresponding CFGs. Using the

samples’ CFGs extracted by Radare2, we represent the CFG using the graph-theoretic features

proposed by Alasmary et al. [21]. In particular, we extracted 23 different algorithmic features cat-

egorized into seven groups. Table 3.2 shows the feature category and the number of features in each

category. Except for the number of edges, nodes, and the density of the graph, five features were

21

1/21

In
p

u
t

1x23

1
x1

0
0

1
x1

0
0

1
x1

0
0

1
x1

0
0

1
x1

0
0

So
ft

m
ax

La
ye

r

D
ro

p
o

u
t

p
(0

.2
5

)

FP
R

FN
R

A
R

Ev
al

u
at

io
n

 M
et

ri
cs

1
x1

0
0

D
ro

p
o

u
t

p
(0

.5
0

)

Figure 3.6: The internal architectural of the DNN used for the detection and classification tasks.
The design consists of six fully connected layers, with dropout operations and softmax activation
function.

extracted from each feature category, including the minimum, maximum, median, mean, and stan-

dard deviation values for the observed parameters. To this end, each IoT software is represented as

a vector of size 1× 23 representing the corresponding CFG-based algorithmic features.

Learning Algorithms. Toward IoT malware detection and classification, we utilize different ma-

chine and deep learning algorithms for pattern learning and deep feature extraction. In the follow-

ing, we briefly describe each learning algorithm.

Random Forest (RF). RF consists of N decision trees, each decision tree is trained on a collection

of random features, and finds the non-linear relationships between the features and the output

decision. The final prediction of RF classifier with N decision trees is determined by a majority

vote over the predictions or by averaging the prediction of all trees, determined as follows:

fRF =
1

N

N∑
n=1

fn(X
′

s),

where, for a randomly selected feature set, (X ′
. ⊂ X.), fn is the nth tree’s prediction and X

′
s is the

segment’s s vector.

Deep Neural Networks (DNN). DNN is an artificial neural network with neurons of each layer are

fully connected to the neurons of the next layer. It consists of multiple hidden layers between the

22

F
e

a
tu

re
s

V
e

c
to

r

1x23

⊗ ⊗

46@1x3 Feature Maps

M
a

x
p

o
o

lin
g

46@1x3 Feature Maps 46@1x2

D
ro

p
o

u
t

FC Layer

ConvB1

F
ilt

e
rs

F
ilt

e
rs

⊗

F
ilt

e
rs

⊗

F
ilt

e
rs

M
a

x
p

o
o

lin
g

D
ro

p
o

u
t

ConvB2

Feature Maps 92@1x2 Feature Maps 92@1x3 Feature Maps 92@1x3

F
la

tt
e

n

D
e
n
s
e
 (

5
1
2
)

1x512

D
ro

p
o

u
t

S
o
ft

m
a
x

L
a
y
e
r

Accuracy

FPR FNR

Evaluation Metrics

CB

Feature Maps

1x23

Conv 1

1x21

Conv 2

1x10

S1

1x4

S2

1x8

Conv 4

1x10

Conv 3

Figure 3.7: Internal design of the CNN architecture used for detection and classification task.
Notice that 46@1x3, for example, refers to applying 46 filters each of size 1x3 on the input data.
The design consists of four convolutional layers with maxpooling and dropout operations. Then, a
dense layer of size 512 is used with a softmax activation function to output the model’s prediction.

input and output layers. Given a feature vector X of length q and target y, the DNN-based classifier

learns a function f(.) : Rq −→ Ro, where q is the input’s dimension and o is the output’s dimension.

With multiple hidden layers, the dimension of the output of every hidden layer decreases with

transformation. Each neuron in the hidden layer transforms the values of the preceding layer using

linearly weighted summation, w1 + w2 + w3 + ...wq, which passes through a ReLU activation

function (y(x) = max(x, 0)). The output of the hidden layers is then fed to the output layer, and

passed to a softmax activation function h, defined as h(x) = 1
1+e−x , outputting the prediction of

the classifier.

Fig. 3.6 illustrates the DNN-based model utilized for training the IoT malware detector and clas-

sification system. The architecture of the DNN-based model consists of two consecutive and fully

connected dense layers of size 1 × 100 connected to the input vector, followed by a dropout op-

eration with a probability of 0.25. The output of the dropout function is fed to another two fully

connected dense layers of size 1 × 100, followed by a dropout operation with a probability of

23

B G M T
B 0.995 0.002 0.002 0.002
G 0.007 0.977 0.015 0.002
M 0.015 0.008 0.977 0.000
T 0.009 0.018 0.041 0.931

(a) RF

B G M T
B 0.960 0.005 0.025 0.010
G 0.007 0.978 0.013 0.002
M 0.017 0.037 0.937 0.010
T 0.023 0.023 0.023 0.931

(b) DNN

B G M T
B 0.963 0.005 0.023 0.008
G 0.010 0.973 0.015 0.002
M 0.013 0.018 0.967 0.002
T 0.041 0.018 0.041 0.899

(c) CNN

Figure 3.8: Confusion matrices of IoT malware classification systems. Here, each row represents
the actual class, whereas, columns represents the predicted labels. Labels are Benign (B), Gafgyt
(G), Mirai (M), and Tsunami (T).

0.5. The output is then fed to the softmax layer. This design enables the extraction of deep fea-

ture representations and patterns from the feature vectors, and therefore, finding discriminative

characteristics for detection and classification processes.

Convolutional Neural Network (CNN). The basic unit of the CNN network is a convolution layer,

which consists of several filters convolving over the input to generate feature maps. Once a feature

vector is fed into a convolutional layer, it becomes abstracted to a feature map, with the shape of

(feature map height) × (feature map width) × (feature map depth), with two attributes: 1) convo-

lutional kernels defined by a width and a height (hyper-parameters), 2) the depth of the convolution

filter, which is equal to the depth of the input vector representation feature map. The CNN-based

model constitutes of three blocks, two feature extraction layers, along with the classification layer.

Fig. 3.7 illustrates the CNN-based model architecture used in this study.

Even though, from a machine learning perspective, the RF model seems the most suitable given the

data representation and structure, and the limited number of features (i.e. 23), we also used DNN

and CNN-based approaches as they show their capabilities in multiple applications for automati-

cally producing high-quality encoding of the features towards a highly accurate classification. We

note that alongside the aforementioned approaches, we also evaluate the performance of Logistic

Regression- and Support Vector Machine-based architectures, however, due to their low perfor-

mance, the results were not included in the evaluation.

24

B G M T
B 0.000 0.000 0.000 0.000
G 0.792 0.183 0.003 0.022
M 0.326 0.002 0.671 0.002
T 1.000 0.000 0.000 0.000

(a) RF-Small

B G M T
B 0.000 0.000 0.000 0.000
G 1.000 0.000 0.000 0.000
M 0.992 0.000 0.007 0.001
T 1.000 0.000 0.000 0.000

(b) RF-Median

B G M T
B 0.000 0.000 0.000 0.000
G 1.000 0.000 0.000 0.000
M 1.000 0.000 0.000 0.000
T 1.000 0.000 0.000 0.000

(c) RF-Large

B G M T
B 0.000 0.000 0.000 0.000
G 0.880 0.100 0.000 0.020
M 0.492 0.028 0.472 0.007
T 0.972 0.000 0.009 0.018

(d) DNN-Small

B G M T
B 0.000 0.000 0.000 0.000
G 1.000 0.000 0.000 0.000
M 0.876 0.093 0.030 0.000
T 1.000 0.000 0.000 0.000

(e) DNN-Median

B G M T
B 0.000 0.000 0.000 0.000
G 1.000 0.000 0.000 0.000
M 1.000 0.000 0.000 0.000
T 1.000 0.000 0.000 0.000

(f) DNN-Large

B G M T
B 0.000 0.000 0.000 0.000
G 0.078 0.608 0.017 0.297
M 0.135 0.000 0.836 0.028
T 0.885 0.009 0.037 0.069

(g) CNN-Small

B G M T
B 0.000 0.000 0.000 0.000
G 0.560 0.438 0.002 0.000
M 0.873 0.020 0.107 0.010
T 1.000 0.000 0.000 0.000

(h) CNN-Median

B G M T
B 0.000 0.000 0.000 0.000
G 1.000 0.000 0.000 0.000
M 1.000 0.000 0.000 0.000
T 1.000 0.000 0.000 0.000

(i) CNN-Large

Figure 3.9: GEA: Confusion matrices of IoT malware classification systems. Here, each row
represents the actual class, whereas, columns represents the predicted labels. Labels are Benign
(B), Gafgyt (G), Mirai (M), and Tsunami (T).

B G M T
B 0.000 0.000 0.000 0.000
G 1.000 0.000 0.000 0.000
M 0.995 0.000 0.005 0.000
T 1.000 0.000 0.000 0.000

(a) RF

B G M T
B 0.000 0.000 0.000 0.000
G 0.985 0.000 0.015 0.000
M 0.657 0.139 0.194 0.010
T 0.930 0.000 0.070 0.000

(b) DNN

B G M T
B 0.000 0.000 0.000 0.000
G 0.602 0.000 0.348 0.005
M 0.736 0.000 0.219 0.045
T 0.915 0.015 0.070 0.000

(c) CNN

Figure 3.10: SGEA: Confusion matrices of IoT malware classification systems. Here, each row
represents the actual class, whereas, columns represents the predicted labels. Labels are Benign
(B), Gafgyt (G), Mirai (M), and Tsunami (T).

Experimental Setup. We consider both malware detection and classification. Malware classifi-

cation refers to identifying a malware family a sample, while the detection is simply indicating

whether a sample is malicious or benign. Therefore, the detection task can be viewed as a binary

classification task. The classification task aims to detect and identify the malicious behavior origin

25

(i.e. family).

Training Process. We trained the model architectures using 100 epochs with a batch size of

32. RF uses 100 decision trees, with no specified maximum length. For DNN and CNN, we

used Rectified Linear Units (ReLUs) as the activation function, with softmax activation function

at the classification layer. For regularization, we use dropout to prevent over-fitting and allow

propagation of robust and distinct features through the model layers. Note that the value 0.25 is

widely used within the machine learning community, as 75% of the neurons are considered for

feature propagation between layers [126]. This provides better accuracy, and mitigates the noise

caused by possible bias within the dataset.

Evaluation Metrics. We report the performance of the trained models using the following met-

rics: 1) The accuracy of the model, computed as the ratio of the correctly labeled samples (CLS)

overall test samples (|D|), defined as: CLS÷|D|. 2) False Positive Rate (FPR), which is the num-

ber of incorrectly labeled benign samples (ILB) over the total number of benign samples (|Db|),

computed as ILB ÷ |Db|. 3) True Positive Rate (FNR), represented as the correctly labeled ma-

licious samples (CLM) divided by the total number of malicious samples (|Dm|), CLM ÷ |Dm|.

4) The F-1 score, defined as: F-1 = 2TP/(2TP + FP + FN), where TP : the number of malicious

samples correctly classified, FP : the number of benign samples incorrectly classified, FN : the

number of malware samples incorrectly classified. 5) Misclassification rate, defined as the ratio of

the incorrectly labeled samples over all the samples in the test dataset (i.e. 1− accuracy).

We also report the confusion matrix when required. The rows represent the actual classes and the

columns are the predicted labels. The value at a location (x,y) represents the portion of the samples

of class x classified as y.

26

Table 3.3: Evaluation (%) of the IoT malware detection systems on normal samples (i.e. non-
adversarial).

Architecture Accuracy F-1 FNR FPR
RF 98.90 99.22 1.19 0.83

DNN 97.42 98.16 1.69 4.67
CNN 98.31 98.80 1.12 3.00

Table 3.4: Evaluation (%) of the IoT malware classification systems on normal samples (i.e. non-
adversarial).

Architecture Accuracy F-1
RF 97.71 97.71
DNN 95.53 95.52
CNN 96.03 96.02

DL-SSMC: Design and Evaluation

This section presents DL-SSMC, Deep Learning-based Single Shot Malware Classification ap-

proach. We describe the design and methods for DL-SSMC and present the evaluation.

DL-SSMC: System Design. The implementation of DL-SSMC incorporates machine and deep

learning models trained using the extracted CFG-based algorithmic features for malware detection

and classification tasks. In this approach, we follow the traditional learning approach. The input

(X) to the model is a one-dimensional (1D) vector of size 1 × 23 representing the extracted fea-

tures. Using a Softmax activation function, the model outputs whether the software is benign or

malicious, alongside the predicted family in the classification task, i.e. Gafgyt, Mirai, or Tsunami.

To this end, we utilize the aforementioned architectures to train the models for both detection and

classification tasks.

DL-SSMC: Evaluation and Results.

DL-SSMC: Baseline Performance.

27

Table 3.5: GEA: Malware to benign misclassification rate (%) over IoT detection systems.

Architecture
Small Median Large

10 23 1,075
RF 73.88 99.85 100
DNN 37.54 90.04 100
CNN 18.84 64.78 100

DL-SSMC: Detection Task. We design two-class detection DL-SSMC that distinguish IoT mal-

ware from IoT benign applications. The model is trained over 23 CFG-based graph-theoretic

features categorized into seven groups. The models achieve an accuracy rate of 98.90%, 97.42%,

and 98.31% with an F-1 score of 99.22%, 98.16%, and 98.80% for RF, DNN, and CNN, respec-

tively. Table 3.3 shows the evaluation of each trained model. Notice that the RF-based model holds

the highest performance, followed by the CNN model.

DL-SSMC: Classification Task. In addition to detecting the IoT malicious samples, we also

design a four-class classification DL-SSMC. The classification task aims to evaluate DL-SSMC for

classifying the malicious samples into their corresponding families. We achieved accuracy rates

of 97.71%, 95.53%, and 96.03% for RF-, DNN-, and CNN-based models, respectively, as shown

in Table 3.4. We also provide the confusion matrices (represented as a percentage of samples)

in Fig. 3.8. Here, each row represents samples of an individual class, while the columns represent

the predicted family.

DL-SSMC: Robustness Assessment against GEA. We investigate the robustness of DL-SSMC

against AEs generated using GEA. In particular, we explore the impact of the size of the graph

and discuss the fundamental overhead of using GEA. Note that all generated samples maintain the

practicality and functionality of the original code. From the benign software, we selected three

graphs as xsel, the selected samples have small, median, and large sizes across the dataset. We then

connected each of the graphs with every graph in the malware dataset.

28

Table 3.6: GEA: IoT classification systems misclassification rates (%). The CNN-based model
perform the best, robustness-wise, under the small and median GEA graph embedding attacks.

Architecture Size Gafgyt Mirai Tsunami

RF
Small 81.66 32.88 100

Median 100 99.33 100
Large 100 100 100

DNN
Small 90.00 52.75 98.16

Median 100 96.99 100
Large 100 100 100

CNN
Small 39.16 16.36 93.11

Median 56.16 89.31 100
Large 100 100 100

Robustness of Detection Models. The results of DL-SSMC performance against AEs generated

by GEA are shown in Table 3.5 and Fig. 3.9. Intuitively, a key finding is the impact of graph size

on the misclassification rate, since the increase in the graph size, i.e. the included number of nodes,

results in a higher misclassification rate. The main reason for the misclassification is the injection

of benign-like patterns that introduce noise, which in turn, distorts the existing malicious patterns

observed by the learning algorithm. Embedding larger graphs, for instance, introduces higher

distortion to the feature space, considering the extracted 23 algorithmic features. This distortion

affects the existing patterns learned by the machine/deep learning model, and therefore causes

higher misclassification. In general, GEA achieves a misclassification rate of 100% by embedding

a large graph, while achieving a low as 18.84% misclassification rate by embedding a small graph.

Notice that while the RF-based model provides the best clean baseline performance, the CNN-

based architecture shows the best robustness against embedding small and medium graphs.

Robustness of Classification Models. Table 3.6 shows the misclassification rates over the IoT

malware classification task. Here, GEA achieves a misclassification rate of 100% from all mali-

cious families using large graph embedding. Similarly, Tsunami is more likely to be misclassified

to benign, as using median and large graph embedding misclassify all Tsunami malware to benign

as shown in Fig. 3.9. Similar to the IoT malware detection system, the misclassification rates in-

29

Table 3.7: SGEA: Malware to benign IoT malware detection system evaluation. Here, MR: mis-
classification rate, AVG. Size: the average subgraph size required to achieve misclassification.

Architecture MR (%) AVG. Size
RF 99.17 6.28
DNN 90.21 6.83
CNN 41.79 7.15

Table 3.8: SGEA: Misclassification rate (%) over IoT classification systems. MR: misclassification
rates.

Architecture Gafgyt Mirai Tsunami
RF 100 99.50 100
DNN 100 80.59 100
CNN 100 78.10 100

crease with the increase in the number of nodes for the injected graph, and the CNN-based model

shows better robustness (i.e. lower misclassification rate) against graph embedding, in comparison

to its counterparts.

DL-SSMC: Robustness Assessment against SGEA. While GEA achieves a high misclassifica-

tion rate, it comes with a computational cost and increased binary size that accommodates the

combination of two samples into one. These costs are reduced by using SGEA, in which, the size

of injection is reduced by carefully selecting a subgraph that achieves the adversarial objective.

Robustness of Detection Models. Table 3.7 show the results of SGEA against DL-SSMC detec-

tion models. SGEA achieves above 90% malware to benign misclassification rate against RF- and

DNN-based models with less than 7 nodes subgraph embedding, outperforming the GEA approach

with an average subgraph size of 6.28 and 6.83, respectively. However, for CNN, the misclassifi-

cation rate is noticeably lower, 41.79%, as the CNN-based model shows better robustness against

GEA and SGEA.

30

Benign

Malware

Benign

Gafgyt

Mirai

Tsunami

CFG Extraction Feature Extraction

Nodes Edges

Density S.Path

Centralities

Malware Detection

Prediction P
Tsunami
Mirai
Gafgyt

SBD
SuspiciousBenign

Classification

Figure 3.11: DL-FHMC system flow. First, corresponding CFGs of the IoT software are extracted,
then, 23 algorithmic features are extracted from the CFGs. Afterward, an IoT malware detection
system classifies samples into benign and malware, all malware samples are directed to IoT mal-
ware classification system, while benign samples are directed into suspicious behavior detection
system (SBD) for further investigation.

Robustness of Classification Models. Table 3.8 and Fig. 3.10 show the performance of the DL-

SSMC classification models against the SGEA approach. For instance, the SGEA approach suc-

cessfully misclassifies all Gafgyt and Tsunami malware in all models, while having lower misclas-

sification rates for Mirai malware. Further, the RF-model is considered the least robust model, as

shown in Fig. 3.10a, as malicious samples were classified as benign.

Even though RF-based models provide the best classification performance on the clean dataset, this

does not hold true under adversarial settings. Our evaluation shows that using a CNN-based model

is noticeably better, considering a loss of < 2% performance on clean samples for both malware

detection and classification tasks, while delivering higher robustness against GEA and SGEA.

DL-FHMC: Coping with AEs

Machine learning methods for malware detection and classification, e.g. DL-SSMC, are suscepti-

ble to AEs and fall short of delivering a robust system against adversarial settings. This motivates

us to explore methods and alternative designs to cope with such vulnerabilities to adversarial at-

tacks. In this section, we propose DL-FHMC, Fine-grained Hierarchical Learning for Malware

Classification, a robust system for malware detection and classification that leverages deep learn-

ing in a fine-grained and hierarchical manner to detect malicious behaviors.

31

Benign

Gafgyt

Mirai

Tsunami

Subgraphs Mining Patterns Selection
Size
Frequency
Coverage
Frequency-1

10,000
10,000
10,000

Gafgyt

Mirai

Tsunami

Representation

1 0 1 ... 0

Benign

Suspicious

Extracted Patterns SBDM

Figure 3.12: Suspicious behavior detection system design. The design consists of four modules, a
subgraphs mining module to extract frequent subgraphs from three IoT malicious families. After-
ward, the subgraphs are ranked by the pattern selection module, where the top 10,000 patterns of
each malicious family are selected. Further, the CFG of each sample is redirected to the Suspicious
Behavior Detector, and represented as a vector of size 30, 000. The vector representation is fed to
Suspicious Behavior Detector Model (SBDM) to be classified into benign and suspicious.

DL-FHMC: System Design. The design of DL-FHMC consists of five components as illustrated

in Fig. 3.11. Description of each component is in the following.

• CFG Extraction. This component is responsible for extracting the CFGs of the software

samples using Radare2, and presenting them as labeled CFGs for further analysis.

• Feature Extraction. The feature extraction component calculates 23 algorithmic features from

the samples’ CFGs. Details of the extracted features are in Table 3.2.

• Malware Detection. The malware detection component utilizes the IoT malware detection

models as in Table 3.3. The purpose of this model is to classify the samples into malware and

benign. Samples classified as benign are directed to the suspicious behavior detection process,

while samples classified as malware are directed to the classification model.

• Malware Classification. This component is fed by the samples classified as malware by the

malware detection component. The goal of this component is to classify the sample into three

IoT malicious families, i.e. Gafgyt, Mirai, and Tsunami. The design and architecture of this

component are similar to the ones used for the classification task in DL-SSMC, except that it

only contains the malicious classes (i.e. no benign label).

32

• Suspicious Behavior Detector. This component detects a potential suspicious behavior within

the samples. Since the adversary may generate AEs with the purpose of fooling the system in

assigning them to benign class, this component further investigates the potential of suspicious

behavior within the benign-classified sample using the extracted CFG.

Suspicious Behavior Detector . Suspicious Behavior Detector is a graph mining-based technique

to investigate suspicious malicious patterns within software samples classified as benign. Fig. 3.12

highlights the design of the Suspicious Behavior Detector, which consists of four modules, (1) sub-

graphs mining, (2) pattern selection, (3) data representation, and (4) suspicious behavior detection

model. In the following, we describe each module.

(1) Subgraphs Mining: This module extracts common subgraphs within each IoT malware family.

Using gSpan, we extracted and collected frequent subgraphs of a size range between 5 to 20 nodes

from each malicious family. In particular, we used the gSpan algorithm to extract subgraphs from

the training samples of each malicious family. This process took more than 160 hours to finish and

resulted in over 2,150,170 patterns distributed as: 22,953 for Gafgyt, 127,217 for Mirai, and over

2,000,000 for Tsunami families. The extracted frequent subgraphs (patterns) for each malicious

family are then subjected to further analysis.

(2) Pattern Selection: This module ranks the extracted patterns based on four factors: pattern size,

frequency, coverage, and inverse frequency. For example, large patterns are assigned higher value

since they are distinctive and more likely to be unique to their family. Moreover, large patterns

can be further decomposed into smaller patterns. Further, the number of occurrences of a pattern

within a malicious family is considered as an indicator of its maliciousness. On the other hand, less

frequent patterns are more likely to be function-oriented and solely contribute to the functionality

of the code rather than the general behavior of the malware family. Therefore, we excluded all

patterns that occurred in less than 5% of the targeted family samples. The coverage of the pattern

is defined as
∑n

i=1 1/occurrencei − 1, where n is a set of samples in which the pattern occurred,

and occurrencei is the number of patterns contained within the sample i. For example, if a sample

33

contains only one pattern, that pattern will have the highest rank.

In addition, we compute the number of occurrences for each pattern in the benign training samples.

Note that benign samples may have patterns similar to the ones in the malware due to the abstract

nature of the CFG and the considered size and functionality of patterns. To ensure that all patterns

hold some behavioral characteristics of the malicious family, we excluded all malicious patterns

that appeared in more than ten benign samples. We filtered the patterns and selected the top 10,000

ranked patterns from each family to be its representative patterns. This results in a total of 30,000

malware patterns for the three malware families. We denote this set of patterns as P .

(3) Data Representation: To investigate an IoT software, we find whether each of the selected

30,000 patterns is a subgraph in the CFG of the software using the VF2 subgraph isomorphism

algorithm [45]. Each sample is represented as a binary vector in the space of the patterns extracted

in the previous module, i.e., v ∈ {0, 1}|P |. Specifically, we represent each sample by a hot-

encoding vector v of size 30,000, where vi = 1 if the ith pattern is a subgraph of the sample’s

CFG, i.e., vi = 1 if pi ⊆ G , pi ∈ P . Time-wise, representing a software’s CFG as a hot-encoding

vector may require several minutes and up to several hours, depending on its size (number of

nodes) and structure.

(4) Suspicious Behavior Detection Model: The suspicious behavior detector model is a machine

learning model trained on the feature representations extracted from the training dataset shown in

Table 3.1. The goal of this module is to investigate suspicious behavior within the sample. If the

sample is classified as suspicious, further analysis is required by an analyst or dynamic analysis

approach.

Experimental Setup. We trained the Suspicious Behavior Detector model on the feature repre-

sentation of the training dataset, where all malicious samples are labeled as suspicious. We did not

incorporate AEs in the training process, as doing so may bias the evaluation of the system toward

samples generated using the same approach (e.g. SGEA). Further, we generated AEs using both

GEA and SGEA, to force the detection model to misclassify the IoT malware samples as benign,

34

Table 3.9: DL-FHMC classifier evaluation (%) on clean dataset for IoT malware classification task.

Architecture Acc. F-1 Benign Gafgyt Mirai Tsunami
RF 97.67 97.66 99.16 97.66 98.00 92.69
DNN 95.74 95.73 95.33 97.33 95.33 93.60
CNN 96.38 96.38 97.00 97.16 95.66 94.52

thereby, directing the samples to the suspicious behavior detector component.

DL-FHMC: Evaluation and Results. The DL-FHMC system aims to establish a robust malware

classification approach through hierarchical levels of abstractions. In the following, we evaluation

the baseline classification performance, alongside the robustness of DL-FHMC.

DL-FHMC: Baseline Performance. The first task of the system is malware detection and classifi-

cation. For the malware detection module, we used the same approach as in DL-SSMC, achieving

the same baseline results (Table 3.3). All software classified as malware are then forwarded to

the classification module, where they are labeled as Gafgyt, Mirai, or Tsunami. Table 3.9 shows

the overall performance of DL-FHMC on the clean dataset (i.e. non-adversarial). We report the

overall accuracy and F-1 score, along with the individual classes true positive rates. We note that

as we use the malware detector as of DL-SSMC, the model is susceptible to adversarial attacks

(i.e. GEA and SGEA). All benign samples, alongside all successful AEs, are forwarded to the

suspicious behavior detection module.

DL-FHMC: Suspicious Behavior Detection Task. This component aims to further investigate the

benign-classified samples based on patterns extracted from their structural components. The task

of the suspicious behavior detector is to determine whether a given sample is signaling a suspicion

of malicious behavior, and therefore it is operating as an AEs detection technique. We evaluate

the Suspicious Behavior Detector using the original benign samples and malicious AEs. As shown

in Table 3.10, the RF-based detector achieves an overall performance of 89.23% with a benign

accuracy of 95% (i.e. false positive rate of 5%), while achieving a performance of 92.71% with a

false positive rate of 10%. We note that the DNN- and CNN-based detectors are not effective as

35

Table 3.10: DL-FHMC Suspicious Behavior Detector evaluation (%) on benign and adversarial
samples. DO refers to Data origin.

DO FPR
GEA

SGEA Overall
Small Median Large

RF

1 74.84 70.04 53.06 74.26 74.24
3 84.86 79.10 100 79.31 88.05
5 86.79 82.48 100 81.90 89.23

10 89.24 97.40 100 86.90 92.71

DNN

1 63.28 59.50 49.76 64.90 67.28
3 63.81 59.66 49.28 65.72 67.09
5 63.72 59.40 48.79 65.78 66.54

10 63.21 58.56 47.52 65.54 64.96

CNN

1 62.70 55.50 49.76 56.77 64.74
3 62.87 55.40 49.28 57.30 64.37
5 62.69 55.04 48.79 57.16 63.73

10 62.06 54.02 47.53 56.49 62.02

modalities for suspicious behavior detection.

While GEA large graph-based AEs achieve 100% misclassification rate, DL-FHMC can detect

them with 100% accuracy. Further, while the detection performance for small GEA embeddings

is relatively lower than the other configurations, the smaller the xsel graph size is, the lower the

success rate of the attack. Fig. 3.13 shows the performance of the detector with different false

positive rates (1− benign detection accuracy).

As shown in the results, using DL-FHMC enables systematic methods of coping with adversarial

manipulation to malware. When suspicious behavior is detected for a given sample, other methods

can be adopted to further analyze the sample in order to provide a secure and robust evaluation of

malicious activities. In general, using CNN-based architecture for baseline malware detection and

classification tasks, while using the RF-based model for suspicious behavior detection provides

the best trade-off between the accuracy and robustness, as it minimizes the number of samples

misclassified by the malware detector, and forward fewer samples toward the suspicious behavior

detection system.

36

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e
GEA-Small
GEA-Median
GEA-Large
SGEA

Figure 3.13: DL-FHMC: RF-based suspicious behavior detector ROC performance over GEA and
SGEA attacks.

Discussion

DL-FHMC: Cost of Security. The security of machine learning algorithms is important for adop-

tion in many applications. In the malware classification field, AEs pose critical security impli-

cations as emerging studies have shown that AEs can fool the machine learning-based malware

detection system [13, 12, 129]. However, limited studies have investigated potential defenses. In

this work, we show that launching adversarial attacks against malware detection systems can lead

to a misclassification rate of as high as 100%. To cope with such adversarial settings and capa-

bilities, we introduced DL-FHMC that operates on multiple levels of behavioral analysis of the

software to ensure its security. Since AEs are derived from a combination of benign and malware

components, detecting them is a challenging task and often comes at the cost of misclassifying a

portion of benign samples as malicious, hence producing false alarms. For example, in our experi-

ments, we show the trade-off (i.e. the cost) of performance of the suspicious behavior detector and

the benign samples misclassified as adversarial, know as the sensitivity of the detector, illustrated

in Fig. 3.13.

37

DL-FHMC Robustness. The suspicious behavior detector in DL-FHMC consists of a machine/deep

learning model trained on the vector representations obtained by checking the existence of the pre-

defined list of malicious subgraphs extracted and filtered using a large dataset of IoT malware.

Using the VF2 subgraph isomorphism algorithm [45] on a list of 30,000 malicious subgraphs, the

vector representation of the CFG is generated indicating whether malicious patterns exist in the

CFG. Ideally, the suspicious behavior detector represents the benign samples into a vector of all

zeros. In our dataset, ≈ 85% of the benign samples are represented as a vector of all zeros, indicat-

ing that none of the malicious patterns were captured within them, i.e. none of 30,000 malicious

subgraph structure were found within their CFGs.

Considering the highly-accurate current state-of-the-art methods for detecting malware samples,

our approach can be viewed as a robust layer on top of such methods. We argue that in the con-

text of adversarial attacks, malware detection systems should be robust against perturbation to

the original samples. Otherwise, they will suffer from the effects of AEs (i.e., misclassification).

Since running the VF2 subgraph isomorphism algorithm against the 30,000 subgraphs introduces

a computational overhead, a malware detection system benefits from our approach by testing sam-

ples that are classified as benign (with low classification confidences) indicating the possibility of

adversarial scenario for evading the malware detection process.

Since the suspicious behavior detector in DL-FHMC uses a comprehensive list of malicious pat-

terns, generating successful AEs against DL-FHMC requires modifying the functionality of the

malware to conceal malicious patterns (i.e. subgraphs) that exist in the CFG. This requires apply-

ing direct modifications to the control flow of the program, which in turn, contrasts the practicality

and functionality requirements of a practical AE.

We note that detecting suspicious AEs is not a trivial process even with using a subgraph iso-

morphism matching algorithm, and it requires careful considerations in designing the system. For

example, due to the abstract graph modality, 15% of the benign samples have suspicious sub-

graph structures within their CFGs. This does not, in most cases, indicate an embedded malicious

38

functionality, but due to the diversity of the benign dataset, control flow structures similar to the

ones occurring in the malicious samples may be found. This motivates using machine/deep learn-

ing methods to determine whether a sample is malicious considering the generated binary vector

representation of the 30,000 subgraphs. Moreover, considering the evolution of malware and the

emergence of new variants, the list of malicious subgraphs should be continuously updated to

incorporates emerging patterns.

Suspicious Behavior Detector as an Individual Modality. The suspicious behavior detector is

a machine learning-based CFG subgraph malicious patterns detector. It has its own feature space

and representation, and independent model. While in this study we consider the detection and clas-

sification modules similar to the ones considered in DL-SSMC, the suspicious behavior detector

is not exclusive to them only. In reality, following the same process, the detection and classifica-

tion modules can be replaced with models that operate under different data representations. Then,

forwarding all samples classified as benign to the suspicious behavior detector enables the AEs

detection.

CFG for Malware Classification. Using CFG-based representations for malware detection and

classifications address different challenges that may be raised by other representation techniques [112].

For instance, binary representations are susceptible to binary padding and injection. However, the

added binaries are not typically executed, and therefore will not appear in the extracted CFG. Sim-

ilarly, modifications on the header of the file, and stripping the binaries will not affect the final

CFG. In general, changes that produce decision branches, such as conditions and loops, are the

only modifications that alter the extracted CFG. We argue that adding API and system calls will

simulate the GEA and SGEA attacks, as they only result in introducing new nodes, while the

original structure is maintained, and thus can be accurately detected by DL-FHMC. Generating

CFG-based AEs assumes a more powerful adversary, and even though we do not address other

attacks that generate AEs using the alteration of the malware binaries or code, our work extends

the robustness against such methods as changing such methods do not conceal existing malicious

39

patterns from the CFG.

Summary & Concluding Remarks

This work introduces DL-FHMC, a novel hierarchical approach for robust malware detection and

classification with AEs detection. To set out, first, an in-depth analysis of malware binaries is

conducted through constructing abstract structures using CFG, which are analyzed from multiple

aspects, such as the number of nodes and edges, as well as graph algorithmic constructs, such as

average shortest path, betweenness, closeness, density, etc. Then, we evaluate the robustness of the

traditional CFG-based IoT malware classification approaches against GEA and SGEA, achieving

a misclassification rate of up to 100%. To address this, we use different graph mining techniques,

CORK and gSpan, to extract malicious discriminative graphs from the malicious software, and

use it as a modality to detect malicious behavior. Through our evaluation, DL-FHMC achieves a

high malware detection and classification accuracy, as well as AEs detection performance under

different GEA and SGEA configurations.

40

CHAPTER 4: SYSTEMATICALLY EVALUATING THE ROBUSTNESS

OF ML-BASED IOT MALWARE DETECTION SYSTEMS

IoT malware have been the focus of the security research community and the industry alike. These

efforts have resulted in various malware detection approaches, intended for safeguarding the IoT

infrastructure against increasing targeted attacks. These proposed detectors leverage the traditional

signature-based approach or the capabilities of the learning algorithms to build Artificial Intelligent

(AI)-based detectors. These detection systems leverage modalities generated through static and

dynamic software analysis techniques, along with deep learning and natural language processing,

for generalizing detection to previously unseen IoT malware [109].

Considering that these techniques are heavily dependent on the specific data used for their training

and testing, it is plausible that they would have a reduced performance when tested in an un-

controlled environment due to various practical settings. For example, the constant evolution of

malware that employ obfuscation may impact the performance of these detectors over time, es-

pecially the static-based techniques. While packing is widely used among malicious software, it

is not exclusive to malware. This limit the usage of packing as a detection modality, since that

may result in a large number of false positives. Even in the absence of packing, malware detection

systems have been shown to be susceptible to adversarial attacks. An adversary can manipulate

the features of any software, directly or indirectly, to force the detector to output the adversary’s

desired decision [122, 14, 86].

A common practice for inspecting software is using online scan engines, such as VirusTotal [8],

which embody the aforementioned techniques for malware detection and provide reports that con-

tain the detection results of a pool of anti-virus engines. Additionally, these online scanners are

utilized by the malware developers to check if their malicious payloads can evade detection from

the anti-virus engines before starting a malware campaign [68]. Altogether, before deploying such

malware detection systems in practice, it is essential to understand the shortcomings of state-of-the-

41

art IoT malware detection systems under adversarial settings that can be abused by the adversaries

towards future malware campaigns.

In this work, we examine state-of-the-art malware detection approaches, including those that rely

on different representation and learning algorithms. We consider techniques that represent the

software as a sequence of binary, static features extracted from the disassembly, and graph. These

representations yield a promising detection performance, with higher than 99% detection accu-

racy [97, 17, 147]. However, our findings highlight the instability of the learning algorithms in

learning useful fundamental patterns that represent the difference between benign and malicious

software.

By systematically evaluating the robustness of various malware detectors, we demonstrate that ma-

nipulating the malicious software with functionality-preserving operations, such as stripping and

binary padding, significantly reduces the detectors’ performance. Towards this, we generate four

equivalent binaries for each software using means of packing (with different compression levels),

stripping, and padding. We evaluate each of the resultant software against various IoT malware de-

tection approaches, along with the industry-standard malware detection engines. The results show

a concerning behavior, where one or more detectors fail to hold a reasonable performance (lower

than 50% detection rate) in detecting malware mutations. Fig. 4.1 shows the different phases

of analysis strategy; feature representation, software manipulation, and evaluation of several ML-

based malware detectors.

Summary of Completed Work

This work highlights the discrepancies between the capabilities of the adversary and the assumed

adversarial capabilities by the research community. Particularly, we make the following contribu-

tions:

1. Validity of the baseline: We examine nine state-of-the-art malware detection representations

and three learning algorithms and evaluate their performance using a total of 5,295 IoT

42

Feature
Extraction

0x7614 0x0A9C ... 0x0000

Machine Learning

a

b

P

c

Online Engines

Figure 4.1: The system pipeline. The software binaries are (a) represented using different state-of-
the-art approaches, and (b) manipulated using functionality preserving operations, such as packing,
stripping, and padding. The corresponding representations of the original samples and manipulated
ones are then (c) tested against pre-trained ML-based malware detectors and industry-standard
detection engines.

software binaries. The evaluation shows the effectiveness of each representation in detecting

malicious IoT software with high accuracy in a level playing field.

2. Model instability: We investigate the stability of the baseline malware detectors. Our results

demonstrate the inconsistency of the learning process, i.e. with the introduction of a small

random perturbation to the input space, the detector is rendered useless (outputs random

label).

3. Vulnerability to adversarial settings: We examine the robustness of the IoT malware detec-

tors under white-box and black-box adversarial settings, resulting in an accuracy reduction

of up to 70%.

4. Vulnerability to binary manipulation: We evaluate the malware detectors against three bi-

nary manipulation techniques, including packing, stripping, and padding. These techniques

are practicality and functionality preserving, where the generated software is identical in

functionality to the original software. Our evaluation shows that such software is capable of

misleading the state-of-the-art malware detectors.

43

5. Vulnerability of industry-standard malware detectors: We evaluate the behavior of AI-

based industry-standard malware detection engines against binary manipulation. The eval-

uations show that most of the engines are rendered useless upon slight modification of the

software.

6. Adversarial Surface Reduction: We investigate the binary-level adversarial attacks surface,

identifying volatile feature space and representations. We then propose three software pre-

processing techniques to limit and mitigate the effect of these attacks. Our evaluation un-

cover that volatile features are used by online engines, and can be exploited to reduce the

detection rate by 30%.

Background

The increasing security concern for IoT devices has been paralleled by an increasing body of

work in the area of IoT security, particularly addressing malware analysis and detection. Building

towards our work, it is important to outline the efforts that propose IoT malware detection systems

and the methods of evasion that will elucidate the susceptibility of the malware detection systems

to various adversaries.

Malware Detection. Prior works have shown the potential and feasibility of ML to detect malware

with more than 99% accuracy [22, 29, 137, 97]. The performance of these detection systems

depends on the choice of software representations, which are a result of two common analysis

techniques. In dynamic analysis, a malware is executed in a monitored sandbox environment. The

behavioral patterns are then used as feature representation. However, dynamic analysis is time and

space-consuming, thereby limiting its scalability [140].

The static analysis involves analyzing the binary executable without executing it. The fast and

scalable extraction of representations makes static analysis the primary analysis technique for mal-

ware detection. Malware binaries have multiple features that can be statically extracted and used

44

as modalities for malware representation.

Selected Representations. Altogether, we focus on representations that are (1) extensively used

in the prior works, (2) fast to generate, and (3) can be extracted for malware detection on the fly.

We summarize the utilized representations in the following.

1. A common strategy is to transform the malware into a grayscale image. Particularly, the

byte-code is visualized as a grayscale image of a fixed size of (h× w) where every byte is a

pixel in the image.

2. CFG adjacency. Another strategy is to extract the assembly instructions by disassembling

malware and further transforming them into a Control Flow Graph (CFG) by dissecting

them into basic blocks depending on the instruction branching or jumps. The CFG is then

represented as a square matrix representing edges between nodes.

3. CFG algorithm. Graph algorithms have been augmented to extract graph attributes that

represent the connectivity patterns in the CFG. These features are exhibited in Table 4.1.

4. Strings are a sequence of printable characters in the binary codebase. The strings of a pro-

gram are analyzed to understand the possible behavioral patterns of the malware and can

also be used to prepare a sandbox environment for the dynamic analysis [46].

5. Segments are necessary for program execution. They describe the memory layout of an

executable and is interpreted by the kernel during load [106]. Within every segment, there

may be code or data divided among sections, such as .text and .rodata. Binaries contain

symbol tables which are used as references for linking and debugging [106].

6. Symbols are symbolic references to code or data and include global variables or functions.

Every executable generally has two symbol tables: the symbol table that contains all sym-

bol references and the dynamic symbol table which only contains references for dynamic

symbols [106].

45

Table 4.1: The CFG extracted algorithmic features, categorized into seven groups. When possible,
the minimum, maximum, median, mean, and standard deviation are calculated.

Feature category # of features
Betweenness centrality 5
Closeness centrality 5
Degree centrality 5
Shortest path 5
Density 1
of Edges 1
of Nodes 1
Total 23

7. Hexdump represents a malware as a sequence of hexadecimal values, where each value rep-

resents two bytes (in 0-255 range), the frequency of which is then recorded as a vector of

size 1× 256.

8. Feature fusion represents a unified (combined) representation of all of the aforementioned

representations.

For the completeness of the study, we include malware representations proposed by works that are

not strictly IoT malware-specific. Table 4.2 summarizes the malware representations that have

been proposed for malware detection, and utilized in this work.

Representation Evasion. In the literature, several software evasion and manipulation techniques

were proposed for malware mutation and misclassification. In the following, we briefly discuss the

commonly-used software evasion techniques.

Binary Packing. Packing is mainly used by malware authors to thwart detection or analysis by

detectors, analysts, or reverse engineers. A packer software is augmented to compress or encrypt an

executable, such that the code and data are hidden from the analysts. Considering that portions of

the executable are compressed, it needs to be decompressed before it is executed in memory [106].

In general, the packer software has two programs, the packer program, and the stub program. The

46

Table 4.2: The state-of-the-art static analysis representations used in this work. Most of the repre-
sentations require reverse-engineering (R.E.), while image-based representation directly used the
raw binaries (Bin.). CODE: features extracted from the disassemble binaries.

Type Feature Work Bin. R.E. Graph
Binary Image [80, 137, 148, 97] ✓ ✗ ✗

CFG Adjacency [147, 77, 37] ✗ ✓ ✓
CFG Algorithmic [22, 37, 29] ✗ ✓ ✓
CODE String [17, 29] ✗ ✓ ✗

CODE Symbols [17, 29] ✗ ✓ ✗

CODE Sections [17, 29] ✗ ✓ ✗

CODE Segments [17] ✗ ✓ ✗

CODE Hexdumps [17] ✓ ✓ ✗

CODE Combined [17, 29] ✓ ✓ ✗

packer program packs the software, while the stub is responsible for deobfuscating the software.

While there have been many packing programs, such as DacryFile by Grugq, Burneye by Scut,

Shiva by Neil and Shawn, and Maya’s Veil by Ryan, the Ultimate Packer for eXecutables (UPX) [3]

is the one most commonly used [46]. UPX utilizes the UCL data compression library algorithm [2]

which uses in-place decompression, and does not introduce memory overheads.

Binary Stripping. Stripping is utilized to hide the information that may leak the functional strate-

gies of a software. A codebase can be compiled with no standard library linking (gcc-nostlib).

Alternatively, parts of the ELF file can be hidden such that the different constituents of the binary

format can be obfuscated such that the interpretation can be halted. The resultant binaries would

be void of information such as debug and relocation information, section headers, and symbols [1].

Adversarial Evasion. With the rapid growth in ML adoption in critical fields, it is essential to

understand and assess the robustness of such techniques to several adversarial settings. These

settings include adversarial examples, in which an adversary crafts perturbation to misguide the

model output to its desired label by applying a minimal perturbation to the original sample [111].

Given a model objective function f(.) and a sample represented by the vector x, the aim of the

adversary is to introduce perturbation (δ) in the feature space x′ = x + δ such as f(x) ̸= f(x′).

47

Crafting the perturbation can be derived from two perspectives: targeted and non-targeted attacks.

Targeted attacks. The adversary in this attack generates an adversarial example x′ that forces

the classifier to misclassify into a specific target class t. For instance, the adversary generates a

set of malicious IoT software samples, which are classified as benign. That is: x′ : [f (x′) = t].

Untargeted attacks. The adversary’s goal is to misclassify the output of the model to any class

other than the original label. That is x′ : [f (x′) ̸= f (x)]. In this work, we only consider the

two-class classification task, where targeted and untargeted attacks behave the same.

Adversarial attacks can be launched under different adversarial capabilities that allow for either

black-box or white-box attacks. In a white-box attack, the adversary has full knowledge of the

inner networking paradigm of the model. In a black-box attack, the adversary has only access to

the model via an oracle and can only observe the output of the model.

Several methods have been proposed to generate adversarial examples by directly perturbing the

feature space in both black-box and white-box settings [67, 75, 103, 88]. For example, Carlini and

Wagner [40] proposed generic adversarial attacks against distilled Neural Networks (NN), which

showed its effectiveness against several state-of-the-art “robust” deep learning NN.

While initially designed to exploit image-based classifiers, where perturbation can be directly ap-

plied to the image pixels [111, 110, 138], adversarial attacks showed high success in malware

detection while preserving the software functionality and executability [69, 14]. At the binary-

level, several studies [85, 86] generated practical adversarial examples by appending binaries to

the original file. While it is effective against signature- and binary-based classifiers, it can be

countered by reverse-engineering the software to extract the corresponding representations.

Other studies [12, 14] introduced adversarial attacks on the execution flow of the code, by injecting

benign functionalities within the malware and vice versa. However, such a perturbation should be

applied to the source code, and is only possible by the malware author, unlike the binary padding

approach.

To investigate the effectiveness of different malware representation and learning approaches, we

48

examine a wide set of adversarial settings, including direct generic and modified adversarial at-

tacks, as well as the black-box adversarial settings.

Threat Model

Learning algorithms are widely used to obtain state-of-the-art performance in several fields, in-

cluding malware detection. However, the usage of ML in critical domains is subject to adversarial

attacks. In the following, we discuss the threat models used for systematically evaluating the ro-

bustness of the malware detectors.

Gaussian Noise. A stable learning model is argued to be immune to misclassification under the

introduction of Gaussian noise in the feature space, as unguided perturbation is unlikely to disrupt

the existing patterns to some extent [74, 71, 131].

A correctly trained model that can distinguish benign and malicious samples with high confidence,

is constraint by three factors. 1. Data representation: A robust software representation should con-

tain meaningful patterns that can distinguish the malicious from the benign software, 2. Learning

algorithm: The learning algorithm should be able to capture such patterns even at a higher dimen-

sionality without over-fitting or under-fitting, and 3. Training data: The trained model should be

generalizable to unseen new samples, and samples that are not fundamentally different from the

ones in the training dataset. This requires the training data to be cohesive and the samples of each

class to be an accurate representation of that class. While the first two factors are considered, the

third is an open challenge, and we consider it out-of-scope of this work.

In this work, we use the Gaussian noise as a metric to measure the stability of the representations.

Given the model objective function f(.), data points (samples) x ∈ X with feature space of n

features, the output of the model is defined as y = f(x). The Gaussian noise is then calculated as

follows:

x′
i = xi +max(Xi)× δ, ∀i ∈ n,

49

Neural Networks

a b c

Figure 4.2: Graph manipulated attack overview. The software is reverse-engineered and (a) repre-
sented as CFG and corresponding adjacency matrix, (b) using the pre-trained neural network, (c)
white-box C&W-based perturbation is crafted and applied to the CFG.

where Xi is a list of the ith features of all x ∈ X . A stable model is then defined as:

f(x) = f(x′), if δ < threshold.

In this work, we do not introduce a cut-off threshold for a stable model. However, we observe the

model’s behavior when a perturbation in the range of [1%, 100%] is introduced. Ideally, the rela-

tionship between the accuracy and perturbation should be linear: with an increasing perturbation,

the accuracy should linearly decrease, e.g. to reach random (50%) at 100% perturbation given the

two-class classification task. We note that this attack will not generate practical adversarial exam-

ples, as it applies the perturbation to the feature space directly. Rather, it is used to measure the

detectors’ stability.

Graph Manipulation. This configuration targets the graph-based representations, including the

adjacency- and algorithmic-based representations extracted from the software’s corresponding

CFGs. Given a CFG G = {V,E}, where V is the set of nodes in the graph, and E is the set

of edges, the adversary’s goal is to introduce a carefully crafted perturbation that misclassifies the

system to the desired output. To introduce such a perturbation, we used the adjacency matrix repre-

sentation as a baseline to craft the perturbation. Then, the Carlini & Wagner L∞ (C&W) attack [39]

is used to craft the perturbation under the white-box settings. The C&W is a gradient-based attack

50

that optimizes the penalty and distance metrics on L∞ norms in the process of generating adver-

sarial examples. This method ensures that the added perturbation will be minimal while causing

misclassification.

Using the adjacency matrix representation, the adversary aims to craft a perturbation δ ∈ Rd×d

as a domain-specific range of possible features that can be observed in ordinary samples. This

perturbation achieves the adversarial goal if y = f(x) ̸= f(x + δ), where y′ is the classifier’s

prediction after applying the perturbation δ to the original feature space x. Fig. 4.2 shows the

outline of the attack. To keep the generated CFG realistic, we limit the actions done by C&W

attack to only adding nodes and edges. This is done by modifying the original attack to prevent

deleting existing edges, and only limiting the process to adding edges.

While CFG manipulation preserves the original functionality [12, 14], we do not have access to

the source code of the samples. Therefore, we cannot generate practical adversarial binaries using

CFG manipulation. Given that, we used this attack to evade the graph-based detectors using direct

white-box attacks on NN-based adjacency matrix-based classifier, while transferring the attack to

the remaining CFG-based classifiers.

Static String Manipulation. Another white-box attack is the string manipulation attack. In this

representation, the software is represented as a vector V of bag of words W of size 1×|W |, where

|W | is the number of words considered in the representation. Similar to the graph manipulation

attack, we used C&W L∞ attack to craft a minimal perturbation to misclassify the model. Given

that the crafted perturbation cannot be applied directly to the binaries, we consider it as a practical

attack under the assumption of the availability of the source code. We evaluate this attack by

crafting the perturbation using the NN baseline and transferring the attack to the remaining baseline

models.

Binary Packing. Recall that a binary executable can be packed using packer software, such as

UPX. The ML-based detectors utilize the features, such as raw binaries, strings, and segments,

from the malware. These features are, however, suppressed from packing. In this attack, we pack

51

h

w

h/2

w
a

b

c h/2

w

d e
Binaries

Figure 4.3: Binary padding attack overview. (a) The software is represented as an h × w image.
(b) The content of the image is then compressed into the size of h

2
× w. (c) Using C&W attack,

we generate perturbation on the remaining half h
2
× w of the image. (d) The generated image

perturbation is then rescaled to the original size of the software, and then (e) reshaped to a 1-D
vector represented the binaries to be appended.

the malware and probe the performance of the representation used in the literature. Moreover,

UPX supports different degrees of packing. For this study, we utilized the default settings and the

best compression method of UPX.

Binary Stripping. Recall that a binary can be stripped of information without affecting its ex-

ecutability. In this attack, we probe the impact of a stripped binary on an ML-based detector’s

performance. Particularly, we strip the binaries of their debug information and the symbol infor-

mation that are not needed for relocation.

Binary Padding. In this attack, the adversary aims to craft a white-box practical (executable)

adversarial example by appending binaries to the end of the software binaries. Fig. 4.3 shows

the process of generating perturbation in the white-box settings for image-based representation

baselines. For a software s of size zs represented as an image img of size h×w, we first compress

the content of the image into the space h
2
× w. Afterward, we craft a minimal perturbation using

C&W attack. To prevent the attack from applying a perturbation to the upper half of the image, the

attack is modified allowing changes in the lower half of the image. After the evasion, we convert

the generated lower half of the image of size h
2
×w back to the actual size zs of the software s, and

then converting it to 1-D vector by concatenating the rows. We note that this attack will introduce a

perturbation size of 100%, as the perturbation has the same size as that of the original file, and the

generated software s′ will be of size zs′ = 2×zs. This attack generates an adversarial software that

52

is executable. We evaluate the generated software on the image-based baseline models, in addition

to the other representations by re-extracting the features from the manipulated software.

Dataset Overview

To systematically analyze the robustness of state-of-the-art malware detectors, we start by col-

lecting a dataset of malicious and benign IoT software in binary forms. The dataset was col-

lected between November 2018 and December 2020, where 3,000 malware samples of three

families—Gafgyt, Mirai, and Tsunami—were retrieved from CyberIOCs [6], VirusTotal [8], and

VirusShare [4], in addition to 2,295 benign samples, compiled from source files on GitHub [52]

with different optimization levels.

Ground Truth Class. We used VirusTotal [8] to validate the malicious and benign samples in our

dataset. The samples were first uploaded to VirusTotal. After 24 hours, the scan results corre-

sponding to each sample were retrieved.

Data Augmentation. As aforementioned, the dataset samples are transformed to different repre-

sentations: (1) Represented as images to be fed into an image-based classifier. (2) Using Radare2 [7],

a reverse-engineering open-source framework for analyzing binaries, the samples were reverse-

engineered to obtain various features, such as strings, symbols, sections, and segments. (3) Hex-

dump representation is used to represent the “.text” section of the binaries. (4) The software CFG is

extracted using Radare2, which then used to generate the software adjacency matrix and different

graph-theoretic features, shown in Table 4.1.

Robustness Analysis

In the arm race between malware detectors and malware authors, malware detection and identifi-

cation require an accurate understanding of the capabilities of malware authors. In this section, we

evaluate the existing on-the-fly static-based malware detection techniques against executability-

53

and functionality-preserving software binary manipulations.

Experimental Setup. Towards evaluating the robustness of the state-of-the-art IoT malware de-

tectors, the dataset is transformed using the nine representations. Then, four learning algorithms

are used to establish the baseline classifiers.

Learning Algorithms. Several classification algorithms have been adopted and used in various

domains in IoT malware detection and classification [22, 124].

In this study, we evaluate the robustness of four ML algorithms, namely, Logistic Regression (LR),

Random Forest (RF), Convolutional Neural Networks (CNN), and Deep Neural Networks (DNN).

The selection of learning algorithms is for multiple reasons. They are (1) commonly used in this

domain, (2) fundamentally different in the learning process, (3) highly sophisticated approaches,

such as DNN and CNN, and simpler ML algorithms, such as LR and RF. For instance, the LR-

based classifier is selected to extract the relationships between variables in the feature space, with

no deep representations. CNN, on the other hand, was selected to extract deep patterns in higher

dimensionality. The nature of the selected models will help in investigating the robustness and

stability of the feature representations and the learning algorithms more accurately and on a larger

scale. In the following, a brief description of each learning algorithm is provided.

Logistic Regression (LR). LR models a binary dependent variable, known as binary classification

(“0” or “1”), using a logistic function. Given (X, Y) as an input training set, LR trains to classify

segments as positive (“1”) and negative (“0”) by estimating and optimizing the boundary between

the two classes (“0”, and “1”) and minimizing the following function:

Loss(f(X), Y) =


− log(f(X)), Y = 1

− log(1− f(X)), Y ̸= 1

,

where f(X) is the LR model current prediction, and Y is the ground truth labels.

Random Forest (RF). RF learning algorithm allows for variance reduction in the output of the

54

Table 4.3: Accuracy (%) of the baseline models. Each representation is evaluated using LR, RF,
and NN-based classifiers. Note that almost all representations hold high performance (up to 99%)
in detecting IoT malware.

Type Feature LR RF NN
Binary Image 99.90 99.81 100
CFG Adjacency 91.67 89.90 92.25
CFG Algorithmic 90.20 99.22 92.09
CODE String 98.48 99.43 98.48
CODE Symbols 98.77 99.43 97.82
CODE Sections 100 100 58.16
CODE Segments 98.39 100 58.16
CODE Hexdumps 98.96 99.24 98.48
CODE Combined 100 99.90 57.79

individual trees and mitigates the effect of noise on the training process. RF consists of N decision

trees and is used with non-linear classification tasks. Each tree is trained on random features to

allow for variance reduction in the individual trees’ output and decreases the effect of noise on the

training process. The final prediction is calculated by a majority prediction vote of the decision

trees or by the average prediction of all the trees.

Convolutional Neural Network (CNN). CNN is a powerful deep learning model used in image

classification and pattern recognition. A convolution layer, which generates feature maps, is the

basic unit of the CNN network. Once a feature vector is fed into a convolutional layer, it becomes

abstracted to a feature map, with the shape of (feature map height) × (feature map width) ×

(feature map depth). CNN performs well in extracting patterns in higher dimensionality when the

pattern location, in the feature space, is irrelevant. Therefore, we use the CNN model with image-,

CFG adjacency-, and CFG algorithmic-based feature representations.

Deep Neural Networks (DNN). DNN model is used to extract deep encoded patterns and con-

tains multiple consecutive fully connected layers. In the learning stage, the model configures the

55

parameters of each single layer l, denoted by:

h(l) = a(W (l) ×X + b(l)), (4.1)

where, for a layer l, a(.) is the activation function, W (l) is the weights of the features, and b(l) is the

bias. We use the DNN model with the static-based representations, including Strings-, Symbols-,

and Hexdumps-based representations.

Training Stage. The dataset is split into 80% training and 20% testing. The Neural Network (NN)

classifiers were trained with ten epochs, and a learning rate of 0.01.

Evaluation & Results. To better understand the robustness of the IoT malware detection systems,

we evaluate each of the settings separately.

Baseline Evaluation. We implemented the baseline classifiers on our dataset. Table 4.3 shows the

performance of the classifiers. Eight out of the nine representations achieve a high detection accu-

racy of 99% with at least one learning algorithm. The only exception is the CFG-based adjacency

matrix representation, with an accuracy of 92.25%. We recall that high accuracy does not reflect

accurate learning, nor the quality of the learned patterns.

Model Stability.

RQ1:
Are the baseline models correctly trained with no over-fitting and under-fitting?

A stable model’s performance should ideally decrease linearly with the increase of the perturba-

tion size, to eventually reach random (50% given the two-class classification). Fig. 4.4 shows the

evaluation of the baseline classifiers under the Gaussian noise with 1%-100% perturbation. Except

for the Hexdump representation, with the introduction of a perturbation size of 1% ≤ δ ≤ 5%, the

classifiers fail to deliver beyond the random guess. This highlights that the used representations are

not stable and may fail due to the temporal changes in the data over time. A likely reason for this

is the frequent appearance of different versions of the same or identical malware, thereby forcing

56

0.4

0.5

0.6

0.7

0.8

0.9

1

0
%

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

A
cc
u
ra
cy

Perturbation

LR

RF

NN

(a) Image.

0.4

0.5

0.6

0.7

0.8

0.9

1

0
%

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

A
cc
u
ra
cy

Perturbation

LR

RF

NN

(b) Adjacency matrix.

0.4

0.5

0.6

0.7

0.8

0.9

1

0
%

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

A
cc
u
ra
cy

Perturbation

LR

RF

NN

(c) Graph algorithmic features.

0.4

0.5

0.6

0.7

0.8

0.9

1

0
%

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

A
cc
u
ra
cy

Perturbation

LR

RF

NN

(d) String.

0.4

0.5

0.6

0.7

0.8

0.9

1

0
%

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

A
cc
u
ra
cy

Perturbation

LR

RF

NN

(e) Symbols table.

0.4

0.5

0.6

0.7

0.8

0.9

1

0
%

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

A
cc
u
ra
cy

Perturbation

LR

RF

NN

(f) Sections table.

0.4

0.5

0.6

0.7

0.8

0.9

1

0
%

10
%

20
%

30
%

40
%

5
0
%

60
%

70
%

80
%

90
%

10
0%

A
cc
u
ra
cy

Perturbation

LR

RF

NN

(g) Segments table.

0.4

0.5

0.6

0.7

0.8

0.9

1

0
%

10
%

20
%

30
%

40
%

5
0
%

60
%

70
%

80
%

90
%

10
0%

A
cc
u
ra
cy

Perturbation

LR

RF

NN

(h) Hexdump-based.

0.4

0.5

0.6

0.7

0.8

0.9

1

0
%

10
%

20
%

30
%

40
%

5
0
%

60
%

70
%

80
%

90
%

10
0%

A
cc
u
ra
cy

Perturbation

LR

RF

NN

(i) Combined Features.

Figure 4.4: Baseline classifiers evaluation under various Gaussian noise perturbation rates (1%-
100%).

the model to be over-fitted to look for the exact match instead of extracting feasible patterns.

Key Finding:
Except for Hexdump-based representation, the baseline classifiers demonstrate high instabil-

ity in their performance under small perturbation (1% Gaussian noise).

White-box Attacks.

RQ2:
Are the classifiers prone to practical white-box adversarial attacks?

57

Table 4.4: Baseline classifiers evaluation under white-box settings. Only realistic and practical
adversarial attacks are considered. All attacks are done on the NN and transferred to the LR- and
RF-based classifiers.

Type Feature Attack Type Model Accuracy (%)

Binary Image
Transferred LR 63.73
Transferred RF 72.71
Direct CNN 63.73

CFG Adjacency
Transferred LR 81.77
Transferred RF 79.60
Direct CNN 81.30

CFG Algorithmic
Transferred LR 59.95
Transferred RF 60.70
Transferred CNN 59.95

CODE String
Transferred LR 29.08
Transferred RF 30.02
Direct DNN 30.59

Evaluating the classifiers against white-box settings is essential to understand their point-of-failure.

In this context, we evaluate the white-box attacks that can be implemented directly on the binaries,

or on the source code by the malware author. Table 4.4 shows the evaluation of the baseline models

under white-box attacks, including binary padding and graph and string manipulation. While the

binary padding can be also applied to the remaining representations (as shown later), it is consid-

ered as a white-box attack on the image-based representation only, and therefore reported here. We

note that all considered white-box attacks are implemented on the NN-based classifier, and trans-

ferred to the other learning algorithms. The CFG-based algorithmic representation was evaluated

using the perturbation generated on the adjacency-based representation (i.e. transferred) due to

their feature dependencies.

Key Findings:
For several representations, practical white-box attacks are possible, and can be transferred

to related learning algorithms and representations.

Binary Manipulation Attacks. These settings include evaluating the classifiers under manipu-

lation attacks on the software. Here, we consider binary packing under default and optimized

58

Table 4.5: Baseline classifiers evaluation under binary manipulation (%). Packed*: optimized
packing, L.A.: learning algorithm.

Type Feature L.A.
Benign Malware

Original Packed Packed* Stripped Padded Original Packed Packed* Stripped Padded

Binary Image
LR 100 3.92 4.35 6.31 63.73 99.83 98.00 98.00 98.00 98.33
RF 99.56 2.39 2.17 2.39 72.71 100 96.66 96.66 92.00 85.00
NN 100 6.31 6.31 2.17 63.73 100 100 100 100 100

CFG Adjacency
LR 87.36 33.11 33.55 87.36 87.36 95.50 77.33 77.50 95.50 95.50
RF 88.01 98.91 99.12 88.01 88.01 91.50 73.16 73.16 91.50 91.50
NN 86.92 1.74 1.74 86.92 86.92 96.33 79.16 79.16 96.33 96.33

CFG Algorithmic
LR 91.54 1.96 1.96 91.54 91.54 89.04 89.86 89.64 89.04 89.04
RF 99.51 99.56 99.78 99.51 99.51 98.96 88.76 88.76 98.96 98.96
NN 93.23 2.17 2.17 93.23 93.23 91.11 91.85 91.62 91.11 91.11

CODE String
LR 96.51 3.48 3.48 96.51 96.51 100 100 100 100 100
RF 98.69 2.39 2.39 98.69 98.69 100 100 100 100 100
NN 96.51 0.00 0.00 96.51 96.51 100 100 100 100 100

CODE Symbols
LR 97.16 1.08 1.08 97.16 97.16 100 100 100 100 100
RF 98.69 2.17 2.17 98.69 98.69 100 100 100 100 100
NN 94.98 3.26 3.26 94.98 94.98 100 100 100 100 100

CODE Sections
LR 100 100 100 3.48 100 100 34.66 34.66 100 100
RF 100 3.48 3.48 100 100 100 100 100 100 100
NN 0.00 0.00 0.00 0.00 0.00 100 100 100 100 100

CODE Segments
LR 96.51 0.00 0.00 96.51 96.51 99.83 99.83 99.83 99.83 99.83
RF 100 3.48 3.48 100 100 100 100 100 100 100
NN 3.48 3.48 3.48 3.48 3.48 100 100 100 100 100

CODE Hexdumps
LR 98.03 97.60 97.60 98.03 98.03 99.66 86.16 86.16 99.66 99.66
RF 98.25 1.74 1.74 98.25 98.25 100 92.83 92.83 100 100
NN 96.51 0.00 0.00 96.51 96.51 100 100 100 100 100

CODE Combined
LR 100 3.48 3.48 3.48 100 100 100 100 100 100
RF 99.78 3.26 3.26 99.56 99.78 100 100 100 100 100
NN 0.00 0.00 0.00 0.00 0.00 100 100 100 100 100

(packing*) conditions, stripping, and padding. Table 4.5 shows the evaluation results under these

manipulation attacks strategies. In the following, we interpret these results posed as research ques-

tions.

RQ3:
Does binary packing affect the performance of the baseline classifiers?

The evaluation results show that most of the classifiers identify packed software as malicious.

This indicates that they identify packing as a malicious pattern. This observation is in line with

Aghakhani et al. [16], demonstrating that the industry-standard windows malware detection sys-

tems identify the packed software as malicious. However, our results bring forward an exception,

where Hexdump-based LR classifier maintains its performance under the two levels of packing.

59

Key Finding:
Baseline classifiers, in general, identify packing as malicious behavior.

RQ4:
Does binary stripping affect the behavior of the baseline classifiers?

Recall that stripping removes information, such as the debug information, from the software bina-

ries. However, the results exhibit that the performance of most of the representations, such as the

CFG, strings, symbols, segments, and Hexdump, are intact.

Key Finding:
Generally, existing approaches maintain high accuracy under binary stripping.

RQ5:
Does binary padding affect the behavior of the baseline classifiers?

Given that with binary padding we do not remove any existing functional codebase, it does not af-

fect the analyses of the software. Therefore, it only affects the binary/image-based representation.

Key Finding:
Binary padding only reduces the performance of binary/image-based classifiers and can be

countered by reverse-engineering the software samples.

RQ6:
Which of the representations and learning algorithms are best suited for malicious IoT soft-

ware detection?

To answer this question, we considered the following metrics: (1) Baseline accuracy. A detector

should have a minimal detection error (i.e. false positive and negative rates). (2) Performance

consistency. The performance of the classifiers should be robust to various binary manipulation

techniques. (3) Model stability. The robustness of the classifier should encompass Gaussian noise,

to some extent. Altogether, the classifier that performed best is the Hexdump-based LR classifier,

followed by the CFG algorithmic-based RF classifier.

Key Finding:
Hexdump-based LR classifier is the most robust classifier, providing a stable 98.96% baseline

accuracy.

60

0%

5%

10%

15%

20%

25%

0 5 10 15 20 25 30 35 40 45

D
et

ec
te

d

Engines

(a) Original.

0%

5%

10%

15%

20%

25%

0 5 10 15 20 25 30 35 40 45

D
et

ec
te

d

Engines

(b) Binary Packed.

0%

5%

10%

15%

20%

25%

0 5 10 15 20 25 30 35 40 45

D
et

ec
te

d

Engines

(c) Binary Packed*.

0%

5%

10%

15%

20%

25%

0 5 10 15 20 25 30 35 40 45

D
et

ec
te

d

Engines

(d) Binary Stripped.

0%

5%

10%

15%

20%

25%

0 5 10 15 20 25 30 35 40 45

D
et

ec
te

d

Engines

(e) Binary Padded.

Figure 4.5: The online engines’ detection rate of the original and binary manipulated IoT malware
samples.

Industry-Standard Detection Engines Robustness

Malware authors check their software on the online detection engines to ensure that their resultant

product evades the scanning engines. Given that these scan engines provide results for a pool

of anti-virus engines, evading the detection from these engines is considered as a prototype for

malware evolution. These mutations are then used in malware campaigns in the future. We argue

that a practical malware detector should detect such mutations, or at least cover for the low-effort

based mutations.

Experimental Setup. Online scan engines, such as VirusTotal, are commonly used by researchers

to inspect software. VirusTotal reports contain the detection results of a pool of state-of-the-art

anti-virus engines that can be considered as the up-to-date capability of industry-standard malware

detectors. Overall, it contains reports from 66 IoT malware detection engines. Therefore, to have

a comprehensive evaluation of the existing IoT malware detectors, we also evaluate the industry-

61

standard malware detection systems.

VirusTotal Reporting. The original and manipulated software were uploaded to VirusTotal using

their Large File Scan API. To account for the time the AI engines take to properly scan the uploaded

files, we wait for 24-hours before gathering the reports. Each of the reports contains details about

the uploaded file, including the date, size, header information, and the scan results of each available

detection engine. Each report contains results of multiple engines (45-66), each highlighting if it

detects the file as malicious or otherwise. Additionally, we found two engines that report for less

than ten samples, which we removed from our list. Ultimately, we scan the malicious and benign

software through 64 detection engines.

AI-based Engines. The next step is to separate the AI-based engines from other engines. This

step is challenging as the detection engines are unlikely to share their detection approaches with

the public. We manually inspect each detection engine website, searching for the used approaches.

Engines that explicitly mention AI or ML are labeled as AI (✓), while others are labeled as uncer-

tain (✗).

Ethical Considerations. As stated by VirusTotal, the API is not meant to be used to compare

between the engines, nor be used to draw conclusions of whether engine X is better than engine Y.

Toward this, we take the following considerations: (1) All engines are renamed as “E — i”, where

i is a given index for the engine. (2) The usage of the API is to assert that state-of-the-art scan

engines are vulnerable and behave similar to the research-based detection approaches. We do not

intend to compare the engines, nor raise concerns against any specific service provider.

Evaluation & Results. In the following, we interpret the results of the industry-standard malware

detectors to understand their behavior, shown in Table 4.6 and presented as research questions. The

detailed evaluation of the 64 engines is shown in Table 4.7, and the major insights are illustrated

in Fig. 4.6.

RQ7:
Does binary manipulation affect the malware detection rate?

62

Table 4.6: The online IoT malware detection engines evaluation (%). Packed*: optimized packing.

Engine AI
Benign Malware

Original Packed Packed* Stripped Padded Original Packed Packed* Stripped Padded
E — 1 ✓ 100 86.41 89.68 100 100 100 82.79 82.94 100 100
E — 2 ✓ 100 100 100 100 100 98.33 33.83 34.67 97.33 23.5
E — 3 ✓ 100 100 100 100 100 99.5 34.67 35.5 98.5 37.0
E — 4 ✓ 100 100 100 100 100 99.33 94.5 96.33 99.33 95.29
E — 5 ✓ 100 — — 100 100 100 100 100 100 100
E — 6 ✓ 100 100 100 100 100 99.67 99.67 99.67 99.66 99.67
E — 7 ✓ 100 100 100 100 100 0.0 0.0 0.0 0.0 0.0
E — 22 ✗ 100 100 100 100 100 80.61 29.15 29.34 79.16 4.04
E — 23 ✗ 100 100 100 100 100 99.67 99.67 99.5 99.5 97.33
E — 24 ✗ 100 100 100 100 100 50.34 29.36 29.88 85.21 59.97
E — 25 ✗ 100 100 100 100 100 84.8 28.42 28.52 81.27 4.65
E — 26 ✗ 100 100 100 100 100 100 58.29 58.66 98.99 40.37
E — 27 ✗ 100 85.84 90.07 100 100 100 82.78 82.8 100 100
E — 28 ✗ 100 100 100 100 100 99.83 99.83 99.83 99.66 95.41
E — 29 ✗ 100 100 100 100 100 0.0 0.0 0.0 0.0 0.0

To answer this question, we recorded the number of engines that identify malware as malicious. We

begin by probing the original malware samples: Fig. 4.5a shows the distribution of their detection

rate by the engines. Notice that malware, on average, is detected by 40 engines, with a majority

of them being detected by 35-45 engines. For the manipulated samples, however, the detection

rate varies highly. Fig. 4.5 shows the distribution of malicious samples by the number of engines

for each of the manipulation strategies. We notice that stripping (Fig. 4.5d) does not affect the

distribution of the samples. However, packing (Fig. 4.5b and Fig. 4.5c) highly affects the detection

rate. Moreover, while binary padding had minimal effects on the baseline classifiers’ performance,

it highly affects their detection among the online engines. This indicates that several engines use

binary-based representations (e.g. binary sequence and image) to detect malicious software.

Key Finding:
Except for binary stripping, binary manipulation highly decreases the detection confidence.

RQ8:
How individual engines generally perform?

To answer this question, we evaluate each individual detection engine using the original and manip-

ulated benign and malicious software, shown in Table 4.6 and Table 4.7. We observe that multiple

63

Table 4.7: The evaluation results (%) of the online IoT malware detection engines.

Engine AI
Benign Malware

Original Packed Packed* Stripped Padded Original Packed Packed* Stripped Padded
E — 1 ✓ 100 86.41 89.68 100 100 100 82.79 82.94 100 100
E — 2 ✓ 100 100 100 100 100 98.33 33.83 34.67 97.33 23.5
E — 3 ✓ 100 100 100 100 100 99.5 34.67 35.5 98.5 37.0
E — 4 ✓ 100 100 100 100 100 99.33 94.5 96.33 99.33 95.29
E — 5 ✓ 100 — — 100 100 100 100 100 100 100
E — 6 ✓ 100 100 100 100 100 99.67 99.67 99.67 99.66 99.67
E — 7 ✓ 100 100 100 100 100 0.0 0.0 0.0 0.0 0.0
E — 8 ✓ 100 100 100 100 100 53.17 24.0 24.0 53.17 51.83
E — 9 ✓ 100 100 100 100 100 87.0 86.5 86.83 86.81 95.33

E — 10 ✓ 100 100 100 100 100 91.33 31.83 31.83 91.33 91.33
E — 11 ✓ 100 100 100 100 100 99.67 47.58 47.58 99.67 97.17
E — 12 ✓ 100 100 100 100 100 97.83 33.5 33.67 97.33 97.33
E — 13 ✓ 100 100 100 100 100 0.0 0.0 0.0 0.0 0.0
E — 14 ✓ 100 100 100 100 100 0.0 0.0 0.0 0.0 0.0
E — 15 ✓ 100 100 100 100 100 32.06 12.36 11.74 31.69 30.57
E — 16 ✓ 100 100 100 100 100 100 34.67 34.67 100 100
E — 17 ✓ 100 100 100 100 100 82.47 27.67 27.67 82.15 81.47
E — 18 ✓ 100 100 100 100 100 99.45 96.69 96.52 99.27 95.0
E — 19 ✓ 100 100 100 100 100 19.69 0.51 0.51 19.49 19.39
E — 20 ✓ 100 100 100 100 100 0.0 0.0 0.0 0.0 0.0
E — 21 ✓ 100 100 — 100 100 — 0.0 0.0 0.0 0.0
E — 22 ✗ 100 100 100 100 100 80.61 29.15 29.34 79.16 4.04
E — 23 ✗ 100 100 100 100 100 99.67 99.67 99.5 99.5 97.33
E — 24 ✗ 100 100 100 100 100 50.34 29.36 29.88 85.21 59.97
E — 25 ✗ 100 100 100 100 100 84.8 28.42 28.52 81.27 4.65
E — 26 ✗ 100 100 100 100 100 100 58.29 58.66 98.99 40.37
E — 27 ✗ 100 85.84 90.07 100 100 100 82.78 82.8 100 100
E — 28 ✗ 100 100 100 100 100 99.83 99.83 99.83 99.66 95.41
E — 29 ✗ 100 100 100 100 100 0.0 0.0 0.0 0.0 0.0
E — 30 ✗ 100 100 100 100 100 0.33 0.0 0.0 0.33 0.0
E — 31 ✗ 100 100 100 100 100 0.0 0.0 0.0 0.0 0.0
E — 32 ✗ 100 100 100 100 100 100 90.82 92.67 99.67 99.67
E — 33 ✗ 100 100 100 100 100 96.82 33.9 35.9 98.3 36.81
E — 34 ✗ 100 100 100 100 100 99.5 34.67 35.5 98.5 37.0
E — 35 ✗ 100 100 100 100 100 99.83 99.83 99.83 99.5 96.31
E — 36 ✗ 100 100 100 100 100 99.33 34.34 36.06 98.99 75.79
E — 37 ✗ 100 100 100 100 100 0.0 0.0 0.0 0.0 0.0
E — 38 ✗ 100 100 100 100 100 0.0 0.0 0.0 0.0 0.0
E — 39 ✗ 100 100 100 100 100 99.83 34.72 36.5 99.5 75.17
E — 40 ✗ 100 100 100 100 100 99.83 85.98 85.83 99.0 95.0
E — 41 ✗ 100 100 100 100 100 1.34 0.5 0.5 1.34 0.0
E — 42 ✗ 100 100 100 100 100 0.0 0.0 0.0 0.0 0.0
E — 43 ✗ 100 100 100 100 100 0.0 0.0 0.0 0.0 0.0
E — 44 ✗ 100 100 100 100 100 99.0 34.33 35.17 98.83 98.5
E — 45 ✗ 100 100 100 100 100 0.0 0.0 0.0 0.0 0.0
E — 46 ✗ 100 100 100 100 100 99.5 34.5 34.5 99.17 97.83
E — 47 ✗ 100 100 100 100 100 99.67 85.67 85.33 97.0 94.83
E — 48 ✗ 100 100 100 100 100 0.0 0.0 0.0 0.0 0.0
E — 49 ✗ 100 100 100 100 100 99.33 99.5 99.83 99.5 95.33
E — 50 ✗ 100 100 100 100 100 99.64 88.27 89.54 99.47 95.07
E — 51 ✗ 100 100 100 100 100 98.17 39.0 39.0 94.17 90.67
E — 52 ✗ 100 100 100 100 100 100 75.3 75.09 100 97.64
E — 53 ✗ 100 100 100 100 100 99.83 99.83 99.83 99.33 95.17
E — 54 ✗ 100 100 100 100 100 0.0 0.0 0.0 0.0 0.0
E — 55 ✗ 100 100 100 100 100 97.98 33.28 33.56 96.96 0.51
E — 56 ✗ 100 100 100 100 100 0.0 0.0 0.0 0.0 0.0
E — 57 ✗ 100 100 100 100 100 100 34.45 34.51 98.83 97.82
E — 58 ✗ 100 100 100 100 100 2.5 1.17 1.17 2.33 0.0
E — 59 ✗ 100 100 100 100 100 97.65 96.66 96.64 96.46 96.3
E — 60 ✗ 100 100 100 100 100 78.86 26.63 26.63 78.96 74.92
E — 61 ✗ 100 100 100 100 100 0.0 0.0 0.0 0.0 0.0
E — 62 ✗ 100 100 100 100 100 99.17 93.33 95.33 99.33 95.33
E — 63 ✗ 100 100 100 100 100 99.67 99.67 99.67 99.67 99.67
E — 64 ✗ 100 100 100 100 100 0.0 0.0 0.0 0.0 0.0

64

engines perform poorly, with 36% of the engines (23 out of 64) failing in identifying malware

(≈ 0% accuracy), such as “E — 7” and “E — 29”. Additionally, except for “E — 1” and “E —

27”, the benign detection accuracy is 100%, similar trends were observed for packed, stripped, and

padded benign software.

Key Finding:
Several engines (36%) exhibit reduced performance for detecting original and binary manip-

ulated malicious software.

RQ9:
Does packing affect the engines’ performance?.

The evaluations exhibit that packing does not affect the performance of the engines in accurately

detecting benign software (except for “E — 1” and “E — 27”). This observation is in contrast

to previous observations [16]. However, packing, generally, reduces the accuracy of malware

being detected as malware. For instance, “E — 3” performance declined from 99.5% to ≈ 35%

when tested with packed malware. We also observed that optimized packing does not decrease

the detection rate, in fact, it slightly increases the chance of malicious software being detected, as

compared to the standard packing. Additionally, for engines, such as “E — 5”, we observe that no

results were reported for benign packed binaries, while achieving 100% in other categories. This

can be attributed to the low confidence of the engine in labeling benign packed samples.

Key Finding:
Although packing reduces the detection rate of malicious software, it has no effect on the

benign software detection rate. Optimized packing has a higher detection rate in comparison

with default packing.

RQ10:
Does binary stripping affect the online engines’ performance?

There is no noticeable decrease (<1%) in the detection accuracy of stripped software in the case

of online engines. In fact, for some engines (i.e. “E — 24”), the malware detection performance

increased from 50.34% to 85.21% after stripping.

65

0

20

40

60

80

100

E — 2 E — 3 E — 22 E — 24

M
al

w
ar

e
 D

et
ec

ti
o
n

 R
at

e
(%

)

Online Engine

Original Packed Packed* Stripped Padded

Figure 4.6: Industry-standard detection engines robustness highlight. Binary packing significantly
reduces the detection rate of Malware software (“E — 2”). Binary stripping does not result in
noticeable performance degradation, and may increase the malware detection rate (“E — 22”).
Simple binary padding to the end of the file may cause significant degradation in the performance
(“E — 3” and “E — 22”).

Key Finding:
Stripping has no negative effect on the performance of the engines, albeit increasing the

accuracy in some instances.

RQ11:
Does binary padding affect the online engines’ performance?

Binary padding significantly decreases the performance of several online engines, such as “E —

2”, “E — 3”, and “E — 22”. This is maybe attributed to the fact that appending binaries disrupt the

existing signatures. The online engines’ reports show that > 53% of them are affected negatively,

with > 14% of them exhibiting a drastic decrease in performance (> 70% decrease). Although

padding does not affect the reverse-engineered features, the decrease in performance, regardless,

indicates that the engines use the raw binary representations (e.g. binary sequence- and image-

based) for classification, which apparently can be easily disrupted.

66

Key Finding:
Binary padding highly reduces the performance of several engines, while leaving others in-

tact.

Threat Surface Reduction

In this work, we highlight the vulnerability of machine learning-based malware detection frame-

works to adversarial examples. This vulnerability is contributed to two components: (i) inconsis-

tencies within the learning algorithms, and (ii) volatile feature space. In this section, we identify

potential volatile feature space, and propose pre-processing mechanisms to counter exploiting such

features. This process enable trustful malware detection, limiting the adversarial capabilities.

Restricted Learning Algorithm. Benign software are diverse, and not bounded by existing pat-

terns. On the other hand, malware families are bounded by shared behavioral functionalities. A

common malpractice is to train the machine/deep learning model on the benign patterns, causing

over-fitting and potential pattern injection exploitation. Toward robust learning process, we inves-

tigate limiting the learning process to only learn the malicious patterns (i.e. monotonic learning),

and not over-fit on the benign patterns. In this process, the learning algorithms decision making is

associated with the existence of information, rather than absence of information.

Remove Volatile Features. On the feature space-level, the usage of volatile, easy to modify,

features is a major concern toward exploiting the malware detection process. For instance, binary

padding is only effective due to malware detectors considering the binaries that exist beyond the

file execution boundaries within the feature space. Altering or removing arbitrary information,

such as the file name and padded binaries, should not cause misclassification.

Adversarial Capabilities. Before diving into the reduction of the attack surface in context of

binary-level malware detection, we need to understand the adversarial capabilities under such set-

tings. For instance, the adversary may apply perturbation directly to the binary sequences of the

malicious file. Such perturbation can be either (1) modifying the values of existing bytes, or (2)

67

File Header

First Section

Last Section

Overlay

...

Binary Padding

Header

Manipulation

Intersection

Manipulation

Certificate

Modification

Figure 4.7: The generic file format. Different attacks utilizes different attack channels to cause
misclassification

add new byte sequences to the file. This perturbation should be carefully applied to ensure that the

(i) functionality, (ii) executability, and (iii) malicious behavior of the software are intact. In the

following, we investigate the binary-level malware mutations that cause effective malware mis-

classification, shown in Fig. 4.7

Header Information Manipulation [49]. In this attack, the adversary modifies the arbitrary val-

ues within the file header to cause misclassification. Information includes, but is not limited to,

size of image, program signature, characteristics flags, time-date stamp, signature, and the number

of sections. Such information are easy to modify, as they do not contribute to the functionality of

the program.

Insights on Effectiveness: This attack is effective when the malware detection frameworks utilize

easy-to-modify header information for malware detection [27]. While such information may mo-

mentarily increase the malware detection performance, as malware within the same category and

time period may have shared header information, it might be exploited to reduce the detection

performance or confidence.

Binary Padding [85]. In this attack, the adversary appends binaries at the end of the program

binaries. This process is functionality-preserving, and widely used for misclassifying binary-based

68

classifiers. The padded binaries can be generated using different approaches, including benign

injection, random injection, or gradient padding.

Insights on Effectiveness: While padded bytes are not mapped to any functionality, nor scanned

by the operating system on the run-time, this approach take advantage of the on-the-fly fast raw

binary-based malware detection approaches, including bytes sequences [115], software visualiza-

tion [128, 96], and bytes n-grams and histograms [152, 33]. Such techniques, while being light-

weighted and utilized at the end-point devices, can be exploited to cause misclassification using

binary padding, as shown earlier in this dissertation.

Intersection Injection [49, 129]. In contrast to the binary padding, this approach does not increase

the size of the program, but rather manipulates the “unused” (i.e. unmapped) bytes of the program

to cause misclassification. This, however, limit the space of perturbation, and may result in a re-

duced attack surface. Unused bytes are defined as bytes resulting from the memory page allocation

process, where bytes are padded between sections due to the difference between the virtual size

and allocated memory size.

Insights on Effectiveness: Similar to binary padding, this attack exploits the lack of software struc-

tural analysis in raw binary-based detection models. However, it is harder to detect, as it does not

increase the size of the file, in contrast to the binary padding.

Omitting Volatile Information. In this section, we discuss simple yet effective software pre-

processing techniques to omit volatile features that do not contribute to the malicious functionality,

and, in turn, significantly mitigate the effect of binary-level mutations.

Software Stripping. The process of removing information from executable binaries that is not

essential or required for normal and correct execution is known as software stripping. While such

information may increase the performance of the detection framework, it is considered a fertile

ground for adversary exploitation, particularly the header and debugging information.

Excessive Length Removal. We refer to the process of removing the padded binaries occur after

69

Table 4.8: IoT malware detection performance evaluation using gradient boosting model with
traditional and monotonic patterns learning under different software cleaning and processing tech-
niques. Notice that three feature representations are rendered unusable after software processing,
indicating that the extracted patterns were associated with volatile features (i.e. non-robust). Un-
padded binaries include the intersection byte resetting. S&U: Both binary stripping and unpadding
were applied.

Feature Type Processing
Traditional Monotonic Learning

F-1 score AUC-ROC
Malware Detection

F-1 score AUC-ROC
Malware Detection

(0.1% FPR) (0.1% FPR)

Image

Original 99.87 99.99 99.73 99.8 99.99 99.47
Stripped 99.64 99.99 98.26 99.64 99.54 91.19
Unpadded 99.64 99.99 98.33 99.28 99.93 83.5
S&U 99.59 99.99 99.96 96.07 99.66 86.34

Hexdump

Original 99.80 99.99 99.91 93.35 98.8 0.0
Stripped 99.94 99.99 99.96 99.09 99.94 94.24
Unpadded 99.84 99.99 100.0 97.35 99.42 58.89
S&U 99.89 99.99 99.92 99.09 99.94 95.46

Bytes N-gram

Original 100 100 100 100.0 100.0 100.0
Stripped 99.89 99.99 99.85 99.94 99.99 99.96
Unpadded 100.0 100.0 100.0 100.0 100.0 100.0
S&U 99.94 99.99 99.96 99.94 99.99 99.85

Strings

Original 96.56 99.06 94.09 94.23 97.68 85.63
Stripped 96.97 99.55 96.45 94.6 98.71 95.11
Unpadded 44.98 66.71 33.43 44.98 66.3 32.61
S&U 44.98 66.71 33.43 44.98 66.3 32.61

Sections

Original 99.93 100.0 100.0 100.0 100.0 100.0
Stripped 100.0 100.0 100.0 99.44 99.94 99.67
Unpadded 100.0 100.0 100.0 84.96 93.35 86.71
S&U 100.0 100.0 100.0 44.98 81.25 62.5

Imports

Original 98.46 98.36 5.81 97.15 97.73 5.72
Stripped 53.38 55.95 3.29 51.88 55.18 3.33
Unpadded 44.98 51.42 2.84 44.98 51.42 2.84
S&U 44.98 51.42 2.84 44.98 51.42 2.84

Relocations

Original 95.09 94.34 5.19 91.33 91.5 5.11
Stripped 45.07 51.43 2.86 45.07 51.43 2.86
Unpadded 44.98 50.95 1.91 44.98 50.95 1.91
S&U 44.98 51.05 2.1 44.98 51.05 2.1

Combined

Original 100.0 100.0 100.0 99.93 100.0 100.0
Stripped 100.0 100.0 100.0 100.0 100.0 100.0
Unpadded 100.0 100.0 100.0 100.0 100.0 100.0
S&U 100.0 100.0 100.0 100.0 100.0 100.0

the end of the file, and do not appear in the header or sections information (i.e. not mapped to the

software) as binary unpadding. Obtaining the information regarding the sections boundaries and

virtual sizes can be effectively utilized to omit the padded binaries from the end of the software.

Bytes Resetting. In the software, there exists an area between the mapped sections, mainly caused

by the memory paging system and the difference between virtual size and raw size of the section.

70

This area is typically exploited by modifying the byte sequences to generate code caves and dif-

ferent malware mutations. Resetting these bytes to a pre-defined op-code, such as 0x00, removes

the possibility of conducting such adversarial attacks. In this work, we include this pre-processing

technique within the binary unpadding process.

Experimental Evaluation. Table 4.8 shows the experimental evaluation of IoT malware detection

performance, reported in F-1 score, AUC-ROC score, and the malware detection rate at 0.1% false

positive rate (i.e. 99.9% benign detection rate) for both traditional learning and monotonic learning.

Note that traditional learning allows for learning benign patterns, whereas monotonic learning limit

the learnt patterns to be within malware samples. Our results unveil that three representations

rendered useless under binary stripping and unpadding, indicating that the extracted features from

these representations are volatile, and can be exploited. While omitting such features will reduce

the attack surface, it will also render the model unusable in case of software strings representation.

While traditional learning, accompanied with software processing, ensures robustness against bi-

nary padding and header manipulation attacks, the model is still vulnerable to pattern injection

attacks. This is when monotonic learning becomes handful, as allowing only malicious patterns

meaning that injecting patterns will only increase the maliciousness of the software, instead of be-

ing classified as benign. Overall, several representations achieve a consistent performance across

different settings, with minimal performance to robustness trade-off cost.

Online Engines: Volatile Features. To better understand whether online engines utilize volatile

information for malware detection, we uploaded the malware samples to VirusTotal API after

appending one byte (0xFF) to the end of each file to prevent signature recognition and blacklisting.

We noticed a significant decrease of the online detection engines performance on the unpadded

binaries, with a 28% decrease, and stripped and unpadded binaries, with 30% decrease. However,

we only observe a detection performance decrease of only 3% after binary stripping. This indicates

that most engines does not utilize header information within their models, but utilize the overlay

information, including certificate and software signature information, to detect malicious software.

71

We recall that such features, while initially increase the detection performance, can be exploited

toward misclassification.

Summary & Concluding Remarks

Malware analysis and detection have been the focus of the research community and the industry

alike, with many advances in defenses with the use of AI-backed systems. Despite those advances,

these systems have been shown to be vulnerable to several simple-yet-effective adversarial attacks,

such as binary stripping and packing. With this work, we systematically evaluate the state of a

range of malware detectors, proposed by the research community and industry-standard.

Our efforts show that malware detectors proposed in the literature are vulnerable to adversarial

perturbation and binary manipulation attacks. Similarly, industry-standard malware detectors are

prone to such attacks. Our efforts also unveil the status-quo of the existing detectors, and bring

forward various insights to consider when proposing detection systems. Particularly, in addition to

optimizing baseline malware detection accuracy, researchers should take into account the robust-

ness of the proposed systems under adversarial capabilities. This obligates for a deep understand-

ing of the underlying learning algorithms and data representations, alongside the learned patterns

and their characteristics.

72

CHAPTER 5: EXPOSING THE LIMITATIONS OF MODEL

RETRAINING IN MACHINE LEARNING MALWARE DETECTION

Malware detection systems have conveniently employed signature-based and heuristics-based ap-

proaches that are largely effective across malware families with similar characteristics. The per-

formance of both the signature- and heuristics-based approaches, however, decreases significantly

when they encounter new and previously unseen malware families. For a broad spectrum of mal-

ware detection across multiple families, machine learning techniques are now widely adopted, and

they are capable of detecting a wide range of malware properties as they evolve over time [26, 116,

120, 90, 25].

Although machine learning-based techniques have been shown to be very promising in detecting

malware and generalizing to new unseen patterns of malware families, these techniques’ perfor-

mance consistency is constrained by the notion of “concept drift”. The concept drift is caused

by a rapid change in the malware features being examined by the detection technique [79]. The

effect of concept drift on malware evolution is very clearly demonstrated in the recent reports by

VirusTotal [10], where it has been shown unequivocally that the numbers of malware samples and

families seen in the wild are increasing exponentially, at the rate of 1.5 million samples per day.

The fundamental idea behind concept drift, which is exploited by adversaries to evade detection,

is that it is possible to invoke a rapid malware mutation, making the malware a moving target for

the machine learning-based detection system. These new developments have initiated an arms race

between malware families and machine learning-based detection systems, with defenses appearing

to be mostly ineffective in light of recent reports [10].

To combat this critical issue in malware classification, Zhang et al. [155] proposed time- and space-

robust features to mitigate the effects of concept drift. While these features work initially, they do

not solve the concept drift issue fundamentally, but rather slow down their immediate effects and

eventually result in a reduction of the performance of the classifier over time. Commonly used

73

approaches to combat the concept drift problem are model retraining and active learning. Model

retraining includes retraining the machine learning model [82, 134] by incorporating new mal-

ware samples in the training process. Active learning, on the other hand, is considered as a light-

weighted solution for reducing the computational cost of model retraining [145]. In particular,

active learning reduces the retraining dataset by only retraining on carefully selected new malware

samples (i.e. samples with low detection confidence), to optimize the computational overhead for

a performance gain trade-off.

While several studies have incorporated active learning to reduce the computational overhead in

malware detection [154, 143, 113], in this work, we focus on the limitations and drawbacks of

model retraining, as (i) model retraining provides, in most cases, the best achievable model’s per-

formance [64, 130, 95], and (ii) except for the high computational overhead of model retraining,

our findings can be generalized for active learning as well.

Through model retraining, the learning algorithm uncovers and incorporates the behavior of the

new malware samples, thereby improving the detection accuracy. However, model retraining suf-

fers from two major shortcomings depending on when retraining is done.

On the one hand, the frequent model retraining has sometimes a diminishing return: the model

accuracy may not improve despite surmounting the computation overhead. This case typically

occurs when the new samples incorporated into the retraining process are not significantly different

from the original training set (i.e. samples with minimal malware mutations). As a result, a minor

shift in malware characteristics over a short period of time (e.g. a week) does not necessarily result

in the required misclassification. As such, with the pattern shift being below a misclassification

threshold, the model retraining only incurs a computational penalty in the detection process while

yielding no performance improvements.

On the other hand, an optimistic adjustment to the retraining process by retraining at a lower fre-

quency to capture significant pattern changes, which are a required condition for misclassification,

may lead to a degraded performance. Retraining infrequently is problematic since malware evo-

74

lution is unpredictable and does not follow any fixed pattern. Therefore, not retraining for a long

period of time during malware mutation means that the patterns encountered by the model may no

longer be recognized as malicious.

The limitations of model retraining is not limited to finding the optimal retraining timeline. Our

preliminary analysis reveals that model retraining also suffers from another major caveat: the

continuous model retraining over an extended period of time will eventually cause a reduction

in model’s performance in detecting benign samples. This caveat uncovers a hidden benign-to-

malware mutations detection trade-off, which significantly limits the capabilities of the detection

frameworks in the ongoing arms race.

Summary of Completed Work

1. Systematic Exposition of Model Retraining. First, we conduct a systematic analysis of mal-

ware detection and retraining to expose their limitations. Our data-driven analysis on Win-

dows malware detection reveals an under-reported trade-off between the misclassification of

malicious and benign samples, due to the retraining approach. Our evaluation also reveals

that while retraining leads to a temporary increase in the detection of malicious samples, it

degrades the detection of benign samples by ≈15%.

2. Refining Model Retraining. Guided by the findings in our preliminary analysis, we refine

the model retraining process for accurate detection by leveraging confidence- and out-of-

distribution-based techniques. We use both techniques to detect unseen mutations in mal-

ware samples, and further leverage our detection model for a timely invocation of the retrain-

ing process. Through a timely retraining, we achieve a high malware detection rate (>97%).

A byproduct of our refined retraining is (i) tracking the temporal evolution of malware fam-

ilies through the captured mutations, and (ii) enabling effective malware family emergence

detection.

3. Discovering Malware Respreading. We uncover that the retraining process shortcomings

75

1/9/2013

1/31/2013

3/16/2013

4/6/2013

4/27/2013

5/19/2013

6/9/2013

α1

α2

 α
Feature Space

(a) Malware Mutation

B

A

x1

x2

Decision Boundaries

(b) Decision Boundary Change

Figure 5.1: Fig. 5.1a is the t-SNE visualization of zbot mutated malicious software in the period
January 2013 - June 2013. Fig. 5.1b is the illustration of the decision boundary changing of two
classes A (undetermined) and B (determined).

provide new attack opportunities. For instance, retraining optimizations to improve the per-

formance for benign samples by discarding old malware samples leads to reviving and re-

spreading old malware samples, thereby enabling malware authors to defeat the detection

systems. We find evidence that older malware reappear as new malware samples in the fu-

ture, suggesting that malware authors are reusing old malware samples to escape detection.

These findings raise concerns on the efficacy of malware detection engines and their used

strategies, and the possibility of using malware respreading to bypass the state-of-the-art de-

tection approaches at a minimal cost. To the best of our knowledge, this is the first study that

exposes the problem of malware revival and respreading by exploiting the shortcomings of

the existing malware detection systems.

Problem Statement

In this section, we discuss the shortcomings of using machine learning techniques for malware

detection. We start by describing the modus operandi of malware mutation, followed by a review

76

of its implications on machine learning models.

Malware Mutation. Malware mutation is the process in which malware properties change at

the feature level due to a change in the actual malware code, resulting in concept drift in the

machine learning model used for the malware detection. For instance, Fig. 5.1a shows the t-SNE

visualization of the zbot mutated malware family. In this figure, each mutation results in a shift in

the feature space (αi), which then results in the distortion of the existing patterns learned by the

baseline machine learning model. As a result of several mutations over an extended period of time,

the accumulated shift (α) results in a high distortion of the learned patterns of malware, thereby

necessitating a retraining step to learn the resulting mutations.

Limitations of Model Retraining. While model retraining may work temporarily, we argue that

it is not effective over several mutations. For instance, assume a detection model D that classifies

an input x into two classes {A,B} (D(x) ∈ {A,B}). Also assume that the class A is diverse

with no existing patterns within its samples (i.e. benign), while class B is bounded by the existing

patterns (i.e. malware). If certain patterns exist within x, D classifies x in class B, and in class

A otherwise. In Fig. 5.1b, we provide an illustration of this process by showing a visualization

of the decision boundaries of both class A, defined as FA, and class B, defined as FB. With the

ongoing mutations within samples of the class B, inputs such as x1 will be observed outside of the

original decision boundary. In order to accurately detect x1, the machine learning model pushes

the boundaries of class B towards x1, which is represented in the blue color. Moreover, assume an

input x2 from class B that has no shared patterns with the existing samples from the same class.

As such, the boundaries of class B will be pushed even further from its center to accurately detect

x2, once the model is retrained on x2—this case is represented in the red color.

While this process ensures high performance in terms of accurately detecting samples in class B,

the same process will deteriorate the decision boundary of class A over time, since the decision

boundary of class A (FA) is defined as F(A∪B) − FB. Overall, this retraining process will result in

a reduced performance over class A, where multiple samples will be falsely classified as class B.

77

Considering this issue, we specify the possible actions that could be taken by the detection model

to mitigate the performance loss as follows:

1. A1: No action. With no action, the model is not retrained on the new mutations of class B

samples, eventually degrading the detection performance of new mutations.

2. A2: Continuous model retraining. The model is continuously retrained on mutations of

class B samples, resulting in degraded performance for existing and new class A samples.

3. A3: Retraining on new samples only. The model is retrained on the mutations of class B

samples, but the old B samples are discarded and considered as “obsolete.” This process

results in degraded detection performance for class B’s old samples, where the old samples

are classified as class A.

While the commonly-held belief is that model retraining is a highly useful solution to detect mu-

tated malware samples, the evaluation of the aforementioned actions (A1–A3) clearly demon-

strates that model retraining has obvious limitations that have not been concretely considered nor

evaluated in the past. To empirically expose those shortcomings, this work investigates the retrain-

ing performance of windows malware detection models in detecting old and new unseen malware

samples. We use the aforementioned actions as our baseline evaluation criteria to understand the

implications of each action on the detection performance of the baseline detection model. Addi-

tionally, inspired by the insight obtained in examining A3, we investigate possible vulnerabilities

in the existing research and industrial windows malware detection systems due to “phasing out”

old malware samples from the model training.

Data Representation & Learning

Dataset Overview. A significant part of this work is an empirical examination of various retrain-

ing strategies and associated impact. As such, we obtained 56,115 malicious Windows software

78

Table 5.1: The distribution of the collected Windows binaries. After data filtration, 20,042 unique
malicious binaries were considered for our evaluation.

Family Total Samples Unique samples
zbot 1,552 1,511
playtech 748 589
bladabindi 1,105 401
gamarue 744 244
webdialer 228 228
fareit 1,389 206
razy 397 175
ursu 238 163
darkkomet 159 129
emotet 10,788 108
Others 30,194 9,638
Singleton 8,573 6,650
Benign 8,118
Overall 64,233 28,160

binaries from VirusShare [4]. The dataset includes malicious samples with first seen dates from

2008 to 2020. Moreover, we collected 8,118 benign binaries from default configurations of oper-

ating system instances of Windows XP, 7, 8, 8.1, and 10.1

Ground Truth Class. Next, we used VirusTotal [8] to examine the malicious and benign samples

in our dataset. The samples were first uploaded to VirusTotal. After 24 hours, the scan results cor-

responding to each sample were retrieved. Among the malicious samples, we found 1,421 unique

malware families for Windows OS, alongside 8,573 singleton malware samples. Additionally, we

obtained the first seen date of the malicious samples, which we consider as the ground-truth ap-

pearance date in this work. All benign samples were not detected by VirusTotal, supporting our

default assumption.

Data Representation & Augmentation. After collecting the samples and obtaining the ground

truth data, we transform each sample into seven different representations to train and evaluate

1Because of the default configuration of each operating system only contains software provisioned by Microsoft,
we assume that all those software binaries are benign, by default, which is confirmed through our sanity check.

79

Jun 2008
Mar 2009

Dec 2009
Sep 2010

Jun 2011
Mar 2012

Dec 2012
Sep 2013

Jun 2014
Mar 2015

Dec 2015
Sep 2016

Jun 2017
Mar 2018

Dec 2018
Sep 2019

Jun 2020

zb
ot

ch
ir

ur
su

vi
ru

t

wa
ca

ta
c

qb
ot

sw
ro

rt
gi

m
em

o

fa
re

it
da

rk
ko

m
et

ga
m

ar
ue

bl
ad

ab
in

di

ra
zy

we
bd

ia
le

r
on

lin
eg

am
es

io
bi

t
op

en
ca

nd
y

ra
m

ni
t

fly
st

ud
io

re
le

va
nt

kn
ow

le
dg

e
in

st
al

lco
re

so
go

u
at

ra
ps

ru
lb

ar
pr

es
en

ok
er

jo
hn

ni
e

ne
sh

ta

el
ex

wi
na

ct
iv

at
or

ki
ng

so
ft

m
sil

pe
rs

eu
s

na
no

co
re

na
no

bo
t

ge
nk

ry
pt

ik
oc

ca
m

y
pl

ay
te

ch
no

on

em
ot

et
of

fe
rin

st
al

l
re

m
co

s
az

or
ul

t
do

wn
lo

ad
gu

id
e

fo
rm

bo
ok

av
em

ar
ia

ag
en

tte
sla

ze
np

ak
cr

ys
an

ag
en

sla

ve
bz

en
pa

k

Figure 5.2: The first appearance date of the top-50 Windows malicious families in the collected
dataset.

the machine learning models. For sample transformation, we used a reverse-engineering open-

source framework called Radare2 [7]. The selected representations selected because they are: (1)

extensively used in the prior works, (2) can be generated efficiently from binaries, and (3) can be

employed for building malware detectors relatively easily. In this work, we utilized Visualization,

Hexdump, Function Calls and Entropies, Program Sections Information, Relocations, and Strings

software representations. We note that the extracted representations include different variations of

Ember representation [27], as our main goal is to investigate the temporal robustness of different

software representation-based models. In the following, we provide a brief description of the

utilized data representations.

Data Representation. In this work, we collected Windows malware that was captured in the period

of 2008–2020. To better understand the family distribution of the collected malware, Fig. 5.2 shows

the appearance date of the top-50 malware families. The top families are reported by the number of

captured unique samples. For software representation, we utilized seven different static software

representations for malware detection. The extracted representations are fast, utilized extensively

in the literature for the malware detection task, and can be extracted on-the-fly. In Table 5.2, we

show the utilized data representations, described as follows:

• Grayscale Image. The grayscale image representation is a common technique for trans-

forming malware samples into a 2D matrix of values, and each of those values is between

0 and 255. Particularly, the byte-code is visualized as a grayscale image of a fixed size of

80

(h× w), where every byte is a pixel in the image.

• Hexdump. The hexdump represents the malware as a sequence of hexadecimal values. Each

value represents a single byte (in the 0-255 range), the frequency of which is then recorded

as a vector of size 1× 256.

• Function Entropy. The entropy calculates the level of randomness for a given code; i.e. the

randomness of the opcode sequences in different functions of the software.

• Function Calls. A function name describes the intent of the procedure it represents. There-

fore, we utilize function calls in the disassembly of a program as a behavioral representation

of the malware.

• Program Sections. Windows binaries are divided into sections to conveniently load the file

in memory during execution by providing a logical and physical separation between different

program parts.

• Program Relocations. In the object file, the linker keeps relocation records for symbols

and codes such as functions. This is done to ensure that records for symbols and codes are

properly referenced from an executable program [106]. The relocation records can then be

used to represent the software.

• Program Strings. Program Strings are a sequence of printable characters in the binary

codebase, where their analysis reveals the behavioral patterns [46].

Malware Filtering. Upon transforming the dataset using Radare2 and representing samples using

the above features, we conducted malware filtering to remove duplicates. For instance, two samples

may have the same feature representation but using different command and control servers resulting

in different hashes for two identical samples. We considered malware of the same family that

appeared on the same day, with identical feature representations (except for Hexdump, since it is

sensitive to minor modifications), as duplicates.

81

Table 5.2: The state-of-the-art representations used in this work. The image-based representation
uses the raw binaries, while other representations require reverse engineering. Bin.: binary-based,
R.E.: reverse-engineered.

Representation Work Bin. R.E.
Binary – Image [80, 137, 148, 97] ✓ ✗

Static – Hexdumps [17] ✓ ✓
Static – Entropy [17, 29] ✗ ✓
Static – Functions [17, 29] ✗ ✓
Static – Sections [17, 29] ✗ ✓
Static – Relocations [29] ✗ ✓
Static – String [17, 29] ✗ ✓

2008 2010 2012 2014 2016 2018 2020

Time (Months)

0

500

1000

1500

N
u

m
b

er
of

S
am

p
le

s

Figure 5.3: The time distribution of the collected (filtered) malicious samples. Notice that most of
the samples were collected in 2013, and within the 2018-2020 duration.

Table 5.1 shows the distribution of the collected Windows software binaries in our dataset before

and after filtering out the duplicates. We note that among the 64,233 Windows software with

unique hashes, only 28,160 Windows software have unique feature representations.

The distribution of the first seen date of the samples in our dataset is shown in Fig. 5.3. Notice

that most of the malware samples appeared between 2018 and 2020, highlighting the exponential

growth of malware activity in recent years [9]. A similar trend was also observed in 2013, when

the malware activity grew significantly [5]. Even though the “zbot” malware family was first seen

in 2008, its samples continue to be active as of 2021.

82

2012 2013 2014 2015 2016 2017 2018 2019 2020
Time

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce

TPR
Confidence

(a) Image-based.

2012 2013 2014 2015 2016 2017 2018 2019 2020
Time

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce

TPR
Confidence

(b) Hexdump-based.

2012 2013 2014 2015 2016 2017 2018 2019 2020
Time

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce

TPR
Confidence

(c) Entropy-based.

2012 2013 2014 2015 2016 2017 2018 2019 2020
Time

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce

TPR
Confidence

(d) Function calls-based.

2012 2013 2014 2015 2016 2017 2018 2019 2020
Time

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce

TPR
Confidence

(e) Program sections-based.

2012 2013 2014 2015 2016 2017 2018 2019 2020
Time

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce

TPR
Confidence

(f) Program relocations-based.

2012 2013 2014 2015 2016 2017 2018 2019 2020
Time

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce

TPR
Confidence

(g) Strings-based.

Figure 5.4: The overtime malware detection performance evaluation using seven different data
representations. The baseline models are trained on 80% of the malware samples captured in the
period 2017-2018, and evaluated on the remaining samples on weekly-basis. The highlighted areas
are the actual weekly performances, while the lines represent the performance trends. The reported
confidence is the detection confidence of the malware detection model in detecting malware.

Experiment Setup and Metrics. In this work, we examine the benefits of retraining on the tem-

poral robustness, which is defined as the consistent performance of a model in detecting new

unseen malware mutations over time. As a starting point, we used the Random Forest (RF) and

Convolutional Neural Networks (CNN) as baseline learning algorithms to implement machine

83

learning-based malware detectors.

Utilized Learning Algorithms. In this section, we review the learning algorithms used in our

experiments and evaluation. We use two learning algorithms, namely a Random Forest (RF) model

and a Convolutional Neural Networks (CNN) model. We use both to model malware, and in the

following, we review both algorithms alongside arguments for their suitability for our problem

space.

Random Forest (RF). RF is a machine learning model that consists of N decision trees. Each

decision tree is trained on a collection of random features from the feature space, and it is used to

calculate the non-linear relationship between the input features and the output decision. The final

prediction of the RF classifier with N decision trees is determined by either (1) the majority vote

over the predictions, or (2) the average prediction obtained from all N trees.

Convolutional Neural Network (CNN). CNN is a deep learning model used in image classification

and pattern recognition. The basic unit of CNN is a convolutional layer, which generates feature

maps capable of extracting deep feature representations of the input. Once a feature vector is

fed into a convolutional layer, it is transformed to a feature map whose shape can be determined

by (feature map height) × (feature map width) × (feature map depth). The CNN performs well

in extracting patterns in higher dimensionality when the pattern location in the feature space is

irrelevant.

In our work, we use CNN for image-based representations, and RF for all other representations.

Moreover, while the usage of the aforementioned learning algorithms may not be optimal for some

representations, we believe such an optimality is irrelevant to the main focus of this work: our goal

is to investigate the shortcomings of model retraining for malware detection, along with observa-

tions and insights generalizable to other learning algorithms. As such, the performance of both

algorithms is only a baseline to measure the impact.

We divide our dataset into training and testing sets, following the standard 80%-20% data splitting.

We then trained a temporal model on 80% of the benign software, and 80% of malware samples

84

that appeared between 2017 and 2018, followed by a weekly evaluation of the trained model to

detect the malicious samples that appeared between 2012 and 2020. Considering the insufficient

weekly data of samples before 2012, we do not consider them for our weekly experiments.

Evaluation Metric. The trained models were evaluated using the true positive rate and confidence

of the model. The true positive rate is the ratio between the correctly classified malware and

the total number of malware samples. The model’s confidence is the probability of the model

ascribing the “malware” label to a malicious sample. From our experiments on the trained model,

we achieved a benign detection performance of over 90% for all representations.

Malware Detection Temporal Robustness

After the training phase, we evaluated the temporal robustness of seven different malware detection

systems, each of which used a unique and discrete set of features. In this evaluation, we only report

the true positive rate (correctly classified malware samples). The performance of our trained mod-

els on the benign samples was >90% across all configurations, which is slightly low in comparison

with state-of-the-art performance. The reduced performance is due to (1) dataset filtering through

which we ensure the uniqueness of each sample by removing the bias towards previously observed

samples, and (2) data splitting, which is based on the first seen time reported by the VirusTotal API.

In prior works, the authors did not conduct temporal data splitting, which is necessary to ensure

the effectiveness of the used data representation and learning techniques, especially in examining

retraining. Therefore, despite a marginally lower accuracy, our data splitting approach provisions

correctness across all experiments. This approach is in essence similar to the experimental settings

proposed by Pendlebury et al. [113].

Overtime Detection Performance. Fig. 5.4 shows the performance of the baseline models trained

on samples captured between 2017 and 2018 on a weekly basis. The shaded region represents the

actual performance, while the line represents the performance trend. For each result, we report the

true positive rate alongside the model’s classification confidence.

85

Fig. 5.4 shows that the model’s performance equally degrades over time for the new malware sam-

ples (after 2018), and the old malware samples (before 2017). This is largely due to the malware

mutations over time and the appearance of new malware families.

For some representations (i.e. relocation representation, refer to Fig. 5.4f), the detection perfor-

mance does not significantly deteriorate over time. However, for those representations, the confi-

dence of the model decreased significantly. This means that while the malware sample is detected

by the model, the probability that it is assigned to the malware class is quite low.2 The decrease in

the model confidence can be attributed to (1) the appearance of new malicious families that did not

exist during 2017-2018, and (2) the mutations of the existing malware families (within that dura-

tion), causing shifting in the behavioral patterns. To ascertain these attributions, we investigate the

models’ performance on new malware families, and mutations of existing malware families. We

split the malware occurring between 2019 and 2020 into three subsets:

(1) Seen families: This subset includes all malware samples from the families that were observed

during 2017 and 2018.

(2) Unseen families: This subset includes (a) all malware samples from families that emerged

during 2019 and 2020, or (b) the families that have been seen in the past (i.e. before 2017), but did

not appear during 2017 and 2018.

(3) Singleton samples: This subset includes samples that could not be labeled as a known family.

The problem with labeling occurs due to a conflict in assigning families by the antivirus engines

(e.g. equal number of VirusTotal reports identify the sample as different families).

Table 5.3 shows the performance of the baseline models trained using the traditional dataset split-

ting approach (dataset is split randomly to 80%-20% training and testing subsets), alongside the

2017-2018 period trained models. Notice that the highest performance was recorded during the

same training period, with a significant performance degradation before 2017 and after 2018. Dur-

2This behavior indicates that the sample is within the decision boundary of the malware class, but is drifting towards
the boundary edge (Figure 5.1b).

86

Table 5.3: The performance evaluation (%) of different malware detection systems. Random: the
data is randomly split into 80% training and 20% testing sets. Meanwhile, other performances
are reported for baseline models trained on 80% of the malware samples captured in the period
2017-2018. During: refers to the performance (malware detection rate) on the remaining 20% at
the same period.

Representation Random During Before 2017
After 2018

Overall Seen Unseen Singleton
Image-based 88.11 85.00 66.60 65.41 71.88 63.06 72.90
Hexdump 90.72 96.32 69.16 89.86 92.79 87.28 89.67
Entropy 87.85 92.20 62.14 86.39 89.26 81.28 89.51
Functions 91.95 98.99 79.50 94.93 95.86 94.19 94.84
Sections 88.82 87.12 54.09 84.43 86.55 80.81 86.56
Relocations 93.44 98.05 78.92 94.61 95.70 93.07 95.31
Strings 93.86 98.63 85.76 91.28 92.45 88.25 93.77

Table 5.4: The malware detection performance evaluation using periodic retraining approach. BL:
the baseline model’s malware detection rate without retraining (%), T: model’s retraining fre-
quency.

Represent. BL
Weekly Bi-weekly Monthly 2-Months 3-Months 6-Months Yearly

Per. T Per. T Per. T Per. T Per. T Per. T Per. T
Image 65.41 86.74 91 86.42 45 84.46 21 88.21 10 86.23 6 85.43 3 77.21 1
Hexdump 89.86 98.23 91 98.32 45 98.08 21 97.89 10 97.59 6 97.14 3 94.78 1
Entropy 86.39 97.96 91 97.70 45 97.76 21 97.59 10 97.02 6 96.24 3 92.86 1
Functions 94.93 98.59 91 98.56 45 98.53 21 98.49 10 98.36 6 98.24 3 96.78 1
Sections 84.43 94.60 91 94.53 45 94.29 21 94.14 10 94.26 6 93.30 3 89.86 1
Relocations 94.61 98.98 91 99.00 45 98.94 21 98.78 10 98.57 6 98.21 3 97.33 1
Strings 91.28 98.20 91 98.10 45 97.94 21 97.86 10 97.81 6 97.27 3 95.78 1

ing 2019 and 2020, the seen and singleton subsets performance is nearly identical. However, their

performance is lower than the performance reported during 2017 and 2018. The detection rate of

the unseen families’ samples is considerably lower than the other subsets. Clearly, the decrease

in the detection rate of unseen families subset highlights the limitation of the malware detection

approaches in detecting emerging malware families.

Key Takeaways. From the above analysis, we make the following key observations. (1) The

commonly used data splitting approach does not reflect the real-world performance of the malware

87

Table 5.5: The malware detection performance evaluation using several retraining approaches.
BL: the baseline model’s malware detection rate without retraining (%), T: model’s retraining
frequency.

Represent. BL
Confidence OOD (L2) OOD (MD)
Per. T Per. T Per. T

Image 65.41 87.75 18 86.57 81 86.37 87
Hexdump 89.86 97.18 7 97.89 47 98.21 84
Entropy 86.39 97.41 15 97.79 68 97.98 85
Functions 94.93 98.15 9 98.52 38 98.61 74
Sections 84.43 93.66 7 91.84 24 94.45 57
Relocations 94.61 98.47 7 98.90 69 98.93 80
Strings 91.28 97.58 9 97.99 57 98.04 76

detection models. (2) The state-of-the-art Windows malware detection models may not generalize

to unseen malicious behaviors and patterns. (3) Training on mutated variances of malware does

not ensure accurate detection of the original old malware. (4) In contrast to the assumptions made

in the prior works that singleton samples are “familyless” with unique patterns [43, 91], our results

show that they have a similar detection rate to seen families samples. Therefore, singleton samples

are likely the unrecognized mutations of existing malware families with shared behavioral patterns.

Malware Detection Model Retraining

Model retraining is an approach to keep up with the emerging threats since the performance of

outdated models deteriorates over time. However, model retraining involves various actions that

need to be systematically undertaken in order to ensure accurate detection. First, the malware

mutation timeline follows a random pattern [143, 79, 154], which makes it hard to infer the timeline

of model retraining. Second, while the existing approaches may be able to retrain the model

within the optimal time frame [51, 143], however, they are incapable of characterizing the mutation

patterns of malware families.

By making progress along those two frontiers we can significantly boost the performance of the de-

88

tection frameworks in the ongoing arms race. Therefore, we formulate the following two questions

as our objectives to strengthen the model retraining process: (1) “What is the suitable timeline to

retrain a model?”, and (2) “What approaches to use to detect emerging and mutated families?”.

Model Retraining. In this section, we analyze three different retraining approaches. Our evalua-

tions show the trade-off between the model retraining frequency and detection performance loss.

Retraining Approaches. There are different approaches to invoke retraining, including periodic

retraining, confidence-based retraining, and out-of-distribution-based retraining.

Periodic Retraining. It is the most widely adopted approach in the existing machine learning-

based malware detection literature [94, 83, 135]. Therefore, replicating periodic retraining enables

us to understand the operation of a wide range of deployed detection systems. In this approach,

the retraining process is periodically invoked, e.g. after every week. In our experiments, we imple-

mented weekly, bi-weekly, monthly, 2-months, 3-months, bi-yearly, and yearly periodic retraining.

To exemplify how retraining is implemented, the case of weekly retraining is considered. At the

ith week, the model is retrained on malware captured at weeks 0, 1, . . . , i− 2, i− 1, and evaluated

on malware captured at the ith week.

Confidence-based Retraining. In a two-class classification model, the confidence is defined as

the probability of the model in classifying input x into “malware” label. In our implementation

of confidence-based retraining, we invoked the retraining process when (1) the average model’s

confidence for the (i − 1)th week was below a certain threshold T1, or (2) the confidence of N

samples captured in the (i − 1)th week is below a threshold, T2. The selection of the confidence

thresholds T1 and T2 is configurable, and we selected T1 = 80%, T2 = 60% in this study.3

Out of Distribution (OOD)-based Retraining. OOD-based techniques capture the anomaly sam-

ples that do not follow a specific distribution (i.e. patterns). Therefore, OOD-based techniques can

3Selecting different thresholds may change the reported performance. We noticed that the model’s confidence
starts decreasing below 80% upon introducing new and mutated samples. Therefore, we used T1=80% as a threshold.
Moreover, the models’ confidence on the new emerging families is typically low (around 50-60%), and therefore T2 is
selected to be 60%.

89

Table 5.6: The malware detection performance evaluation (%) on seen, unseen, and singleton
samples after using several retraining approaches. Seen samples evaluation refers to the detection
rate of the model on samples of malware families that it was trained on. Sing.: Singleton Windows
malicious samples.

Represent.
BL 3-Months Confidence OOD (L2) OOD (MD)

Seen Unseen Sing. Seen Unseen Sing. Seen Unseen Sing. Seen Unseen Sing. Seen Unseen Sing.
Image 71.88 63.06 72.90 87.07 84.58 85.13 88.26 88.1 85.27 87.44 86.93 84.77 86.92 87.01 84.4
Hexdump 92.79 87.28 89.67 98.33 95.72 96.49 97.97 94.95 96.27 98.54 95.85 96.96 98.87 96.24 97.49
Entropy 89.26 81.28 89.51 97.09 95.99 97.05 97.64 96.05 97.33 97.59 96.57 97.83 98.28 96.45 97.83
Functions 95.86 94.19 94.84 98.91 98.05 97.65 99.05 97.7 97.27 98.98 98.34 97.78 99.05 98.43 98.03
Sections 86.55 80.81 86.56 94.86 93.17 92.60 94.34 92.5 91.9 93.15 90.51 89.28 95.07 93.41 92.72
Relocations 95.70 93.07 95.31 98.81 97.01 98.24 98.85 96.77 98.02 99.11 97.32 98.57 99.05 97.32 98.73
Strings 92.45 88.25 93.77 97.7 98.0 97.55 97.44 97.97 97.25 98.06 98.35 97.27 97.91 98.08 97.65

Table 5.7: The evaluation (%) of using the hybrid approaches of 3-months-based retraining and
confidence-, OOD-, and MD-based retraining approaches. The model is retrained if 1) last re-
training occurred three months ago, or 2) the approaches invoke the retraining process. T: model’s
retraining frequency. Sing.: performance on Singleton samples.

Represent.
Confidence OOD (L2) OOD (MD)

Overall Seen Unseen Sing. T Overall Seen Unseen Sing. T Overall Seen Unseen Sing. T
Image 88.29 88.41 88.54 86.76 20 86.27 87.0 87.04 84.4 82 86.58 87.05 87.37 84.62 88
Hexdump 97.74 98.56 95.73 96.66 10 97.84 98.52 95.87 96.83 48 98.23 98.87 96.32 97.49 85
Entropy 97.58 97.65 96.23 97.63 17 97.8 97.58 96.57 97.83 69 97.99 98.28 96.45 97.86 86
Functions 98.51 99.05 98.23 97.75 12 98.61 99.06 98.49 97.76 39 98.62 99.05 98.43 97.97 75
Sections 94.18 94.88 93.07 92.39 10 94.35 94.99 93.26 92.64 25 94.48 95.07 93.45 92.78 58
Relocations 98.73 98.93 96.95 98.47 9 98.94 99.11 97.32 98.69 70 98.93 99.05 97.32 98.73 81
Strings 97.73 97.67 98.01 97.44 11 98.03 98.12 98.32 97.36 58 98.08 97.97 98.04 97.74 77

identify anomalies when concept drift causes a high distortion in the existing patterns. In our work,

we apply OOD-based techniques to model the retraining process in order to capture the distortions

created by the concept drift. This method enabled us to capture new and mutated malware samples,

which can be used to (1) invoke the retraining process, or (2) estimate the malware family activity.

For a sample x to be considered as OOD it must contain new patterns that do not exist within the

known samples. The new patterns cause a shift in the feature space by a factor α. If the shift is

beyond a certain threshold, T3, the sample x is considered OOD. Instead of manually selecting T3,

we utilized the Local Outlier Factor [36] to find the anomalous samples by measuring their local

deviation from their neighbors.

We trained the OOD-based model on all captured samples from 2017 to the time when the model

90

Table 5.8: The retraining effects on the malware detection performance (%) using five distance
metrics for OOD approach, T: model’s retraining frequency. Per: detection rate (%).

Represent.
Euclidean Manhattan Cosine Hamming Mahalanobis
Per. T Per. T Per. T Per. T Per. T

Image 86.56 81 87.11 86 86.74 91 89.97 50 86.37 87
Hexdump 97.89 47 98.07 64 97.92 54 98.26 85 98.21 84
Entropy 97.80 68 97.82 68 98.07 86 97.56 53 97.98 85
Functions 98.55 38 98.67 49 98.58 78 98.67 49 98.61 74
Sections 91.84 24 93.48 25 91.87 27 93.48 25 94.45 57
Relocations 98.90 69 98.97 79 98.88 65 98.97 79 98.93 80
Strings 98.00 57 97.89 58 98.04 74 91.28 0 98.04 76

is last retrained. The output of this retraining method helped us in detecting the novel out-of-

distribution samples every week. When we captured ten novel out-of-distribution samples, we

retrained the baseline model along with the local outlier model. To identify the OOD samples, the

local outlier factor model utilizes different distance metrics.

Out-of-Distribution Distance Metrics. To identify the OOD samples, the local outlier factor

model utilizes different distance metrics. In this work, we focus on the five most commonly-

used distance metrics: Euclidean, Manhattan, Cosine, Hamming, and Mahalanobis distances. We

provide a description of each metric in the following:

1. Euclidean (L2) Distance: For two samples, x1 and x2, the euclidean distance measures the

shortest distance among pairs of points from the two samples as:
√∑n

i=1(x
i
1 − xi

2)
2, where

xi
1 is the ith feature in the feature representation of sample x1.

2. Manhattan (L1) Distance: For x1 and x2, Manhattan distance is measured with respect to

each axis (i.e. feature) in the feature space as:
∑n

i=1 |xi
1 − xi

2|, where the distance between

two samples is the sum of the absolute differences of their feature representations.

3. Cosine Distance: For two vector representations of x1 and x2, the cosine distance is defined

as 1 minus the cosine of the angle between the two vectors in the feature space, represented

91

as follows: 1−
∑n

i=1 x
i
1×xi

2√∑n
i=1(x

i
1)

2 ×
√∑n

i=1(x
i
2)

2
.

4. Hamming Distance: In contrast to the aforementioned distance metrics, the hamming dis-

tance records the count of features that are not identical in the feature representation of two

samples, and can be considered similar to the xor (⊕) operation. In our application do-

main, the input sample is feature-wise compared to its neighborhood in order to compute the

average hamming distance.

5. Mahalanobis Distance (MD): The Mahalanobis distance measures the distance between a

sample x1 and a samples’ distribution d. In particular, it measures the distance between x1

and d, calculated using the standard deviation as a distance unit. The Mahalanobis distance

can be considered similar to the Euclidean distance, but operating in a transformed feature

space.

In Table 5.8, we report the OOD-based retraining results using the five distance metrics. Overall,

the Mahalanobis-based detector outperforms its counterparts. Therefore, it was used as the base-

line for the malware emerging and mutation experiments and analysis. The Mahalanobis-based

detector was used as the baseline for malware emerging and mutation experiments and analysis, as

it outperforms its counterparts.

Model Retraining Evaluation. Table 5.4 and Table 5.5 show the overall performance using the pe-

riodic, confidence-based, and OOD-based retraining approaches. Overall, the average performance

of the baseline model increased from 89.86% to 98.23% for the Hexdump representation after

weekly retraining. However, achieving the performance increase required retraining the model 91

times between January 2019 to September 2020. While retraining the model every three months

(a total of six times), a detection rate of 97.59% was achieved.

For confidence-based retraining, the retraining frequency depends on the sample representation

and the model structure. In contrast, the OOD-based approaches depend only on the sample

representation. We found that the OOD-based approaches require frequent retraining with no

92

significant performance increase (i.e. 84 retraining times compared to seven retraining times in

the confidence-based approach for the Hexdump representation). In Table 5.8 in the appendix,

we report the OOD-based retraining results using the five distance metrics. We found that the

Mahalanobis-based detector outperforms its counterparts, therefore, it was used for the subsequent

experiments and analysis.

Seen vs. Unseen Malicious Families. After a high-level analysis of model retraining, we now

evaluate the model’s performance using the different retraining approaches on seen families, un-

seen families, and singleton samples. This step is crucial to understand when and why the model’s

performance deteriorates. Table 5.6 shows that while all approaches have a similar performance

on the seen malicious families, the Mahalanobis-based OOD-based retraining provides the best

performance over unseen and singleton samples. This could be due to Mahalanobis-based OOD’s

capability of effectively detecting OOD samples and timely invoking the retraining process upon

encountering those samples.

Hybrid Retraining Approach. Retraining the baseline model every three months provides the

best overall performance, considering the reduced retraining overhead. However, for the unseen

families, this approach does not perform well compared to the other approaches. To address this

shortcoming, we adopt a hybrid retraining approach which invokes retraining either (1) when the

confidence-based or OOD-based approaches invoke the retraining process, or (2) when the model

has not been retrained in the previous three months. Table 5.7 shows the performance of the hybrid

confidence-based, L2 and MD OOD-based retraining approaches. Overall, the hybrid confidence-

based retraining approach provides the best trade-off between the performance and retraining fre-

quency.

Using the hybrid confidence-based approach as a baseline, Fig. 5.5 shows the performance of

each of the representation models before and after the retraining. Note that retraining significantly

improves the performance, particularly for the image-based and function entropy-based represen-

tations.

93

2012 2013 2014 2015 2016 2017 2018 2019 2020
Time

0.0

0.2

0.4

0.6

0.8

1.0
Pe

rfo
rm

an
ce

Retrain
Baseline

(a) Image-based.

2012 2013 2014 2015 2016 2017 2018 2019 2020
Time

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce

Retrain
Baseline

(b) Hexdump-based.

2012 2013 2014 2015 2016 2017 2018 2019 2020
Time

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce

Retrain
Baseline

(c) Entropy-based.

2012 2013 2014 2015 2016 2017 2018 2019 2020
Time

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce

Retrain
Baseline

(d) Function calls-based.

2012 2013 2014 2015 2016 2017 2018 2019 2020
Time

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce

Retrain
Baseline

(e) Program sections-based.

2012 2013 2014 2015 2016 2017 2018 2019 2020
Time

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce

Retrain
Baseline

(f) Program relocations-based.

2012 2013 2014 2015 2016 2017 2018 2019 2020
Time

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce

Retrain
Baseline

(g) Strings-based.

Figure 5.5: The overtime detection performance evaluation after model’s retraining using the hy-
brid confidence based approach.

Shortcomings of Model Retraining. Having established the benefits of retraining on the detection

rate of malicious samples, we now proceed by analyzing the impact of retraining on the perfor-

mance of the benign samples. Recall that retraining on a diverse sample set reduces the decision

boundaries of the benign class, and therefore introduces false positives.

Recall that the benign dataset was split into 80%-20% training-testing sets. To study the effect of

94

Table 5.9: The model’s retraining effects on the benign detection rate (%). BL: the baseline benign
detection accuracy.

Represent. BL
Total Months Retrained

3 6 12 21
Image 95.54 95.34 94.88 92.21 91.60
Hexdump 96.93 95.63 94.63 93.63 90.14
Entropy 97.52 94.83 91.94 89.54 86.65
Functions 94.18 93.33 92.16 91.21 89.29
Sections 91.54 83.25 82.27 81.07 76.16
Relocations 96.44 94.11 93.67 93.00 82.00
Strings 93.63 91.88 91.22 89.68 86.61

05
/3

0/
20

08

09
/1

2/
20

09

11
/0

3/
20

10

06
/2

2/
20

11

02
/1

2/
20

12
03

/1
3/

20
12

06
/2

2/
20

12
08

/0
5/

20
12

09
/0

7/
20

12
10

/1
6/

20
12

11
/0

7/
20

12
11

/3
0/

20
12

01
/0

9/
20

13
01

/3
1/

20
13

02
/2

2/
20

13
03

/1
6/

20
13

04
/0

6/
20

13
04

/2
7/

20
13

05
/1

9/
20

13
06

/0
9/

20
13

07
/0

2/
20

13

10
/2

0/
20

13

02
/2

1/
20

14

06
/1

7/
20

14
08

/3
0/

20
14

05
/1

6/
20

16

01
/2

6/
20

17

02
/2

0/
20

20
03

/2
9/

20
20

05
/0

1/
20

20

08
/2

7/
20

20

Figure 5.6: The estimated mutations timeline for zbot malware family. Over the period 2008-2020,
31 mutations are detected.

the retraining process on benign performance, we evaluated the test set (20%) using the baseline

model. The baseline model was trained on malware samples captured between 2017–2018, and the

models were retrained after 3, 6, 12, and 21 months. Due to the limited number of benign samples,

we balance the weights accordingly in the retraining process.

We report the results in Table 5.9, with the following key takeaways. (1) Generally, the benign

detection rate decreases over time, and (2) The benign detection rate was not higher than the

baseline in any of the representations across all retraining frequencies. Interestingly, we found

that, after 21 months, the detection performance decreases by up to 15% for program section

and relocation detection models. The results clearly support our hypothesis that retraining only

guarantees a temporary improvement in malicious detection, while continuously losing ground for

benign detection. Taking into account the computational complexity associated with retraining,

95

and the reduced benign detection performance, it is logical to question the benefits of retraining

over its caveats.

Emerging Malware Detection. In our dataset, 908 Windows malware families appeared in 2019–

2020. Using OOD for detecting new malware families, 896 families were detected as OOD using

the image-based Mahalanobis distance OOD detector. Similarly, 884 families were detected using

Hexdump representation, with the function calls representation having the lowest detection rate of

86.01% (781 families). Alongside the new emerging families, other samples of existing families

were detected as OOD. This behavior might be a natural result of malware mutations, where the

mutated malware is detected as an anomaly.

Leveraging this behavior, we found that OOD techniques are useful for malware mutations de-

tection and temporal characterization. In the following, we showcase the OOD-based detector’s

capability by providing two case studies.

Case Study I: zbot Mutations. We used the Mahalanobis-based OOD detector to estimate the

zbot malware family activity (i.e. evolution and mutation). Our dataset contained 1,511 zbot

samples captured over the entire evaluation timeline (2008–2020). A majority of those samples

were captured between June 2012 and July 2013, indicating an elevated activity of the malware

family during that time. We trained the OOD-based detector on the first i − 1 zbot samples and

predicted whether the ith sample is OOD. Samples detected as OOD were then categorized as zbot

mutations.

Since this process is data representation-dependent, we only considered the samples that were

classified as a mutation by the OOD-based detectors trained using the seven representations. This

selective approach allowed us to remove the bias in our dataset. After training our models, we

estimated the timeline of zbot family mutation, and plot them in Fig. 5.6. Overall, we found 31

mutations in the zbot family, with 18 mutations observed during 2012–2013. Since we considered

a subset of samples, our results provide a conservative estimate of malware mutations. In practice,

however, there could be more mutations in the wild beyond our conservative estimate. Never-

96

zb
ot

pl
ay

te
ch

bl
ad

ab
in

di

ga
m

ar
ue

we
bd

ia
le

r

fa
re

it ra
zy

ur
su

da
rk

ko
m

et

em
ot

et

zb
ot

pl
ay

te
ch

bl
ad

ab
in

di

ga
m

ar
ue fa
re

it ra
zy

ur
su

da
rk

ko
m

et

em
ot

et

zb
ot

pl
ay

te
ch

bl
ad

ab
in

di

ga
m

ar
ue

we
bd

ia
le

r

fa
re

it ra
zy

ur
su

da
rk

ko
m

et

em
ot

et

zb
ot

pl
ay

te
ch

bl
ad

ab
in

di

fa
re

itra
zyur

su

da
rk

ko
m

et
0 10 20 30 40 50 60 70 80 90

Steps

zb
ot

pl
ay

te
ch

bl
ad

ab
in

di

ga
m

ar
ue

we
bd

ia
le

r

fa
re

itra
zy

ur
su

da
rk

ko
m

et

em
ot

et

zb
ot

pl
ay

te
ch

bl
ad

ab
in

di

ga
m

ar
ue

we
bd

ia
le

r

fa
re

it

ra
zyur
su

da
rk

ko
m

et

em
ot

et

Figure 5.7: The visualization of emerging family detection for three trails. For each trial, the upper
part (above the horizontal line) represent the steps at which each family emerged, and the lower
part represents when the OOD detector raise the alarm regarding the family emergence. — The
family emergence was detected, — the step at which the family was detected, and — the detector
failed to detect the family emergence.

theless, by applying Mahalanobis-based OOD detector, we were able to monitor the behavior of

malware families, which can be further leveraged to enhance our understanding of the evolving

threat landscape.

Case Study II: Emerging Malware Families Detection. In this case study, we investigated the

effectiveness of the Mahalanobis-based OOD detector in estimating the malware family mutations.

97

In the following, we systemically evaluate its capabilities in detecting the emergence of new mali-

cious families under virtual malware timeline distribution.

Virtual Timeline Settings: We consider a timeline consisting of 100 steps (e.g. weeks). At the ith

step, the OOD-based detector is trained on all the samples that appeared at steps 1, 2, 3, . . . , ith−1,

using combined representation, and new malware samples captured at the ith step are forwarded to

the detector for emerging malicious family detection. Once a sample is deemed out-of-distribution,

the detector raises an alarm indicating the emergence of a new malicious family.

Malware Distribution Pool: For this experiment, we only consider the malware samples that belong

to the top ten malicious families in our dataset (refer to Table 5.1). Initially, a randomly selected

family’s malware samples (1—10 samples) appear at step 1. For the other nine families, the steps

at which they will emerge are randomly selected in the range of [1, 100]. At the ith step, one to ten

samples of each already-emerged family (i.e. families emerged at the steps [0, i]) will be observed

and forwarded to the detector. We note that, for each family, we follow the same time distribution

of the captured samples (i.e. zbot malware that appeared in May 2017 will always appear after a

zbot malware that appeared in March 2013 in our experiments).

Training & Evaluation Metrics: We run the aforementioned experimental settings 1,000 times (i.e.

trials). At each trial, the samples distribution and the order in which the malicious families emerged

are randomized. For each trial, an OOD-based detector is trained at each step, a total of 99 times,

to detect the emergence of new malicious family samples. To evaluate the detector, three metrics

are considered:

• False Alarm Rate (FAR) (lower is better): This metric represents the percentage of seen

families samples that caused false alarms, where the detector deemed malware as a new

emerging unseen family wrongfully.

• Average Detection Rate (ADR) (higher is better): This metric represents the percentage

of emerging malicious families that the detector correctly detected their samples as out-of-

distribution.

98

0 200 400 600 800 1000
Trials

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce

SDR
FAR
ADR

Figure 5.8: The emerging malware families detection metrics evaluation over the 1,000 trials. Each
trail consist of different randomized configurations of malware and family distributions over 100
steps. The average values of the evaluation metrics accross the 1,000 trails are as follow: ADR is
74.55%, SDR is 5.20%, and FAR is 4.17%.

• Step Deviation Rate (SDR) (lower is better): In addition to detecting the emergence of a new

malware family, we also measure the delay of the detector in detecting the emergence. For

instance, a family that emerged at the ith step, and was detected at jth step will have a step

deviation rate of (j − i)/100.

Across the 1,000 trials, we observe an average of 74.55% ADR, 5.20% SDR, and 4.17% FAR. We

also show the visualization of OOD detector operation over three trials in Fig. 5.7. Note that the

detector is effective in detecting the emergence of malicious families samples, with reduced false

alarm rates.

Fig. 5.8 shows the performance of the OOD detector’s FAR, ADR, and SDR evaluation metrics for

emerging family detection over 1,000 trials. We observe average values of 74.55% ADR, 5.20%

SDR, and 4.17% FAR. We note that these results are highly correlated to the configuration of the

OOD detector, where a sensitivity of 2.5% was selected in the training process (see Fig. 5.9 for

different configurations of the OOD detector’s sensitivity parameter).

Key Takeaways. In this section, we show the effectiveness of out-of-distribution detection ap-

99

0.0 0.2 0.4 0.6 0.8 1.0
Sensitivity

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce

FAR
ADR
SDR

Figure 5.9: The effects of varying the OOD detector’s sensitivity on the emerging malware detec-
tion. Increasing the sensitivity will result in higher detection rate (ADR), but also cause higher
false alarms (FAR).

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Time

0.0

0.2

0.4

0.6

0.8

1.0

P
er

fo
rm

an
ce

TPR

Figure 5.10: The VirusTotal online malware detection engines average detection rate (TPR). Unlike
the common perception that new malware is hard to detect, malware captured in the period 2015 –
2018 has the lowest detection rate (≈12%).

proaches in detecting and predicting the emergence of new and mutated malicious families. Our

experiments showed that while new malware families samples can be detected, the detection con-

fidence is reduced over time (i.e. as malware mutates), causing eventual misclassification. Early

detection of the emergence of a new malicious family leads to analyzing its unique behavior for

100

(a) Before (MD5: a95111407437bd851ae651f847b53e90).

(b) After (MD5: 9d3284472a78344ec67fdd45afcfa67f).

Figure 5.11: The detection rate of Windows malicious sample using VirusTotal before and after
padding one byte (0xFF) at the of the binaries. The new hash is not recognized by VirusTotal, and
therefore is re-analyzed.

accurate malware detection. In this study, we inch towards enabling proactive emerging-malware

detection and mitigation.

Online Detection Engines Are Vulnerable

In addition to evaluating the temporal robustness of state-of-the-art malware detection approaches,

we also investigate the performance of online malware detection engines. We used the VirusTotal

API to obtain a report for each malware sample. The reports contained information, including the

engines that analyzed the malware sample, the first time the malware sample was captured, and the

101

last scan time.

For each engine, the report returns whether the sample was detected as malware or not. VirusTotal

does not re-analyze malware with previously seen hash, and instead provides the latest report saved

in a database. Therefore, in order to examine the temporal behavior of online engines towards

detecting old and new malware, the malware sample needs to be altered and re-uploaded at the

detection engine. Ideally, to preserve the malware functionality and prevent an increase in the file

size, the file alteration should be minimal. An optimal strategy for that purpose is to add one byte

towards the end of the file (without affecting its practicality nor executability [85]). We followed

that approach by appending a single byte (0xFF) at the end of the binary file and re-uploaded the

file to VirusTotal.

Fig. 5.10 shows the average detection rate of the malware samples during 2010 and 2020. The

average detection rate refers to the ratio between the number of engines correctly detecting mali-

cious samples, and the total number of detection engines. The results in Fig. 5.10 show that the

detection engines are able to detect the new malware more accurately than the old malware. For

instance, the malware samples that appeared in 2020 had an average detection rate of up to 50%.

In contrast, the malware samples that appeared during 2015 and 2017 had a low average detection

rate of ≈12%. Surprisingly, this imbalance in the average detection rate contradicts the common

perception that new malware is harder to detect [82, 79, 155].

Our results paint a different picture, where we see an improved average detection rate for the

recent malware samples compared to the old samples. This improvement is likely due to the

“new malware retraining only” policy adopted by the malware engines. As discussed earlier, and

comprehensively established later, the “retraining on new samples only,” despite being effective in

detecting new malware, has several limitations which reduce its efficacy.

Experiment and Case Study. In the following, we present an experiment and a case study to

demonstrate that the state-of-the-art malware engines fail to accurately detect old malware samples.

For our experiment, we modified the 5,783 malware samples appearing before 2019 by appending

102

one byte to the end of the software binaries, and re-uploaded them on VirusTotal. Among those

samples, the detection rate of 2,872 (49.66%) malware samples decreased. In contrast, the detec-

tion rate of 137 (2.36%) samples increased, while the detection rate of 2,774 (47.98%) samples

remained the same.

In Fig. 5.11, we present a case study of the “redcap” malware by showing the VirusTotal report

before and after altering the malware sample. The report stored in the VirusTotal database indicates

that 33 engines accurately detected the software as malicious in 2013. However, in comparison,

only 5 engines detected the malware as malicious in 2021, showing a decrease in the detection rate.

Among the 33 engines that previously detected the malware sample in 2013, 30 engines failed to

detect the same sample in 2021.

Malware Respreading. The decrease in the detection rate can be exploited by malicious actors to

re-use the old samples to reasonably easily bypass the detection engines by launching new attacks

without mutating the malware. Toward investigating malware reuse and respreading, we examine

the dataset for malware samples with identical representations. As malware respreading requires

modifying the command and control server IP address, we exclude Hexdump representation due

to its high sensitivity.

In our dataset, we found 514 cases (with 4,632 malware hashes) of malware re-use over one or

more years. We refer to these discovered cases as revival chains, as they reflect a series in which

they were revived and reused by the malicious actors. Fig. 5.12a4 shows visualization of malware

revival chain, two more examples are available in Fig. 5.12 in the appendix. We notice that in 220

chains, the malware is labeled by VirusTotal engines to different malware families as the malware

is progressing. Toward understanding this phenomenon, we construct a graph of the families ap-

peared in the revival chains, shown in Fig. 5.13. Here, a direct link between two malicious families

indicates that a malware was assigned to both families (as its label) during the revival chain. We

4The malware first appeared in 03/12/2020 as torrentlocker (MD5: 2dbd72500eb87da88c89bd38d9f6f8d0), re-
appeared in 04/02/2020 as zbot (MD5: e3fa4d022203e117384f38b46064b634), and last appeared in 07/20/2020 as
torrentlocker (MD5: 3d1eebbf3eb392151e096ad600a0b344).

103

notice the existence of closed loops, such as torrentlocker—cutwail—zbot, where a malware is

labeled as one of these families on its re-appearance in the revival chain. This indicates that the

extracted features, and inherently the associated behaviors, of these three families, are highly sim-

ilar. To validate this hypothesis, we visualized the feature space of the samples of the malicious

families that appeared in the revival chains (shown in Fig. 5.14). Notice that while some families’

malware samples create their own clusters, the samples of different families overlap within the

feature space.

We note that the 514 chains identified in our dataset are limited to the malware samples that were

correctly detected by the online engines across the timeline (i.e. 2008–2020). This phenomenon

is concerning given that, as shown previously, 49.66% of the old malware are currently not being

detected by most of the malware detection engines. Considering that some of those samples are

being revived, this leads to negative takeaways: (1) malware revival is being exploited, and there

are no safeguards against that, and (2) the existing techniques employed by the machine learning-

based malware detectors (i.e. retraining) are insufficient to combat this phenomenon.

Key Takeaways. From the analysis of online malware detection engines, we make the following

key observations. First, there are discrepancies in the detection rate of online detection engines.

Some engines may detect old and new malware, while most of them lose detection accuracy for the

old samples. Second, we found evidence to suggest that the discrepancies in the detection rate can

be feasibly exploited to respread old malware, thereby bypassing the detection systems without

mutation. Our analysis clearly reveals that the detection engines are not up-to-speed with malware

in the ongoing arms race. Therefore, those engines need to be refined with improved detection

accuracy with temporal persistence.

Overtime Family Labeling Inconsistency

In this work, we highlight the existence of an ongoing malware revival and re-spreading chains,

where malware with exact feature representation re-appear months or years after its initial seen

104

03
/1

2/
20

20

03
/2

7/
20

20

04
/0

2/
20

20
04

/0
6/

20
20

04
/0

8/
20

20

04
/2

3/
20

20

05
/1

4/
20

20

05
/2

6/
20

20
05

/2
9/

20
20

06
/0

1/
20

20
06

/0
2/

20
20

06
/0

6/
20

20
06

/0
8/

20
20

06
/0

9/
20

20

06
/1

6/
20

20
06

/1
7/

20
20

06
/1

8/
20

20
06

/1
9/

20
20

06
/2

1/
20

20
06

/2
2/

20
20

06
/2

3/
20

20
06

/2
5/

20
20

07
/0

8/
20

20
07

/1
2/

20
20

07
/1

3/
20

20
07

/1
5/

20
20

07
/1

7/
20

20
07

/2
0/

20
20

07
/2

1/
20

20

(a) The malware first appeared in 03/12/2020 as torrentlocker (MD5:
2dbd72500eb87da88c89bd38d9f6f8d0), re-appeared in 04/02/2020 as zbot (MD5:
e3fa4d022203e117384f38b46064b634), and last appeared in 07/20/2020 as torrentlocker (MD5:
3d1eebbf3eb392151e096ad600a0b344).

04
/2

0/
20

16

07
/0

2/
20

16
07

/1
4/

20
16

08
/2

8/
20

16
10

/0
9/

20
16

11
/0

4/
20

16

07
/1

3/
20

17
09

/0
4/

20
17

04
/2

2/
20

18

03
/0

8/
20

19

07
/0

6/
20

19

09
/2

2/
20

19

02
/1

3/
20

20

05
/2

8/
20

20

(b) The malware first appeared in 04/20/2016 as sogou (MD5: 2dbd72500eb87da88c89bd38d9f6f8d0),
and last appeared in 05/28/2020 as sogou (MD5: 3279c2bd76f8891769b561ff5b9d2b1a).

04
/1

7/
20

20

04
/1

8/
20

20

04
/2

3/
20

20

04
/2

4/
20

20

04
/2

5/
20

20

04
/2

7/
20

20

04
/2

9/
20

20

04
/3

0/
20

20

05
/0

1/
20

20

(c) The malware first appeared in 04/17/2020 as regotet (MD5: 8df49fd30a7193206bdef9e99c35e6bf),
re-appeared in 04/23/2020 as gozi (MD5: bb17736081cbd7380ea03cc4a2cf2e01), and last appeared in
07/20/2020 as gozi (MD5: 20c72cc97e12ee46cc85b4ea4c49535c).

Figure 5.12: The visualization of malware revival and re-spreading chains. — The malware first
seen date, — the malware family (label), retrieved from VirusTotal, did not change (i.e. similar
to the one previously observed), — the malware family (label) changed from the last time the
malware was seen.

date. Our observations include that after the revival of malware, VirusTotal engines might as-

sign it to a different family. This assignments are common between certain families (i.e., graz

and netwalker), reducing the probability of being false labeling, and indicating a potential inter-

family shared patterns and associations. To better understand this phenomenon, and how malware

assigned families can vary overtime, we conduct a comprehensive overtime malware family anal-

105

boaxxe

jinto

dynamer

csfrsys

torrentlocker

zbot

cutwail

ursnif

gozi

regotet

emotet

zenpak

ligooc

icedid

graz

netwalker

trickbot

vebzenpak
genkryptik

cerbu

atraps

fareit

guloader

autinject

ymacco

installerex

terkcop

deyma
zusy

ryuk

qbot

mansabo

Figure 5.13: The malicious families that appeared in the malware re-spreading and revival chains.
A direct connection between two families indicate that a malware appeared at different dates, and
was labeled as both families.

ysis.

Family Labeling Inconsistency. To highlight the existence of such inconsistency, we used Virus-

Total API original and re-analyzed reports to obtain the assigned families. Among our dataset, we

observed 2,524 cases, in which a malware assigned family changed, shown in Table 5.10. Notice

that some families was renamed, such as rrat and revetrat, rescoms and remcos, and agensla and

agenttesla. For other cases, the assigned family is completely different, such as 42 offerinstall

malware being reassigned to appster.

Inter-Family Shared Patterns Extraction. We further investigate the labeling inconsistencies,

by exploring the existence of inter-family shared patterns within malware samples. In particular,

we utilize YARA [11] rules toward examining the shared patterns within the samples of different

families. Doing so will provide better understanding of the malicious family behavior and origin,

taking a step forward toward robust malware classification.

106

cutwail
zbot
atraps
dynamer
qbot
fareit
boaxxe
jinto
installerex
zusy
genkryptik
emotet
mansabo
ursnif
cerbu
zenpak
netwalker
trickbot
graz
guloader
vebzenpak
torrentlocker
icedid
gozi
ryuk
autinject
ligooc
regotet
deyma
csfrsys
ymacco
terkcop

Figure 5.14: The t-SNE distribution of the malware belonging to the families appeared in the
malware revival chains. Notice that while some samples create their own clusters, samples of
different families overlap within the feature space.

To accurately extract malicious behavior-related rules, we first used yarGen [118] to white-list

Windows benign op-codes and strings. This includes updating the existing Microsoft OS white-

list database. Using the collected benign samples in our dataset, we updated the white-list database

to include the common shared strings and op-codes within our benign dataset. This step is essential

to ensure that the extracted malicious Yara rules represent malicious behavior, instead of capturing

generic benign behavior within the extracted rules. Using yarGen, we extracted 3,651 Yara rules

associated with 881 malicious families.

Fig. 5.15 shows an extracted Yara rule shared between gozi, zenpak, fareit, and trickbot malicious

families. Notice that the rule consists of 20 strings and 3 op-code sequences. The strings com-

binarions can be further used to understand the shared common characteristics within malware

107

Table 5.10: A comparison between the original assigned malware families and the new assigned
malware families as of January 2022. Notice that some families were renamed, such as revetrat
and rrat, while other samples’ assigned labels are completely different (i.e. offerinstall to appster).

Family
Samples

Before After
offerinstall appster 42
ursu syncopate 35
gamarue fareit 33
rrat revetrat 32
econnect dial 30
agensla agenttesla 17
crysan razy 17
vebzenpak guloader 15
rescoms remcos 13
razy discord 10
Other Connections 2,280

Table 5.11: The most common strings among top five inter-family extracted Yara rules.

Associated Families
Strings

#1 #2 #3
1 deyma - zusy - ryuk - emotet CIrdaPort .?AVCIrdaPort@@ AT+CPBR=%d
2 vebzenpak - guloader - fareit TEMPORALNESSCRIT DENTALIZEKERAT RUMFANGET
3 ligooc - trickbot - emotet 2q6wcm0g1om3lEM. . . jAjah@ D J8mCzMpMfWj. . .
4 fareit - genkryptik - ymacco bookshell get BookShell W2JMFDRAQSR. . .
5 atraps - zusy - cerbu 2.3¡3C3M3[3i3n3y3 1a2f2l2r2{2 5)585¿5N5Z5e5t5

families. In particular, we utilized yarAnalyzer [117] to analyze the generated rules and extract

the most common strings and op-code sequences, shown in Table 5.11. In this table, the most

common strings among top five inter-family extracted Yara rules are shown. Notice that while

some strings are not human-readable, there exist several strings that are, and may indicate shared

common functions and API calls, such as “CIrdaPort” and “bookshell”.

Extracting the inter-family shared patterns helps in understanding the evolution of malware ca-

pabilities over time. We recall that the extracted revival chains unveil hidden connections within

malicious families (shown in Fig. 5.16a). In this figure, a connection between jinto and boaxxe

108

Figure 5.15: A sample Yara rule shared between gozi, zenpak, fareit, and trickbot malicious fami-
lies.

malicious families indicate that they appeared within the same revival chain. To further investigate

the shared patterns, we illustrate the families connections based on the extracted shared Yara rules,

shown in Fig. 5.16b. Notice that we limit the results to the 32 families that appeared within the

revival chains for readability purposes. While zusy malicious family only appears with emotet in

the revival chains, we uncover its nine shared behavioral patterns with different malicious families.

Our observations leads to the question of “whether malicious families share the same origin?”

Answering this question allows for better understanding their capabilities, and the family labeling

109

regotet
jinto

icedidgrazym
ac

co

qb
otlig

oo
c

zu
sy

gozi

guloader

autinject

installerexzbot
netwalkervebzenpak

ryuk
ursnif

csfrsys

trickbot

mansabo

ce
rbu

ge
nk

ry
pt

ik
fa

re
it

bo
ax

xe

zenpak
torrentlocker

terkcop
atraps

dynamer

emotet

deyma

cutwail

(a) Revival chains-based connections.

regotet
jinto

icedidgrazym
ac

co

qb
otlig

oo
c

zu
sygozi

guloader

autinject

installerexzbotnetwalkervebzenpak
ryuk

ursnif

csfrsys

tric
kbot

man
sab

o

ce
rb

u
ge

nk
ry

pt
ik

fa
re

it
bo

ax
xe

zenpak
torrentlocker

terkcop
atraps

dynamer

emotet

deyma

cutwail

(b) Yara rules shared patterns-based connections.

Figure 5.16: A breakdown of the malicious families connections within the revival chains and
extracted Yara shared patterns.

inconsistencies. In an attempt to answer this question, we combined the extracted information

regarding shared Yara rules and VirusTotal relabeling inconsistency. In particular, we deem two

malware families to share the same origin if (i) at least five malicious samples were labeled as both

families across the studied period (i.e. by observing family assignment altering through time), and

(ii) there is at least ten shared Yara rules among the samples of these two families. If both condi-

tions applied, we create a connection between both malicious families. We note that this is a con-

servative approach that depends on both observation and malware analysis. Further, we obtained

the malicious family first seen date from Microsoft Security Intelligence [53] to better understand

the malicious families evolvement timeline. Fig. 5.17 shows the malicious families that fulfill the

aforementioned conditions. Notice that similar to Table 5.10, multiple family renaming appear

within the connections. Further, our analysis uncover a direction connection between “swrort”,

“rozena”, and “shelma” malicious families, appearing in 2010, 2013, and 2018, respectively.

110

Figure 5.17: Shared malicious family origin analysis. Two malicious families are connected if (i)
at least five malicious samples were labeled as both families across the studied period, and (ii)
there is at least ten shared Yara rules among the samples of these two families.

The extracted connections highlight that either (i) one malicious family is an evolution of another

malicious family, with common shared capabilities, or (ii) both families share the same origin (i.e.

libraries, functions, and source codes). While this behavior is not surprising, as malicious code

is built on top of existing malicious capabilities, it causes family labeling inconsistencies, that in

turn hinders the machine learning capabilities in accurately extracting meaningful patterns that

distinguish malicious families from one another.

Lessons Learnt in Malware Detection

Malware Detection Generalization. The evolving nature of the malware creates a need for gen-

eralizable machine learning-based malware detection models to unseen variants of malware. Al-

though this problem is not limited to the malware detection domain, however, keeping in mind the

ongoing arms race and its likely consequences, there is a significant need to address this challenge

in malware detection.

Throughout our experiments, the machine learning-based detectors showed a lower malware de-

111

tection performance for unseen malware, even when the model is exposed to other samples of the

same malicious family. Moreover, we also noticed that while both samples from seen and un-

seen families have reduced performance over time, the performance of unseen families’s samples

is more significantly impacted. A major reason for the performance degradation in the unseen

families is that their samples may not have shared patterns with malware in the training set.

Model Retraining. While model retraining is considered a popular solution to improve the ac-

curacy of malware detection and to cope with mutations, however, our work shows that model

retraining provisions minimal benefits. In fact, model retraining over an extended period of time

reduces the performance of the model in terms of detecting benign samples. We ascribe the per-

formance degradation on benign detection to the diverse nature of malware samples, whereby the

continuous mutation affects the model training.

Emerging Malware Detection. Given the criticality of this threat, we realized that exposing the

limitations of retraining process may not be sufficient, and efforts must be made towards refin-

ing the retraining process. Towards that larger goal, we showed that using OOD-based detection

techniques can effectively detect new emerging families and estimating malware mutations. In

particular, by using image-based representation, malware detectors can detect the new emerging

families as out-of-distribution with 98.67% accuracy. We strengthen our proposition by providing

two case studies, where we provide a conservative estimate of malware mutations by exposing 31

mutations of the “zbot” malware family in the period of 2008–2020, and showcase the capabilities

of OOD-based approaches in detecting emerging families.

Old Malware Paradigm. To overcome the shortcomings of model retraining, malware detectors

tend to discard old malware samples from the training phase, thereby resulting in a high malware

detection performance, without impacting the benign accuracy. However, in the long term, the

model gets trained on the malware samples that are fundamentally different from the primordial

“old” malware. As a result, old malware is classified as benign, thereby opening up a new attack

vector whereby old malware can be revived and respread to defeat the detection frameworks.

112

Throughout our evaluation, we show that, in contrast to the common belief that newer malware

is harder to detect, malware that appeared in the period 2015–2017 has a lower detection rate by

the online detection engines. This phenomenon appeared for almost half the malware captured

before 2019, potentially causing a respreading of malware with minimal efforts (e.g. modifying

the command and control server).

Summary & Concluding Remarks

In this work, we first exposed the limitations of using model retraining for malware detection. We

replicated the behavior of detection engines by following their retraining approaches. Our results

reveal that model retraining provides only marginal improvements in the detection of malicious

samples. Moreover, a natural caveat of model retraining is the performance degradation of be-

nign detection, which further leads to the possibility of malware respreading (without mutations).

The existing approaches of model retraining do not provide robust protection in the ongoing arms

race with malware authors. To address some of the limitations of existing retraining approaches,

we leveraged a hybrid scheme that maximizes the utility of model retraining while also providing

clear insights into the behavior of malware family mutations. We further unveil the existing family

labeling inconsistency, with malware being assigned to different families over time. This is mainly

due to the shared capabilities and functionalities within malicious samples, with multiple malware

embracing the same open sources capabilities, or building on top of other existing malicious fam-

ilies. While our work addresses the model retraining overhead-to-performance trade-off, it opens

several research directions that can be pursued to increase the efficacy of the existing malware

detection frameworks.

113

CHAPTER 6: CONCLUSION & FUTURE DIRECTION

This dissertation analyzes machine learning-based malware detection systems, including the de-

tection and mitigation of adversarial malware examples. Machine learning for malware detection

unleashed the capabilities of malware detection toward zero-day attack detection, achieving state-

of-the-art performance. This allows for better scalability, in comparison with heuristic approaches.

However, these advancements were at the cost of discovering new attack channels and vulnerabili-

ties that may render the detection engine useless. In this dissertation, we highlight these challenges,

pinpointing the points of failures, and propose defenses toward designing robust malware detec-

tion. In particular, we investigated the attack surface of malware detection systems, shedding light

on the vulnerability of the underlying learning algorithms and industry-standard machine learning

malware detection systems against adversaries in both IoT and Windows environments. Toward ro-

bust malware detection, we investigated software pre-processing and monotonic machine learning,

achieving robust malware detection at a low performance cost. In addition, we examined potential

exploitation caused by actively retraining malware detection models. We uncovered an unreported

benign to malware performance trade-off, causing the malware to revive and be classified as a

benign or different malicious family. This behavior leads to family labeling inconsistencies, hin-

dering the efforts toward the understanding of malicious families.

This dissertation builds toward designing robust malware detection, by analyzing and detecting

adversarial examples. This work highlights the vulnerability of industry-standard applications to

black-box adversarial settings, including the continuous evolution of malware over time. Our

findings highlight common practices that can be exploited toward misclassification, including the

usage of volatile features for detection, or over-fitting on benign patterns to boost the validation

accuracy. We further highlight that the commonly assumed uniqueness of each malicious family

only hinders the detector capabilities. Instead, malware detectors should adapt addition attacks

resilient learning process for malicious patterns recognition. In the future, we would like to explore

and study multiple directions regarding the origin and shared behaviors of malware. Understanding

114

malware behavior temporal shifting helps in identifying mutations and new threats, and estimating

the future adversarial capabilities. This, however, can be only achieved by examining the code

base of the malware, understanding the trends and shifts in their functionalities over time.

115

APPENDIX: PUBLICATIONS COPYRIGHT

116

IEEE COPYRIGHT FORM

To ensure uniformity of treatment among all contributors, other forms may not be substituted for this form, nor may any wording

of the form be changed. This form is intended for original material submitted to the IEEE and must accompany any such material

in order to be published by the IEEE. Please read the form carefully and keep a copy for your files.

DL-FHMC: Deep Learning-based Fine-grained Hierarchical Learning Approach for Robust Malware Classification

Abusnaina, Ahmed ; Abuhamad, Mohammed; Alasmary, Hisham ; Anwar, Afsah; Jang, Rhongho; Salem, Saeed; Nyang, DaeHun;

Mohaisen, David

Transactions on Dependable and Secure Computing

COPYRIGHT TRANSFER
The undersigned hereby assigns to The Institute of Electrical and Electronics Engineers, Incorporated (the "IEEE") all rights

under copyright that may exist in and to: (a) the Work, including any revised or expanded derivative works submitted to the IEEE

by the undersigned based on the Work; and (b) any associated written or multimedia components or other enhancements

accompanying the Work.

GENERAL TERMS
1. The undersigned represents that he/she has the power and authority to make and execute this form.

2. The undersigned agrees to indemnify and hold harmless the IEEE from any damage or expense that may arise in the event of

a breach of any of the warranties set forth above.

3. The undersigned agrees that publication with IEEE is subject to the policies and procedures of the IEEE PSPB Operations

Manual.

4. In the event the above work is not accepted and published by the IEEE or is withdrawn by the author(s) before acceptance by

the IEEE, the foregoing copyright transfer shall be null and void. In this case, IEEE will retain a copy of the manuscript for internal

administrative/record-keeping purposes.

5. For jointly authored Works, all joint authors should sign, or one of the authors should sign as authorized agent for the others.

6. The author hereby warrants that the Work and Presentation (collectively, the "Materials") are original and that he/she is the

author of the Materials. To the extent the Materials incorporate text passages, figures, data or other material from the works of

others, the author has obtained any necessary permissions. Where necessary, the author has obtained all third party permissions

and consents to grant the license above and has provided copies of such permissions and consents to IEEE

BY TYPING IN YOUR FULL NAME BELOW AND CLICKING THE SUBMIT BUTTON, YOU CERTIFY THAT SUCH ACTION

CONSTITUTES YOUR ELECTRONIC SIGNATURE TO THIS FORM IN ACCORDANCE WITH UNITED STATES LAW, WHICH

AUTHORIZES ELECTRONIC SIGNATURE BY AUTHENTICATED REQUEST FROM A USER OVER THE INTERNET AS A

VALID SUBSTITUTE FOR A WRITTEN SIGNATURE.

Information for Authors

AUTHOR RESPONSIBILITIES

The IEEE distributes its technical publications throughout the world and wants to ensure that the material submitted to its

publications is properly available to the readership of those publications. Authors must ensure that their Work meets the

 David Mohaisen 12-07-2021

Signature

Date (dd-mm-yyyy)

117

-

-

-

-

-

-

-

requirements as stated in section 8.2.1 of the IEEE PSPB Operations Manual, including provisions covering originality,

authorship, author responsibilities and author misconduct. More information on IEEE's publishing policies may be found at

http://www.ieee.org/publications_standards/publications/rights/authorrightsresponsibilities.html Authors are advised especially of

IEEE PSPB Operations Manual section 8.2.1.B12: "It is the responsibility of the authors, not the IEEE, to determine whether

disclosure of their material requires the prior consent of other parties and, if so, to obtain it." Authors are also advised of IEEE

PSPB Operations Manual section 8.1.1B: "Statements and opinions given in work published by the IEEE are the expression of

the authors."

RETAINED RIGHTS/TERMS AND CONDITIONS

Authors/employers retain all proprietary rights in any process, procedure, or article of manufacture described in the Work.

Authors/employers may reproduce or authorize others to reproduce the Work, material extracted verbatim from the Work, or

derivative works for the author's personal use or for company use, provided that the source and the IEEE copyright notice are

indicated, the copies are not used in any way that implies IEEE endorsement of a product or service of any employer, and the

copies themselves are not offered for sale.

Although authors are permitted to re-use all or portions of the Work in other works, this does not include granting third-party

requests for reprinting, republishing, or other types of re-use.The IEEE Intellectual Property Rights office must handle all such

third-party requests.

Authors whose work was performed under a grant from a government funding agency are free to fulfill any deposit mandates

from that funding agency.

AUTHOR ONLINE USE
Personal Servers. Authors and/or their employers shall have the right to post the accepted version of IEEE-copyrighted

articles on their own personal servers or the servers of their institutions or employers without permission from IEEE, provided

that the posted version includes a prominently displayed IEEE copyright notice and, when published, a full citation to the

original IEEE publication, including a link to the article abstract in IEEE Xplore. Authors shall not post the final, published

versions of their papers.

Classroom or Internal Training Use. An author is expressly permitted to post any portion of the accepted version of his/her

own IEEE-copyrighted articles on the author's personal web site or the servers of the author's institution or company in

connection with the author's teaching, training, or work responsibilities, provided that the appropriate copyright, credit, and

reuse notices appear prominently with the posted material. Examples of permitted uses are lecture materials, course packs, e-

reserves, conference presentations, or in-house training courses.

Electronic Preprints. Before submitting an article to an IEEE publication, authors frequently post their manuscripts to their

own web site, their employer's site, or to another server that invites constructive comment from colleagues. Upon submission

of an article to IEEE, an author is required to transfer copyright in the article to IEEE, and the author must update any

previously posted version of the article with a prominently displayed IEEE copyright notice. Upon publication of an article by

the IEEE, the author must replace any previously posted electronic versions of the article with either (1) the full citation to the

IEEE work with a Digital Object Identifier (DOI) or link to the article abstract in IEEE Xplore, or (2) the accepted version only

(not the IEEE-published version), including the IEEE copyright notice and full citation, with a link to the final, published article

in IEEE Xplore.

Questions about the submission of the form or manuscript must be sent to the publication's editor.

Please direct all questions about IEEE copyright policy to:

IEEE Intellectual Property Rights Office, copyrights@ieee.org, +1-732-562-3966

118

1.

2.

3.

4.

5.

6.

1.

2.

IEEE COPYRIGHT AND CONSENT FORM

To ensure uniformity of treatment among all contributors, other forms may not be substituted for this form, nor may any wording

of the form be changed. This form is intended for original material submitted to the IEEE and must accompany any such material

in order to be published by the IEEE. Please read the form carefully and keep a copy for your files.

Adversarial Learning Attacks on Graph-based IoT Malware Detection Systems

Ahmed Abusnaina, Aminollah Khormali, Hisham Alasmary, Jeman Park, Afsah Anwar, Aziz Mohaisen

2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS)

COPYRIGHT TRANSFER
The undersigned hereby assigns to The Institute of Electrical and Electronics Engineers, Incorporated (the "IEEE") all rights

under copyright that may exist in and to: (a) the Work, including any revised or expanded derivative works submitted to the IEEE

by the undersigned based on the Work; and (b) any associated written or multimedia components or other enhancements

accompanying the Work.

GENERAL TERMS

The undersigned represents that he/she has the power and authority to make and execute this form.

The undersigned agrees to indemnify and hold harmless the IEEE from any damage or expense that may arise in the

event of a breach of any of the warranties set forth above.

The undersigned agrees that publication with IEEE is subject to the policies and procedures of the IEEE PSPB

Operations Manual.

In the event the above work is not accepted and published by the IEEE or is withdrawn by the author(s) before

acceptance by the IEEE, the foregoing copyright transfer shall be null and void. In this case, IEEE will retain a copy of

the manuscript for internal administrative/record-keeping purposes.

For jointly authored Works, all joint authors should sign, or one of the authors should sign as authorized agent for the

others.

The author hereby warrants that the Work and Presentation (collectively, the "Materials") are original and that he/she is

the author of the Materials. To the extent the Materials incorporate text passages, figures, data or other material from the

works of others, the author has obtained any necessary permissions. Where necessary, the author has obtained all third

party permissions and consents to grant the license above and has provided copies of such permissions and consents

to IEEE

You have indicated that you DO wish to have video/audio recordings made of your conference presentation under terms

and conditions set forth in "Consent and Release."

CONSENT AND RELEASE

ln the event the author makes a presentation based upon the Work at a conference hosted or sponsored in whole or in

part by the IEEE, the author, in consideration for his/her participation in the conference, hereby grants the IEEE the

unlimited, worldwide, irrevocable permission to use, distribute, publish, license, exhibit, record, digitize, broadcast,

reproduce and archive, in any format or medium, whether now known or hereafter developed: (a) his/her presentation

and comments at the conference; (b) any written materials or multimedia files used in connection with his/her

presentation; and (c) any recorded interviews of him/her (collectively, the "Presentation"). The permission granted

includes the transcription and reproduction of the Presentation for inclusion in products sold or distributed by IEEE and

live or recorded broadcast of the Presentation during or after the conference.

In connection with the permission granted in Section 1, the author hereby grants IEEE the unlimited, worldwide,

irrevocable right to use his/her name, picture, likeness, voice and biographical information as part of the advertisement,

distribution and sale of products incorporating the Work or Presentation, and releases IEEE from any claim based on

right of privacy or publicity.

119

-

-

-

-

-

-

-

BY TYPING IN YOUR FULL NAME BELOW AND CLICKING THE SUBMIT BUTTON, YOU CERTIFY THAT SUCH ACTION

CONSTITUTES YOUR ELECTRONIC SIGNATURE TO THIS FORM IN ACCORDANCE WITH UNITED STATES LAW, WHICH

AUTHORIZES ELECTRONIC SIGNATURE BY AUTHENTICATED REQUEST FROM A USER OVER THE INTERNET AS A

VALID SUBSTITUTE FOR A WRITTEN SIGNATURE.

Information for Authors

AUTHOR RESPONSIBILITIES

The IEEE distributes its technical publications throughout the world and wants to ensure that the material submitted to its

publications is properly available to the readership of those publications. Authors must ensure that their Work meets the

requirements as stated in section 8.2.1 of the IEEE PSPB Operations Manual, including provisions covering originality,

authorship, author responsibilities and author misconduct. More information on IEEE’s publishing policies may be found at

http://www.ieee.org/publications_standards/publications/rights/authorrightsresponsibilities.html Authors are advised especially of

IEEE PSPB Operations Manual section 8.2.1.B12: "It is the responsibility of the authors, not the IEEE, to determine whether

disclosure of their material requires the prior consent of other parties and, if so, to obtain it." Authors are also advised of IEEE

PSPB Operations Manual section 8.1.1B: "Statements and opinions given in work published by the IEEE are the expression of

the authors."

RETAINED RIGHTS/TERMS AND CONDITIONS
Authors/employers retain all proprietary rights in any process, procedure, or article of manufacture described in the Work.

Authors/employers may reproduce or authorize others to reproduce the Work, material extracted verbatim from the Work, or

derivative works for the author's personal use or for company use, provided that the source and the IEEE copyright notice are

indicated, the copies are not used in any way that implies IEEE endorsement of a product or service of any employer, and the

copies themselves are not offered for sale.

Although authors are permitted to re-use all or portions of the Work in other works, this does not include granting third-party

requests for reprinting, republishing, or other types of re-use.The IEEE Intellectual Property Rights office must handle all such

third-party requests.

Authors whose work was performed under a grant from a government funding agency are free to fulfill any deposit mandates

from that funding agency.

AUTHOR ONLINE USE
Personal Servers. Authors and/or their employers shall have the right to post the accepted version of IEEE-copyrighted

articles on their own personal servers or the servers of their institutions or employers without permission from IEEE, provided

that the posted version includes a prominently displayed IEEE copyright notice and, when published, a full citation to the

original IEEE publication, including a link to the article abstract in IEEE Xplore. Authors shall not post the final, published

versions of their papers.

Classroom or Internal Training Use. An author is expressly permitted to post any portion of the accepted version of his/her

own IEEE-copyrighted articles on the author's personal web site or the servers of the author's institution or company in

connection with the author's teaching, training, or work responsibilities, provided that the appropriate copyright, credit, and

reuse notices appear prominently with the posted material. Examples of permitted uses are lecture materials, course packs, e-

reserves, conference presentations, or in-house training courses.

Electronic Preprints. Before submitting an article to an IEEE publication, authors frequently post their manuscripts to their

own web site, their employer's site, or to another server that invites constructive comment from colleagues. Upon submission

of an article to IEEE, an author is required to transfer copyright in the article to IEEE, and the author must update any

previously posted version of the article with a prominently displayed IEEE copyright notice. Upon publication of an article by

the IEEE, the author must replace any previously posted electronic versions of the article with either (1) the full citation to the

 Ahmed Abusnaina 15-04-2019

Signature

Date (dd-mm-yyyy)

120

IEEE work with a Digital Object Identifier (DOI) or link to the article abstract in IEEE Xplore, or (2) the accepted version only

(not the IEEE-published version), including the IEEE copyright notice and full citation, with a link to the final, published article

in IEEE Xplore.

Questions about the submission of the form or manuscript must be sent to the publication's editor.

Please direct all questions about IEEE copyright policy to:

IEEE Intellectual Property Rights Office, copyrights@ieee.org, +1-732-562-3966

121

LIST OF REFERENCES

[1] Strip: GNU binary utility.

[2] Ucl data compression library.

[3] UPX: the Ultimate Packer for eXecutables.

[4] VirusShare.

[5] Panda security: 20% of all malware ever created appeared in 2013. Available at [Online]:

https://bit.ly/3aEVxOt, 2014.

[6] Cyberiocs. Available at [Online]: https://freeiocs.cyberiocs.pro/, 2019.

[7] Radare2. Available at [Online]: https://https://rada.re/r/, 2019.

[8] VirusTotal. Available at [Online]: https://www.virustotal.com, 2019.

[9] Av-test: Malware statistics & trends report. Available at [Online]: https://www.

av-test.org/en/statistics/malware/, 2021.

[10] VirusTotal Statistics. Available at [Online]: https://www.virustotal.com/en/

statistics/, 2021.

[11] Yara rules, October 2021.

[12] A. Abusnaina, H. Alasmary, M. Abuhamad, S. Salem, D. Nyang, and A. Mohaisen.

Subgraph-based adversarial examples against graph-based iot malware detection systems.

In International Conference on Computational Data and Social Networks, pages 268–281,

2019.

[13] A. Abusnaina, A. Khormali, H. Alasmary, J. Park, A. Anwar, and A. Mohaisen. Adversarial

learning attacks on graph-based IoT malware detection systems. In Proceedings of the 39th

IEEE International Conference on Distributed Computing Systems, ICDCS, 2019.

122

https://bit.ly/3aEVxOt
https://freeiocs.cyberiocs.pro/
https://https://rada.re/r/
https://www.virustotal.com
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/
https://www.virustotal.com/en/statistics/
https://www.virustotal.com/en/statistics/

[14] A. Abusnaina, A. Khormali, H. Alasmary, J. Park, A. Anwar, and A. Mohaisen. Adversarial

learning attacks on graph-based IoT malware detection systems. In IEEE International

Conference on Distributed Computing Systems, ICDCS, 2019.

[15] A. Abusnaina, D. Nyang, M. Yuksel, and A. Mohaisen. Examining the security of ddos

detection systems in software defined networks. In Proceedings of the 15th International

Conference on emerging Networking EXperiments and Technologies, pages 49–50, 2019.

[16] H. Aghakhani, F. Gritti, F. Mecca, M. Lindorfer, S. Ortolani, D. Balzarotti, G. Vigna, and

C. Kruegel. When malware is packin’heat; limits of machine learning classifiers based on

static analysis features. In Network and Distributed Systems Security (NDSS) Symposium,

2020.

[17] M. Ahmadi, D. Ulyanov, S. Semenov, M. Trofimov, and G. Giacinto. Novel feature ex-

traction, selection and fusion for effective malware family classification. In Proceedings of

ACM conference on data and application security and privacy, pages 183–194, 2016.

[18] A. Al-Dujaili, A. Huang, E. Hemberg, and U. O’Reilly. Adversarial deep learning for robust

detection of binary encoded malware. In Proceedings of the IEEE Security and Privacy

Workshops, SP Workshops, pages 76–82, 2018.

[19] S. Alam, R. N. Horspool, I. Traoré, and I. Sogukpinar. A framework for metamorphic

malware analysis and real-time detection. Computers & Security, 48:212–233, 2015.

[20] H. Alasmary, A. Abusnaina, R. Jang, M. Abuhamad, A. Anwar, D. Nyang, and D. Mo-

haisen. Soteria: Detecting adversarial examples in control flow graph-based malware clas-

sifier. In 40th IEEE International Conference on Distributed Computing Systems, ICDCS,

pages 1296–1305, 2020.

[21] H. Alasmary, A. Anwar, J. Park, J. Choi, D. Nyang, and A. Mohaisen. Graph-based com-

parison of IoT and android malware. In Proceeding of the 7th International Conference on

Computational Data and Social Networks, CSoNet, pages 259–272, 2018.

123

[22] H. Alasmary, A. Khormali, A. Anwar, J. Park, J. Choi, A. Abusnaina, A. Awad, D. Nyang,

and A. Mohaisen. Analyzing and Detecting Emerging Internet of Things Malware: A

Graph-based Approach. IEEE Internet of Things Journal, 2019.

[23] H. Alasmary, A. Khormali, A. Anwar, J. Park, J. Choi, A. Abusnaina, A. Awad, D. Nyang,

and A. Mohaisen. Analyzing and detecting emerging internet of things malware: a graph-

based approach. IEEE Internet of Things Journal, 6(5):8977–8988, 2019.

[24] K. Allix, T. F. Bissyandé, Q. Jérome, J. Klein, R. State, and Y. L. Traon. Empirical as-

sessment of machine learning-based malware detectors for android - measuring the gap

between in-the-lab and in-the-wild validation scenarios. Empirical Software Engineering,

21(1):183–211, 2016.

[25] O. Alrawi, C. Lever, K. Valakuzhy, R. Court, K. Snow, F. Monrose, and M. Antonakakis.

The circle of life: A large-scale study of the iot malware lifecycle. In USENIX Security

Symposium (USENIX Security 21), 2021.

[26] O. Alrawi, C. Lever, K. Valakuzhy, K. Snow, F. Monrose, M. Antonakakis, et al. The circle

of life: A large-scale study of the iot malware lifecycle. In USENIX Security Symposium

(USENIX Security 21), 2021.

[27] H. S. Anderson and P. Roth. Ember: an open dataset for training static pe malware machine

learning models. arXiv preprint arXiv:1804.04637, 2018.

[28] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, S. Abu-Nimeh, W. Lee, and D. Dagon.

From throw-away traffic to bots: Detecting the rise of DGA-based malware. In USENIX

Security, pages 491–506, 2012.

[29] A. Anwar, H. Alasmary, J. Park, A. Wang, S. Chen, and D. Mohaisen. Statically dissect-

ing internet of things malware: Analysis, characterization, and detection. In International

Conference on Information and Communications Security, pages 443–461. Springer, 2020.

124

[30] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck. DREBIN: effective and

explainable detection of android malware in your pocket. In Proceedings of the 21st Annual

Network and Distributed System Security Symposium, NDSS, 2014.

[31] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and C. Siemens. Drebin:

Effective and explainable detection of android malware in your pocket. In Ndss, volume 14,

pages 23–26, 2014.

[32] A. Azmoodeh, A. Dehghantanha, and K.-K. R. Choo. Robust malware detection for Inter-

net Of (Battlefield) Things devices using deep eigenspace learning. IEEE Transactions on

Sustainable Computing, 4(1):88–95, 2019.

[33] F. Barr-Smith, X. Ugarte-Pedrero, M. Graziano, R. Spolaor, and I. Martinovic. Survivalism:

Systematic analysis of windows malware living-off-the-land. In Proceedings of the IEEE

Symposium on Security and Privacy, 2021.

[34] U. Bayer, I. Habibi, D. Balzarotti, E. Kirda, and C. Kruegel. A view on current malware

behaviors. In LEET, 2009.

[35] L. Bilge and T. Dumitraş. Before we knew it: an empirical study of zero-day attacks in the

real world. In Proceedings of the 2012 ACM conference on Computer and communications

security, pages 833–844, 2012.

[36] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Lof: identifying density-based local

outliers. In Proceedings of the 2000 ACM SIGMOD international conference on Manage-

ment of data, pages 93–104, 2000.

[37] D. Bruschi, L. Martignoni, and M. Monga. Detecting self-mutating malware using control-

flow graph matching. In International conference on detection of intrusions and malware,

and vulnerability assessment, pages 129–143. Springer, 2006.

125

[38] N. Carlini and D. A. Wagner. Adversarial examples are not easily detected: Bypassing ten

detection methods. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and

Security, AISec@CCS, pages 3–14, 2017.

[39] N. Carlini and D. A. Wagner. Towards evaluating the robustness of neural networks. In

Proceedings of the IEEE Symposium on Security and Privacy, pages 39–57, 2017.

[40] N. Carlini and D. A. Wagner. Towards evaluating the robustness of neural networks. In

IEEE Symposium on Security and Privacy, SP, pages 39–57, 2017.

[41] D. Caselden, A. Bazhanyuk, M. Payer, S. McCamant, and D. Song. HI-CFG: construction

by binary analysis and application to attack polymorphism. In 18th European Symposium

on Research in Computer Security, pages 164–181, 2013.

[42] L. Cen, C. S. Gates, L. Si, and N. Li. A probabilistic discriminative model for android

malware detection with decompiled source code. IEEE Transaction on Dependable and

Secure Computing, 12(4):400–412, 2015.

[43] T. Chakraborty, F. Pierazzi, and V. Subrahmanian. Ec2: Ensemble clustering and classifica-

tion for predicting android malware families. IEEE Transactions on Dependable and Secure

Computing, 17(2):262–277, 2017.

[44] X. Chen, C. Li, D. Wang, S. Wen, J. Zhang, S. Nepal, Y. Xiang, and K. Ren. Android hiv: A

study of repackaging malware for evading machine-learning detection. IEEE Transactions

on Information Forensics and Security, 15:987–1001, 2019.

[45] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (Sub)graph isomorphism algorithm

for matching large graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence,

26(10):1367–1372, 2004.

[46] E. Cozzi, M. Graziano, Y. Fratantonio, and D. Balzarotti. Understanding Linux malware. In

IEEE Symposium on Security & Privacy, 2018.

126

[47] J. R. Crandall, G. Wassermann, D. A. S. de Oliveira, Z. Su, S. F. Wu, and F. T. Chong. Tem-

poral search: detecting hidden malware timebombs with virtual machines. In J. P. Shen and

M. Martonosi, editors, Proceedings of the 12th International Conference on Architectural

Support for Programming Languages and Operating Systems, ASPLOS 2006, San Jose, CA,

USA, October 21-25, 2006, pages 25–36. ACM, 2006.

[48] Z. Cui, F. Xue, X. Cai, Y. Cao, G. Wang, and J. Chen. Detection of malicious code variants

based on deep learning. Trans. Industrial Informatics, 14(7):3187–3196, 2018.

[49] L. Demetrio, S. E. Coull, B. Biggio, G. Lagorio, A. Armando, and F. Roli. Adversarial

EXEmples: A survey and experimental evaluation of practical attacks on machine learning

for windows malware detection. CoRR, abs/2008.07125, 2020.

[50] A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp, K. Rieck, I. Corona, G. Giacinto,

and F. Roli. Yes, machine learning can be more secure! A case study on android malware

detection. IEEE Transaction on Dependable and Secure Computing, 16(4):711–724, 2019.

[51] A. Deo, S. K. Dash, G. Suarez-Tangil, V. Vovk, and L. Cavallaro. Prescience: Probabilistic

guidance on the retraining conundrum for malware detection. In Proceedings of the 2016

ACM Workshop on Artificial Intelligence and Security, pages 71–82, 2016.

[52] Developers. Github. Available at [Online]: https://github.com/, 2019.

[53] Developers. Microsoft security intelligence, 2022.

[54] A. K. et al.. Adversarial machine learning at scale. In 5th International Conference on

Learning Representations, ICLR 2017, 2017.

[55] A. M. N. et al.. Deep neural networks are easily fooled: High confidence predictions for

unrecognizable images. In IEEE Conference on Computer Vision and Pattern Recognition,

CVPR, 2015.

127

https://github.com/

[56] A. V. et al.. Deep learning for computer vision: A brief review. Comput. Intell. Neurosci.,

2018:7068349:1–7068349:13, 2018.

[57] D. B. et al.. Neural machine translation by jointly learning to align and translate. In 3rd

International Conference on Learning Representations, ICLR, 2015.

[58] F. S. et al.. Facenet: A unified embedding for face recognition and clustering. In IEEE

Conference on Computer Vision and Pattern Recognition, CVPR, pages 815–823. IEEE

Computer Society, 2015.

[59] G. H. et al.. Deep neural networks for acoustic modeling in speech recognition: The shared

views of four research groups. IEEE Signal processing magazine, 29(6):82–97, 2012.

[60] I. J. G. et al.. Explaining and harnessing adversarial examples. In 3rd International Confer-

ence on Learning Representations, ICLR, 2015.

[61] K. S. et al.. Very deep convolutional networks for large-scale image recognition. In 3rd

International Conference on Learning Representations, ICLR, 2015.

[62] L. E. et al.. A rotation and a translation suffice: Fooling cnns with simple transformations.

CoRR, 2017.

[63] W. Z. et al.. Towards end-to-end speech recognition with deep multipath convolutional

neural networks. In 12th International Conference on Intelligent Robotics and Applications

ICIRA, 2019.

[64] L. P. G. Evans, N. M. Adams, and C. Anagnostopoulos. Estimating optimal active learning

via model retraining improvement. CoRR, abs/1502.01664, 2015.

[65] J. Fu, J. Xue, Y. Wang, Z. Liu, and C. Shan. Malware visualization for fine-grained classifi-

cation. IEEE Access, 6:14510–14523, 2018.

[66] A. Gerber. Connecting all the things in the Internet of Things. Available at [Online]:

https://ibm.co/2qMx97a, 2018.

128

https://ibm.co/2qMx97a

[67] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples.

In International Conference on Learning Representations, ICLR, 2015.

[68] M. Graziano, D. Canali, L. Bilge, A. Lanzi, and D. Balzarotti. Needles in a haystack:

Mining information from public dynamic analysis sandboxes for malware intelligence. In

24th USENIX Security Symposium (USENIX Security 15), 2015.

[69] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel. Adversarial examples

for malware detection. In European Symposium on Research in Computer Security, pages

62–79. Springer, 2017.

[70] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. D. McDaniel. Adversarial exam-

ples for malware detection. In Proceedings of the 22nd European Symposium on Research

Computer Security - ESORICS, Part II, pages 62–79, 2017.

[71] C. Guo, M. Rana, M. Cisse, and L. van der Maaten. Countering adversarial images using

input transformations. In International Conference on Learning Representations, ICLR,

2018.

[72] H. HaddadPajouh, A. Dehghantanha, R. Khayami, and K.-K. R. Choo. A deep recurrent

neural network based approach for internet of things malware threat hunting. Future Gen-

eration Computer Systems, 85:88–96, 2018.

[73] D. Hendrycks and T. G. Dietterich. Benchmarking neural network robustness to common

corruptions and surface variations. arXiv preprint arXiv:1807.01697, 2018.

[74] S. Hu, T. Yu, C. Guo, W.-L. Chao, and K. Q. Weinberger. A new defense against adversarial

images: Turning a weakness into a strength. In Neural Information Processing Systems,

NeurIPS, 2019.

[75] W. Hu and Y. Tan. Generating adversarial malware examples for black-box attacks based

on GAN. arXiv preprint arXiv:1702.05983, abs/1702.05983, 2017.

129

[76] D. Jakubovitz and R. Giryes. Improving dnn robustness to adversarial attacks using jacobian

regularization. In Proceedings of the European Conference on Computer Vision (ECCV),

pages 514–529, 2018.

[77] P. Jalote. An integrated approach to software engineering. Springer Science & Business

Media, 2012.

[78] Y. J. Jia, Q. A. Chen, S. Wang, A. Rahmati, E. Fernandes, Z. M. Mao, and A. Prakash. Con-

texloT: Towards providing contextual integrity to appified IoT platforms. In Proceedings of

the 24th Annual Network and Distributed System Security Symposium, NDSS, pages 1–15,

2017.

[79] R. Jordaney, K. Sharad, S. K. Dash, Z. Wang, D. Papini, I. Nouretdinov, and L. Caval-

laro. Transcend: Detecting concept drift in malware classification models. In 26th USENIX

Security Symposium (USENIX Security 17), pages 625–642, 2017.

[80] K. Kancherla and S. Mukkamala. Image visualization based malware detection. In IEEE

Symposium on Computational Intelligence in Cyber Security (CICS), pages 40–44. IEEE,

2013.

[81] H. Kang, J.-w. Jang, A. Mohaisen, and H. K. Kim. Detecting and classifying android mal-

ware using static analysis along with creator information. International Journal of Dis-

tributed Sensor Networks, 11(6):479174, 2015.

[82] A. Kantchelian, S. Afroz, L. Huang, A. C. Islam, B. Miller, M. C. Tschantz, R. Greenstadt,

A. D. Joseph, and J. Tygar. Approaches to adversarial drift. In Proceedings of the 2013

ACM workshop on Artificial intelligence and security, pages 99–110, 2013.

[83] A. Kantchelian, S. Afroz, L. Huang, A. C. Islam, B. Miller, M. C. Tschantz, R. Greenstadt,

A. D. Joseph, and J. D. Tygar. Approaches to adversarial drift. In A. Sadeghi, B. Nelson,

C. Dimitrakakis, and E. Shi, editors, AISec’13, Proceedings of the 2013 ACM Workshop on

130

Artificial Intelligence and Security, Co-located with CCS 2013, Berlin, Germany, November

4, 2013, pages 99–110. ACM, 2013.

[84] Y. Kim. Convolutional neural networks for sentence classification. In Proceedings of the

2014 Conference on Empirical Methods in Natural Language Processing, EMNLP, pages

1746–1751. ACL, 2014.

[85] B. Kolosnjaji, A. Demontis, B. Biggio, D. Maiorca, G. Giacinto, C. Eckert, and F. Roli.

Adversarial malware binaries: Evading deep learning for malware detection in executables.

In The European Signal Processing Conference, EUSIPCO, pages 533–537, 2018.

[86] F. Kreuk, A. Barak, S. Aviv-Reuven, M. Baruch, B. Pinkas, and J. Keshet. Deceiving end-to-

end deep learning malware detectors using adversarial examples. In Workshop on Security

in Machine Learning (NIPS), 2018.

[87] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolu-

tional neural networks. In Proceedings of 26th Annual Conference on Neural Information

Processing Systems NIPS, pages 1106–1114, 2012.

[88] A. Kurakin, I. J. Goodfellow, and S. Bengio. Adversarial examples in the physical world.

In the 5th International Conference on Learning Representations, ICLR, 2017.

[89] D. Lee, I. S. Song, K. J. Kim, and J.-h. Jeong. A study on malicious codes pattern analysis

using visualization. In Proceedings of the International Conference on Information Science

and Applications (ICISA), pages 1–5, 2011.

[90] B. Li, K. A. Roundy, C. S. Gates, and Y. Vorobeychik. Large-scale identification of mali-

cious singleton files. In G. Ahn, A. Pretschner, and G. Ghinita, editors, Proceedings of the

Seventh ACM Conference on Data and Application Security and Privacy, CODASPY, pages

227–238. ACM, 2017.

131

[91] F. Li and V. Paxson. A large-scale empirical study of security patches. In the 2017 ACM

SIGSAC Conference on Computer and Communications Security, pages 2201–2215, 2017.

[92] X. Li and F. Li. Adversarial examples detection in deep networks with convolutional filter

statistics. In IEEE International Conference on Computer Vision, ICCV, pages 5775–5783,

2017.

[93] M. Lindorfer, A. Di Federico, F. Maggi, P. M. Comparetti, and S. Zanero. Lines of malicious

code: Insights into the malicious software industry. In Proceedings of the 28th Annual

Computer Security Applications Conference, pages 349–358, 2012.

[94] F. Maggi, W. K. Robertson, C. Krügel, and G. Vigna. Protecting a moving target: Address-

ing web application concept drift. In E. Kirda, S. Jha, and D. Balzarotti, editors, Recent

Advances in Intrusion Detection, 12th International Symposium, RAID 2009, Saint-Malo,

France, September 23-25, 2009. Proceedings, volume 5758 of Lecture Notes in Computer

Science, pages 21–40. Springer, 2009.

[95] D. Mahajan, R. B. Girshick, V. Ramanathan, K. He, M. Paluri, Y. Li, A. Bharambe, and

L. van der Maaten. Exploring the limits of weakly supervised pretraining. In V. Ferrari,

M. Hebert, C. Sminchisescu, and Y. Weiss, editors, Computer Vision - ECCV 2018 - 15th

European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part II, vol-

ume 11206 of Lecture Notes in Computer Science, pages 185–201. Springer, 2018.

[96] A. Makandar and A. Patrot. Malware class recognition using image processing techniques.

In Proceedings of the 2017 International Conference on Data Management, Analytics and

Innovation (ICDMAI), pages 76–80, 2017.

[97] F. Mercaldo and A. Santone. Deep learning for image-based mobile malware detection.

Journal of Computer Virology and Hacking Techniques, pages 1–15, 2020.

[98] J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff. On detecting adversarial perturba-

tions. In the 5th International Conference on Learning Representations, ICLR, 2017.

132

[99] T. Miyato, S.-i. Maeda, M. Koyama, K. Nakae, and S. Ishii. Distributional smoothing

with virtual adversarial training. In International Conference on Learning Representations.,

pages 1–12, 2016.

[100] A. Mohaisen and O. Alrawi. Unveiling Zeus: automated classification of malware samples.

In the 22nd International World Wide Web Conference, WWW, pages 829–832, 2013.

[101] A. Mohaisen and O. Alrawi. AV-Meter: An evaluation of antivirus scans and labels. In

Detection of Intrusions and Malware, and Vulnerability Assessment, DIMVA, pages 112–

131, 2014.

[102] A. Mohaisen, O. Alrawi, and M. Mohaisen. AMAL: high-fidelity, behavior-based automated

malware analysis and classification. Computers & Security, 52:251–266, 2015.

[103] S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. DeepFool: A simple and accurate method

to fool deep neural networks. In IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 2574–2582, 2016.

[104] L. Nataraj, S. Karthikeyan, G. Jacob, and B. Manjunath. Malware images: visualization and

automatic classification. In Proceedings of the 8th international symposium on visualization

for cyber security, page 4, 2011.

[105] S. Ni, Q. Qian, and R. Zhang. Malware identification using visualization images and deep

learning. Computers & Security, 77:871–885, 2018.

[106] R. E. O’Neill. Learning Linux Binary Analysis. Packt Publishing, 2016.

[107] L. Onwuzurike, E. Mariconti, P. Andriotis, E. D. Cristofaro, G. Ross, and G. Stringhini.

Mamadroid: Detecting android malware by building markov chains of behavioral models

(extended version). ACM Transactions on Privacy and Security (TOPS), 22(2):1–34, 2019.

133

[108] Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, and C. Rossow. IoTPOT:

A novel honeypot for revealing current IoT threats. Journal of Information Processing,

24:522–533, 2016.

[109] H. H. Pajouh, A. Dehghantanha, R. Khayami, and K. R. Choo. A deep recurrent neural net-

work based approach for internet of things malware threat hunting. Future Gener. Comput.

Syst., 85:88–96, 2018.

[110] N. Papernot, P. D. McDaniel, I. J. Goodfellow, S. Jha, Z. B. Celik, and A. Swami. Practical

black-box attacks against machine learning. In Proceedings of the ACM on Asia Conference

on Computer and Communications Security, AsiaCCS, pages 506–519, 2017.

[111] N. Papernot, P. D. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami. The limi-

tations of deep learning in adversarial settings. In IEEE European Symposium on Security

and Privacy, pages 372–387, 2016.

[112] D. Park and B. Yener. A survey on practical adversarial examples for malware classifiers.

arXiv preprint arXiv:2011.05973, 2020.

[113] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and L. Cavallaro. TESSERACT: elimi-

nating experimental bias in malware classification across space and time. In N. Heninger

and P. Traynor, editors, 28th USENIX Security Symposium, USENIX Security 2019, Santa

Clara, CA, USA, August 14-16, 2019, pages 729–746. USENIX Association, 2019.

[114] J. Qiu, J. Zhang, W. Luo, L. Pan, S. Nepal, and Y. Xiang. A survey of android malware

detection with deep neural models. ACM Computing Surveys (CSUR), 53(6):1–36, 2020.

[115] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and C. K. Nicholas. Malware

detection by eating a whole EXE. In The Workshops of the The Thirty-Second AAAI Confer-

ence on Artificial Intelligence, New Orleans, Louisiana, USA, February 2-7, 2018, volume

WS-18 of AAAI Workshops, pages 268–276. AAAI Press, 2018.

134

[116] E. Raff, J. Sylvester, and C. Nicholas. Learning the PE header, malware detection with mini-

mal domain knowledge. In Proceedings of the 10th ACM Workshop on Artificial Intelligence

and Security, AISec@CCS 2017, pages 121–132. ACM, 2017.

[117] F. Roth. yaranalyzer, 2015.

[118] F. Roth. yargen, 2015.

[119] A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli. MADAM: effective and efficient

behavior-based android malware detection and prevention. IEEE Transaction on Depend-

able and Secure Computing, 15(1):83–97, 2018.

[120] J. Saxe and K. Berlin. Deep neural network based malware detection using two dimensional

binary program features. In 10th International Conference on Malicious and Unwanted

Software, MALWARE 2015, Fajardo, PR, USA, October 20-22, 2015, pages 11–20. IEEE

Computer Society, 2015.

[121] M. Sebastián, R. Rivera, P. Kotzias, and J. Caballero. AVclass: A tool for massive malware

labeling. In Processing of the International Symposium on Research in Attacks, Intrusions,

and Defenses, RAID, pages 230–253, 2016.

[122] G. Severi, J. Meyer, S. Coull, and A. Oprea. Exploring backdoor poisoning attacks against

malware classifiers. In USENIX security symposium (USENIX Security), pages 1093–1110,

2021.

[123] M. Z. Shafiq, S. M. Tabish, F. Mirza, and M. Farooq. Pe-miner: Mining structural informa-

tion to detect malicious executables in realtime. In Recent Advances in Intrusion Detection,

12th International Symposium, RAID 2009, Saint-Malo, France, September 23-25, 2009.

Proceedings, volume 5758 of Lecture Notes in Computer Science, pages 121–141. Springer,

2009.

135

[124] S. Shen, L. Huang, H. Zhou, S. Yu, E. Fan, and Q. Cao. Multistage signaling game-based

optimal detection strategies for suppressing malware diffusion in fog-cloud-based IoT net-

works. IEEE Internet of Things Journal, 5(2):1043–1054, 2018.

[125] S. Siby, R. R. Maiti, and N. O. Tippenhauer. IoTScanner: Detecting privacy threats in IoT

neighborhoods. In Proceedings of the 3rd ACM International Workshop on IoT Privacy,

Trust, and Security, pages 23–30, 2017.

[126] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout:

A simple way to prevent neural networks from overfitting. Journal of Machine Learning

Research, 15(56):1929–1958, 2014.

[127] J. Su, D. V. Vargas, S. Prasad, D. Sgandurra, Y. Feng, and K. Sakurai. Lightweight clas-

sification of IoT malware based on image recognition. arXiv preprint arXiv:1802.03714,

2018.

[128] J. Su, D. V. Vargas, S. Prasad, D. Sgandurra, Y. Feng, and K. Sakurai. Lightweight classifi-

cation of iot malware based on image recognition. In IEEE Annual Computer Software and

Applications Conference, COMPSAC, pages 664–669. IEEE Computer Society, 2018.

[129] O. Suciu, S. E. Coull, and J. Johns. Exploring adversarial examples in malware detection.

In 2019 IEEE Security and Privacy Workshops, SP Workshops, pages 8–14, 2019.

[130] C. Sun, A. Shrivastava, S. Singh, and A. Gupta. Revisiting unreasonable effectiveness of

data in deep learning era. In IEEE International Conference on Computer Vision, ICCV

2017, Venice, Italy, October 22-29, 2017, pages 843–852. IEEE Computer Society, 2017.

[131] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow, and R. Fer-

gus. Intriguing properties of neural networks. In International Conference on Learning

Representations, ICLR, 2014.

136

[132] A. Tamersoy, K. A. Roundy, and D. H. Chau. Guilt by association: large scale malware

detection by mining file-relation graphs. In the 20th ACM International Conference on

Knowledge Discovery and Data Mining, KDD, pages 1524–1533, 2014.

[133] M. Thoma, H. Cheng, A. Gretton, J. Han, H. Kriegel, A. J. Smola, L. Song, P. S. Yu, X. Yan,

and K. M. Borgwardt. Discriminative frequent subgraph mining with optimality guarantees.

Statistical Analysis and Data Mining, 3(5):302–318, 2010.

[134] K. Thomas, C. Grier, J. Ma, V. Paxson, and D. Song. Design and evaluation of a real-time url

spam filtering service. In 2011 IEEE symposium on security and privacy, pages 447–462,

2011.

[135] K. Thomas, C. Grier, J. Ma, V. Paxson, and D. Song. Design and evaluation of a real-time

URL spam filtering service. In 32nd IEEE Symposium on Security and Privacy, S&P 2011,

22-25 May 2011, Berkeley, California, USA, pages 447–462. IEEE Computer Society, 2011.

[136] F. Tramèr, A. Kurakin, N. Papernot, D. Boneh, and P. D. McDaniel. Ensemble adversarial

training: Attacks and defenses. In Proceedings of the 2018 International Conference on

Learning Representations., 2018.

[137] D. Vasan, M. Alazab, S. Wassan, B. Safaei, and Q. Zheng. Image-based malware classifi-

cation using ensemble of cnn architectures (imcec). Computers & Security, page 101748,

2020.

[138] B. Wang, Y. Yao, B. Viswanath, H. Zheng, and B. Y. Zhao. With great training comes great

vulnerability: Practical attacks against transfer learning. In Proceedings of the USENIX

Security Symposium, USENIX Security, pages 1281–1297, 2018.

[139] Q. Wang, W. Guo, K. Zhang, A. G. O. II, X. Xing, X. Liu, and C. L. Giles. Adversary

resistant deep neural networks with an application to malware detection. In Proceedings

of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pages 1145–1153, 2017.

137

[140] C. Willems, T. Holz, and F. Freiling. Toward automated dynamic malware analysis using

cwsandbox. IEEE Security & Privacy, 5(2):32–39, 2007.

[141] T. Wüchner, A. Cislak, M. Ochoa, and A. Pretschner. Leveraging compression-based graph

mining for behavior-based malware detection. IEEE Transaction on Dependable and Secure

Computing, 16(1):99–112, 2019.

[142] T. Wüchner, M. Ochoa, and A. Pretschner. Robust and effective malware detection through

quantitative data flow graph metrics. In Detection of Intrusions and Malware, and Vulnera-

bility Assessment Conference, DIMVA, pages 98–118, 2015.

[143] K. Xu, Y. Li, R. H. Deng, K. Chen, and J. Xu. Droidevolver: Self-evolving android malware

detection system. In IEEE European Symposium on Security and Privacy, EuroS&P 2019,

Stockholm, Sweden, June 17-19, 2019, pages 47–62. IEEE, 2019.

[144] W. Xu, D. Evans, and Y. Qi. Feature squeezing: Detecting adversarial examples in deep

neural networks. In the Network and Distributed System Security Symposium, NDSS, 2018.

[145] Y. Xu, F. Sun, and X. Zhang. Literature survey of active learning in multimedia annotation

and retrieval. In K. Lu, T. Mei, and X. Wu, editors, International Conference on Internet

Multimedia Computing and Service, ICIMCS ’13, Huangshan, China - August 17 - 19, 2013,

pages 237–242. ACM, 2013.

[146] Z. Xu, K. Ren, S. Qin, and F. Craciun. CDGDroid: Android malware detection based on

deep learning using CFG and DFG. In Proceedings of the 20th International Conference on

Formal Engineering Methods, ICFEM, pages 177–193, 2018.

[147] Z. Xu, K. Ren, S. Qin, and F. Craciun. Cdgdroid: Android malware detection based on deep

learning using cfg and dfg. In International Conference on Formal Engineering Methods,

pages 177–193, 2018.

138

[148] S. Yajamanam, V. R. S. Selvin, F. Di Troia, and M. Stamp. Deep learning versus gist

descriptors for image-based malware classification. In Icissp, pages 553–561, 2018.

[149] X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In Proceedings of the

2002 IEEE International Conference on Data Mining, 2002. Proceedings., pages 721–724,

2002.

[150] C. Yang, Z. Xu, G. Gu, V. Yegneswaran, and P. A. Porras. DroidMiner: Automated min-

ing and characterization of fine-grained malicious behaviors in android applications. In

Proceedings of the 19th European Symposium on Research in Computer Security, pages

163–182, 2014.

[151] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda. Panorama: capturing system-wide

information flow for malware detection and analysis. In Proceedings of the 14th ACM

conference on Computer and communications security, pages 116–127, 2007.

[152] M. Yousefi-Azar, L. G. Hamey, V. Varadharajan, and S. Chen. Malytics: a malware detection

scheme. IEEE Access, 6:49418–49431, 2018.

[153] X. Yuanet al.. Adversarial examples: Attacks and defenses for deep learning. IEEE trans-

actions on neural networks and learning systems, 30(9):2805–2824, 2019.

[154] J. Zhang, Z. Qin, H. Yin, L. Ou, and Y. Hu. IRMD: malware variant detection using opcode

image recognition. In Proceedings of the 22nd IEEE International Conference on Parallel

and Distributed Systems, ICPADS, pages 1175–1180, 2016.

[155] X. Zhang, Y. Zhang, M. Zhong, D. Ding, Y. Cao, Y. Zhang, M. Zhang, and M. Yang.

Enhancing state-of-the-art classifiers with api semantics to detect evolved android malware.

In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications

Security, pages 757–770, 2020.

139

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	CHAPTER 2: LITERATURE REVIEW
	Malware Analysis & Detection
	Adversarial Machine Learning

	CHAPTER 3: DL-BASED FINE-GRAINED HIERARCHICAL LEARNING APPROACH FOR ROBUST MALWARE CLASSIFICATION
	Summary of Completed Work
	Graph Analysis: A Preliminary Overview
	Threat Model
	Data Representation & Learning
	DL-SSMC: Design and Evaluation
	DL-FHMC: Coping with AEs
	Discussion
	Summary & Concluding Remarks

	CHAPTER 4: SYSTEMATICALLY EVALUATING THE ROBUSTNESS OF ML-BASED IOT MALWARE DETECTION SYSTEMS
	Summary of Completed Work
	Background
	Threat Model
	Dataset Overview
	Robustness Analysis
	Industry-Standard Detection Engines Robustness
	Threat Surface Reduction
	Summary & Concluding Remarks

	CHAPTER 5: EXPOSING THE LIMITATIONS OF MODEL RETRAINING IN MACHINE LEARNING MALWARE DETECTION
	Summary of Completed Work
	Problem Statement
	Data Representation & Learning
	Malware Detection Temporal Robustness
	Malware Detection Model Retraining
	Online Detection Engines Are Vulnerable
	Overtime Family Labeling Inconsistency
	Lessons Learnt in Malware Detection
	Summary & Concluding Remarks

	CHAPTER 6: CONCLUSION & FUTURE DIRECTION
	APPENDIX: PUBLICATIONS COPYRIGHT

	LIST OF REFERENCES

