
BLOCKCHAIN DRIVEN SECURE AND TRANSPARENT AUDIT LOGS

by

ASHAR AHMAD
MBA University of Central Florida, Orlando, Florida, 2010
MS University of Central Florida, Orlando, Florida, 2007

BS GIK Institute of Engineering Sciences and Technology, Topi, Pakistan, 1999

A dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy
in the Department of Computer Science

in the College of Engineering and Computer Science
at the University of Central Florida

Orlando, Florida

Fall Term
2019

Major Professor: Aziz Mohaisen

c© 2019 Ashar Ahmad

ii

ABSTRACT

In enterprise business applications, large volumes of data are generated daily, encoding business

logic and transactions. Those applications are governed by various compliance requirements, mak-

ing it essential to provide audit logs to store, track, and attribute data changes. In traditional audit

log systems, logs are collected and stored in a centralized medium, making them prone to various

forms of attacks and manipulations, including physical access and remote vulnerability exploita-

tion attacks, and eventually allowing for unauthorized data modification, threatening the guarantees

of audit logs. Moreover, such systems, and given their centralized nature, are characterized by a

single point of failure. To harden the security of audit logs in enterprise business applications,

in this work we explore the design space of blockchain-driven secure and transparent audit logs.

We highlight the possibility of ensuring stronger security and functional properties by a generic

blockchain system for audit logs, realize this generic design through BlockAudit, which addresses

both security and functional requirements, optimize BlockAudit through multi-layered design in

BlockTrail, and explore the design space further by assessing the functional and security properties

the consensus algorithms through comprehensive evaluations.

The first component of this work is BlockAudit, a design blueprint that enumerates structural, func-

tional, and security requirements for blockchain-based audit logs. BlockAudit uses a consensus-

driven approach to replicate audit logs across multiple application peers to prevent the single-

point-of-failure. BlockAudit also uses the Practical Byzantine Fault Tolerance (PBFT) protocol to

achieve consensus over the state of the audit log data. We evaluate the performance of BlockAudit

using event-driven simulations, abstracted from IBM Hyperledger.

Through the performance evaluation of BlockAudit, we pinpoint a need for high scalability and

high throughput. We achieve those requirements by exploring various design optimizations to

iii

the flat structure of BlockAudit inspired by real-world application characteristics. Namely, enter-

prise business applications often operate across non-overlapping geographical hierarchies includ-

ing cities, counties, states, and federations. Leveraging that, we applied a similar transformation

to BlockAudit to fragment the flat blockchain system into layers of codependent hierarchies, capa-

ble of processing transactions in parallel. Our hierarchical design, called BlockTrail, reduced the

storage and search complexity for blockchains substantially while increasing the throughput and

scalability of the audit log system. We prototyped BlockTrail on a custom-built blockchain simu-

lator and analyzed its performance under varying transactions and network sizes demonstrating its

advantages over BlockAudit.

A recurring limitation in both BlockAudit and BlockTrail is the use of the PBFT consensus pro-

tocol, which has high complexity and low scalability features. Moreover, the performance of our

proposed designs was only evaluated in computer simulations, which sidestepped the complexities

of the real-world blockchain system. To address those shortcomings, we created a generic cloud-

based blockchain testbed capable of executing five well-known consensus algorithms including

Proof-of-Work, Proof-of-Stake, Proof-of-Elapsed Time, Clique, and PBFT. For each consensus

protocol, we instrumented our auditing system with various benchmarks to measure the latency,

throughput, and scalability, highlighting the trade-off between the different protocols.

iv

This work is dedicated to my parents, Zulfiqar and Naheed, grandfather, Muhammad, uncle

Salahuddin, and siblings Sarah, Sadaf, and Naveen.

v

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Aziz Mohaisen, for his support, persistence, kindness,

encouragement, and patience in guiding me through this journey. Aziz helped me crystallize ideas,

execute them, and report them in research articles. Without his guidance, this work would not have

been possible, and for that I am thankful to him.

My doctoral studies at the University of Central Florida started more than ten years ago, interrupted

by an industrial career, upon which I returned to finish my studies. For my initial work at UCF,

I would like to thank Dr. Mostafa Bassiouni, who showed me a great deal of support, and spent

countless hours patiently explaining ideas, discussing, and encouraging me to persist. Without his

support in my earlier years at UCF, this work would not have been possible.

I would like to thank my dissertation committee members, Dr. Amro Awad , Dr. Clay Posey, and

Dr. Wei Zhang for their willingness to serve on my committee, and for being flexible with my

defense schedule. I would like to thank them also for all the feedback on my proposal.

I would like to thank my collaborators (in no specific order): Muhammad Saad, Afsah Anwar,

Hisham Alasmary, Dr. Murat Yuksel, Dr. Charles Kamhoua, Dr. Laurent Njilla, Dr Kiran Anna,

and Dr. Mostafa Bassiouni. Especially, I would like to thank Muhammad Saad who has been a

constant collaborator for his help refining my ideas. I would like to also thank my teammates in

the Security and Analytics Lab (SEAL) for their encouragement and support.

I would like to thank my colleagues at clear Village inc and GSA inc for their encouragement and

support. I would especially like to thank Larry Zerbel and Chet Zema for taking out time to discuss

and provide feedback on various aspects of my research.

I am thankful to my Friends Ahsan Mir, Ali baig, Adeel Ali, Adeel Bhutta, Kamran Sadiq, Zain

vi

Masood, Arslan Basharat, Sohaib Hameed, Khawaja Umar Farooq, Shahzad Jumani, Humayun

Mukhtar Khanx, Amir Bashir, Swastik Brahma, Kunal Motwani, Tauseef Iqbal, Raheel Rahman,

Shazia Alam, Shafaq Chaudhry and others for their time, help and friendship.

Last but not least, I would like to thank my family, here in the US and back home, for their love,

help, encouragement, and constant support.

This work was supported in part by KRF grant number NRF-2016K1A1A2912757 and by the Air

Force Materiel Command award FA8750-16-0301.

vii

PUBLICATIONS

1. Ashar Ahmad, Muhammad Saad, Mostafa Bassiouni, and Aziz Mohaisen. Towards Blockchain-

Driven, Secure and Transparent Audit Logs. International Workshop on Distributed Ledger

of Things, DLoT 2018 (in conjunction with MobiQuitous 2018), New York City, USA.

(Best Paper Award).

2. Muhammad Saad, Afsah Anwar, Ashar Ahmad, Hisam Alasmary, Murat Yukesl, and Aziz

Mohaisen. RouteChain: Towards Blockchain-based Secure and Efficient BGP Routing.

IEEE International Conference on Blockchain and Cryptocurrency (IEEE ICBC 2019),

Seoul, South Korea, 14-17 May 2019.

3. Ashar Ahmad, Muhammad Saad, Laurent Njilla, Charles A. Kamhoua, Mostafa Bassiouni,

and Aziz Mohaisen, BlockTrail: A Scalable Multichain Solution for Blockchain-based Au-

dit Trails, Proceedings of IEEE International Conference on Communications, (IEEE ICC

2019), Shanghai, China, May 20-24, 2019

4. Ashar Ahmad, Muhammad Saad, Mostafa Bassiouni, and Aziz Mohaisen, "Secure and

Transparent Audit Logs with BlockAudit". Elsevier Journal of Network and Computer Ap-

plications (JNCA 2019).

5. Saad, Muhammad, Ashar Ahmad, and Aziz Mohaisen. "Fighting Fake News Propaga-

tion with Blockchains." 2019 IEEE Conference on Communications and Network Security

(CNS). IEEE, 2019.

viii

TABLE OF CONTENTS

LIST OF FIGURES . xvi

LIST OF TABLES .xviii

CHAPTER 1: INTRODUCTION . 1

1.1 Motivation and Background . 1

1.2 Contributions . 4

1.3 Organization and Roadmap . 6

CHAPTER 2: BACKGROUND AND PRELIMINARIES 7

2.1 Audit Logs . 7

2.1.1 Benefits of Audit Logs . 9

2.1.2 Vulnerabilities in Audit Logs . 9

2.2 Blockchains . 10

2.2.1 Main Features . 11

2.2.1.1 Decentralization . 11

2.2.1.2 Auditability . 12

ix

2.2.2 Blockchains Types . 12

2.2.2.1 Public Blockchain . 12

2.2.2.2 Private Blockchain . 13

2.2.2.3 Consortium Blockchain . 13

2.3 Consensus Protocols . 13

2.3.1 Proof-of-Work . 15

2.3.2 Proof of Elapsed Time . 15

2.3.3 Clique . 16

2.3.4 Practical Byzantine Fault Tolerance . 17

2.3.5 Proof-of-Stake . 17

2.4 Threat Model . 18

2.4.1 The Physical Access Attack . 19

2.4.2 The Remote Vulnerability Attack . 19

CHAPTER 3: BLOCKAUDIT . 21

3.1 Introduction . 21

3.2 Problem Statement and Design Requirements . 22

3.2.1 Design Engineering . 23

x

3.2.1.1 Functional Requirements . 24

3.2.1.2 Structural Requirements . 25

3.2.1.3 Security Requirements . 26

3.3 BlockAudit Design and Implementation . 27

3.3.1 Application Architecture . 28

3.3.1.1 Clients . 28

3.3.1.2 Business Logic Layer . 28

3.3.1.3 Data Access Layer . 29

3.3.2 Generating Audit Logs . 29

3.3.3 Blockchain Integration to Audit Logs . 33

3.3.3.1 Creating Blockchain Network 33

3.3.3.2 Creating Blockchain Transactions 36

3.3.4 Consensus Protocol . 39

3.4 Analysis of BlockAudit . 40

3.4.1 Design Analysis . 40

3.4.2 Complexity Analysis . 42

3.4.2.1 Time Complexity . 42

xi

3.4.2.2 Space Complexity . 43

3.4.3 Security Analysis . 44

3.4.3.1 Physical Access Attack . 44

3.4.3.2 Remote Vulnerability Attack 44

3.4.3.3 Increasing Fault Tolerance . 45

3.4.3.4 Detecting Malicious Nodes . 46

3.5 Experiment and Evaluation . 48

3.5.1 Simulation Environment . 48

3.5.2 Simulation Results . 50

3.6 Discussion . 51

3.6.1 Limitations . 51

3.6.2 Optimization . 53

3.7 Summary . 55

CHAPTER 4: BLOCKTRAIL . 56

4.1 Introduction and Problem Statement . 56

4.2 Background and Preliminaries . 58

4.2.1 Audit Logs . 58

xii

4.2.2 Application-specific Scope of Audit Logs 59

4.2.3 Challenges . 59

4.2.4 Design Approach . 60

4.3 BlockTrail Design . 62

4.3.1 Application Architecture . 62

4.3.2 Transaction Examples . 63

4.3.2.1 City-level Events . 63

4.3.2.2 County-level Events . 64

4.3.2.3 State-level Events . 64

4.3.2.4 States within a country . 65

4.3.3 System Architecture . 65

4.3.4 Consensus Protocol and Access Control 68

4.4 Analysis of Blocktrail . 70

4.4.1 Transaction Processing and Throughput 70

4.4.2 Time and Space Complexity Analysis . 73

4.4.2.1 Consensus Complexity . 73

4.4.2.2 Space Complexity . 74

xiii

4.4.3 Security Analysis . 75

4.4.3.1 Trust Model . 76

4.4.3.2 Threat Model . 76

4.4.3.3 Positioning Malicious Replicas 77

4.4.3.4 Countering Targeted Attacks 79

4.4.3.5 Approval Withholding . 79

4.4.3.6 Denial-of-Service . 80

4.5 Implementation and Evaluation . 80

4.5.1 Experiment and Results . 84

4.5.2 Discussion and Limitations . 85

4.6 Related Work . 85

4.7 Summary . 87

CHAPTER 5: PERFORMANCE EVALUATION OF CONSENSUS PROTOCOLS 88

5.1 Introduction and Motivation . 88

5.1.1 Challenges . 89

5.1.2 Approach . 90

5.1.3 Contribution . 90

xiv

5.2 Preliminaries . 91

5.3 Testbed Design and Deployment . 93

5.3.1 Audit System Requirements . 93

5.3.2 Blockchain Nodes . 93

5.3.3 Communication Model . 94

5.3.4 System Adjustments . 95

5.4 Results and Evaluation . 97

5.5 Related Work and Discussion . 99

5.6 Summary . 100

CHAPTER 6: CONCLUSION AND FUTURE WORK 101

xv

LIST OF FIGURES

Figure 2.1: Generation of Audit logs in an OLTP system 8

Figure 2.2: An overview of our Blockchain structure . 10

Figure 2.3: General workflow in PoW showing two blocks. 14

Figure 2.4: An abstraction of the Clique protocol’s execution. 16

Figure 3.1: Node-level representation of the P2P of a BlockAudit 25

Figure 3.2: The information flow between various components in our audit system. . . . 27

Figure 3.3: An example blockchain transaction . 32

Figure 3.4: The audit entry generation for an object . 34

Figure 3.5: Audit generation for a transaction spanning across multiple objects. Object

A is inserted and Object B and X are updated. 35

Figure 3.6: The BlockAudit architecture after blockchain integration in the JSON output. . 37

Figure 3.7: An overview of PBFT protocol . 38

Figure 3.8: Consensus latency under different transaction rates 49

Figure 3.9: Audit log block chain detection vs recovery 54

Figure 4.1: The information flow between various components of the application 62

xvi

Figure 4.2: Design of our multi-chain blockchain system 66

Figure 4.3: M/D/1 queue where transactions are arriving with rate λ , and there is one

server that process the transactions at the average rate D 69

Figure 4.4: M/D/c queue with transactions arriving at mean rate λ , and a group of servers

are processing transactions with rate D. 70

Figure 4.5: An overview of BlockTrail network . 81

Figure 4.6: An evaluation of the latency of consensus under different layers 82

Figure 5.1: Overview of the testbed setup . 95

Figure 5.2: Results obtained from our testbed experiments. 96

xvii

LIST OF TABLES

Table 3.1: The description of fields of audit log JSON packet. 36

Table 3.2: Transaction size summary . 36

Table 3.3: An overview of popular consensus algorithms used in blockchains 40

Table 4.1: Complexity analysis of BlockTrail . 75

Table 4.2: Latency results obtained by running BlockTrail simulations with five iterations 83

Table 5.1: Comparison of various consensus protocols. 92

xviii

CHAPTER 1: INTRODUCTION

1.1 Motivation and Background

With the advent of cloud computing, organizations are transitioning their applications to the cloud

by using a software-as-a-service (SaaS) model. This model is cost-effective and allows an orga-

nization to pay only for the services that it uses, and removes the need for installing, running and

maintaining applications inside the organization’s data center. In government agencies, these infor-

mation systems are often used to provide e-government services to citizens, government employ-

ees, and other entities interacting with a government agency or department. Some of the services

provided by local government agencies are utility billing, business licenses, code enforcement, cit-

izen engagement, building permit, computer-aided mass appraisal, and tax collection. Government

agencies and corporate organizations maintain audit trails in their software applications to allow

continuous monitoring, transparent auditing, and provenance assurance [87, 67]. Maintaining audit

trails is also mandated by Federal laws, regulations, and standards. For example, European Unions’

“General Data Protection Regulation” (GDPR) [43] and Canada’s “The Personal Information Pro-

tection and Electronic Documents Act” (PIPEDA) [1] force the organizations to maintain audit

trails for auditing, internal controls, error correction, fraud prevention, and compliance [69].

Audit trails enable organizations to audit the state of the information system, detect security

breaches, track users’ activities, and ensure user accountability. Due to these properties, audit logs

are a critical component of information systems management, often used to track data changes.

Changes in data trigger the generation of transactions, which are stored in the audit log and are

typically stored in conventional databases, file systems or tape drives. The audit logs are then con-

sulted, where needed, for a historical record of all data changes. As such the audit logs can be used

for rollback and recovery (from intentional and unintentional data corruption), as well as for pro-

1

viding fine-grained information for provenance that can guide attribution of the data changes. In

most of today’s audit log systems, centralization of the audit log storage is a common theme, mak-

ing them prone to a single point of failure, and exposing them to various forms of attacks [58, 54].

Such an adversary with root access to the database can manipulate critical information both in the

database and the corresponding audit log. Once an audit log is compromised, the safety and trans-

parency of the entire system is put to risk. To counter these attacks, blockchains have been used to

provide a distributed, tamper-proof, and consensus-driven replication of audit logs across replicas

in a peer-to-peer blockchain network [5, 83, 64].

Over the years, blockchains have gained significant attention due to their use in distributed sys-

tems [39]. In peer-to-peer settings, blockchains are capable of augmenting trust over an immutable

state of system events [59]. The most prominent example of blockchain technology has been

realized in Bitcoin [81], a peer-to-peer digital currency that enables secure transfer of digital as-

sets without the need of a trusted intermediary. Since Bitcoin, the use of blockchains has become

prevalent in various applications and industries including smart contracts [53, 22],cryptocurrencies

[23], communication systems [78], health care [46, 68], Internet of Things [50, 57], and electronic

voting [38, 47]. The potential of blockchains is fully utilized in an environment where 1) entities

belonging to the same organization have competing interests [40] and/or 2) there is a need for

immutable data management whose security increases with time [92, 61]. Audit log applications

meet both conditions, and therfore they can benefit from blockchains to improve their security.

Applied to an audit log maintained by Enterprise business application, blockchains can replicate

the information contained in audit logs over a set of peers, thereby providing them a consistent and

tamper-proof view of the system [4]. Blockchains use an append-only model secured by strong

cryptographic hash functions, and therefore, the security of data in the ledger increases while the

blockchain grows with time. Furthermore, a malicious party intending to compromise the system

will have to change logs maintained by a majority of peers. This increases the cost and complexity

2

of the attack, eventually increasing the overall defense capability of the audit log application.

Motivated by this, we propose an end-to-end blockchain-based audit log system called BlockAudit.

In BlockAudit, we capture events from the data access layer of an enterprise application in the form

of a transaction and securely replicate them over a set of blockchain nodes.

Despite the promising features that blockchains bring to audit logs, they also compound complexity

associated with processing and storage of blockchain-based audit logs. First, a blockchain appli-

cation requires a copy of the blockchain to be maintained at every peer. Additionally, blockchains

employ an append-only model that results in an increasingly growing chain of transactions. These

two issues can put enormous strain on the data storage/maintenance capability of peers [51]. Sec-

ond, in practice, applications may incur thousands of transactions in a short period, generating

thousands of audit entries. Government agencies use software systems at federal-, state-, county-,

and city-level. The audit logs generated by these systems involve transactions that are solely rel-

evant to the domain of the software system. In light of space and time overhead of blockchain

systems, it is counter-intuitive to share data among different domains over a single ledger.

Blockchain systems are known to have low transaction throughput due to serialized transaction

processing and the effort involved in obtaining a consensus among a large set of peers. This can be

observed in the existing proof-of-work (PoW) blockchain systems such as Bitcoin, which has the

maximum processing capacity of 7 transactions/second [7]. To address the throughput limitations

of POW, variants of Byzantine Fault Tolerance (PBFT) protocols have been proposed. However,

they suffer from low scalability due to high message complexity [74].

In the light of existing challenges faced by audit trail applications and the promising features of

blockchains, it is natural to build a distributed and tamper-proof solution using blockchains for

maintaining audit trails. As such, developments have been made towards distributed audit trail

applications that use blockchains to securely manage data [83]. In theory, this provides an effective

3

design to combat vulnerabilities and limitations of audit trails; however, in practice, these solutions

may become infeasible and costly. Typical audit trail applications may incur up to thousands of

transactions in a short timespan. With thousands of peers/verifiers present in the system, processing

these transactions in a short period can be a major challenge. Some of these transactions may not

be related to the peers who are verifying and storing them in their blockchains. This creates a

massive overhead in terms of storage space and transaction processing time, making it unfeasible

for several enterprise applications.

1.2 Contributions

Motivated by this useful combination of blockchains and audit logs, we present BlockAudit: an end-

to-end solution that provides the design capabilities of audit logs as well as the security guarantees

of blockchain systems. In BlockAudit, the audit log application is transformed into a blockchain

system actuated by peers in a distributed network. BlockAudit captures transactions emitted by

peers within the Online Transaction Processing(OLTP) system and aggregates them in a block.

Each block is then timestamped and broadcast to all peers within the network. Each peer validates

the authenticity and integrity of data within the block and transmits its approval. In BlockAudit, we

use the PBFT protocol to create consensus among the network peers.

Our efforts are dedicated towards a secure and plug-and-play system that is capable of defending

against the well-known attacks on audit logs. Additionally, we intend BlockAudit to enable a

seamless transition of the legacy OLTP system to the blockchain-based solution. To that end,

we expect BlockAudit to be application-agnostic, which is capable of masking blockchain layer

complexities from the underlying application layer. Finally, we anticipate BlockAudit to meet all

functional and security requirements with low latency and high throughput.

4

We envision that the performance and throughput can be increased by using a multi-layered blockchain

system that provisions fast processing with minimal space overhead. Leveraging the nature of

transactions in an audit trail, we dynamically determine the related peers and only select them to

process the transaction. Furthermore, only the related peers may be allowed to keep a copy of the

blockchain that records their relevant transactions.

We aim to come up with an end-to-end blockchain-based audit trail system that is secure, efficient

and guarantees high throughput with a lower space footprint. We intend to create a model that

replicates the state of audit trails across multiple entities that are distributed across multiple levels

in the network. For that, we will take the example of information systems (with audit trails) used

by cities, counties and states to provide various services. We will construct a layered blockchain

model tailored to the needs of audit log application and the nature of its transactions. Based on that,

we will dynamically determine the layer to which a new transaction might belong and get approval

from peers related to the transaction. Additionally, we also aim to make our system secure against

external and internal attacks.

Mindful of the various optimization choices one has to take, especially concerning the employed

consensus algorithms, we explore a comparative study to shed light on the latency and throughput

trade-off. For that, we first deploy a blockchain testbed consisting of a set of nodes hosted across

various geographical locations. At each node, we encode the rules of five consensus protocols and

the access control policies. To provide a “level playing field,” we generate transactions of a uniform

size for each consensus protocol and maintain a consistent network topology. To accurately reflect

the real-world application, we use actual transactions from a real business system [32] for which

log audit is built, and use its requirement thresholds to assess the feasibility of each protocol. For

performance evaluation, we use two metrics including latency in the block confirmation and the

transaction throughput. Finally, by contrasting the performance of all the consensus protocols, we

present the most optimal solution for blockchain-based audit logs. To the best of our knowledge,

5

this is the first attempt towards the performance evaluation of blockchain-based audit logs under

various consensus protocols.

1.3 Organization and Roadmap

The rest of this dissertation is divided into five chapters and encompasses material from three pa-

pers [3, 5, 6]. In chapter 2, we introduce the background of this work, including some preliminary

review of audit logs, blockchain systems, consensus algorithms, and a general threat model un-

der which our work is analyzed. Chapter 3 uses material from [3, 5], coauthored by Muhammad

Saad, Mostafa Bassiouni, and Aziz Mohaisen, and introduces the design, analysis, and evaluation

of BlockAudit, our preliminary blockchain-based system for tamper-proof audit logs. Chapter 4

is based on [6], coauthored by Muhammad Saad, Laurent Njilla, Charles A. Kamhoua, Mostafa

Bassiouni and Aziz Mohaisen, which present the design, analysis, and evaluation of BlockTrail,

an optimized hierarchical system for audit logs. In chapter 5, we introduce a testbed-based com-

parative analysis of various consensus protocols that could be used to optimize the operation of

both BlockAudit and BlockTrail systems. In chapter 6, we present concluding remarks and provide

directions for future work. Some material for each of these papers has also been incorporated in

chapter 2 and the introductory chapter.

6

CHAPTER 2: BACKGROUND AND PRELIMINARIES

To contextualize our main contribution in this dissertation, in this chapter we provide a brief

overview of various preliminaries and background knowledge useful for understanding the rest

of this work. Namely, we will review audit logs and associated vulnerability, high-level introduc-

tion to blockchain systems, their features, and types, consensus algorithms, and the threat model

used in analyzing the various systems proposed in this work.

2.1 Audit Logs

Online Transaction Processing (OLTP) systems are used for financial transactions, ticketing, billing,

customer relationship management (CRM), Enterprise Resource Planning(ERP) and retail sales

[84, 65]. These system are designed to process a large number of short transactions, while main-

taining concurrency. Audit logs are kept in OLTP system to maintain history of completed transac-

tions, and to monitor users’ actions.e.g. In a financial system each payment transaction creates an

audit record in the audit log. The total payments processed, and the aggregate volume of the trans-

actions can be verified by consulting the audit entries in the audit log and comparing them with

the data from the application. The audit logs can also be reviewed to detect anomalies, identify

inconsistencies and malicious activities in these financial transactions.

Searchable audit logs are easily accessible from the application, and allow business users to recon-

struct the chain of events that resulted in the current state of the system. In Figure 2.1, we provide

an overview of audit log creation in an OLTP system. It shows the sequence of events that starts

from user making changes using a client, and ends with committing these changes to database.

The details of these changes, the previous values, the updated values, time, user Id, etc is stored in

7

the audit log. In future, the entries in audit logs can be compared with the database for auditing ,

provenance assurance and data recovery.

These e-government applications generally have searchable audit logs, that are stored in the appli-

cation database or file system. Authorized users can search and view audit logs associated with a

object from the application user interface. Some of these applications communicate with other ap-

plications in the same city, county, or state. In rare cases, these interactions may also occur across

states, at a federal level. As such, this can be viewed as an audit log management at four levela:

a country-level federal audit log(L1), a state-level audit log(L2) (for each state), a county level

audit log (L3) (for each county), and a city audit log (L4). Within each city, there are applications

operated by state agencies that collect information to generate audit logs.

Database
Value A

Value B

Value C

Database
Value A

Value B

Value D

Database
Value A

Value B

Value D

Audit Log

Value C

Value D

Previous Value

Updated Value

(1)

Authorized User
Update Value C -> D

(2) Transaction

(3)

(4)

(5)

Figure 2.1: Generation of audit log in an OLTP system. Each step is labeled by a number to depict
the sequence of event resulting in an audit log entry. The user changes an object value from C to
D, and the ORM stores the change in the database and audit log.

8

2.1.1 Benefits of Audit Logs

With the help of audit logs, organization can keep track of changes in their information systems.

Audit logs provide the following benefits to organizations.

• Accountability and Reconstruction. Audit logs can be used to associate users with events,

and thus trace events to a responsible party. In case of a malicious activity, actions can be

taken against the attacker. Additionally, audit logs can be used to chronologically monitor

actions, and roll them back to an earlier state.

• Anomaly Detection. Audit logs can be reviewed to detect unauthorized or unusual events,

and to carry out forensic analysis after an attack. Additionally, this data can also be used to

detect bugs and software glitches.

2.1.2 Vulnerabilities in Audit Logs

Although audit logs are useful in tracking changes made to the database, and ensuring system

accuracy, they are vulnerable to a series of attacks that could comprise data in an OLTP system.

An attacker can exploit the known vulnerabilities in the auditing application to launch attacks and

tamper the database and the audit logs. Conventionally, audit logs are protected by using off-

site log replication and/or using append-only devices such as Write Once Read Multiple (WORM)

optical devices or continuous feed printers. These schemes work under a weak security assumption

that audit logs cannot be altered or destroyed by compromising the logging site. However, this

weak notion of system security at the logging site is insufficient, and the attackers have exploited

vulnerabilities at logging sites to tamper data [54, 58]. If an attacker acquires credentials of an

authorized user, he can launch corrupt the database and its audit log. Since both the database and

9

audit logs are compromised, the change in database and audit log tells the same story; thus such an

attack could remain undetectable.

Timestamp

Merkle Root

Hash of N-1 Block

Transactions

Block N

Timestamp

Merkle Root

Hash of N Block

Transactions

Block N+1

Timestamp

Merkle Root

Hash of N+1 Block

Transactions

Block N+2

Figure 2.2: An overview of the Blockchain structure consisting of three blocks, containg a set
of transactios. Notice that each block header consists of the hash of the previous block. This
relationship gives blockchain, the property of an immutable ledger. Also, notice that the Merkle
root ensures that the transactions are ordered in a sequence.

2.2 Blockchains

To address some of the issues in the audit logs, blockchains can be used to provide secure and

tamper-proof data management without the need for a trusted intermediary. Blockchain systems

are known to achieve consensus among peers in a distributed system [26, 75]. A blockchain con-

sists of a sequence of records (transactions), that are linked to the previous block using a cryp-

tographically secure hash function. The hash value of the previous block is used as an input

10

pointer to the next block. A notable property of hash functions, among others, is the one-way

property. Roughly speaking, the one-way property ensures that with a given hash value alone, it is

hard to obtain the original message corresponding to it. Therefore, as the blockchain extends and

more blocks are added, it becomes increasingly difficult to tamper with data stored in the blocks.

Therefore, due to high security, a blockchain ledger is assumed to be tamper-resistant. Figure 2.2

provides on overview of the blockchain ledger and the link among the blocks.

2.2.1 Main Features

In the following, we outline some of the key characteristics of blockchains that pivot their utility

in distributed systems.

2.2.1.1 Decentralization

In the traditional client-server systems, transactions are verified and approved by a trusted third

party. This leads to a risk of a single-point-of-failure if the trusted third party is compromised.

However, in blockchains, the root-of-trust is shifted from the trusted party to cryptographically

secure blockchain system. The agreement over the state of the chain is brought by a consensus

protocol that binds the approval of peers with mathematical constructs of the consensus protocol.

Some of the well-known consensus algorithms are the proof-of-work (PoW), proof-of-stake (PoS),

proof-of-elapsed time, and Byzantine fault tolerance [41]. Therefore, blockchains operate in a

decentralized manner without the need for a trusted third party.

11

2.2.1.2 Auditability

The blockchain ledger is shared by all participants in the network. Any participant user can trace

the history of a transaction and authenticate the exchange of values associated with the transaction.

Therefore, it provides complete transparency and auditability to all participants. Moreover, due to

the linkability in the blockchain data structure, it can be also be used to provide a high-level history

of all the events leading up to any specific transaction. Hence, blockchains are also used to provide

provenance in the system. Provenance can be of significant importance in auditing applications

where parties can have conflicting interests.

2.2.2 Blockchains Types

Blockchain applications can be categorized based on their openness for user participation and the

extent to which they make their data visible to outside world. Based on these traits, blockchains

can be classified into three main categorizes namely public, private, and consortium blockchains.

2.2.2.1 Public Blockchain

Public blockchain systems is roughly an open access system in which any user can set up a

blockchain node and become part of the system. Naturally, setting up a node requires installing a

blockchain application client and often downloading the entire blockchain ledger. The blockchain

data is publicly accessible to anyone who may or may not be part of the blockchain network. These

blockchains are resource intensive, and considerable amount of computational power is required to

add a new block, and there is no privacy of transaction. Popular blockchain applications including

cryptocurrencies are public blockchains as exemplified by Bitcoin and Ethereum.

12

2.2.2.2 Private Blockchain

A private blockchain system is based on a permissioned network in which participants are invited

and verified during the joining process. Private blockchains use an access control mechanism in

which each node (user) is allowed a certain level of access to the system resources. The identity of

the node and its activities are known to the other nodes. Often times, a key management system is

used to specify the interaction policies of a node. Unlike public blockchains, the data of the private

blockchains is not openly accessible to the users outside the network.

2.2.2.3 Consortium Blockchain

A consortium blockchain is a hybrid of both public and private blockchains. In a consortium, the

permission to read and write data on blockchain can be extended to a certain number of peers,

thereby distributing the access control to selected participants. These blockchains are generally

used in enterprise settings e.g. Hyperledger fabric and Hyperleadger Sawtooth.

2.3 Consensus Protocols

A central piece of this work is to evaluate various consensus algorithms and their fitness for our

core application. Moreover, in the design of the different blockchain-based audit systems, we

utilize various protocols, which we review in the following. Note that additional details of some

of those protocols (e.g., PBFT) are listed where they are used in context.

In distributed systems, consensus protocols ensure that the participating nodes (or processes) agree

upon the correct state of data, typically assuming faulty or Byzantine nodes (behaves arbitrarily),

which may halt the execution of processes. To address that, consensus protocols have the property

13

of fault tolerance, which means that they can successfully execute the consensus objective notwith-

standing a certain number of faulty replicas. There are many protocols developed in the distributed

systems community to achieve consensus, including PoW, PoS, PBFT, Clique, PoET, etc. The

main objective of those protocols is to replicate ledgers (blockchain) across multiple nodes in the

absence of a trusted third party, while ensuring consistency.

h0 Nonce

Root hash value

G
eneration

transaction

transaction

transaction

transaction

....

Block i+1

Merkle hash

Hash Nonce

Root hash value

G
eneration

transaction

transaction

transaction

transaction

....

Block i

Merkle hash

Current tail Block to be Added

Transactions with one confirmation,
the number increments when the
block is added. Transction is
considered safe after six
conformation are received.

The hash value is iteratively
calcualted by change the "nonce"
until its is equal or less than the
target.

h1

traget

Difficulty can be
adjusted by
setting the target
t, for our
experiments we
used a small
difficulty value

Hash
Hash has to be
equal or less
than the target

Hash

Figure 2.3: General workflow in PoW showing two blocks. Block i+1 is linked to its parent i by
a hash function. The linkage among blocks using hash functions is generic among all blockchain
systems. However, in PoW, the block header also consists of a nonce value, which is concatenated
with the hash of the previous block and the merkel root of all transactions. All these values are
concatenated and hashed. If the resulting hash value is less than the target, the block meets the
PoW requirement. Otherwise the nonce value is changed until the desired target threshold is met.

14

2.3.1 Proof-of-Work

The PoW consensus protocol involves solving a computationally expensive challenge to elect a

leader. In PoW-based systems, the leader is also called a miner, who solves the challenge, or-

ders transactions in a block, and broadcasts the block to the network. Upon receiving the block,

other network nodes validate the correctness of the PoW solution and append the block to their

blockchain. PoW is popularly used in cryptocurrencies such as Bitcoin and Ethereum. In Fig-

ure 2.3, we show an abstraction of PoW protocol. Note that the blockchain data structure shown

in Figure 2.3 is common among many blockchain systems, where a block is linked to its parent

block using a one-way hash function, and the hash function provides immutability and collision

resistance to the blockchain ledger. Moreover, Figure 2.3 shows that the hash of the block header

is required to be less than or equal to the target value set by the system. The target value can be

calibrated to keep the block generation rate under a specified limit. Currently in bitcion a new

block is added every ten minutes [74, 73]. PoW is known to be highly scalable since it sidesteps

the multi-round message propagation in PBFT. At the same time, PoW is also considered to be

energy-inefficient since it leads to a significant waste of critical computational resources.

2.3.2 Proof of Elapsed Time

PoET protocol uses Intel Software Guard Extensions (SGX) to execute the “leader election” code

in a secure enclave. Each blockchain node executes the code, generating a random wait time

during which the node remains idle. Once the wait time expires, the node is allowed to propose a

block [31]. PoET randomizes the leader election process to maintain decentralization. In contrast,

PoW and PoS may become centralized if a node acquires an exceptionally high hash rate or has a

high balance for auction. Currently, Hyperledger Sawtooth supports the PoET protocol [49].

15

Node 1
Node 2

Node 3

Node 8

Node 7

Node 6

Node 5

Node 4

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Node 7

Node 8

Epoch t Epoch t+1

Figure 2.4: An abstraction of the Clique protocol’s execution. For simplicity, we show that Clique
uses a round-robin scheme to select primary replica. In each round, if the primary fails, the sec-
ondary replicas can propose the new block. The total number of replicas in one round are selected
using the formula N−N/2+1, where N is the total number of nodes. Node 1 is the primary and
Node 2 and Node 3 are secondary replicas for the first round, for the second round Node 2 is the
primary and Node 3 and Node 4 and the secondary.

2.3.3 Clique

Clique belongs to the family of Proof-of-Authority (PoA) consensus protocols, popularly used in

the permissioned blockchains [11, 71]. Clique is executed in epochs, and at the start of a new

epoch, a transition block is issued which specifies the order of the next primary replicas (authori-

ties). The selected primary replicas propose blocks at their respective turns. To avoid forks, in each

round only one node is allowed to propose a block. Since the identity of each node is known prior

to the execution of the protocol, a violation or deviation can be easily detected. Currently, Clique

is used in the Ethereum Geth client. In Figure 2.4, we provide an abstract execution of Clique.

16

2.3.4 Practical Byzantine Fault Tolerance

PBFT belongs to the family of BFT protocols, popularly used for the state machine replication.

Blockchain systems use PBFT to obtain consensus over the ordering of transactions in a block.

PBFT is executed in three phases, namely, pre-prepare, prepare, and commit phase. The general

workflow of PBFT is summarized below.

1 In the pre-prepare phase, the primary replica receives transactions from a client, orders them

in a block, and broadcasts the block to the rest of the replicas in the blockchain network.

Upon receiving the block, each replica validates if the transactions are ordered correctly.

2 In the prepare phase, each replica broadcasts its “approval” to all the other replicas in the

network. Each replica waits for at least 2 f responses from other replicas, where f is the

number of faulty replicas.

3 When 2 f responses are collected, replicas enter the “commit” phase where they broadcast

their final commitment to the client. If the client receives f + 1 commitments from the

network, it adds the block to the blockchain.

2.3.5 Proof-of-Stake

PoS protocol addresses the energy inefficiency of PoW and replaces the computational require-

ments with the notion of stake in the system [52]. In PoS cryptocurrencies, the stake is the number

of coins owned by a user, which are then used to make bids during a block auction process. The

auction winner is allowed to propose a block. Due to the growing concerns about the energy con-

sumption in PoW, cryptocurrencies including Ethereum are switching to PoS. Despite the obvious

benefits, PoS has its limitations, including the problem of “the rich gets richer” [19]. The auction

17

naturally favors rich miners who are rewarded with a transaction fee. As a result, their stake further

increases which allows them to win the subsequent auctions as well.

2.4 Threat Model

To sufficiently analyze the vulnerabilities of audit logs and set the security model objectives, we

present the threat model for the auditing systems in this section.

Inspired by the limitations found in the prior work [54, 58], our threat model assumes an adver-

sary that is capable of both physically accessing the trusted computing base (TCB) and remotely

penetrating the OLTP system by exploiting software bugs. As such, the adversary can be a ma-

licious third party aiming to tamper data to compromise auditing procedures. This would require

the adversary to obtain root privileges to the system, or have significant knowledge of the system

architecture. Additionally, the adversary can also hack and acquire the credentials of a root user of

the system. This can be carried out using various attack procedures available in the conventional

attack catalog [55]. However, possessing the knowledge of a private database system or a remotely

acquiring credentials of a root user would require exceptional capabilities for the adversary. There-

fore, we assume the third party attacker to have strong capabilities.

In a less hostile environment, the adversary can also be someone from within the system with root

privileges. For instance, a corrupt auditor, who has tampered data for personal gains, might want

to cover his act by changing data values. In contrast to the third party attacker, this adversary will

not need sophisticated capabilities since he already has root privileges and the system knowledge.

For the system architecture, we assume an OLTP system similar to a retail sale repository. The

system implements the design logic of an application using secure communication protocols such

as SSL/TLS. Moreover, the system has a database that keeps records of sales and maintains a

18

remote audit log. The audit log keeps track of the database changes through transactions, as shown

in Figure 2.1. In such a design, the attacker can exploit the system by launching two possible

attacks, namely the physical access attack and the remote vulnerability attack.

2.4.1 The Physical Access Attack

In one of the notable works on audit logs [79], the authors state “an intruder (or an insider)

who gains physical access to the DBMS server will have full freedom to corrupt any database file,

including data, timestamps, and audit logs stored in tuples .” We use their specification of “physical

access” to define the “physical access attack” in which the adversary uses the root privileges to

corrupt the database. As shown in Figure 2.1, the adversary will generate a series of transactions to

change the values of objects in the database. Once the attacker manipulates the data, the database

will automatically generate an audit log, tracking all changes made by the attacker. However, to

evade detection, the attacker can either delete the newly generated audit log or modify its values.

Furthermore, the attacker will also be able to tamper the history maintained by the audit log in order

to corrupt the auditing process. Therefore, in the physical access attack, we assume an adversary

inside or outside the system who has access to the key system components.

2.4.2 The Remote Vulnerability Attack

Faithfully embracing the formal specification of the physical access and remote vulnerability in

[79], we also define the remote vulnerability attack in which the attacker may only exploit the

default vulnerabilities in the OLTP applications such as software malfunctions, malware attacks,

buffer overflow attacks etc.. In this attack, the adversary, although not as strong as the physical

access attack may still be able to contaminate the database and the audit log with wrong informa-

tion. Despite these adversarial capabilities, we assume that the OLTP application is secure against

19

the conventional database and network attacks such as SQL injection and weak authentication.

Generally, database systems used by corporate organizations are secure against these conventional

attacks, and for the application service used in this paper, we ensure this requirement is meet.

20

CHAPTER 3: BLOCKAUDIT

Audit logs serve as a critical component in enterprise business systems and are used for auditing,

storing, and tracking changes made to the data. However, audit logs are vulnerable to a series

of attacks enabling adversaries to tamper data and the corresponding audit logs without getting

detected. Among them, two well-known attacks are “the physical access attack,” which exploits

root privileges, and “the remote vulnerability attack,” which compromises known vulnerabilities

in database systems. In this paper, we present BlockAudit: a scalable and tamper-proof system

that leverages the design properties of audit logs and security guarantees of blockchain to enable

secure and trustworthy audit logs. Towards that, we construct the design schema of BlockAudit

and outline its functional and operational procedures. We implement our design on a custom-built

PBFT blockchain system and evaluate the performance in terms of latency, network size, payload

size, and transaction rate. Our results show that conventional audit logs can seamlessly transition

into BlockAudit to achieve higher security and defend against the known attacks on audit logs.

3.1 Introduction

In this chapter, we present BlockAudit: a tamper-proof system that leverages the design properties

of audit logs and security guarantees of blockchain to enable secure and trustworthy audit logs. To-

wards that, we construct the design schema of BlockAudit and outline its functional and operational

procedures. We implement our design on a custom-built PBFT)blockchain system (see chapter 2)

and evaluate the performance in terms of latency, network size, payload size, and transaction rate.

Our results show that conventional audit logs can seamlessly transition into BlockAudit to achieve

higher security and defend against the known attacks on audit logs.

21

Broadly speaking, in BlockAudit, we 1) capture system events generated by the data access layer

of an enterprise application, 2) transform the acquired information into blockchain compatible

transactions, 3) construct a peer-to-peer network consisting of entities that evaluate and approve

the authenticity of transactions by executing a consensus protocol, and 4) lock the transaction in

an append-only and immutable blockchain ledger, maintained by each network entity.

In summary, in this work we make the following key contributions:

1 We outline security vulnerabilities in audit log applications and discuss shortcomings of the

prior work in addressing those vulnerabilities.

2 We present a blockchain-based audit log system called BlockAudit which addresses these

vulnerabilities and ensures security, transparency, and provenance in the auditing system.

Towards that, we review the modular constructs of blockchain systems and discuss suitable

design choices that best fit the requirements of an auditing system.

3 We test the design of BlockAudit using a real-world application and analyze its performance

using three evaluation metrics, namely the latency, the network size, and the payload size.

4 Based on observations made from theoretical analysis and experiments, we discuss our pro-

posed solution and provide future directions for research on blockchain-based audit logs.

3.2 Problem Statement and Design Requirements

The prior related research provides the groundwork for securing audit logs with blockchains and

represent the foundation of our work. However, our major contribution is seen in our focus on

audit logs related to enterprise business applications, focusing on seamless integration with current

systems,scalability and performance. As outlined in §3.1, blockchain applications may vary in

22

their access control policies and consensus schemes. Exploring the blockchain model for Enter-

prise business applications would require an understanding of their requirements, and methods to

overcome the domain-specific design challenges, which we explore in this chapter.

Another limitation that can be observed in [37, 79] is the inability to address Byzantine behavior

among network peers. In other words, the application assumes all participating entities faithfully

execute the consensus protocol without incurring any malicious behavior. However, in distributed

systems adversaries can control a subset of replicas who can behave arbitrarily in order to with-

hold transaction processing and cause conflicting views among other replicas. Tolerance towards

Byzantine nodes is a function of consensus schemes to be applied. For instance, permissionless

blockchain applications such as Bitcoin can tolerate up to 50% of Byzantine nodes while maintain-

ing operational consistency. On the other hand, PBFT-based private blockchains can tolerate only

30% Byzantine nodes. Therefore, the selection of a consensus algorithm can influence the security

model of the application. In BlockAudit, we address the aforementioned limitations and present an

end-to-end solution constructed by transforming knowledge problems into design problems.

3.2.1 Design Engineering

So far, we have discussed the benefits of audit logs, their key vulnerabilities, and the existing

solutions that address those vulnerabilities. We have also presented a threat model to outline ad-

versarial conditions. In this section, we use this knowledge to make design choices to meet the

requirements of a practical blockchain-based audit log solution. In the following, we define func-

tional, structural, and security requirements that we expect BlockAudit to meet.

23

3.2.1.1 Functional Requirements

An audit log application is expected to ensure trust in the application data and provide tamper-

proof evidence of transaction history when needed. Data tampering has to be prevented for the

application data as well as the data stored in the audit logs. However, a priority is given to the audit

logs, since they are used to establish provenance. For this purpose, the audit log data should be

stored across multiple peers in such a way that it remains consistent at each node, and therefore,

hard to corrupt. If tampering happens at any node, the system should be able to detect and correct

it. This requirement, however useful, comes with an assumption that a majority of peers behaves

honestly, and faithfully executes the system protocols.

For audit data to be added to the blockchain, the participating peers in the audit log network must

reach a quick consensus over a newly generated transaction. Since audit logs are generated in real-

time and persisted inside the database transaction, therefore, any delay in using distributed audit

logs adversely affects the system performance. In order to prevent such delays, the system needs

to have low latency while maintaining the capability of processing a large volume of transactions.

Additionally, the application should not add any data to the blockchain based audit logs without

reaching consensus among a majority of peers.

The audit log system architecture should be modular and service-oriented so that it is possible

for various types of applications to participate and benefit from this system. Moreover, audit

logs should be data agnostic and must not rely upon the nature of data that is stored in them. The

Enterprise business application should be able to provide data in any format as per the requirements

of the application, for storage in blockchian-driven audit logs.

Finally, the audit log system should provide searching and retrieval capability to enable the retrieval

of any desired transaction or a set of transactions (e.g., audit log entries for the last ten minutes,

24

all audit log entries registered against a specific user ID, etc.). The search needs to be fast and

responsive to ensure the end user is able to perform the audit in real-time.

Node

Blockchain
Application

Server

Node

Blockchain
Application

Server Node

Blockchain
Application

Server

Node

Blockchain
Application

Server Node

Blockchain
Application

Server

Figure 3.1: The network overview of nodes employing BlockAudit. Notice that each node main-
tains an interface that connects them to the audit log application. They exchange transactions with
one another during the application life-cycle.

3.2.1.2 Structural Requirements

Keeping in view of the design the baseline models introduced [37, 79], we envision that BlockAudit

must operate in a distributed manner with application services running on multiple hosts without a

central authority. As such each application peer would require its own blockchain node to become

25

part of the the BlockAudit network. The audit log system should have a high throughput and should

be able to process a large number of transactions. BlockAudit should be able to support transactions

of various sizes since the transaction size varies in audit log applications. The audit log system

should be easy to integrate with existing system with minimal structural and functional changes in

the application. It should also be independent of the underlying application database. Finally, the

system auditing should be secure, transparent, and visible to all peers within the network.

3.2.1.3 Security Requirements

In the light of our threat model §2.4, we require BlockAudit to be secure in adversarial conditions.

To that end, if the adversary launches a physical access attack, BlockAudit should be able to neutral-

ize it and prevent data tampering at the source. If the adversary launches the remote vulnerability

attack, BlockAudit should stop the attack propagation across the network peers. In other words, if

the adversary exploits a bug in the audit log of one peer, BlockAudit should immediately recognize

the attack and notify the victim peer. Furthermore, the infection should be curtailed at the target

zone, preventing its spread through the network.

In addition to the baseline attack model, we also expect BlockAudit to remain secure in the presence

of Byzantine nodes. Therefore, if a strong adversary controls a subset of nodes in the network, he

should not be able to corrupt audit logs or delay transaction verification. This can be achieved by

either raising the attack cost i.e., constructing a large network or relaxing anonymity so that the

adversary risks identity exposure by misbehaving.

26

Web Server
Business

Logic
ORM Database

request request query

datahyderated

objects

hyderated

objects
webpage

request

modify / save save call
transaction commit

confirmation
hyderated

objects

hyderated

objects
webpage

Figure 3.2: The information flow between various components of the application. Notice that
the transaction is generated at the business logic layer, and once the database commits to the
transaction it is rendered on the web page.

3.3 BlockAudit Design and Implementation

In this section, we show the implementation of BlockAudit. First, we describe the eGovernment

application that we used to generate audit logs. Next, we show how a blockchain network is

constructed to integrate audit logs. In that, we describe the methods of generating transactions,

creating a distributed network, managing the access control, and developing consensus among

peers over the state of the audit logs.

27

3.3.1 Application Architecture

We used an e-government application, built using Service Oriented Architecture(SOA), to imple-

ment BlockAudit. This application has web and mobile clients, that interact with a business logic

layer using REST services. Business logic layer interacts with the database using a data access

layer, which primarily uses Object-relational mapping (ORM) to communicate with the database.

Figure 3.6 shows the layered application architecture of our e-government application along with

its blockchain component. In Figure 3.2 we provide an overview of each layer and the sequence

of data exchange that generates an audit trail which is then passed to the blockchain system [6].

Some of the key components of our e-government application system are discussed below.

3.3.1.1 Clients

Our application has mobile and web-based clients. The web applications are built using asp.net

and users access the application services through a web browser. Additionally, native clients are

provided for Android and iOS, built using their respective development frameworks. The web

application and web services are hosted on Microsoft’s Internet Information Services (IIS) web

server and authorized users can access the application 24/7 via a web browser and mobile client.

The public side portal is available on the Internet and gives public users access to information

without authentication. Atop this, a staff portal is provided to the organization staff which is only

accessible from within the organization, thereby providing another security layer.

3.3.1.2 Business Logic Layer

The business logic layer is an interface between clients and the database layer, responsible for

implementing business rules. Among other functions, the business logic layer also manages data

28

creation, data storage, and changes to the data with the help of object-relational mapping (ORM).

Upon receiving a request from the client, the web server instantiates the relevant objects in the

business logic layer, which uses the ORM to send the processed object to the client. The ORM

writes changes to the objects in the relational database management system (RDBMS) tables.

3.3.1.3 Data Access Layer

The data access layer is built using NHibernate ORM [33] (ORM solution for Microsoft .NET

framework), which provides a framework for mapping classes in the business logic layer to the

database tables using an object-oriented paradigm [8, 13]. Modern web applications are well suited

for this technique since they are multi-threaded and are rapidly evolving. ORM automatically

create the SQL statements to hydrate data object and also executes SQL statements to flush and

commit changes to the database. ORM reduces the code complexity of database interaction and

allows software engineers to focus on writing business logic. Our current application instances

are either running or the Oracle and or SQL Server relational database management systems. In

our application, we have extended the ORM to generate the audit trail entry for each transaction

format that can be stored in the application database or an external audit provider e.g.Blocktrail. In

Figure 3.2, we provide the information flow between various components of the application and in

[3], we provide the details of generating audit trails from this layer.

3.3.2 Generating Audit Logs

In this section, we show how the application generates an audit log once the user commits a trans-

action. To implement auditing, three events provided by nHibernate are used, namely IPostIn-

sertEventListener, IPostUpdateEventListener, and IPostDeleteEventListener.

29

IPostInsertEventListener event is triggered once a transient entity is persisted for the first time.

Each class that requires auditing is marked with Auditable attribute, which is then used to create

audit logs for classes containing this attribute. All mapped properties are then audited by default

and a suppress audit attribute is added to suppress auditing of a target property. Usually, and by

default, all properties are audited. However, in special cases where auditing is not required, the

SuppressAudit attribute is added to the property. In Algorithm 1, we show the process of generating

the audit log when IPostInsertEventListener event is triggered.

When an audit entry is created, it contains a session ID (transaction ID), a class name, an event

type (Insert, Update, or Delete), audit ID, creation date, user ID, URL, and a collection of values

for all properties. The collection of values consists of the old value before the update and the new

Algorithm 1: Creation of the audit log entry for
persisting new objects to the database
1 Function OnPostInsert(PostInsertEvent e)
2 if (e.Entity = AuditLog) then
3 return;
4 . Do not create log entry for AuditLog
5 if (e.Entity = AuditLogDetail) then
6 return;
7 . Do not create log entry for AuditLogDetail
8 if e.HasAttribute(AuditableAttribute) then
9 var new AuditLog(SessionId,

AuditEventType.INSERT,
EntityName, EntityId, UserId, Url);

10 for i = 0; i <
e.Persister.PropertyNames.Length− 1 do

11 if (suppressedProp.Contains(propName))
then

12 continue;
13 auditLog.AddDetail(propName, oldValue,

newValue);
14 if (auditLog.Details.Any() then
15 SaveToBlockchain(auditLog);

application uses a multi-tier system architecture compris-
ing of web and mobile clients, a business logic layer, a data
access layer, and a database. In the following, we describe
the core functionality of each component along with their
role in generating an audit log.
Web Applications. The web applications are built using
asp.net and users access the application services through a
web browser. Additionally, native clients are provided for
Android and iOS, built using their respective development
frameworks. The web application and web services are
hosted on Microsoft’s Internet Information Services (IIS)
web server. The public side portal is available on the In-
ternet and gives public users access to information without
authentication. Atop this, a staff portal is provided to the
organization staff which is only accessible from within the
organization, thereby providing another security layer.
Business Logic Layer. Business logic layer is an inter-
face between clients and the database layer, responsible for
implementing business rules. Among other functions, the
business logic layer also manages data creation, data stor-
age, and changes to the data with the help of ORM. Upon
receiving a request from the client, the web server instanti-
ates the relevant objects in the business logic layer, which
uses the ORM to send the processed object to the client.
The ORM writes changes to the objects in the relational
database management system (RDBMS) tables.
ORM. The ORM in the application provides a mapping
mechanism that allows querying of data from RDBMS us-
ing an object-oriented paradigm [41, 42]. Modern web ap-
plications are well suited for this technique since they are
multi-threaded and are rapidly evolving. ORM also re-
duces the code complexity and allows developers to focus
on business logic instead of database interactions. This
application uses NHibernate[43]: an ORM solution for Mi-

Algorithm 2: Creation of the audit log entry for
persisting existing objects to the database
1 Function OnPostUpdate(PostUpdateEvent e)
2 . Do not create log entry for AuditLog
3 if (e.Entity = AuditLog) then
4 return;
5 . Do not create log entry for AuditLogDetail
6 if (e.Entity = AuditLogDetail) then
7 return;
8 if e.HasAttribute(AuditableAttribute) then
9 var new AuditLog(SessionId,

AuditEventType.UPDATE,
EntityName, EntityId, UserId, Url);

10 for
i = 0; i < e.Persister.PropNames.Length− 1
do

11 if (suppressedProp.Contains(propName))
then

12 continue;
13 if (oldldValue <>newValue)) then
14 auditLog.AddDetail(propName,

oldValue, newValue);
15 if (auditLog.Details.Any() then
16 SaveToBlockchain(auditLog);

crosoft .NET platform. NHibernate is a framework used
for mapping an object-oriented domain model to RDBMS
and it maps the .NET classes to database tables. It also
maps Common Language Runtime (CLR) data types to
SQL data types. The ORM inside a database layer cre-
ates a SQL statement to hydrate the object and passes it
to the business logic layer. ORM also flushes the changes
to the RDBMS, and commits a transaction. Interactions
between the application and RDBMS are carried out us-
ing the ORM. In Figure 3, we provide the information flow
between various components of the application.

5.2. Generating Audit Logs
In this section, we show how the application gener-

ates an audit log once the user commits a transaction.
To implement auditing, three events provided by nHiber-
nate are used, namely IPostInsertEventListener, IPostUp-
dateEventListener, and IPostDeleteEventListener.

IPostInsertEventListener event is triggered once a tran-
sient entity is persisted for the first time. Each class
that requires auditing is marked with Auditable attribute,
which is then used to create audit logs for classes con-
taining this attribute. All mapped properties are then
audited by default and a suppress audit attribute is added
to suppress auditing of a target property. Usually, and
by default, all properties are audited. However, in spe-
cial cases where auditing is not required, the SuppressAu-
dit attribute is added to the property. In algorithm 1, we
show the process of generating the audit log when IPostIn-
sertEventListener event is triggered.

When an audit entry is created, it contains a session
ID (transaction ID), a class name, an event type (Insert,

6

30

Algorithm 1: Creation of the audit log entry for
persisting new objects to the database
1 Function OnPostInsert(PostInsertEvent e)
2 if (e.Entity = AuditLog) then
3 return;
4 . Do not create log entry for AuditLog
5 if (e.Entity = AuditLogDetail) then
6 return;
7 . Do not create log entry for AuditLogDetail
8 if e.HasAttribute(AuditableAttribute) then
9 var new AuditLog(SessionId,

AuditEventType.INSERT,
EntityName, EntityId, UserId, Url);

10 for i = 0; i <
e.Persister.PropertyNames.Length− 1 do

11 if (suppressedProp.Contains(propName))
then

12 continue;
13 auditLog.AddDetail(propName, oldValue,

newValue);
14 if (auditLog.Details.Any() then
15 SaveToBlockchain(auditLog);

application uses a multi-tier system architecture compris-
ing of web and mobile clients, a business logic layer, a data
access layer, and a database. In the following, we describe
the core functionality of each component along with their
role in generating an audit log.
Web Applications. The web applications are built using
asp.net and users access the application services through a
web browser. Additionally, native clients are provided for
Android and iOS, built using their respective development
frameworks. The web application and web services are
hosted on Microsoft’s Internet Information Services (IIS)
web server. The public side portal is available on the In-
ternet and gives public users access to information without
authentication. Atop this, a staff portal is provided to the
organization staff which is only accessible from within the
organization, thereby providing another security layer.
Business Logic Layer. Business logic layer is an inter-
face between clients and the database layer, responsible for
implementing business rules. Among other functions, the
business logic layer also manages data creation, data stor-
age, and changes to the data with the help of ORM. Upon
receiving a request from the client, the web server instanti-
ates the relevant objects in the business logic layer, which
uses the ORM to send the processed object to the client.
The ORM writes changes to the objects in the relational
database management system (RDBMS) tables.
ORM. The ORM in the application provides a mapping
mechanism that allows querying of data from RDBMS us-
ing an object-oriented paradigm [41, 42]. Modern web ap-
plications are well suited for this technique since they are
multi-threaded and are rapidly evolving. ORM also re-
duces the code complexity and allows developers to focus
on business logic instead of database interactions. This
application uses NHibernate[43]: an ORM solution for Mi-

Algorithm 2: Creation of the audit log entry for
persisting existing objects to the database
1 Function OnPostUpdate(PostUpdateEvent e)
2 . Do not create log entry for AuditLog
3 if (e.Entity = AuditLog) then
4 return;
5 . Do not create log entry for AuditLogDetail
6 if (e.Entity = AuditLogDetail) then
7 return;
8 if e.HasAttribute(AuditableAttribute) then
9 var new AuditLog(SessionId,

AuditEventType.UPDATE,
EntityName, EntityId, UserId, Url);

10 for
i = 0; i < e.Persister.PropNames.Length− 1
do

11 if (suppressedProp.Contains(propName))
then

12 continue;
13 if (oldldValue <>newValue)) then
14 auditLog.AddDetail(propName,

oldValue, newValue);
15 if (auditLog.Details.Any() then
16 SaveToBlockchain(auditLog);

crosoft .NET platform. NHibernate is a framework used
for mapping an object-oriented domain model to RDBMS
and it maps the .NET classes to database tables. It also
maps Common Language Runtime (CLR) data types to
SQL data types. The ORM inside a database layer cre-
ates a SQL statement to hydrate the object and passes it
to the business logic layer. ORM also flushes the changes
to the RDBMS, and commits a transaction. Interactions
between the application and RDBMS are carried out us-
ing the ORM. In Figure 3, we provide the information flow
between various components of the application.

5.2. Generating Audit Logs
In this section, we show how the application gener-

ates an audit log once the user commits a transaction.
To implement auditing, three events provided by nHiber-
nate are used, namely IPostInsertEventListener, IPostUp-
dateEventListener, and IPostDeleteEventListener.

IPostInsertEventListener event is triggered once a tran-
sient entity is persisted for the first time. Each class
that requires auditing is marked with Auditable attribute,
which is then used to create audit logs for classes con-
taining this attribute. All mapped properties are then
audited by default and a suppress audit attribute is added
to suppress auditing of a target property. Usually, and
by default, all properties are audited. However, in spe-
cial cases where auditing is not required, the SuppressAu-
dit attribute is added to the property. In algorithm 1, we
show the process of generating the audit log when IPostIn-
sertEventListener event is triggered.

When an audit entry is created, it contains a session
ID (transaction ID), a class name, an event type (Insert,

6

value resulting from the update. Moreover, during an update, old and new values are compared.

Only if the two values are different from one another, the change is committed to the audit log.

In Algorithm 2, we outline this procedure of updating audit logs. Currently, these audit logs

are saved inside an RDBMS using two tables, the AuditLog table, and the AuditLogDetail table.

Furthermore, Globally Unique Identifiers(GUID) are used as primary keys in auditlog tables.

Once a change is observed in a class, the ORM’s event handler is invoked. Similarly, the event

handler is also invoked when the change is observed in the “AuditLog” and the “AuditLogDetail”

classes. Lines 2–5 in Algorithm 1 and Algorithm 2, prevent the creation of logs for Audit Classes.

31

Figure 3.3: Blockchain transaction generated after serializing data from the audit log. This trans-
action is exchanged among the peers during the application runtime.

In the absence of this condition, the event logger would fall into an infinite event loop.The infinite

loop can also be prevented by removing the “AuditableAttribute” from the audit classes. However,

we use lines 2–5 as a check to avoid the loop in case a developer adds the attribute by mistake.

Once an audit log is generated, users have various ways of accessing the audit logs. Such using

the audit search screen and searching based on users, date range, business object type etc. The

application also provides a link to the audit log page from the primary object. The link allows end

32

users to look at the object history and track any discrepancy caused by a bug or malicious activity.

3.3.3 Blockchain Integration to Audit Logs

In this section, we will show how audit logs, obtained from our application, are integrated with

the blockchain. So far in our design, we have an application that stores audit logs upon receiving

a transaction. Now, we need to convert the audit log data into a blockchain-compatible format

(blockchain transactions) and construct a distributed peer-to-peer network to replicate the state

of the blockchain over multiple nodes. In our current implementation the audit log is generated

using the ORM, which calls a Representational State Transfer(REST) Application Programming

Interface(API) to store the audit log entry.

We used the ORM to create audit logs because the ORM acts as the gateway to capture all database

transactions. Therefore, it is efficient to take advantage of ORM events to capture all the database

changes and convert them into a JSON packet for the REST API. Our design is flexible and generic,

and can also be used by other applications that do not use the ORM. Other than the ORM, the

application layer or the data access layer can also be extended to capture the database changes in a

JSON format and invoke the REST API. Moreover, the REST API can also be used by applications

built using a serverless architecture.

3.3.3.1 Creating Blockchain Network

In BlockAudit, the network consists of peers that all have the privilege of accessing the application

and creating an audit log. This network is connected in peer-to-peer model [42] and each peer can

connect to all the other peers in the network. Connecting to a bigger subset of peers is beneficial,

because it can avoid unnecessary delays in receiving critical information.

33

Class: A Type: INSERT

Field Name: Field 1 Old Value: null New Value: xxy

Field Name: Field n Old Value: null New Value: xxy

Field Name: Field 2 Old Value: null New Value: 10/10/2018

Field Name: Field 3 Old Value: null New Value: 1000

Figure 3.4: Audit Entry generation for an object. Object A is a new object that is being inserted
into the database for the first time. Note that an audit log entry only contains one object.

Access Control. As mentioned in section 3.1, access controls may vary across blockchain appli-

cation. These applications can be permissionless (open access) or permissioned (selective access).

In permissionless applications, such as Bitcoin, an arbitrary user can download the Bitcoin Core

software and join the network. However, in the private and permissioned blockchains, an access

control mechanism is applied that restricts the participation to only approved users. Since audit

logs consist of sensitive data, therefore, in BlockAudit we use a permissioned blockchain with ac-

cess control provisioned to selected users. In permissioned blockchains, adjusting access control

is trivial since any custom membership service can be used for the access control [17]. To avoid

runtime complexities, we do peer screening prior to network creation. The peer screening is done

based on the IP addresses in which we curate a list of IP addresses, compile them in executable

code, and provide the code to each peer. Upon executing it, the peer gets connected to the network.

Additionally, each node is required to keep a copy of the blockchain at their servers and maintain a

persistent connection with their corresponding application server. Persistent connections are nec-

essary to maintain an up-to-date view of the blockchain in order to process, validate, and forward

34

transactions, as well as to avoid unwanted forks and partitioning attacks that may result from an

outdated blockchain view.

Transaction ID : 9876523

Class: A Type: INSERT

Field Name: Field 1 Old Value: null New Value: xyz

Field Name: Field n Old Value: null New Value: xyz

Field Name: Field 3 Old Value: null New Value: 1000

Class: B Type: UPDATE

Field Name: Field 1 Old Value: xyz New Value: abc

Field Name: Field n Old Value: xyz New Value: def

Field Name: Field 3 Old Value: 1000 New Value: 100

Class: X Type: UPDATE

Field Name: Field 1 Old Value: abc New Value: def

Field Name: Field n Old Value: xyz New Value: null

Field Name: Field 3 Old Value: 100 New Value: 1000

Figure 3.5: Audit generation for a transaction spanning across multiple objects. Object A is in-
serted and Object B and X are updated.

35

Table 3.1: The description of fields of audit log JSON packet. The packet has a header and a detail
record for each updated property. The detail records can have (0−n) records depending upon the
class properties that are being updated.

Field Name Description
AppId Unique identifier for the application
ClassName The name of updated application class
CreatedDate Creation date and time for the audit record
EntityId Unique key for business object
EventType This would be Update, Insert or Delete
Id Unique id of the audit record, GUID
SessionId Unique Id for a transaction
Url Application page creating the audit
UserId User id, for the user making the change

Details
(0−n)

Id Unique Id for the detail record
NewValue Current property value
OldValue Old Property value
Name Name of property e.g owner’s name

Table 3.2: Clear Village’s actual transaction sizes in (bytes) for the three transaction schemes,
based on the transactions from October 2018. The average size is between 32 bytes to 9,302 bytes.

Type Max Min Average
Per Transaction 501,760 321 9,302.81
Per Record 31,104 319 2,617.80
Fixed Length 32 32 32.00

3.3.3.2 Creating Blockchain Transactions

Once the network architecture is laid out, the next step is to create blockchain-compatible trans-

actions from the audit log data. For that, we convert the audit log data to a JavaScript Object

Notation(JSON) format [34]. We preferred JSON over other standard data storage formats such as

XML, due to its data structure compactness and storage flexibility. To obtain a blockchain trans-

action, we first pass the audit log data to a function that serializes it to JSON and calls createAudit

REST [48] web service to create the audit log transaction. Each JSON packet is then treated as a

36

blockchain transaction, and as soon as a node in the network receives a transaction, it broadcasts

the packet to the rest of the network. Nodes can connect to multiple peers to avoid the risk of

delayed transactions due to malicious peer behavior or network latency. In Table 3.2, we show the

average transaction size from our sample system for October 2018. In Table 3.1 we describe the

purpose of each field in the audit JSON packet and in Figure 3.3, we show the data structure of the

blockchain transaction that is obtained after serializing data from the audit log.

Business Logic

Data Access Layer
(ORM)

Database

Mobile

Audit Event
Listener

Webserver

Audit Logger

Clients

Web
1

2

3

n

Blockchain

Figure 3.6: The BlockAudit architecture after blockchain integration in the JSON output.

37

Primary

Replica

Replica

Replica

Client
Pre-Prepare Request Commit Prepare Reply

Figure 3.7: An overview of PBFT protocol with client issues a request to the primary replica. The
primary then broadcasts the transaction to all the other replicas. The replicas validate the order of
the transaction and share their view with each other. Once the client receives the desired number of
responses, the transaction is considered validated. The process of transaction verification follows
four stages, namely Pre-Prepare, Prepare, Commit, and Reply.

Log for table/class. The audit event logger can also create a packet for each object in a transaction.

We used this method in the prior work [4] and found that the packet size was small, however, the

number of web service calls for each application transaction was high. For instance, if a transaction

contains 10 classes, it will create 10 web service calls. While 10 calls can be handled by ORM-

based audit logs, however, they are not optimal for blockchain-based audit logs.

Log for transaction. The audit event logger creates a packet containing all insertions, updates,

and deletions, which span across one or more objects, and sends the packet to BlockAudit as shown

in Figure 3.5. Since the audit log data is consolidated, it is hard to search for updates of a specific

class; a typical use case. Creating an audit log for a transaction reduces the number of web service

calls and improves efficiency, and this design is more suited to blockchain based audit logs.

38

3.3.4 Consensus Protocol

The next phase in the BlockAudit design is the use of a consensus scheme among the peers to de-

velop their agreement over the sequence of transactions and the state of the blockchain. There are

various consensus algorithms used in blockchains, such as proof-of-work (PoW), proof-of-stake

(PoS), proof-of-knowledge (PoK), Byzantine fault tolerance (BFT), etc. [70, 63]. In Table 3.3, we

compare the popular blockchain consensus algorithms. Notice that PoW and PoS have high scala-

bility and fault tolerance. More specifically, they can scale beyond 10,000 nodes and can tolerate

up to 50% malicious replicas. On the downside, they have low throughput and high confirmation

time [36, 85]. In contrast, PBFT has high throughput and low confirmation time. However, PBFT

has low fault tolerance which makes it less suitable for permisionless settings.

For BlockAudit, we use PBFT consensus algorithm [82, 25], which was originally designed to fa-

cilitate the decision-making process in a distributed environment. BlockAudit uses a permissioned

blockchain system [10], in which all network participants are known to one another, and there is a

weaker notion of anonymity. Since our system is primarily a private and permissioned blockchain,

therefore, we are not constrained by high scalability challenges. Although in the future, we aim to

extend our design to a bigger network, however, at the prototype stage, we are less than 100 peers.

Due to high throughput and low latency, naturally, PBFT is more suited for our design.

In PBFT, the system comprises of a client that issues a request (transaction), and a group of replicas

that execute the request. The primary replica orders transactions and relays them to other replicas.

The transaction is processed in four stages, namely pre-prepare, prepare, commit, and reply. When

the client receives a minimum of 3 f + 1 responses, f being the number of faulty replicas, the

transaction processed. In ??, we provide an illustration of PBFT, which we later use to design

and calibrate BlockAudit. In Figure 3.6, we show the complete design of BlockAudit, where the

blockchain is integrated with the serialized JSON output of the business application.

39

Table 3.3: An overview of popular consensus algorithms used in blockchains. Notice that PBFT
has high throughput and low confirmation time.

Properties PoW PoS PBFT
Blockchain Type Permisssionless Permissionless Permissioned
Participation Cost Yes Yes No
Trust Model Untrusted Untrusted Semi-trusted
Scalability High High Low
Throughput <10 <1,000 <10,000
Byzantine Fault Tolerance 50% 50% 33%
Crash Fault Tolerance 50% 50% 33%
Confirmation Time >100s <100s <10s

3.4 Analysis of BlockAudit

In this section, we analyze various aspects of BlockAudit, including its design (with key takeways),

complexity (time and space), and security (with respect to the aforementioned threat model).

3.4.1 Design Analysis

In BlockAudit, each peer uses the ORM-based audit log application that is connected to a database.

Once the ORM observes a change, it updates the database and issues a transaction, and sends it

to the primary replica. The primary orders the transaction and broadcasts them to all the other

replicas. Upon receiving the transaction, each replica checks if the transaction is valid and follows

the correct order. The order of the transaction is ensured by the timestamp, and the ordering rule

involves the chronological sequencing of each transaction. In BlockAudit, the primary preforms

transaction sequencing based on the time at which it receives transactions from the application

replica. We use this approach as a security design choice to prevent malicious replicas from

arbitrarily modifying their transaction timestamps. In the following, we show how transaction

sequencing is performed in BlockAudit:

40

1 An application generates a transaction at time ti and the primary receives the transaction at

time t j.

2 First, the primary checks if the transaction respects the temporal ordering (i < j, ∀ i, j). This

assumption is valid for any real-world system, since each transaction experiences a non-zero

delay during transmission.

3 If the primary observes a violation i.e., i > j, it assumes that the application replica is mis-

behaving. Therefore, the primary discards the transaction.

4 In the transaction confirmation phase, the active replicas also compare the time at which

they receive a transaction to the time of the transaction generation. This serves as an added

security measure to ensure that the policy precedence is honored, even when ignored by the

primary.

In BlockAudit, we enforce the ordering of transaction since it is critical in audit log applications.

For instance, consider a case in which txa involves a change made to a class. The next transaction

txb reverses the change made by txa, then it is critical to process txa before txb. Otherwise, the

order will be violated and the audit log will reflect a different state of the database than the actual.

In summary, BlockAudit constitutes of a client (audit log application) that generates blockchain

compatible transaction, a primary replica that receives and orders transactions, and a group of

active replicas that execute PBFT to generate a blockchain-based audit log. In conventional PBFT,

the client is independent of the active replicas that execute the consensus protocol. In BlockAudit,

the client is one of the active replicas that issues the transaction. In the verification process, the

issuer becomes the client and all other replicas act as validators.

Key Takeaways. From the design implementation, we had the following takeaways:

41

1 PBFT-based permissioned blockchains are more suitable for audit log applications.

2 Extending ORM provides an efficient mechanism of converting database transaction to blockchain

compatible transactions.

3 Existing application can seamlessly integrate with blockchain based audit logs by extending

the ORM in their data-access layer.

4 REST services can be easily extended to support applications that do not use ORM.

5 JSON format is the de facto standard for REST API’s and is simple, hierarchical, lightweight

and fast, and therefore efficient and suitable for an audit log transaction.

3.4.2 Complexity Analysis

A key aspect of PBFT-based blockchain systems is the time and space complexity associated with

the network and the blockchain size. The time complexity partakes the time taken by replicas to

develop consensus on a transaction or a block. The space complexity involves the storage and

the search overhead that compounds due to append-only distributed blockchain design. In the

following, we analyze these aspects of complexity in BlockAudit.

3.4.2.1 Time Complexity

To achieve consensus over the state of blockchain with n replicas, n2−n messages are exchanged,

as shown in ??. Therefore, for each transaction generated within the system, the overall complexity

becomes O(n2). Compared to PoW-based blockchains, in which the consensus complexity is O(n),

PBFT has a high message complexity which can lead to system overheads and delays. However,

we argue that in PoW-based blockchains systems such as Bitcoin, the total number of active nodes

42

are over 6-8k [12]. In comparison, BlockAudit constitutes less than 100 peers. Therefore, it can

tolerate this complexity overhead, keeping in view the other benefits associated with PBFT such

as high throughput.

3.4.2.2 Space Complexity

The space complexity of the system can be ascribed to the overhead associated with the storage of

blockchains at each peer. One major limitation of replacing the client-server model with a peer-to-

peer blockchains system is that each peer is required to maintain a copy of the blockchain. This

leads to a high storage footprint since blockchains are always growing in size. The size footprint

also increases the search complexity for transaction verification. For instance, when a newly gen-

erated transaction is sent to peers for verification, they validate its authenticity by consulting its

history in the blockchain. If the blockchain size is large, the verification time increases. As such,

if the rate of the incoming transaction is high, then high verification time may lead to process-

ing overhead, thereby increasing latency and reducing the throughput. In BlockAudit, the space

complexity of a system, complementary to any other blockchain system is O(n).

Key Takeaways. From the complexity analysis, we had the following takeaways:

1 PBFT-based based blockchains have high message complexity. Therefore, if the network

scales beyond a few hundred nodes, the application may become inefficient. Therefore, we

observe a tradeoff between the message complexity and the network scalability.

2 Generally, the space complexity of blockchain is high, due to the append-only model. In

BlockAudit, the space complexity is similar to any other blockchain application.

43

3.4.3 Security Analysis

An essential component of our work is the defense against the attacks outlined in the threat model

§2.4. In this section, we discuss how BlockAudit defends against the physical access attack and the

remote vulnerability attack.

3.4.3.1 Physical Access Attack

In the physical access attack, if the attacker acquires the credentials of a user, he can make changes

to the application data using the application graphical user interface. In this case, his activity will

be logged in BlockAudit. Since the log is kept in the blockchain by the user, the attacker will not

be able to remove the traces of his activity. Therefore, when the attacker’s activity is exposed,

auditors will be able to track the tampered records and take corrective measures to restore data to

the correct state. Moreover, if the attacker can get write access to the database, he will be able to

change data in various tables. Since the audit log generation is at the ORM level, therefore, these

changes will not be reflected in the audit log. This discrepancy will enable the auditors to detect

malicious activity and take preventive actions.

3.4.3.2 Remote Vulnerability Attack

In case of a remote vulnerability attack in which the attacker exploits a bug or vulnerability in the

application, the audit log will show the effect of the changes or errors resulting from the attack.

Additionally, the blockchain will also preserve the tamper-proof state of the audit log before the

launch of the attack. As a result, the auditor will be able to compare the audit log and the current

data to detect changes made during the attack. In the absence of the blockchain, if the attacker

corrupts the prior state of the audit log, there is no way auditors can recover from it. However, with

44

BlockAudit, not only the attacks are detected, but the system state is also recovered. Furthermore,

for an malicious party to launch a successful attack in the presence of BlockAudit, the attacker will

need to corrupt the blockchain maintained by each node in the blockchain network. Based on the

design constructs and security guarantees of blockchains, corrupting blockchain repositories of a

majority of nodes is costly, and therefore infeasible.

After realizing that BlockAudit can defend against the attacks outlined in our threat model §2.4,

there are however few considerations to be made while using the PBFT-based blockchain model.

The prior work in this direction does not consider Byzantine behavior among the participating

nodes. In BlockAudit, we consider that peers may behave arbitrarily and try to create confusion

in the view of other honest peers. Therefore, we want BlockAudit to be robust against malicious

replicas. While other consensus mechanisms such as PoW may withstand up to 50% of faulty

replicas in the system, PBFT, in contrast, has low fault tolerance. In a situation where there are f

faulty replicas, a PBFT-based blockchain system needs to have 3 f +1 honest replicas to function

smoothly. Roughly speaking, PBFT-based blockchains require 70% nodes to behave honestly to

avoid disagreements. However, in BlockAudit, we try to raise the threshold of fault tolerance by

making minor adjustments to the security design.

3.4.3.3 Increasing Fault Tolerance

In a situation where there are r honest replicas in a blockchain and the attacker is able to position f

faulty replicas such that 4 f +1> f +r, then the attacker will be able to stop transaction verification

and may even cause forks. To counter this, we propose an expected verification time window Wt

which will be set by the primary replica before passing the transaction to the verifying replicas.

The primary replica knows the total number of active replicas in the system and can calculate the

total number of messages to be exchanged until the transaction gets verified. In this case, the total

45

number of messages will be in the order of (f + r)2− (f + r). Let c× tb be the time taken for

the transaction confirmation, where c is an arbitrary constant set by the primary replica. Based on

these values, the primary replica can set an expected time window Wt ≥ c× tb in which it expects

all peers to validate the transaction and submit their response. Let tstart be the start time at which

the primary replica initiates the transaction. If by Wt the primary does not receive the expected

number of responses from the replicas, it will abort the verification process and notify the auditor.

Depending on the application’s sensitivity, the primary replica can either set another optimistic

value of W ′t , where W ′t ≥Wt , and repeat the process or it can simply abort the process and notify

the application auditors regarding the malicious activity. We leave that decision to the audit log

application and its sensitivity to malicious activities. However, in our experiments, we relax the

condition of sensitivity and re-submit the transaction for another round of verification. We set

a new expected verification time window W ′t and wait for the response. Our choice of relaxing

the condition of sensitivity is owing to the unexpected delays in the message propagation; given

that our system would run over the Internet. However, if the primary replica does not receive the

approval for the second time, it aborts the process and notifies the application.

3.4.3.4 Detecting Malicious Nodes

In BlockAudit, we also enable detection of the malicious nodes that corrupt the process of transac-

tion verification. For that, we store the identity of the replica in each iteration of the response. For

instance, in the first iteration of Wt , we note the identity of replicas that send their digitally signed

approval for the transaction. Let h be the subset of replicas that send their response in the first

iteration, where h≤ (f + r). The primary replica stores the identities of replicas in h and initiates

the second iteration at t ′start and waits for a response till W ′t . Upon receiving the response in the

second iteration, the primary replica updates h and removes the duplicates. By comparing h with

46

the identity of all the replicas, the primary replica can find the malicious replicas and request their

removal from the verification process.

It is possible that an adversary, aware of the two-phased approval process, may attempt to trick

the system by sending a response from a subset of malicious peers in each phase of approval. The

adversary can split his set of malicious replicas in f1 and f2, where f1+ f2 = f . In the first phase of

approval, the adversary can send a response from f1 replicas. However, the adversary ensures that

3 f1 + 1 ≥ r, so that the transaction does not get enough approvals to be accepted by the primary

replica. The primary replica will append f1 to its set of h. In the second iteration, the adversary

will incorporate signatures from f2, and the primary replica will also add them to h. As a result,

the primary replica will not be able to detect the actual number of malicious replicas in the system.

To counter that, we randomize the two-phase approval process to v-phase approval process, v may

take any value of the primary replica’s choice. When the transaction fails the first attempt, the

primary replica can either abort or continue the approval process. Continuing from the above-

outlined scenario, if v = 3, then the attacker will either have to include one of f1 or f2 replicas in

the third phase. And if the primary replica iterates one more time, the adversary will be bounded

to include the set of replicas that he did not include in the previous iteration. As such, the primary

replica will notice the incoherence in the response of a few replicas in each iteration of the approval

process, and the adversary will risk exposing his malicious replicas. Although this procedure

ensures high security and the ultimate exposure of adversary in the process of verification, it is,

however, time-consuming and may lead to a transaction stall. Again, we leave this choice to the

primary replica, which can make decisions that best suit the requirements of the application.

Key Takeaways. From the security analysis, we had the following takeaways:

1 BlockAudit counters the conventional audit log attacks namely the physical access attack and

47

the remote vulnerability attack.

2 Additionally, BlockAudit also makes audit logs secure against Byzantine behavior, tolerating

up to 30% malicious replicas.

3 Leveraging the design policies in permission settings, BlockAudit is able to detect malicious

replicas and take preventive measures.

3.5 Experiment and Evaluation

In this section, we present experiments carried out to evaluate the performance of BlockAudit.

First, we extended the nHibernate ORM to generate a serialized JSON output in the form of trans-

actions as shown in Figure 3.3. The transactions are broadcast to the network where a BlockAudit

blockchain instance is configured at each node. For experiments, we used sockets to set up the

network and a NodeJS client to receive JSON transactions.

3.5.1 Simulation Environment

We simulated our blockchain network using a LAN setup at our research lab. We used 20 machines,

each running the Linux OS with Intel Core i5 processor and a 16MB RAM. Next, we set up a

virtual environment at each node to construct a multi-host network. We assigned port numbers and

sockets to each host that acted as a peer. The socket connections were used to exchange data with

peers using IP addresses and port numbers. Each peer was equipped with a JSON master list that

contained the information of all the other nodes. Data packets of the desired size were generated

and broadcast over the network. We encoded the PBFT protocol in NodeJS and executed it over

all the peers. The selection of the primary replica can be done using any method suitable for the

48

application. In BlockAudit, in each iteration, we selected the primary in a round-robin manner.

To reflect the real-world delays in our simulation, we added a round-trip delay of 100ms in each

transaction broadcast over the network. Finally, after the transaction obtained sufficient approvals,

it was added to the blockchain of the primary replica, and subsequently, all the other replicas.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 10 20 30 40 50

L
a

te
n

c
y
 (

m
ill

is
e

c
o

n
d

s
)

Number of Peers

Size = 1MB
Size = 2MB
Size = 5MB

Size = 10MB

(a) Transaction Rate λ =200 tx/s

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50

L
a

te
n

c
y
 (

m
ill

is
e

c
o

n
d

s
)

Number of Peers

Size = 1MB
Size = 2MB
Size = 5MB

Size = 10MB

(b) Transaction Rate λ =3,000 tx/s

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 10 20 30 40 50

L
a

te
n

c
y
 (

m
ill

is
e

c
o

n
d

s
)

Number of Peers

Size = 1MB
Size = 2MB
Size = 5MB

Size = 10MB

(c) Transaction Rate λ =6,000 tx/s

Figure 3.8: Time taken to reach consensus at different types of audit transaction with varying
transaction rate λ (200-6,000 tx/second). Notice that as the network size and the payload size
increases, the confirmation time for a transaction increases. Also, it can be seen that the as λ

increases, confirmation time increases. Naturally, this can be associated with high verification
delays with the bulk of the incoming transactions.

49

We evaluate the performance of our system by measuring the latency over the consensus achieved

by peers in our blockchain network. We increase the transaction payload size from 2MB to 20MB

and the rate of transaction λ from 200 transactions per second to 6,000 transactions per second.

By adjusting these parameters, we monitor the time taken by peers to approve the transaction. Let

tg be the transaction generation time, and tc be the time at which it gets approval from all active

peers. In that case, the latency lt is calculated as the difference between tc and tg (lt = tc− tc, where

tc > tg). We report the simulation results in Figure 3.8.

3.5.2 Simulation Results

Our simulation results show that irrespective of the payload size, the latency margins remain neg-

ligible as long as the number of peers is less than 30. As the size of the network grows beyond 30

nodes, the latency factor increases considerably. Furthermore, we also notice that a sharp increase

in latency when the payload size changes from 5–10MB and a negligible change in latency when

the payload size changes from 15–20MB.

We also noticed that as the rate of transaction λ increases from 200 transactions per second to 6,000

transactions per second, the confirmation time for transaction also increases. Intuitively, this can be

attributed to the processing overhead caused by the increasing rate of λ at each replica. However,

it can be observed from 3.8(c) that within a network size of 50 peers, BlockAudit has the capability

of processing 1,000 transactions per second, with the payload size of 10 MB. This payload size is

equivalent to 10 blocks in Bitcoin. For the payload size of 1MB, BlockAudit achieves a throughput

of 6,000 transactions per second. Considering low throughput of conventional blockchains (3–7

transactions/second in Bitcoin), BlockAudit achieves high throughput. This also justifies our choice

of using PBFT as consensus scheme for our system.

Evaluation parameters obtained from our experiments can be used to define the block size and the

50

network size, specific to the needs of the application. We will also be able to use these parameters

along with other consensus schemes to find optimum block size and the average block time for

the audit log application. By varying consensus schemes, we could compare and contrast the

performance of various design choices and select the best that can be used for BlockAudit.

3.6 Discussion

With BlockAudit, we were able to meet our overall objective of securing audit logs using blockchains.

We show with theoretical analysis and simulations that our system is secure and efficient, and it

achieves high throughput(§3.5) by using the PBFT consensus protocol. In BlockAudit, audit log

transactions were seamlessly generated with minor changes to the existing system. Moreover,

BlockAudit can be plugged into any enterprise business application, that consumes a REST API to

send audit log data as a transaction. In summary, we successfully extended our application into the

blockchain paradigm to harden its security and increases the overall trust in the application. Our

system is robust against the physical access attack and the remote vulnerability attack.

3.6.1 Limitations

Despite all the promising outcomes, there are, however, two major limitations in BlockAudit. The

first constraint is the high message complexity due to PBFT, and the second is a high storage foot-

print due to data redundancy in the blockchain design. Since in PBFT, the message complexity is

high (O(n2)), therefore, in adverse network conditions, PBFT may perform poorly, compared to

other consensus protocol [2]. In spite of these limitations BlockAudit performs within the require-

ments of our application, and could support PayPal [44] which processes 170 transactions/second,

however, our solution would not be feasible for Visa which has a transaction rate of 2000 transac-

51

tions/second [35]. Secondly, audit logs by design have a high storage footprint, as each transaction

in the system has a corresponding entry in the audit logs. In BlockAudit, the problem is further

increased since transactions are replicated on multiple peers, resulting in high storage overhead.

Keeping in view these limitations, we propose that high message complexity can be resolved by

using other newly proposed consensus algorithms such as Clique [11], that belongs to the family

of Proof-of-Authority consensus protocols. Clique has a message complexity of O(n), which is

considerably lower than PBFT and PoW. Using Clique may allow us to support a larger number

of peers, achieve high throughput, and reduce confirmation delays of transactions in BlockAudit.

However, in Clique, peers run into the risk of multiple views at the same time. In blockchains,

this inconsistency is called a blockchain fork. These forks can lead to temporary or permanent

partitioning in the network. Currently, we are exploring methods of fork resolution in Clique, and

therefore applying it in BlockAudit is part of our future work.

The space complexity can be reduced by adding data retention policy and purging data after its

fixed retention time. This would optimize the overall size of the blockchain, and lead to less storage

and search complexity. In addition to these two schemes, we also propose two other optimization

strategies to meet the design limitations in BlockAudit.

Another limitation in BlockAudit is the weak link between the application and the audit log. In the

current implementation, if the application itself is compromised, and subsequently the audit log

generation fails, then BlockAudit will not be able to detect the fault at the application. At present,

BlockAudit enables applications to seamlessly integrate with blockchain system and benefit from

it. Therefore, BlockAudit remains agnostic to the application itself and the data being produced

by it. As a result, we observe a trade off between the seamless integration of audit logs with the

application and the enhanced security of the audit log generation interface. Currently, BlockAudit

is designed to facilitate the integration of audit logs with eGovernment application. In future, we

52

also aim to focus on detection application-level faults in BlockAudit.

The latency is a critical problem in distributed systems, which can be 1) latency due to the con-

sensus scheme operation, and 2) latency due to network conditions. To minimize latency due to

consensus, we select consensus algorithms, such as PBFT, which is known to provide low latency

and high throughput compared to other popular schemes such as PoW. We note that such a choice

comes at a certain cost: PoW is known to have better security, since it tolerates up to 50% Byzan-

tine nodes while PBFT tolerates only 30% [15]. Acknowledging that, and giving latency a higher

priority over security, in BlockAudit, we made the consensus choice to minimize the latency.

The other component of latency is due to the network, which includes transmission and propagation

delays under a certain payload size. In BlockAudit, and as shown in Figure 3.8, with a payload

of 10MB and a network of 50 replicas, the transaction confirmation experiences a delay of 6

seconds. In BlockAudit, this is an upper bound on the end-to-end latency, which is considerably

low compared to 600 seconds of delay in Bitcoin. For our Enterprise application, this delay is

tolerable. However, if BlockAudit is to be extended for applications with larger payloads, we

suggest two improvements as the latency increases. First, the communication medium between

applications can be enhanced to support high bandwidth. Second, localities could be exploited to

host applications within the same autonomous system to reduce propagation delays.

3.6.2 Optimization

To increase the performance and to keep the audit log tamper-proof, we propose having two sets

of blockchains, namely the recovery blockchain, and the detection blockchain. In Figure 3.9 we

provide a system overview of this two blockchain system. The recovery blockchain stores the

complete audit log transaction, including the details of all data changes in an application-level

transaction. The recovery blockchain can be used to restore data to its prior state, which would

53

be the state of data before an attack. The recovery blockchain would require more space, and

longer consensus time due to large transaction audit data packets. The number of peers k in the

recovery blockchain can be kept small to ensure immediate consensus and avoid delays. Since the

security of PBFT relies on the faithful execution of the protocol by at least 70% replicas, therefore

for a baseline, the minimum size of the recovery blockchain must be four nodes considering one

malicious replica (k ≥ 4).

The detection blockchain can be used to detect audit log tampering only. It will not have the in-

formation to recover the audit log to a correct state before the attack. The business application

will generate a cryptographic hash using the audit transaction. The hash and a unique transaction

identifier will be stored in the blockchain. In the case of data tampering in the audit log, the newly

computed hash will not match the hash stored in an audit log. This will indicate that the audit log

has tampered. Once tampering is detected, application administrators could use corrective mea-

sures to fix the security breach. Atop that, data can could be restored to the previous state by using

database backups. The recovery blockchain which will have Kd peers, where Kd > 2K. Therefore,

the adversary will have to compromise twice as many nodes to tamper the system without being

BCr

BCd

App 1

BCr

BCd

App 3

BCr

BCd

App 2

BCr

BCd

App 2

BCr

BCd

App 1

BCr

BCd

App 4

BCr

BCd

App 4

BCr

BCd

App 3

Recovery Blockchain Recovery Blockchain

Detection Blockchain

Figure 3.9: Audit log block chain detection vs recovery, there are Recovery blockchain and detec-
tion blockchain, the recovery blockchain has less nodes and stored complete log, and the detection
blockchain stores a hash value of block and has more nodes.

54

detected. This optimization increases security and provides a second layer of defense.

Despite the existing challenges, BlockAudit is a feasible approach towards blockchain-based se-

cure audit logs. Extending the capabilities of the prior work, BlockAudit brings the theoretical

foundations into practice and as shown in section 3.5, it has been deployed and instrumented in

a real blockchain network. Moreover, BlockAudit is also capable of ensuring operational consis-

tency even in the presence of Byzantine replicas. Therefore, it is a better candidate for the audit

log security and can be applied to existing eGovernment solutions.

3.7 Summary

In this chapter, we present a blockchain-based audit log system called BlockAudit, that leverages

the security features of blockchain technology to create distributed, append-only, and tamper-proof

audit logs. We highlight the security vulnerabilities in existing audit log applications and propose

a new design that extends NHibernate ORM to create blockchain-driven audit logs. For our ex-

periment, we used an application provided by ClearVillage inc to generate transactions from audit

logs, and record them in our custom built blockchain. By design, BlockAudit is agile, plug and

play, and secure against internal and external attacks. In the future, we will extend the capabili-

ties of BlockAudit by deploying it in a production environment and explore various performance

bottlenecks and optimization techniques.

55

CHAPTER 4: BLOCKTRAIL

Audit trails are typically used for storing, tracking, and auditing data in information systems. Enti-

ties in the audit log applications have weak trust boundaries which expose them to various security

risks and attacks. To harden the security and develop secure by design applications, blockchain

technology has been recently introduced in the audit logs. Blockchains take a consensus-driven

clean slate approach to equip audit logs with secure and transparent data processing, without a

trusted intermediary. On the downside, blockchains significantly increase the space-time complex-

ity of the audit logs, leading to high storage costs and low transaction throughput. In this chapter,

we introduce BlockTrail, a novel blockchain architecture that fragments the legacy blockchain

systems into layers of codependent hierarchies, thereby reducing the space-time complexity and

increasing the throughput. BlockTrail is prototyped on the PBFT protocol with a custom-built

blockchain. Experiments with BlockTrail show that compared to the conventional schemes, Block-

Trail is secure and efficient, with a low storage footprint.

4.1 Introduction and Problem Statement

Despite the promising features of blockchains, their use in the auditing applications, including

the application in the previous chapter, has some key limitations. Blockchain-based audit logs

significantly increase the storage complexity and processing overhead of an auditing application.

A blockchain application mandates a copy of the ledger to be maintained by every peer who is

part of the network. Additionally, blockchains follow an append-only model that results in an

increasingly growing chain length. Combined, these two issues can put enormous strain on the

data storage/maintenance capability of peers [51]. Furthermore, a vast majority of government

agencies use software systems at federal-, state-, county-, and city-level. The audit logs generated

56

by these systems involve transactions that are solely relevant to the domain of the software system.

Considering the storage and processing overheads of blockchain systems, it is therefore counter-

intuitive to share “non-overlapping” transactions of various domains within a single ledger.

Moreover, blockchain systems are known to have low transaction throughput due to serialized

transaction processing and the effort involved in obtaining a consensus among a large set of peers.

This can be observed in the existing PoW blockchain systems such as Bitcoin, which has the

maximum processing capacity of 7 transactions/second [7]. To address the throughput limitations

of POW, variants of PBFT have been proposed. However, they suffer from low scalability due to

high message complexity [74] of the PBFT protocol.

To address all these challenges, in this chapter, we present BlockTrail; an end-to-end solution that

combines audit logs with blockchains, and provides design capabilities of audit logs as well as

the security guarantees of blockchains. We tailor BlockTrail to address the challenges associated

with throughput and scalability. Towards that, we leverage the nature of audit log transactions to

construct a multi-chain blockchain system that allows concurrent transaction processing at various

layers of the system and achieves faster consensus by grouping the network peers. The multilayer

blockchain structure is composed of federal-, state-, county-, and city-level blockchains, each being

organized by a primary replica and corresponding replicas that approve the transactions. While the

multilayer structure facilitates parallel processing of transactions, the grouping of replicas enables

faster consensus. BlockTrail uses the PBFT consensus algorithm to create consensus among the

peers over the blockchain state. BlockTrail is an application-agnostic system that provides plug

and plays services for the audit log applications.

Contributions. Using the above-mentioned approach, this chapter makes the following key con-

tributions towards blockchain-driven audit logs.

57

1 We propose a novel design called BlockTrail for blockchain-based audit logs that facili-

tates parallel processing of transactions at multiple layers, thereby increasing scalability and

throughput while optimizing the storage and search complexity.

2 We outline the multilayer hierarchical structure of BlockTrail and show how our design

choices advocate for its usefulness in audit logs.

3 We provide theoretical primitives for our proposed design, and use a real world e-government

application to implement the proposed model.

4 We analyze performance of BlockTrail using three evaluation parameters, namely the trans-

action latency, the network size, and the payload size.

4.2 Background and Preliminaries

In this section, we provide the background of audit logs, blockchains, and their limitations. Consol-

idating those limitations, we present key challenges for an optimized design for blockchain-based

audit logs and discuss our approach.

4.2.1 Audit Logs

In this system, we use the same audit log structure used in the previous chapter. The interested

reader should refer to section 2.1 for further details on the audit log system.

58

4.2.2 Application-specific Scope of Audit Logs

Government agencies at the federal-, state-, county- and city-level use various software applica-

tions to manage their work. Property appraisers, for example, use the computer-aided mass ap-

praisal systems(CAMA) to compute the value of a property and generate a tax bill. The tax bill is

then used by the tax collector to collect taxes from property owners. City authorities interact with

citizens using a citizen engagement module and take actions based on the complaints and feed-

back provided by the residents. Building permitting systems are used to issue building permits that

are mandatory to construct new buildings or carry out work on the existing structures. State-level

agencies have their own computer systems, such as a contractor licensing systems, that are used to

issue a vocation or skill license to individuals. For instance, a technician interested in installing or

repairing an Air-conditioning system needs a license from the state to be able to practice.

For this work, we assume that the e-government applications generally have searchable audit logs,

that are stored in the application database. Authorized users can search and view audit logs asso-

ciated with an object from the application user interface. Some of these applications communicate

with other applications in the same city, county, or state. In rare cases, these interactions may also

occur across states, at a federal level. Therefore, this can be viewed as an audit log management

at four level: a country-level federal audit log(L1), a state-level audit log(L2) (for each state), a

county-level audit log (L3) (for each county), and a city audit log (L4). Within each city, there are

applications operated by state agencies that collect information to generate audit logs.

4.2.3 Challenges

In the light of existing challenges faced by audit log applications and the promising features of

blockchains, it seems intuitive that blockchains can be used to address many challenges of the

59

audit logs. To that end, there are some existing solutions for distributed audit log applications that

use blockchains to securely manage data [83, 3]. In theory, blockchain-based audit logs provide

an effective design to address vulnerabilities and limitations of audit logs, however, in practice,

these solutions may become infeasible and costly. Typical audit log applications may incur up to

thousands of transactions in a short time span. Processing such a large volume of transactions, in

a short time span, can be a major challenge. As outlined in §4.1, some of these transactions may

not be related to the peers who are verifying and storing them in their blockchains. This creates a

massive overhead in terms of storage space and transaction processing time, making it infeasible

for a number of enterprise applications. Considering these challenges, the problem is to create

a blockchain design that is capable of achieving high transaction throughput while significantly

optimizing the storage and space complexity. More specifically, the research challenge in this case

is to propose a blockchain system for which we can 1) perform logical sharding of the blockchain

ledger to support concurrent transaction processing and favor parallelization, 2) select a suitable

consensus algorithm to meet the high throughput requirements of the audit application, and 3)

show by contrast, an improvement in the performance of the resulting system compared to the

conventional design in prior work [3].

4.2.4 Design Approach

We envision that the aforementioned problems can be solved using a multi-layered blockchain

system that provisions fast processing with minimal space overhead. A multi-layered solution,

by default, provides a notion of sharding for the blockchain ledger. Additionally, it supports the

nature of our enterprise blockchain where transactions are exchanged among entities that reside in

various application hierarchies (cities, counties, and states). Therefore, a multi-layered blockchain

solution will create a natural segregation among those entities, and further support concurrency,

parallelization, and storage and search optimization.

60

Using this approach of a multi-layered design, we aim to construct an end-to-end blockchain-based

audit log system that is secure, efficient and guarantees high throughput with low storage overhead.

We intend to create a model that replicates the state of audit logs across multiple entities that are

distributed across multiple levels in the network. For this purpose, we make use of an e-government

system, provided by Clear Village inc, to generates audit logs. The access to the real-world ap-

plication provided clear visibility to its operational features, which allowed for accurate modeling

of BlockTrail’s design. The key objective was to identify the hierarchical nature of transactions

in the system and leverage that to construct a multi-layered blockchain solution. As such, any

application that showcases a hierarchical design can be easily modeled with BlockTrail. Another

example of such an application can be ATMs operating across multiple regions (e.g. Midwest US,

Nortwest US etc.). Moreover, BlockTrail’s design is not restricted to the geographical construction

of hierarchies only. Instead, hierarchies can be constructed using any property of the application

in which multiple entities can function independently. One such example can be the supply chain

application, where suppliers can be modeled across various hierarchies based on their unique roles

in the application. However, as stated earlier, for the current BlockTrail prototype, we used the

audit application provided to us by Clear Village inc, which is used by city, counties and states

to provide various services, such as property appraisal, driving license,building permits ,business

licenses and transfer of exemptions across the state lines. We will construct a layered blockchain

model tailored to the needs of audit log application and the nature of its transactions. Based on

the that, we will dynamically determine the layer to which a new transaction might belong and get

approval from peers related to the transaction. We will use the PBFT protocol for fast and effi-

cient consensus. Additionally, we also aim to make our system secure against external and internal

attacks. For that, we assume that if an attacker manages to infiltrate the database by exploiting

an inherent vulnerability, then the distribution of audit logs across multiple peers must enable the

detection of such an attack, and switch the system back to a stable state.

61

Request

Web Server
Business

Logic
ORM Database Blockchain

Request
Request

SQL queries

Requested Data

Web page
API objects

Hydrated objects

Insert/Update
Save API call

Begin transaction
Data

Write & Commit

Confirmation

Confirm Save
Confirm Save

Hydrated objects

Add Audit Entry

Confirmation

Figure 4.1: The information flow between various components of the application. The transaction
is generated at the business logic layer, and once the database commits to the transaction it is
rendered on the web page.

4.3 BlockTrail Design

In the following, we present our multilayer, hierarchical blockchain solution called BlockTrail. We

begin by providing an overview of the audit log application that we use for the design, development

and instrumentation of BlockTrail.

4.3.1 Application Architecture

In this chapter, we use an extended system from that of BlockAudit. In particular, we used an

e-government application, built using Service Oriented Architecture (SOA), to implement Block-

Trail. This application has web and mobile clients, that interact with a business logic layer us-

ing REST services. Business logic layer interacts with the database using a data access layer,

62

which primarily uses Object-relational mapping (ORM) to communicate with the database. Fig-

ure 3.6 shows the layered application architecture of our e-government application along with its

blockchain component. In Figure 4.1 we provide an overview of each layer and the sequence of

data exchange that generates an audit log which is then passed to the blockchain system [6]. Some

of the key components of our e-government application system are discussed below. The rest of

the application architecture follows the same structure as in BlockAudit.

4.3.2 Transaction Examples

In this section, we show examples of various transaction types associated with events related to

cities, counties, and state, which are used as the key design characteristic for optimization. The

examples that we provide are taken from real-life events that can be observed in our auditing

application. Since these events can be segregated at different layers (cities, counties, or states),

therefore, they can be concurrently processed at different blockchain levels. In other words, we can

partition the blockchain system into various layers where each layer corresponds to a transaction

type in the audit application. As a result, transactions that are mutually independent at different

layers, can be processed in parallel. Prior to that, we show how real-life examples of such events

exist in our auditing application.

4.3.2.1 City-level Events

Cities use various software systems (such as finance, solid waste management, utility billing plan-

ning etc.) to carry out government functions and provide services to citizens. For instance, a

citizen may file a complaint to the complaint management system about an unauthorized addition

to a building. The city employees will review the complaint and go through a workflow to take

actions on the reported issue, and report the results back to the citizen. The staff could find the

63

complaint valid and decide that the code enforcement department should take action on the re-

quest. This creates a city-wide transaction among the code enforcement system and the complaint

management system. This transaction is between the applications within a city. Our e-government

application system has components where transactions of this nature take place frequently.

4.3.2.2 County-level Events

The property appraiser in a county is responsible for discovering the marketing value of the prop-

erty and appraising it. The building department in the county is responsible for issuing building

permits and managing the changes and construction of a new building. When a building contractor

applies for a building permit, the building department fetches the property information (owner,

property area, existing building, zoning, etc.) from the appraiser. Once the permit process is

completed, the building permit information is sent to the property appraiser. A building permit

could result in a change in the overall appraised valued of the property. The property appraiser

application and the building permit create a county-level transaction among the two systems.

4.3.2.3 State-level Events

A homestead exemption provides legal protection to a primary residence that is owned and occu-

pied by a person or a family. If the occupants change their primary residence from one county to

the other, to a property they own, the homestead exemption would be ported to the new county of

residence. This results in transactions between the two counties, and the audit log for this transac-

tion is stored in the state-level blockchain.

64

4.3.2.4 States within a country

If an individual changes their primary residence from one state to another, they could port the

homestead exemption from their old state to the new state. This process creates a transaction

between two states and can be considered a state-level transaction.

4.3.3 System Architecture

Leveraging the multi-layered nature of transactions, we create a multi-layered blockchain solution

for our application. In this section, we provide the details of our proposed model. As defined

earlier, the audit logs generated by the application are broadly associated with the exchange of

property information among multiple entities at different hierarchies, as a working example (note:

same hierarchical structure can be exploited in other kinds of applications and transactions). This

exchange of information occurs among:

1 peers within the same city,

2 cities within counties,

3 counties within states, or

4 states within a country.

In conventional schemes of generating blockchain-based audit logs, a global blockchain is used to

incorporate all the transactions [3]. The global blockchain does not distinguish between transac-

tions that are generated at different levels. As a result, all transactions are treated at the same level

and processed serially. Therefore, the conventional system in [3] is not efficient and scalable. Each

transaction has to traverse the entire network and get approval from all the peers. In particular,

65

1 2 7 8 s 3 4 5 6

Federal Blockchain (Level1)

1 2 c 1 2 c 1 2 c

Alaska Florida Wyoming

State Blockchains (Level2)

1 2 c 1 2 c 1 2 c

Orange Seminole Brevard

County Blockchains (Level 3)

1 2 c 1 2 c 1 2 c

Orlando Winter park Lake Mary

City Blockchains (Level 4)

Applications

1 2 3 4 5 6 7 r

Figure 4.2: Design of our multi-chain blockchain system that is tailored to the specifications of
BlockTrail. Levels denote the hierarchies that keep blockchains. At the lowest level, there are
applications connected to a city that emanate transactions from audit logs.

66

a local transaction related to an ownership change at the city level will require approval from all

other parties in other cities that might not be relevant to that transaction. In addition to causing

delay overhead by obtaining approval from irrelevant peers, this also limits the throughput of the

system since the PBFT protocol serializes the transaction processing.

We argue that efficiency and throughput challenges faced by conventional systems [3, 10] can be re-

solved by partitioning the network into multiple hierarchies. As such, transactions that are specific

to a group of organizations within a city must be processed locally, while the transactions related to

cities within a county can be processed at the county level and stored in county’s blockchain. Tak-

ing this bottom-up approach from peers within the cities to the states within a country, we obtain a

hierarchical tree of blockchain system that incorporates multiple blockchains, each holding data of

its corresponding set of peers. The transactions will be generated by the organizations within the

cities that act as a root in the system. Each transaction will have an identifier that will determine

its destination blockchain. Using this structure, our system will be able to achieve the following

features:

1 Transactions within the same branch can be processed in parallel, thereby enabling parallel

processing and increasing throughput.

2 For a transaction within the same branch, the approval will be required from the leaf nodes

within that branch that is relevant to the transaction. This will reduce the processing overhead

incurred by transactions in the conventional scheme.

3 Other than transaction generation and processing, this scheme is highly efficient in blockchain

queries since it reduces the search complexity, which we show later.

In Figure 4.2, we show the topology of our hierarchical blockchain paradigm, and in the following,

we provide the notations that capture the abstraction of our model. Let L f = {L1,L2, . . . ,Ls}

67

denote the country-level (federal) hierarchy that incorporates a set of all states within the country.

This hierarchical model can be extended from more than four levels (if needed), to increase the

scalability and reduce the time and space complexity.

Keeping in mind the baseline fault tolerance of PBFT, we assert that the minimum number of

replicas in blockchain, at each level is s ≥ 4. For each state in L f , let Li = {l1, l2, . . . , lc} be a set

of counties in state. For each county in Li, let l j = {p1, p2, . . . , pd} denote the number of cities that

are associated with each county. Finally, for each city in l j, let aq = {n1,n2, . . . ,nr}, be the set of

peers (audit log applications), operating within the city. Given this topology, the overall size of the

network S, determined by the number of audit-log applications, can be computed using.

S =
s

∑
i=1

c

∑
j=1

d

∑
q=1

Xq ji (4.1)

Here, Xq ji represents the position of a node within the system (identified by the city, county, and

state indexes). For each system level, we have a primary replica that orders the transactions and

executes the transaction verification process. Specific to the design outlined in this chapter, we

have a primary replica for each city, county, and state in the system. Therefore, the total number

of primary replicas in our blockchain system is d + c+ s.

4.3.4 Consensus Protocol and Access Control

In BlockTrail, we use PBFT consensus protocol due to its low latency and high throughput [28, 90].

In PBFT, the transaction execution follows a multi-round phase, in which a primary replica orders

transactions in the block. Next, in the pre-prepare phase, it broadcasts the block to all the other

replicas who verify the ordering of transactions in the block. The pre-prepare phase is followed

by prepare, commit, and reply phase in which replicas follow the specified protocol of PBFT and

68

the primary obtains “approvals” from the honest replicas [82]. An overview of the PBFT protocol

execution is shown in Figure 3.7. The figure shows 1 a client sending transaction requests to the

primary replica who assembles the them in a block, 2 the primary broadcasting the block to all

nodes in the network, 3 each node approving all the transaction in the block and sending a reply

to the primary and the client.

Another key component of BlockTrail is the trusted environment for the network where nodes

can exchange transactions and blocks with limited visibility to the outside world. Therefore, we

use an access control mechanism in BlockTrail to specify permissions and privileges for various

application replicas. BlockTrail uses a Membership Service Provider (MSP), similar to the Hy-

perledger Fabric [10] which consists of certificate authorities that issue and validate certificates

for nodes that join the blockchain network. Rules for the access control are specified within the

certificates issued to each node. In addition to that, in BlockTrail, we use REST API that allows

each application node to connect to the application server to retrieve audit data if needed. Finally,

to communicate payloads (transactions and blocks) within the network, we use WebSocket con-

nections. We use the secure WebSocket connection which uses Hypertext Transfer Protocol Secure

(HTTPS) to communicate the payload.

Professor Joongheon Kim (CSE@CAU)
http://cau.ac.kr/~joongheon

Chung-Ang University, Distributed Platforms and Security Lab
(July 8, 2018)

Application to Blockchain

6

λ D

Transaction Queue

Arrivals Departure

Server

Figure 4.3: M/D/1 queue where transactions are arriving with rate λ , and there is one server that
process the transactions at the average rate D

69

Professor Joongheon Kim (CSE@CAU)
http://cau.ac.kr/~joongheon

Chung-Ang University, Distributed Platforms and Security Lab
(July 8, 2018)

Application to Blockchain

7

λ

Transaction Queue

Arrivals Departure

Servers

D

Figure 4.4: M/D/c queue with transactions arriving at mean rate λ , and a group of servers are
processing transactions with rate D.

4.4 Analysis of Blocktrail

In this section, we perform a theoretical analysis of our proposed model BlockTrail. We begin by

analyzing the transaction processing and throughput. Next, we show how the BlockTrail optimizes

the time and space complexity, followed by its security analysis.

4.4.1 Transaction Processing and Throughput

To understand the efficiency BlockTrail with respect to the transaction processing, we use a Marko-

vian model that broadly formulates the PBFT-based blockchain systems. To that end, we envision

that the system can be viewed as a Poisson process characterized as an M/D/1 queue at the primary

replica [24]. Here, M denotes the arrivals determined by a Poisson process, D denotes the deter-

ministic mean service time, and 1 shows that there is one server in the system. In M/D/1 queue, as

shown in Figure 4.3, λ denotes the mean arrival rate of the transactions at the primary replica and

D denotes the mean service rate of the active replicas that collectively act as a server. From this,

70

we can derive ρ = λ/D, which denotes the utilization of the server. If the arrival rate is less than

the service rate λ ≤D, there is no queuing at the primary replica, and each transaction is processed

before the arrival of the next.

However, in practice, the rate of incoming transactions is usually greater than the rate of transaction

confirmation [75]. This leads to the formation of a queue at the primary replica. In PBFT, if there

are a number of active replicas in the system, then the maximum number messages exchanged,

in a phase, are a(a− 1). With a nodes in the system, there are a− 1 messages in the pre-prepare

phase, a(a−1) in the prepare phase and a(a−1) in the commit phase. Assuming each phase to be

an independent component of the transaction confirmation process, the bottleneck can be expected

in the prepare and commit phase. For the analysis in this section, we use the worst case to model

the system’s performance.

Next, assume the time taken in each phase to be a complementary to the message exchange. For

instance, let ta be the time taken for the execution of pre-prepare phase, and tb and tc be the time

for the execution of the prepapre and commit phase. Since, prepare and commit phase experience

same message complexity, therefore, for simplicity, we assume tb ≈ tc. Since prepare and commit

phase incur high message complexity, therefore tb = tc > ta. Again, for simplicity, and without

losing generality, we specify t to be the time taken to execute prepare or commit phase.

The time t is related to the number of messages exchanged in the prepapre and commit phase.

And the phase execution depends upon the number of messages exchanged among network nodes.

Some key performance indicators of M/D/1 queue are the mean number of transactions in the

system and the average wait time for each transaction. The mean number of transactions L in the

71

system can be calculated as:

L = ρ +
1
2

ρ2

1−ρ
= λ t +

1
2
(λ t)2

1−λ t

In (4.2), ρ is the server’s utilization, λ is the arrival rate, and t is the time taken to exchange one

message. Moreover, the average wait time for a transaction in the system w is:

w = t +
1
2

λ (t)2

1−λ t

Applied to our multi-chain model, the number of servers are partitioned into multiple groups at

each layer. Transactions that belong to a specific group are only sent to the servers in that group.

Therefore, this can be used to exploit parallelism which in turn reduces the service time for each

transaction. As a result, the system reflects an M/D/c queue [9]. Here, c are the total number of

primary replicas associated that are working in parallel. For instance, assume a transaction tx1 that

is initiated between two cities Ca and Cb at time t1. The total replicas involved in the verification

process are a+b. On the other hand, another transaction tx2 is initiated at the same time t1 among

two different cities Ce and C f , having total active replicas e+ f . Now, these two transactions can

be processed in parallel if the following condition is met:

Condition 1 Two transactions can be considered to be non-overlapping if their associated active

replicas are unique and have no intersection. (Ca∪Cb) ∩ (Ce∪C f) = /0.

Depending on the size of replicas, each transaction will be processed accordingly. Under the

assumption that at a given moment, there is a set of size c replicas that satisfy the aforementioned

criteria, the system will behave as a M/D/c queue for transactions destined for each server.

72

As the size of server may vary, depending on the number of verifiers involved with the transac-

tion, the verification time and the throughput of the system may also vary accordingly. However,

our design relies on the assumption that at any given time, there are more than one transaction

in the system that are independent from each other, and therefore may partition the system into

two or more sets of active replicas. In the worst case, if all the transactions are related to the

global blockchain at Layer 1, involving all parties, then the system will behave as the conventional

blockchain model with the primary replica at the top layer behaving as an M/D/1 queue.

4.4.2 Time and Space Complexity Analysis

A key challenge with blockchain-based audit logs is the time and space complexity associated

with the growing size of the chain. The time complexity can be ascribed to the time taken by peers

to achieve consensus over the blockchain state, and the number of queries required to retrieve a

particular transaction. The space complexity, on the other hand, is related to the storage cost that

comes with the growing size of blockchain. Intuitively, as the chain size grows, its storage footprint

increases linearly, which causes strain on the storage capacity of peers. However, the multilayer

architecture of BlockTrail is helpful in reducing the time and space complexity to achieve faster

consensus and optimize the storage overhead.

4.4.2.1 Consensus Complexity

To achieve consensus with n replicas, at maximum, n2−n messages are exchanged. Therefore, the

cost of consensus in the conventional blockchain model becomes O(n2). However, in BlockTrail,

the system is partitioned into sublayers, each comprising of different number of replicas (§4.3).

This partitioning of the system, as shown in Figure 4.2, reflects a tree structure with branches de-

picting multiple layers. As such, if there are k layers in the system, then each layer reduces the

73

complexity of system by a factor of k. Since the federal blockchain is similar to the conventional

global blockchain, therefore, it has the same message complexity of O(n2). However, the state

level blockchain reduces the complexity to O((n/k)2), where k < n. Accordingly, the complexity

of county and city blockchains is O((n/k2)2) and O((n/k3)2) respectively. Another feature as-

sociated with blockchains is the cost of querying data which depends upon the number of peers

in the system. The cost of query in the conventional blockchain (presented in [3]) and country

level blockchain is O(n). Likewise, the complexity in BlockTrail, at each subsequent level, the

complexity becomes O((n/k)), O((n/k2)), and O((n/k3)), respectively.

4.4.2.2 Space Complexity

BlockTrail reduces the space complexity of system by optimizing the transaction overhead at each

layer. For instance, in conventional scheme [3], all the transactions are added to the blockchain that

is stored at each replica. If there are n replicas in the system, and t transactions in the blockchain,

where (t > n), then the space complexity of system will be O(t). However, a major downside

of this method is that every peer is required to maintain a log of transactions that may not be

related to its application. Acknowledging this challenge, and benefiting from the hierarchical

structure of BlockTrail, the space overhead can be considerably reduced. In BlockTrail, we allow

replicas in a hierarchy to only store the transactions that are local within their branch. For instance,

all the transactions exchanged between applications within the city should only be recorded in

corresponding city blockchain. All other cities and their replicas should neither participate in the

verification nor store the transaction in their blockchain.

As a result of this scheme, the space complexity reduces at each layer of blockchain. Similar to the

conventional blockchain, the space complexity at federal blockchain in BlockTrail remains O(t).

However, at the state level, due to fewer and non-overlapping transactions, the complexity reduces

74

Table 4.1: Complexity analysis of BlockTrail. Federal blockchain takes the most time to search
or add data to the blockchain. BlockTrail, for common case takes less time for data query or
consensus. In worst case, when all audits are global, the search cost will be equal to federal
blockchain.

Blockchain Query Consensus Space Complexity

Conventional O(n) O(n2) O(t)

Federal O(n) O(n2) O(t)

State O(n/k) O((n/k)2) O(t/k)

County O(n/k2) O((n/k2)2) O(t/k2)

City O(n/k3) O((n/k3)2) O(t/k3)

to O(t/k). Accordingly, the complexity at county and city level becomes O(t/k2), and O(t/k3),

respectively. In Table 4.1, we summarize how to BlockTrail reduces space-time complexity in

blockchain-based audit logs. Notice that the top layer behaves similar to any conventional design

[3] while each subsequent layer optimizes the overhead.

4.4.3 Security Analysis

In this section, we present the security analysis of BlockTrail. We begin by outlining our trust

model and threat model to evaluate the security guarantees of BlockTrail against various attacks.

We use our analysis to suggest possible advancements that can be made to enhance the security of

PBFT-based blockchain systems.

75

4.4.3.1 Trust Model

In BlockTrail, we assume that at any level of the blockchain, there are four or more replicas to

process a transaction. This criterion is critical for developing consensus in PBFT blockchains, that

requires approval from at least 3 f + 1 active replicas in the presence of f faulty replicas. PBFT-

based systems generally have low fault tolerance compared to PoW and PoS-based blockchain

systems [74]. However, since our design makes use of the permissioned blockchain systems, we

can assume a more trustworthy environment where peers have mutual interests and limited incen-

tives to misbehave. Therefore, in contrast to PoW-based applications such as Bitcoin, permissioned

blockchain systems such as Hyperledger, are likely to encounter fewer attacks.

We further assume that BlockTrail is equipped with all essential blockchain guarantees such as

immutability, distributed trust, and availability. The underlying cryptographic primitives of Block-

Trail including hash functions and digital signatures are assumed to be secure. The messages

exchanged among peers within a layer are secured by transport layer security mechanisms and the

network is secure against eavesdropping and man-in-the-middle attacks.

4.4.3.2 Threat Model

For the threat model, we assume a computationally-bounded adversary that controls a set of ma-

licious replicas in the system. We assume that the adversary attains the trust of other peers and

positions himself among the active replicas. If the network has n replicas and the adversary con-

trols f replicas, then in conventional blockchain design, the value of f has to be large enough

(n− f ≤ 2 f + 1) to enable the adversary to attain control over the system. If the value of f is

sufficiently large, then the adversary can compromise the system by asking the faulty nodes to

withhold their signatures on a given transaction in order to halt the verification.

76

However, in BlockTrail, the number of replicas can be small as we traverse down the layered

structure. For instance, at the city level, the number of replicas are much smaller than the federal

blockchain. This provides a more targeted and less costly attack opportunity for an adversary with

a smaller number of active replicas. Therefore, while the layered design of BlockTrail provides

high efficiency, it has a weaker notion of security under PBFT. Additionally, in a layered design, a

major challenge for the adversary is to position his replicas in a way to obtain maximum benefits

with minimum effort. Positioning of replicas mean that the adversary needs to decide at which

layer he should deploy his malicious nodes f in order to attack the system. In the following, we

discuss and analyze the possible options for the adversary.

4.4.3.3 Positioning Malicious Replicas

The attacker with f malicious replicas can either randomly position them in the network at different

layers of blockchain or select a targeted layer with fewer replicas to launch a targeted attack. In this

direction, we will evaluate both these design choices and analyze the system under attack. First,

we observe the possibility when the attacker randomly allocates f malicious peers in a layered

blockchain system with b number of blockchains.

The random allocation of f replicas in b blockchains can be modeled as the classical balls-into-

bins probability problem [21]. Provided that there are b blockchains and f malicious replicas, the

probability that a replica gets allocated to any random blockchain is 1
b . Using this premise, we are

interested in answering the following questions:

1 Probability that two malicious replicas are allocated to a specific layer of blockchain,

2 Probability that a specific blockchain has exactly p malicious replicas, where p≤ f ,

3 Probability a specific blockchain has no malicious replica.

77

To answer the first question, let Allock
i denote the event that i-th replica gets allocated to blockchain

k, and let Mi, j be the event that replica i and j get allocated to the same blockchain. By using Bayes’

rule, the probability of such an event is:

Pr[Mi, j] =
b

∑
k=1

Pr[Allock
2|Allock

1]Pr[Allock
1]

=
b

∑
k=1

1
b

Pr[Allock
1] =

1
b

(4.2)

While doing the random allocation, there is a possibility that a blockchain with more sensitive

information may get exactly the number of peers that may compromise it. Assume that a spe-

cific blockchain bs with p number of honest replicas cannot accommodate more than q malicious

replicas. This leads to a problem raised in the second question which estimates that the target

blockchain gets exactly p malicious replicas (p≤ f), as show in the following model.

Pr[bs has p replicas] =
(

b
p

)(1
b

)p(
1− 1

b

)b−p

≤ bp

p!
1
bp =

1
p!

(4.3)

There is possibility that the attacker may not be able to position any malicious replica at any layer

of the blockchain. This eventually adds to our trust assumptions of the system and may require less

effort to defend against attacks. In the following, we show the probability that a specific blockchain

in our system exhibits this property and contains no malicious replica belonging to the adversary,

thereby addressing the third question raised above.

Pr[blockchain gets no replicas] = 1−
(1

n

)
(4.4)

As the hierarchy of blockchain increases from city to county and eventually the federal blockchain,

78

the security of the system also increases due to more active replicas being involved in the transac-

tion confirmation. To enhance the security features of BlockTrail at lower levels of blockchain, we

propose the following countermeasures.

4.4.3.4 Countering Targeted Attacks

In a situation where there are r number of honest replicas in a city blockchain and the attacker is

able to position f faulty replicas such that 3 f + 1 > f + r, then the attacker will be able to: 1)

delay or stop transaction verification by withholding the required number of approvals, 2) mislead

consensus by propagating bogus approvals, and 3) launch denial-of-service attacks against honest

replicas in the system. In the following, we outline how BlockTrail defends against each of these

attacks while maintaining system guarantees and operational consistency.

4.4.3.5 Approval Withholding

To counter approval-withholding by malicious replicas, we propose using the expected verification

window Wt , set by the primary replica. The primary, with the knowledge of the total number of

replicas, can compute the number of approvals required for verification of a given transaction. For

this example, the total approvals will be in the order of (f + r)2− (f + r). If a message exchanged

among f + r replicas, takes t ′ time, then the total time of verification will be c× t ′, where c is an

arbitrary constant set by the primary. Using this knowledge, the primary can set an expected time

window Wt ≥ c× t ′ in which it will expect to receive all the approvals. Once the window expires,

it will match the received approvals with the access control list to find the faulty replicas.

79

4.4.3.6 Denial-of-Service

An adversary may also halt the transaction verification process by launching a denial-of-service

attack on the honest replicas. In the approval phase, faulty replicas can send a sequence of transac-

tions to honest replicas and choke their network link. As a result, the expected time window Wt will

expire and the primary will not be able to process the transaction. To counter this, in BlockTrail,

we restrict the number of received approvals per replica. Since each approval contains the senders’

identity, therefore, when the faulty replicas send a high volume of messages, the honest replicas

discard them without verification.

4.5 Implementation and Evaluation

The deployment of BlockTrail requires:

1 A blockchain network consisting of participants at each level as we specified,

2 An auditing application that generates transactions when the audit log is updated,

3 a consensus protocol to ensure an agreement among peers over the blockchain state,

4 a layered architecture to emulate our blockchain structure, and

5 a system storage for blockchain ledger at each node.

In this direction, we discuss the end-to-end deployment of BlockTrail, from transaction generation

to the broadcast of information, and the final commitment to the blockchain. In particular, we

highlight our design choices for the aforementioned deployment goals, and justify their usability

in the operational context of BlockTrail. So far in our design of BlockTrail, we show the presence

80

Application 1

Application 1 Application 2

Application 2

Application 1

Application 2

Application 1

Application 1 Application 2

Application 1

Blockchain
Node

Blockchain
Node

Figure 4.5: Overview of BlockTrail network containing application servers and blockchain
nodes.Notice that each blockchain node connects to an application server node, and maintains
a persistent connection to exchange audit transactions during the application life-cycle

of an audit log application that serves as the backbone to our system. The audit log application is

sensitive to the changes made in the database by a user and, by design, records those changes in

the form of an audit log. The audit log is then broadcast to the network comprising of peers/nodes.

In the following, we outline the steps taken to deploy our blockchain system.

Creating Blockchain Network. The first step in our system deployment is setting up a distributed

81

 1900

 2000

 2100

 2200

 2300

 2400

 2500

 2600

 2700

 2800

 5 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

 4
0

 4
5

 5
0

T
im

e
 f
o
r

C
o
n
s
e
n
s
u
s
 (

m
s
)

Number of Transactions

12 Peers
8 Peers
4 Peers

16 Peers

(a) City Blockchain

 2500

 2600

 2700

 2800

 2900

 3000

 3100

 3200

 3300

 5 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

 4
0

 4
5

 5
0

T
im

e
 f
o
r

C
o
n
s
e
n
s
u
s
 (

m
s
)

Number of Transactions

16 Peers
32 Peers
40 Peers

(b) County Blockchain

 2500

 3000

 3500

 4000

 4500

 5000

 5 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

 4
0

 4
5

 5
0

T
im

e
 f
o
r

C
o
n
s
e
n
s
u
s
 (

m
s
)

Number of Transactions

40 Peers
60 Peers
80 Peers

100 Peers

(c) State Blockchain

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 8000

 8500

 5 1
0

 1
5

 2
0

 2
5

 3
0

 3
5

 4
0

 4
5

 5
0

T
im

e
 f
o
r

C
o
n
s
e
n
s
u
s
 (

m
s
)

Number of Transactions

100 Peers
150 Peers
200 Peers
250 Peers

(d) Federal Blockchain

Figure 4.6: Time taken to reach consensus at different layers of blockchains with varying trans-
action rate (λ). As the hierarchy of the blockchain increases, the time of consensus increases
accordingly. Additionally, as the rate of transaction λ increases, the consensus time increases.

network of multiple nodes that process the blockchain transactions and create new blocks. In

BlockTrail, the network consists of a blockchain peer for each application instance, such that each

instance has the permission to create and access the audit log records. Each application node

maintains a persistent connection with its blockchain node to 1) create new audit log entries, 2)

search and retrieve audit log entries, and 3) after validation, forward transactions to the other peers

in the network. In Figure 4.5, we illustrate the distributed architecture of nodes that reflect the

peer-to-peer model of a blockchain application.

82

Creating Blockchain Transactions. The next step is to transform audit log data generated by the

ORM in a format that can be consumed by blockchains. To achieve this, we convert the audit log

data to a JSON format. We prefered the JSON format due to its compactness and storage flexibility.

To generate the blockchain transaction, we pass the audit log data to a function that serializes data

to a JSON payload. The payload is then used to create a blockchain transaction and the blockchain

node broadcasts this transaction for all other nodes for confirmation.

Table 4.2: Results obtained by running BlockTrail simulations with five iterations over each ex-
periment. Here, peers denote the number of peers in the layered blockchain, T shows the number
of transactions, Exp1, Exp2, Exp3, and Exp4 are the number of experiments performed over the
values of T, and µ is the mean of all the experiments.

Level Peers T Exp1(ms) Exp2(ms) Exp3(ms) Exp4(ms) Exp5(ms) µ(ms)

Flat/Legacy

100
20 8927.00 2292.00 2171.00 2831.00 7564.00 4757.00
30 9409.00 2788.00 2681.00 3312.00 8042.00 5246.40
40 9883.00 3266.00 3154.00 3782.00 8512.00 5719.40

250
20 8495.00 4017.00 5652.00 3970.00 4080.00 5242.80
30 9639.00 5174.00 6826.00 5136.00 5227.00 6400.40
40 10800.00 6314.00 7967.00 6287.00 6348.00 7543.20

City

4
20 3753.00 1604.00 2021.00 2476.00 2298.00 2428.40
30 3777.00 1628.00 2045.00 2501.00 2322.00 2452.40
40 3801.00 1650.00 2067.00 2524.00 2344.00 2475.00

8
20 4951.00 1839.00 2083.00 1367.00 1495.00 2343.00
30 4994.00 1882.00 2126.00 1410.00 1538.00 2386.00
40 5043.00 1930.00 2174.00 1461.00 1585.00 2434.60

County

16
20 2501.00 5101.00 1923.00 1338.00 1817.00 2536.00
30 2585.00 5184.00 2009.00 1422.00 1904.00 2620.80
40 2672.00 5270.00 2096.00 1507.00 1987.00 2706.40

24
20 2269.00 7295.00 2019.00 2367.00 2554.00 3300.80
30 2393.00 7422.00 2152.00 2498.00 2679.00 3428.80
40 2519.00 7545.00 2274.00 2632.00 2806.00 3555.20

State

40
20 4356.00 1965.00 2189.00 1754.00 2480.00 2548.80
30 4563.00 2182.00 2412.00 1957.00 2692.00 2761.20
40 4768.00 2380.00 2638.00 2153.00 2892.00 2966.20

60
20 5533.00 2040.00 1695.00 2097.00 1882.00 2649.40
30 5833.00 2337.00 2024.00 2393.00 2181.00 2953.60
40 6124.00 2631.00 2329.00 2696.00 2484.00 3252.80

Federal

100
20 8927.00 2292.00 2171.00 2831.00 7564.00 4757.00
30 9409.00 2788.00 2681.00 3312.00 8042.00 5246.40
40 9883.00 3266.00 3154.00 3782.00 8512.00 5719.40

250
20 8495.00 4017.00 5652.00 3970.00 4080.00 5242.80
30 9639.00 5174.00 6826.00 5136.00 5227.00 6400.40
40 10800.00 6314.00 7967.00 6287.00 6348.00 7543.20

83

4.5.1 Experiment and Results

In this section, we show the experiments carried out to evaluate the operation and performance of

BlockTrail. For the experiment, we used existing audit logs stored in the database to generate audit

transactions as a JSON packet and send them to the first layer primary replica. The primary replica

looks into the transaction and determines its correct destination. It then notifies all the concerned

replicas that are associated with the transaction and requests them for transaction validation.

For our experiments, we generate a series of transactions for each layer of the blockchain. We vary

the transaction rate by increasing λ , and note the time taken by all the peers to reach consensus.

Additionally, for each layer, we vary the number of peers and the size of the transaction to see the

overhead in consensus time. λ was increased from 25 to 50, and the city peers were set to 10,20,30

and 50, the county peers were set to 50, 100, 150 and 200, and the state level peers were set to

80, 160, 240 and 320. Finally, the federal level peers were set from 100, 200, 300, and 400. We

prototyped BlockTrail using .net framework, and deployed replicas over virtual machines.

We evaluate the performance of BlockTrail in terms of the time taken for all the nodes to reach

a consensus over the transaction sent by the primary replica. Let tg be the transaction generation

time, and tc be the time at which it gets approval from all active peers and gets confirmed in the

blockchain. In that case, the latency lt is calculated as the difference between tc and tg (lt = tc− tc,

where tc > tg). Results are reported in in Figure 4.6 and Table 4.2. In Figure 4.6 , it can be observed

that as the number of peers increase at each layer, the consensus time increases considerably. Also,

as the rate of incoming transactions increases, the consensus time increases. As expected, the time

for consensus at the city level was less compared to the county and the state level. Therefore, this

validated the utility of the BlockTrail model whereby sharding the blockchain system into multiple

layers can reduce consensus delays and increase the throughput.

84

4.5.2 Discussion and Limitations

Since the results obtained from our simulations validate the theoretical results, we see the hier-

archical structure of blockchain as a practical solution to its scalability and complexity issues.

Although, there are limitations of this work as well. Considering the high volume of transactions

being generated by the audit log applications, an average consensus time of 2000 milliseconds

4.6(a), even at the lowest level of blockchain is considerably high. As we proceed with towards the

upper layers in the hierarchy, the problem increases with a federal blockchain of 200 peers taking

up to 9 seconds to verify transactions. This problem results from the number of active replicas

involved in the verification and a block size of 1 Mb used during the simulation.

An easier solution to this problem is by reducing the total active replicas involved in the verification

process. These replicas can be divided into active and passive replicas, where active replicas

sign and verify the transactions, while the passive replicas merely approve the process. This can

reduce the consensus overhead and improve system efficiency. However, as outlined in the security

analysis §4.4.3, reducing the number of active replicas may increase the security threat, since the

adversary can position his active replicas and compromise the validation process. As such, this

situation presents a tradeoff between security and efficiency. A system that mostly comprises of

trusted nodes, may afford to split replicas between active and passive, with an assumption that there

are fewer malicious replicas in the system. In contrast, a system that can tolerate higher delays and

is sensitive to malicious activities, may not prefer the reduction of active replicas.

4.6 Related Work

In this section, we review prominent work on creating tamper resistant audit logs. We highlight

our contribution in comparison with the existing work.

85

Audit logs. Schneier and Kelsey [76, 77] enhanced audit logs to detect tampering in audit logs.

The proposed scheme can detect log tempering even if there is a security breach at the logging

server. Their system can only detect audit log entries that were created prior to the attack and

does not provide a mechanism to stop the attacker for deleting or inserting audit records. However

BlockTrail can detect these unwanted modifications to audit logs. Waterset al. [86] proposed a

searchable encrypted audit log, which uses identity-based encryption keys to encrypt audit logs and

allow search by certain keywords. Yavuz and Ning [91] developed a forward secure and aggregate

audit logging system for distributed systems, without using a trusted third party. Snodgrass et al.

[79] used trusted notary and a check field stored in each tuple for detecting tempering in audit logs.

Zawoad et al. presented Secure-Logging-as-a-Service (SecLaaS) for storing virtual machine audit

logs in a secure manner, SecLaaS ensures confidentiality of users and protects the integrity of logs

by preserving proofs of past logs. Ma and Tsudik [56] looked into temper-evident logs that use

forward-secure aggregating signature schemes.

Blockchain and Audit Logs. Chi and Yai [29] proposed an ISO/IEC 15408-2 Compliant Security

Auditing system using Ethereum that creates encrypted audit logs for IOT devices. Chen et al. [30]

proposed a Blockchains based system to address shortcomings in log-based misbehavior monitor-

ing schemes used to monitor Certificate Authorities (CA). In contrast to prior work, BlockTrail is

implemented by extending the ORM, which does not require any significant change to the under-

lying application. Xu et al. [89] proposed to use game theory and blockchain to reduce latency by

moving applications to edge servers. Similarly, we are using geographical proximity to store audit

logs in servers that are close. to reduce latency. Sutton and Samvi [83] proposed solution stores

integrity proof digest to the Bitcoin network. Castaldo et al. [27] designed a centralized logging

system that used blockchain for unforgeable record keeping. This system is used for facilitating

health data exchange across multiple countries in the European Union.

86

4.7 Summary

BlockTrail uses a hierarchical blockchain architecture to reduce the space and time complexity of

conventional blockchain systems. In BlockTrail, we leverage the nature of transactions to partition

the system into multiple layers that can process transactions in parallel. BlockTrail reduces the

space overhead and accelerates the validation process by reducing the number of active replicas.

Additionally, we also introduce various security measures that enhance the defense capabilities of

BlockTrail, and enable the detection of faulty replicas in the system.

87

CHAPTER 5: PERFORMANCE EVALUATION OF CONSENSUS

PROTOCOLS

Blockchain-based audit systems suffer from low scalability and high message complexity. The root

cause of these shortcomings is the use of PBFT consensus protocol in those systems. Alternatives

to PBFT have not been used in blockchain-based audit systems due to the limited knowledge

about their functional and operational requirements. Currently, no blockchain testbed supports

the execution and benchmarking of different consensus protocols in a unified testing environment.

In this paper, we build a blockchain testbed that supports the execution of five state-of-the-art

consensus protocols in a blockchain network; namely PBFT, Proof-of-Work (PoW), Proof-of-Stake

(PoS), Proof-of-Elapsed Time (PoET), and Clique. We carry out performance evaluation of those

consensus algorithms using data from a real-world audit system. Our results show that the Clique

protocol is best suited for blockchain-based audit systems, based on scalability features.

5.1 Introduction and Motivation

As we have seen so far, audit systems use blockchains to harden the security of audit logs and pro-

vide a fine-grained provenance model for data flows [3]. From a security standpoint, blockchains

prevent the audit logs from two well-known attacks, the “the physical access attack” and “the re-

mote vulnerability attack”, which both allow an adversary to corrupt data in the audit logs [58, 54].

For provenance, the blockchain ledger maintains a high-level history of changes made in the audit

logs, which can be used for fault detection if needed. However, despite such benefits, blockchain-

based audit systems suffer from low scalability and throughput. The root cause of the poor scal-

ability is the use of the “Practical Byzantine Fault Tolerance” (PBFT) consensus protocol, which

has a high message complexity and, as a result, low scalability. To amortize the complexity cost,

88

a design optimization has been recently proposed which fragments blockchains into hierarchical

layers to support parallel processing as the system scales up [6]. However, the proposed design

also uses the PBFT consensus protocol. Therefore, beyond nominal optimizations, the existing

audit systems still suffer from low scalability.

Moreover, in all notable efforts on blockchain-based audit logs, including our prior work, the

performance evaluation has been done using an abstract simulation of the proposed frameworks [3,

6]. Intuitively, simulations convey a general idea about the system performance. However, they

provide limited information about the design feasibility in the real world. Some frameworks that

may appear to be operational in a simulated environment may not be fully relevant in real-world

settings. Acknowledging that, in [3], the authors mention that their proposed system BlockAudit is

yet to be evaluated in the production environment to study its suitability to the actual audit system.

With these two challenges in mind, an intuitive solution would be to apply alternative consensus

protocols in the blockchain-based audit systems for optimization. Some of the notable consensus

protocols include Proof-of-Work (PoW), Proof-of-Stake (PoS), Proof-of-Elapsed Time (PoET),

and Clique [16]. The benchmarking and evaluation of these protocols require realistic testing envi-

ronments that can accurately model the varying dynamics of the audit systems and the distributed

blockchain. Such a comparative analysis can provide new and more accurate insights to improve

the performance of the blockchain-based audit logs.

5.1.1 Challenges

The intuitive approach to tackle these problems has its own inherent challenges. The existing

benchmarks for the aforementioned consensus protocols are usually the latency in end-to-end trans-

action processing and the transaction throughput. Audit systems cannot tolerate latency in transac-

tion processing beyond a few milliseconds [32] (§5.3.1). In PBFT-based systems, the processing

89

latency increases with the number of network nodes. Therefore, the performance is affected as the

system scales up. However, in the PoW-based systems, the latency margins show minimal growth

as the number of nodes increases [74]. As a result, they are considered highly scalable and more

useful for large distributed networks. The throughput of a blockchain system is measured by the

number of transactions processed per second. In the literature, and due to varying system features

the reported throughput of consensus protocols is often not comparable. For example, in [14], the

authors compare the throughput of Bitcoin with Visa, stating that Bitcoin has a low throughput of

7 transactions per second, while Visa can process up to 24,000 transactions per second. However,

the two systems are not evaluated under the same settings. The transaction size of Bitcoin and

Visa vary significantly, and therefore the total number of transactions processed in a second are not

easily comparable.

5.1.2 Approach

Motivated by these limitations, we take a clean-slate approach towards the performance evaluation

of various consensus protocols in blockchain-based audit logs. Towards that, we create a compre-

hensive testbed to model a real-world blockchain-based audit system. We select five blockchain

consensus protocols and benchmark their performance in a “level playing field.” Finally, by con-

trasting their performance, we reason about the most suitable protocols that meet the requirements

of the audit systems with respect to various parameters, including end-to-end latency. The notable

features of our work are summarized below as the key contributions.

5.1.3 Contribution

First, we deploy a blockchain testbed consisting of a set of nodes hosted across various geographi-

cal locations. At each node, we encode the rules of five consensus protocols and the access control

90

policies. To provide a “level playing field,” we generate transactions of a uniform size for each con-

sensus protocol and maintain a consistent network topology. To accurately reflect the real world

application, we use actual transactions from a real business system [32] for which log audit is

built, and use its requirement thresholds to assess the feasibility of each protocol. For performance

evaluation, we use two metrics including latency in the block confirmation and the transaction

throughput. Finally, by contrasting the performance of all the consensus protocols, we present

the most optimal solution for blockchain-based audit logs. To the best of our knowledge, this is

the first attempt towards the performance evaluation of blockchain-based audit logs under various

consensus protocols. Additionally, the rest of the chapter includes background and preliminaries

in §5.2, testbed design and deployment in §5.3, results and evaluation in §4.5.1, related work and

discussion in §5.5, and summary and concluding remarks in §5.6.

5.2 Preliminaries

In this section, we provide the background of blockchain-based audit logs, mostly based on the

prior work in [6], and discuss their limitations that motivate our work and provide a brief overview

of five consensus protocols that we evaluate.

Today’s blockchain systems for audit logs have various shortcomings, including the following.

First and foremost, the state-of-the-art blockchain-based audit systems mostly use the PBFT con-

sensus protocol [5, 6], which suffers from high message complexity and low scalability features.

Second, the existing systems suffer from a high-latency, even with optimizations. For example,

even with optimizations that rely on fragmenting the blockchain system into multiple layers, as

in [6], the transaction confirmation time ranged from 2 to 20 seconds. On the other hand, audit

systems would typically mandate a confirmation time in the order of milliseconds. Third, existing

evaluations and assessments for the performance of blockchain systems heavily relied on simula-

91

tions that abstract (or even ignore) various parameters that are hard to measure, such as the network

latency, and compute capabilities, especially on shared infrastructure, making it difficult to reason

about the relevance and practicality of those results; e.g., [5, 6]. In [6], for example, BlockTrail

was tested across 250 nodes with varying transaction rates. However, we note that the same system

uses PBFT, which has a high message complexity and is unlikely to scale to 250 nodes. Indeed,

using our testbed, we demonstrate in §3.5 that PBFT is impractical beyond 50 nodes. There is a

need for performance evaluation of blockchain-based audit systems, taking into account the actual

characteristics of networks and various blockchain consensus protocols.

Comparative Analysis. In Table 5.1, we show some statistics about the consensus protocols

evaluated in this work. It can be observed that PBFT has the lowest fault tolerance (33%) and

the highest throughput (10,000 transactions per second). The fault tolerance of each protocol is

derived from their theoretical analysis, while the throughput measurements are obtained from the

experiments and simulations. As mentioned in §5.1, the experimental results of these protocols

are not comparable since they were evaluated in different settings with varying transaction and

network sizes. Our testbed resolves this issue by creating a unified testing environment for each

consensus protocol. As a result, the values we report are comparable.

Table 5.1: Comparison of the consensus protocols considered in this study. The values mentioned
in the table are collected from various sources including [62, 88, 80, 18, 20]. From the values
reported below, PBFT seems to achieve the highest throughput with over 10,000 transactions per
second.

Properties PoW PoS PBFT Clique PoET
Blockchain Type Permisssionless Permissionless Permissioned Permissioned Permissionless
Trust Model Untrusted Untrusted Semi-trusted Semi-trusted Untrusted
Scalability High High Low High High
Throughput <10 <1,000 <10,000 1,000
Fault Tolerance 50% 50% 33% 50% 50%
Energy Efficient No Yes Yes Yes Yes

92

5.3 Testbed Design and Deployment

In the following, we present details of our blockchain testbed. We outline the functional require-

ments of our audit system, which provides the baseline thresholds for scalability and throughput.

5.3.1 Audit System Requirements

For our testbed instrumentation, we used a real-world audit system provided by an eGovernment

enterprise system (application) [32, 45]. Such systems typically serves 20–200 clients at any time,

depending upon the nature of the application. As such, we expected the blockchain network size to

vary between 20–200 nodes based on the system requirement. The audit log transaction size varied

between 1MB–4MB, with an expected confirmation time of 50 milliseconds. In other words, with

a maximum network size of 200 nodes and a maximum transaction size of 4MB, the application

required the audit log transaction to be processed under 50 milliseconds. We used these thresholds

as our baseline benchmarks to evaluate the performance of each of the five consensus protocol.

The protocols that exceeded the baseline thresholds were considered practically feasible for our

blockchain-based audit logging system.

5.3.2 Blockchain Nodes

We set up the blockchain nodes using Docker containers. Docker uses OS-level virtualization to

create lightweight, isolated, and standalone software packagers called containers [60]. A Docker

container contains the application code, runtime system tools, and system libraries by default.

This allows the container application to seamlessly run in any environment that supports Docker,

sidestepping the complexities of the host server configurations. Specific to the requirements of our

testbed, Docker enables us to swiftly spawn multiple blockchain nodes across various data centers.

93

Moreover, Docker also supports dynamic adjustment of the network size, which allowed us to test

the performance of each consensus protocol at varying network size. However, for this experiment,

we maintain a fixed topology in which the network is a completely connected graph.

We deployed the testbed nodes on the digital ocean data center, which hosts its data centers glob-

ally. All servers in data centers were assigned Public IP addresses, and 50 Docker containers were

set up at each server, each identified by a unique port number. The port numbers ranged between

42421–42470, and the port mapping scheme was specified in the Docker configuration file. Each

server has an Intel Xeon processor with 4 cores, 16GB RAM, and 500GB hard drive.

5.3.3 Communication Model

To enable communication among the blockchain nodes, we used NodeJS [66] , an open-source

JavaScript framework that allows asynchronous execution of the JavaScript code. At each con-

tainer, we also installed a blockchain node middleware, built using the express minimalistic web

framework. The middleware contained the rules of the consensus protocols and communication

model. At the application layer, each node communicated using HTTP protocol with the GET and

POST methods to exchange data (i.e., transactions and blocks) with other nodes. In Figure 5.1, we

provide an overview of our testbed design. The Docker containers were hosted in five cities namely

San Francisco, New York, Singapore, London, and Frankfurt. The broad distribution of nodes

helped us to closely model real-world blockchain systems (globally distributed), where nodes are

hosted across multiple cities. As a result, the latency observed in the transaction confirmation were

more realistic, adding reliability to our methodology and evaluation.

94

San Franciso

Docker

Containers

New York

Docker

Containers

Singapore

Docker

Containers

London

Docker

Containers

Frankfurt

Docker

Containers

CouchDB

Network

Figure 5.1: Overview of the testbed setup. We used five servers based on three continents each
hosting up to 50 blockchain nodes. The CouchDB database is used to store statistics generated
from the other nodes.

5.3.4 System Adjustments

Since each consensus protocol has unique rules, we tailored our system to correctly implement

them. For PoW, we used the ‘work-token’ library in NodeJS that allows us to modularly adjust the

difficulty (see Figure 2.3) for the target threshold. We selected a difficulty limit that allowed block

generation after every 10 milliseconds. When the PoW protocol was executed, each node used its

processing power to solve the challenge. Since the network was completely connected, a block is

received by all the other nodes directly from the winner who produced the block.

95

10 20 30 40 100 150 200 250
Number of Nodes

0

2

4

6

8

10

La
te

nc
y

(m
s)

Proof of Stake
500 KB
1000 Bytes
2000 Bytes
4000 Bytes
10000 Bytes

(a) Proof-of-Stake

25 50 100 150 200 250
Number of Nodes

0
20
40
60
80

100
120
140
160

La
te

nc
y

(m
s)

Proof of Work
500 KB
1000 Bytes
2000 Bytes
4000 Bytes
10000 Bytes

(b) Proof-of-Work

10 20 30 40 100 150 200 250
Number of Nodes

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

La
te

nc
y

(m
s)

Proof of Elapsed Time
500 KB
1000 Bytes
2000 Bytes
4000 Bytes
10000 Bytes

(c) Proof-of-Elapsed-Time

10 20 30 40 100 150 200 250
Number of Nodes

0
1
2
3
4
5
6
7
8

La
te

nc
y

(m
s)

Clique
500 KB
1000 Bytes
2000 Bytes
4000 Bytes
10000 Bytes

(d) Clique

5 10 30
Number of Nodes

0
2500
5000
7500

10000
12500
15000
17500

La
te

nc
y

(m
s)

Practical Byzantine Fault Tolerance
500 KB
1000 Bytes
2000 Bytes
4000 Bytes
10000 Bytes

(e) PBFT

5 10 20 30 40 50 100 150 200 250
Number of Nodes

0

2000

4000

6000

8000

Th
ro

ug
hp

ut
 (t

x/
se

c)

Throughput Comparison
PBFT
PoW
PoS
Clique
PoET

(f) Throughput

Figure 5.2: Experimental results. In 5.2(a)–5.2(e), we report the latency in transaction confirmation
for each consensus protocol. In 5.2(f), we report the transaction throughput all the protocols,
measured at a transaction size of 4MB. Notice that in PoW and PBFT, transactions incur high
latency, exceeding 50 milliseonds threshold set by our audit system (§5.3.1). In contrast, PoS,
PoET, and Clique meet the latency requirements of the audit system. Among them, Clique has the
most desirable performance, achieving a low latency and high throughput.

96

For PoS, we randomly assigned a stake tokens to each node. The stake token had a value between

100-10,000. To simplify the auction process, we embedded stakes within the block header. In each

round, every node generated its own block with a randomly selected stake and broadcast the block

to all other nodes. It also received blocks from the other nodes with their specified stakes. Only

the block with the highest stake was selected as the winner.

To implement PoET, we sidestepped the cost of installing the Intel SGX at each node. Instead,

we relaxed the trust model by replacing the SGX code with a trusted code that issued a random

waiting time for each node. We acknowledge that replacing SGX relaxed (i.e., weakened) the

security guarantees of our testbed. However, within the scope of this work, we are primarily

concerned with the performance evaluation rather than the security guarantees. Therefore, for

PoET, as outlined in §5.2, random waiting times were allocated to each node and once the waiting

time expired, the node released its block. The waiting time calibration prevented the issuance of

multiple blocks within one round. As a result, we avoided forks.

To implement Clique and PBFT, we followed a round-robin scheme for the selection of primary

replicas. For Clique, we encoded the primary selection procedure in the Clique.js file at each node.

The protocol followed the same workflow as outlined in Figure 2.4. For PBFT, we also switched

the primary replica in each round. The primary ordered transactions in a block and executed a

multi-phase protocol in which it obtained approvals from all the other replicas. Each phase was

implemented using REST API.

5.4 Results and Evaluation

As mentioned in §5.3.1, transaction size, and the network size varied between 1MB–4MB and 20–

200 clients, respectively. Following that, and keeping into account the safety margins, we tested

97

our system with transaction size between 0.5MB and 4MB, and 10–250 nodes. For simplicity,

and without losing generality, we treated one transaction as a unique block. For each protocol, we

evaluated the transaction throughput as the number of transactions processed in one second. In

Figure 5.2, we present the results obtained from our experiments. In 5.2(a)– 5.2(e), we report the

latency in transaction confirmation for each protocol, and in 5.2(f), we report their throughput.

Figure 5.2 shows that, on average, transactions experienced minimum latency in PoET and Clique.

For Clique, the maximum latency was ≈ 14 milliseconds with a network size of 250 nodes and a

transaction size of 4MB. For PoET, the maximum latency was ≈ 20 milliseconds with a network

size of 200 nodes and a transaction size of 1MB. For PoW and PoS, the maximum latency was

140 milliseconds and 30 milliseconds at the network size of 250 and 200 nodes, respectively. An

increase in the latency in PoW was observed due to the distribution of the computing power as

the number of nodes has increased. As mentioned in §5.3.1, our audit system cannot tolerate

latency beyond 50 milliseconds. Therefore, PoW becomes infeasible after 50 nodes (see 5.2(b)).

Surprisingly, latency in PBFT increased significantly as the number of nodes increased beyond 10

nodes. The maximum latency was 35 seconds with transaction and network size of 10MB and 30

nodes respectively. Beyond 30 nodes, the latency became more significant, and we omit results

from our plot in 5.2(e). In all the consensus protocols, the latency in transaction confirmation

increased with the network size due to propagation latency among nodes hosted in different cities.

For transaction throughput reported in 5.2(f), we use the transaction size of 4MB and vary the

the network size from 5–250 nodes. We observed that up to a network size of 50 nodes, Clique

achieved the maximum throughput, followed by PoET and PoS. With a network size of 5 nodes,

Clique achieved a throughput of 8,000 transactions per second. After 50 nodes, the transaction

throughput of Clique decreased significantly and PoET and PoS became more dominant. In con-

trast, PBFT had a very low throughput, showing that the models proposed by the prior work in

blockchain-based audit logs [6, 5] may not be feasible in a real-world implementation, and calling

98

for a different choice of the consensus algorithm.

In summary, our results show that for the general purpose, PoS, PoET, and Clique can be used

for audit systems. Among them, Clique is the most suitable protocol when the network size is

below 50 nodes. Once the network size exceeds 50 nodes, the audit system can benefit by utilizing

one of the three protocols. We also noticed that PoW is not feasible beyond 50 nodes since the

latency margins exceed the threshold requirements of our audit system. Even at a network size

below 50 nodes, the latency is much higher than PoS, PoET, and Clique. In all settings, PBFT’s

performance was significantly lower than the other protocols, making it the least suitable solution

for the blockchain-based audit systems.

5.5 Related Work and Discussion

In this section, we briefly discuss the related work to blockchain-based audit systems. Although,

notable efforts have been done to integrate blockchains with audit logs, this chapter—to the best of

our knowledge—is the first attempt to evaluate the performance of audit systems under different

consensus protocols.

Towards blockchain-based audit systems, Chi and Yai [29] used the Ethereum blockchain to create

encrypted audit logs for IoT devices. Sutton and Samavi [83] developed a mechanism to store

integrity proof digests of audit logs in bitcoin blockchains. Castaldo et al. [27] proposed a logging

system which uses blockchains to maintain unforgeable records of health care data exchanges

across multiple countries. Cucrull et al. [37] used blockchains to improves the security of the

immutable logs by publishing integrity proofs on the blockchain network. Their proposed system

is resilient to log truncation and log regeneration.

Ahmad et al. [3] proposed a framework that integrated Online Transaction Processing System

99

(OLTP) system’s audit logs with blockchains. Their system used nHibernate (Object Relation

Mapping) events to generate audit log transactions, and PBFT consensus protocol to obtain the

agreement from the network. In [6], a design optimization of [3] was proposed using a hierarchical

design to reduce the system complexity and increase the throughput. However, their proposed

system only supports audit applications that follow a hierarchical system model. Moreover, even

in the optimized version, PBFT is used for consensus. In our work, we show that PBFT is incapable

of meeting the requirements of the audit systems. Instead, through a comparative analysis, we show

that Clique and PoET are better replacements of PBFT and are highly suitable for audit systems.

5.6 Summary

In this chapter, we evaluate the performance of a blockchain-based audit system under five con-

sensus protocols, namely PoW, PoS, PBFT, PoET, and Clique. We developed a testbed to set up a

blockchain network of 250 nodes and implemented the consensus rules of each protocol and eval-

uate their performance at a unified transaction size and network. Our results show that specific to

the requirements of audit systems, PoET, PoS, and Clique are the most useful consensus protocols,

with Clique achieving the maximum transaction throughput among them. Moreover, our results

show that PBFT, used in notable prior works, may not be an optimum choice due to its high latency.

Our work opens a new direction in the performance evaluation of blockchain systems by showing

trade-offs in the real-world performance of key blockchain consensus protocols.

100

CHAPTER 6: CONCLUSION AND FUTURE WORK

The main goal of this work is to harness blockchain technology to create tamper-proof, distributed

append-only audit logs that can seamlessly integrate into existing enterprise business applications.

For that purpose, first, we presented BlockAudit which extended the nHibernate ORM to generate

blockchain-compatible audit logs, that are persisted in a blockchain network. For our experiments,

we used a custom blockchain simulator (abstracted from Hyperledger fabric) to validate our design.

BlockAudit is secure against known audit log attacks and can be easily integrated into existing audit

applications. However, this system has two major limitations, 1) high storage footprint due to data

replication over all network peers, and 2) low scalability due to high message complexity (O(n2))

of the PBFT consensus protocol.

To overcome the limitations of BlockAudit we created BlockTrail which exploits the hierarchical

distribution of replicas across multiple layers to reduce space and time complexity of the system.

We leveraged the nature of transactions generated by the audit applications to partition the system

into multiple layers to enable parallel transaction processing. BlockTrail amortizes the space over-

head of storing data into a single ledger and increases the overall system throughput. Additionally,

in BlockTrail, we hardened the security of the system to detect malicious or faulty replicas. We

tested our design using our custom-built blockchain system. Our results validate the hypothesis by

showing a considerable reduction in space and time overhead in the layered blockchain system.

BlockTrail addressed several limitations of BlockAudit, but a key bottleneck in both designs was

the use of PBFT consensus protocol. PBFT is commonly used in permissioned blockchains and

is known to provide a high transaction throughput. However, it also suffers from a high message

complexity, which limits scalability. As such, we realized a need for a different consensus protocol

that would overcome the limitations of PBFT. For that purpose, in the third and final component of

101

this work, we evaluated the performance of a blockchain-based audit system under five consensus

protocols, namely PoW, PoS, PBFT, PoET, and Clique. We developed a blockchain testbed to

implement consensus protocols and evaluate their performance at a level playing field (i.e., uniform

transaction and network size). Our results show that PoET, PoS, and Clique are highly suited for

audit systems, with Clique achieving the maximum transaction throughput among them. Moreover,

our results show that PBFT, used in prior works, may not be an optimum choice due to high latency.

Our work opens new directions towards the design and development of blockchain-based audit

logs using various consensus protocols. In the future, we plan to extend the usability of our design

by incorporating other consensus protocols including Proof-of-Stake, Avalanche, Snowflake etc.,

and analyze their performance for audit applications. Additionally, we will generalize the testbed

utility to allow the instrumentation of other applications under these consensus protocols.

Understanding the performance of the various systems under different types of workloads pertain-

ing to audit logs is also an open question. While we have evaluated our systems under load, we

did not consider adversarial behaviors of the peers in the underlying network, which is yet an-

other future direction: How do the guarantees of those blockchain systems change by changing the

behavior of the underlying peers; e.g., under prefix hijacking [72].

For BlockAudit and BlockTrail, we used nHibernate ORM, and SQL-based database to generate

the audit logs. These features allow easy compatibility of applications with blockchains. A major

challenge in the future is to create blockchain-based audit logs for applications that do not use

nHibernate ORM and SQL databases. This might require tailoring the application structure for a

blockchain-compatible format. This is also part of our future work. Moreover, for this work, we

have explored the benefits of blockchains for e-government applications. In the future, we will

extend our work beyond the e-government applications and explore possible methods of creating

a hierarchical blockchain solution, specifically tailored to their requirements. The possible appli-

102

cations could be IoT and supply chain systems. We will also design a framework to optimize the

number of nodes in the system to increase security while minimizing the storage footprint.

We carried out all our experiments using a uniformly distributed blockchain network (i.e., all data

centers have the same number of nodes). However, the blockchain nodes may not be uniformly

distributed in a real blockchain network. Therefore studying the effects of network topology on

the performance of the consensus protocol could be another future direction.

103

LIST OF REFERENCES

[1] The personal information protection and electronic documents act, 2004.

[2] Ittai Abraham and Dahlia Malkhi. The blockchain consensus layer and BFT. Bulletin of the

EATCS, 123, 2017.

[3] Ashar Ahmad, Muhammad Saad, Mostafa Bassiouni, and Aziz Mohaisen. Towards

blockchain-driven, secure and transparent audit logs. In International Workshop on Dis-

tributed Ledger of Things (DLoT) in conjunction with MobiQuitous, 2018.

[4] Ashar Ahmad, Muhammad Saad, Mostafa Bassiouni, and Aziz Mohaisen. Towards

blockchain-driven, secure and transparent audit logs. In ACM International Workshop on

Distributed Ledger of Things(DLoT), in conjunction with International Conference on Mo-

bile and Ubiquitous Systems: Computing, Networking and Services, MobiQuitous, New York

City, NY, USA, pages 443–448, Nov 2018.

[5] Ashar Ahmad, Muhammad Saad, and Aziz Mohaisen. Secure and transparent audit logs with

blockaudit. Journal of Network and Computer Applications, 145:102406, 2019.

[6] Ashar Ahmad, Muhammad Saad, Laurent Njilla, Charles A. Kamhoua, Mostafa Bassiouni,

and Aziz Mohaisen. Blocktrail: A scalable multichain solution for blockchain-based audit

trails. In IEEE International Conference on Communications, ICC Shanghai, China, pages

1–6, May 2019.

[7] Mustafa Al-Bassam, Alberto Sonnino, Shehar Bano, Dave Hrycyszyn, and George Danezis.

Chainspace: A sharded smart contracts platform. In Annual Network and Distributed System

Security Symposium, NDSS, San Diego, California, USA, Feb 2018.

104

[8] Abdullah Alghamdi, Majdi Sabe Owda, and Keeley A. Crockett. Natural language inter-

face to relational database (NLI-RDB) through object relational mapping (ORM). In Pla-

men Angelov, Alexander E. Gegov, Chrisina Jayne, and Qiang Shen, editors, Advances in

Computational Intelligence Systems - Contributions Presented at the 16th UK Workshop on

Computational Intelligence, Lancaster, UK, volume 513 of Advances in Intelligent Systems

and Computing, pages 449–464. Springer, Sept 2016.

[9] Arnold O. Allen. Probability, statistics and queueing theory - with computer science appli-

cations (2. ed.). Academic Press, 1990.

[10] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis,

Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov Manevich,

Srinivasan Muralidharan, Chet Murthy, Binh Nguyen, Manish Sethi, Gari Singh, Keith Smith,

Alessandro Sorniotti, Chrysoula Stathakopoulou, Marko Vukolic, Sharon Weed Cocco,

and Jason Yellick. Hyperledger fabric: a distributed operating system for permissioned

blockchains. In EuroSys Conference, Porto, Portugal, pages 30:1–30:15, April 2018.

[11] Stefano De Angelis. Assessing security and performances of consensus algorithms for per-

missioned blockchains. CoRR, abs/1805.03490, 2018.

[12] Maria Apostolaki, Aviv Zohar, and Laurent Vanbever. Hijacking bitcoin: Routing attacks on

cryptocurrencies. pages 375–392. IEEE, 2017.

[13] Hamid Bagheri, Chong Tang, and Kevin J. Sullivan. Automated synthesis and dynamic anal-

ysis of tradeoff spaces for object-relational mapping. IEEE Trans. Software Eng., 43(2):145–

163, 2017.

[14] Shehar Bano, Mustafa Al-Bassam, and George Danezis. The road to scalable blockchain

designs. USENIX:Login, 42(4), 2017.

105

[15] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi, Patrick McCorry,

Sarah Meiklejohn, and George Danezis. Consensus in the age of blockchains. CoRR,

abs/1711.03936, 2017.

[16] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi, Patrick McCorry,

Sarah Meiklejohn, and George Danezis. Consensus in the age of blockchains. CoRR,

abs/1711.03936, 2017.

[17] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi, Patrick McCorry, Sarah

Meiklejohn, and George Danezis. SoK: Consensus in the Age of Blockchains, 2017. https:

//arxiv.org/abs/1711.03936.

[18] Iddo Bentov, Ariel Gabizon, and Alex Mizrahi. Cryptocurrencies without proof of work.

arXiv preprint arXiv:1406.5694, 2014.

[19] Iddo Bentov, Ariel Gabizon, and Alex Mizrahi. Cryptocurrencies without proof of work.

In International Workshop on Financial Cryptography and Data Security , Christ Church,

Barbados, pages 142–157, Feb 2016.

[20] Iddo Bentov, Charles Lee, Alex Mizrahi, and Meni Rosenfeld. Proof of activity: Extending

bitcoin’s proof of work via proof of stake. IACR Cryptology ePrint Archive, 2014:452, 2014.

[21] Petra Berenbrink, Tom Friedetzky, Peter Kling, Frederik Mallmann-Trenn, Lars Nagel, and

Chris Wastell. Self-stabilizing balls & bins in batches. CoRR, abs/1603.02188, 2016.

[22] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha Gollamudi,

Georges Gonthier, Nadim Kobeissi, Natalia Kulatova, Aseem Rastogi, Thomas Sibut-Pinote,

Nikhil Swamy, and Santiago Zanella Béguelin. Formal verification of smart contracts: Short

paper. pages 91–96, 2016.

106

https://arxiv.org/abs/1711.03936
https://arxiv.org/abs/1711.03936

[23] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A. Kroll, and

Edward W. Felten. Research perspectives and challenges for bitcoin and cryptocurrencies.

IACR Cryptology ePrint Archive, 2015:261, 2015.

[24] Jean-Yves Le Boudec and Patrick Thiran. Network Calculus: A Theory of Determinis-

tic Queuing Systems for the Internet, volume 2050 of Lecture Notes in Computer Science.

Springer, 2001.

[25] Christian Cachin. Architecture of the hyperledger blockchain fabric. In Workshop on Dis-

tributed Cryptocurrencies and Consensus Ledgers, volume 310, 2016.

[26] Jan Camenisch, Manu Drijvers, and Maria Dubovitskaya. Practical uc-secure delegatable

credentials with attributes and their application to blockchain. In ACM SIGSAC Conference

on Computer and Communications Security, CCS Dallas, USA, pages 683–699, Oct 2017.

[27] Luigi Castaldo and Vincenzo Cinque. Blockchain-based logging for the cross-border ex-

change of ehealth data in europe. In Erol Gelenbe, Paolo Campegiani, Tadeusz Czachórski,

Sokratis K. Katsikas, Ioannis Komnios, Luigi Romano, and Dimitrios Tzovaras, editors, Se-

curity in Computer and Information Sciences, pages 46–56, Cham, 2018. Springer Interna-

tional Publishing.

[28] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Proceedings of the

Third USENIX Symposium on Operating Systems Design and Implementation (OSDI), New

Orleans, Louisiana, USA, February 22-25, 1999, pages 173–186, 1999.

[29] Shi-Cho Cha and Kuo-Hui Yeh. An ISO/IEC 15408-2 compliant security auditing system

with blockchain technology. In 2018 IEEE Conference on Communications and Network

Security, CNS 2018, Beijing, China, May 30 - June 1, 2018, pages 1–2, 2018.

107

[30] Jing Chen, Shixiong Yao, Quan Yuan, Kun He, Shouling Ji, and Ruiying Du. Certchain:

Public and efficient certificate audit based on blockchain for TLS connections. In 2018 IEEE

Conference on Computer Communications, INFOCOM 2018, Honolulu, HI, USA, April 16-

19, 2018, pages 2060–2068, 2018.

[31] Lin Chen, Lei Xu, Nolan Shah, Zhimin Gao, Yang Lu, and Weidong Shi. On security analysis

of proof-of-elapsed-time (poet). In International Symposium on Stabilization, Safety, and

Security of Distributed Systems, pages 282–297. Springer, 2017.

[32] ClearVillage. Clearvillage, 2018.

[33] Nhibernate Community. Nhibernate, 2018.

[34] Douglas Crockford. The application/json media type for javascript object notation (JSON).

RFC, 4627:1–10, 2006.

[35] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed Kosba,

Andrew Miller, Prateek Saxena, Elaine Shi, Emin Gün Sirer, et al. On scaling decentralized

blockchains. In International Conference on Financial Cryptography and Data Security,

pages 106–125. Springer, 2016.

[36] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed E. Kosba,

Andrew Miller, Prateek Saxena, Elaine Shi, Emin Gün Sirer, Dawn Song, and Roger Wat-

tenhofer. On scaling decentralized blockchains. In International Workshop on Financial

Cryptography and Data Security, Christ Church, Barbados, pages 106–125, Feb 2016.

[37] Jordi Cucurull and Jordi Puiggali. Distributed immutabilization of secure logs. In Interna-

tional Workshop on Security and Trust Management STM Heraklion, Greece, pages 122–137,

Sept 2016.

108

[38] Gaby G. Dagher, Praneeth Babu Marella, Matea Milojkovic, and Jordan Mohler. Broncovote:

Secure voting system using ethereum’s blockchain. In Proceedings of the 4th International

Conference on Information Systems Security and Privacy, ICISSP, Funchal, Madeira - Por-

tugal, pages 96–107, Jan 2018.

[39] George Danezis and Sarah Meiklejohn. Centrally banked cryptocurrencies. 2016.

[40] M. M. Eljazzar, M. A. Amr, S. S. Kassem, and M. Ezzat. Merging supply chain and

blockchain technologies. Computing Research Repository (CoRR), abs/1804.04149, 2018.

[41] P Froystad and Jarle Holm. Blockchain: powering the internet of value. EVRY Labs, 2016.

[42] Ayalvadi J. Ganesh, Anne-Marie Kermarrec, and Laurent Massoulié. Peer-to-peer member-

ship management for gossip-based protocols. IEEE Trans. Computers, 52(2):139–149, 2003.

[43] GDPR. General data protection regulation gdpr, 2019.

[44] Johannes Göbel and Anthony E Krzesinski. Increased block size and bitcoin blockchain

dynamics. In 2017 27th International Telecommunication Networks and Applications Con-

ference (ITNAC), pages 1–6. IEEE, 2017.

[45] GSA. Government software assurance, 2018.

[46] Rui Guo, Huixian Shi, Qinglan Zhao, and Dong Zheng. Secure attribute-based signature

scheme with multiple authorities for blockchain in electronic health records systems. IEEE

Access, 6:11676–11686, 2018.

[47] Freya Sheer Hardwick, Raja Naeem Akram, and Konstantinos Markantonakis. E-voting

with blockchain: An e-voting protocol with decentralisation and voter privacy. CoRR,

abs/1805.10258, 2018.

109

[48] Jinpeng Huai, Robin Chen, Hsiao-Wuen Hon, Yunhao Liu, Wei-Ying Ma, Andrew Tomkins,

and Xiaodong Zhang, editors. Proceedings of the 17th International Conference on World

Wide Web, WWW 2008, Beijing, China, April 21-25, 2008. ACM, 2008.

[49] Hyperledger. Hyperledger sawtooth, 2018.

[50] Emanuel Ferreira Jesus, Vanessa R. L. Chicarino, Célio V. N. de Albuquerque, and An-

tônio A. de A. Rocha. A survey of how to use blockchain to secure internet of things and the

stalker attack. Security and Communication Networks, 2018:9675050:1–9675050:27, 2018.

[51] Ghassan Karame. On the security and scalability of bitcoin’s blockchain. In ACM Conference

on Computer and Communications Security SIGSAC, Vienna, pages 1861–1862, Oct 2016.

[52] Sunny King and Scott Nadal. Ppcoin: Peer-to-peer crypto-currency with proof-of-stake. self-

published paper, August, 19, 2012.

[53] Ahmed E. Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papamanthou.

Hawk: The blockchain model of cryptography and privacy-preserving smart contracts. pages

839–858, 2016.

[54] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. Loggc: garbage collecting audit log.

In ACM SIGSAC Conference on Computer and Communications Security CCS, Berlin, Ger-

many, pages 1005–1016, Nov 2013.

[55] Robert Luh, Stefan Marschalek, Manfred Kaiser, Helge Janicke, and Sebastian Schrittwieser.

Semantics-aware detection of targeted attacks: a survey. J. Computer Virology and Hacking

Techniques, 13(1):47–85, 2017.

[56] Di Ma and Gene Tsudik. A new approach to secure logging. TOS, 5(1):2:1–2:21, 2009.

110

[57] Imran Makhdoom, Mehran Abolhasan, Haider Abbas, and Wei Ni. Blockchain’s adoption

in iot: The challenges, and a way forward. Journal of Network and Computer Applications,

125:251 – 279, 2019.

[58] Jonathan Margulies. A developer’s guide to audit logging. IEEE Security & Privacy,

13(3):84–86, 2015.

[59] Lara Mauri, Stelvio Cimato, and Ernesto Damiani. A comparative analysis of current cryp-

tocurrencies. pages 127–138, Proceedings of the 4th International Conference on Information

Systems Security and Privacy, ICISSP , Funchal, Madeira - Portugal, January 2018.

[60] Dirk Merkel. Docker: lightweight linux containers for consistent development and deploy-

ment. Linux Journal, 2014(239):2, 2014.

[61] Matthias Mettler. Blockchain technology in healthcare: The revolution starts here. In 18th

IEEE International Conference on e-Health Networking, Applications and Services, Munich,

Germany, pages 1–3, Sep 2016.

[62] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Online, https:

//bitcoin.org/bitcoin.pdf, 2008.

[63] Giang-Truong Nguyen and Kyungbaek Kim. A survey about consensus algorithms used in

blockchain. JIPS, 14(1):101–128, 2018.

[64] Hoang-Long Nguyen, Claudia-Lavinia Ignat, and Olivier Perrin. Trusternity: Auditing trans-

parent log server with blockchain. In Companion of the The Web Conference, Lyon , France,

pages 79–80, April 2018.

[65] Christos Nikolaou, Manolis Marazakis, and G. Georgiannakis. Transaction routing for dis-

tributed OLTP systems: Survey and recent results. Inf. Sci., (1&2):45–82, 1997.

111

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

[66] Node.js. Hyperledger sawtooth, 2019.

[67] Werner Olivier and Rossouw von Solms. The effective utilization of audit logs in information

security management. In Annual Working Conference on Information Security Management

& Small Systems Security, pages 51–62, Sept 1999.

[68] Dean Rakic. Blockchain technology in healthcare. In Proceedings of the 4th International

Conference on Information and Communication Technologies for Ageing Well and e-Health,

Funchal, Madeira, Portugal, March 2018., pages 13–20, 2018.

[69] Christoph Ringelstein and Steffen Staab. DIALOG: distributed auditing logs. In IEEE Inter-

national Conference on Web Services, ICWS, Los Angeles, USA, pages 429–436, July 2009.

[70] M. Saad and A. Mohaisen. Towards characterizing blockchain-based cryptocurrencies for

highly-accurate predictions. In IEEE Conference on Computer Communications Workshops,

April 2018.

[71] Muhammad Saad, Afsah Anwar, Ashar Ahmad, Hisham Alasmary, Murat Yuksel, and Aziz

Mohaisen. Routechain: Towards blockchain-based secure and efficient bgp routing. In 2019

IEEE International Conference on Blockchain and Cryptocurrency (ICBC), pages 210–218.

IEEE, 2019.

[72] Muhammad Saad, Victor Cook, Lan Nguyen, My T. Thai, and Aziz Mohaisen. Paritioning

attacks on bitcoin: Colliding space, time, and logic. In IEEE International Conference on

Distributed Computing Systems ICDCS, Dellas, Texas, US, July 2019.

[73] Muhammad Saad, Aminollah Khormali, and Aziz Mohaisen. End-to-end analysis of in-

browser cryptojacking. arXiv preprint arXiv:1809.02152, 2018.

112

[74] Muhammad Saad, Jeffrey Spaulding, Laurent Njilla, Charles A. Kamhoua, Sachin Shetty,

DaeHun Nyang, and Aziz Mohaisen. Exploring the attack surface of blockchain: A system-

atic overview. CoRR, abs/1904.03487, 2019.

[75] Muhammad Saad, My T. Thai, and Aziz Mohaisen. POSTER: deterring ddos attacks on

blockchain-based cryptocurrencies through mempool optimization. In Proceedings of Asia

Conference on Computer and Communications Security, ASIACCS, Incheon, Republic of Ko-

rea, pages 809–811, Jun 2018.

[76] Bruce Schneier and John Kelsey. Secure audit logs to support computer forensics. ACM

Trans. Inf. Syst. Secur, 2(2):159–176, 1999.

[77] Bruce Schneier and John Kelsey. Cryptographic support for secure logs on untrusted ma-

chines. In USENIX Security Symposium, San Antonio, USA, Jan 1998.

[78] Pradip Kumar Sharma, Shailendra Rathore, and Jong Hyuk Park. Distarch-scnet: Blockchain-

based distributed architecture with li-fi communication for a scalable smart city network.

IEEE Consumer Electronics Magazine, 7(4):55–64, 2018.

[79] Richard Snodgrass, Shilong Stanley Yao, and Christian Collberg. Tamper detection in audit

logs. In Proceedings of the Thirtieth International Conference on Very Large Data Bases,

Toronto, Canada, pages 504–515, Aug 2004.

[80] Yonatan Sompolinsky and Aviv Zohar. Accelerating bitcoin’s transaction processing. fast

money grows on trees, not chains. IACR Cryptology ePrint Archive, 2013(881), 2013.

[81] Nicholas Stifter, Aljosha Judmayer, Philipp Schindler, Alexei Zamyatin, and Edgar R.

Weippl. Agreement with satoshi - on the formalization of nakamoto consensus. IACR Cryp-

tology ePrint Archive, 2018:400, 2018.

113

[82] Harish Sukhwani, José M. Martínez, Xiaolin Chang, Kishor S. Trivedi, and Andy Rindos.

Performance modeling of PBFT consensus process for permissioned blockchain network

(hyperledger fabric). In 36th IEEE Symposium on Reliable Distributed Systems, SRDS 2017,

Hong Kong, Hong Kong, September 26-29, 2017, pages 253–255, 2017.

[83] Andrew Sutton and Reza Samavi. Blockchain enabled privacy audit logs. In International

Semantic Web Conference ISWC, Vienna, Austria, pages 645–660, Oct 2017.

[84] Marco Vieira and Henrique Madeira. Benchmarking the dependability of different OLTP

systems. In International Conference on Dependable Systems and Networks (DSN), pages

305–310, June 2003.

[85] Marko Vukolic. The quest for scalable blockchain fabric: Proof-of-work vs. BFT replication.

In Jan Camenisch and Dogan Kesdogan, editors, International Workshop on Open Problems

in Network Security - IFIP WG 11.4 , iNetSec, Zurich, Switzerland, volume 9591 of Lecture

Notes in Computer Science, pages 112–125. Springer, Nov 2015.

[86] Brent R. Waters, Dirk Balfanz, Glenn Durfee, and Diana K. Smetters. Building an encrypted

and searchable audit log. In Proceedings of the Network and Distributed System Security

Symposium, NDSS 2004, San Diego, California, USA, 2004.

[87] Christopher Wee. Audit logs: to keep or not to keep? In Recent Advances in Intrusion

Detection, 1999.

[88] Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai

Halevi, editors. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Com-

munications Security, Vienna, Austria, October 24-28, 2016. ACM, 2016.

114

[89] Dongjin Xu, Liang Xiao, Limin Sun, and Min Lei. Game theoretic study on blockchain based

secure edge networks. In International Conference on Communications in China, ICCC,

Qingdao, China, pages 1–5, Oct 2017.

[90] Yin Yang. Linbft: Linear-communication byzantine fault tolerance for public blockchains.

CoRR, abs/1807.01829, 2018.

[91] Attila Altay Yavuz and Peng Ning. BAF: an efficient publicly verifiable secure audit logging

scheme for distributed systems. In Twenty-Fifth Annual Computer Security Applications Con-

ference, ACSAC 2009, Honolulu, Hawaii, USA, 7-11 December 2009, pages 219–228, 2009.

[92] Mian Zhang and Yuhong Ji. Blockchain for healthcare records: A data perspective. PeerJ

PrePrints, 6:e26942, 2018.

115

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	1.1 Motivation and Background
	1.2 Contributions
	1.3 Organization and Roadmap

	CHAPTER 2: BACKGROUND AND PRELIMINARIES
	2.1 Audit Logs
	2.1.1 Benefits of Audit Logs
	2.1.2 Vulnerabilities in Audit Logs

	2.2 Blockchains
	2.2.1 Main Features
	2.2.1.1 Decentralization
	2.2.1.2 Auditability

	2.2.2 Blockchains Types
	2.2.2.1 Public Blockchain
	2.2.2.2 Private Blockchain
	2.2.2.3 Consortium Blockchain

	2.3 Consensus Protocols
	2.3.1 Proof-of-Work
	2.3.2 Proof of Elapsed Time
	2.3.3 Clique
	2.3.4 Practical Byzantine Fault Tolerance
	2.3.5 Proof-of-Stake

	2.4 Threat Model
	2.4.1 The Physical Access Attack
	2.4.2 The Remote Vulnerability Attack

	CHAPTER 3: BLOCKAUDIT
	3.1 Introduction
	3.2 Problem Statement and Design Requirements
	3.2.1 Design Engineering
	3.2.1.1 Functional Requirements
	3.2.1.2 Structural Requirements
	3.2.1.3 Security Requirements

	3.3 BlockAudit Design and Implementation
	3.3.1 Application Architecture
	3.3.1.1 Clients
	3.3.1.2 Business Logic Layer
	3.3.1.3 Data Access Layer

	3.3.2 Generating Audit Logs
	3.3.3 Blockchain Integration to Audit Logs
	3.3.3.1 Creating Blockchain Network
	3.3.3.2 Creating Blockchain Transactions

	3.3.4 Consensus Protocol

	3.4 Analysis of BlockAudit
	3.4.1 Design Analysis
	3.4.2 Complexity Analysis
	3.4.2.1 Time Complexity
	3.4.2.2 Space Complexity

	3.4.3 Security Analysis
	3.4.3.1 Physical Access Attack
	3.4.3.2 Remote Vulnerability Attack
	3.4.3.3 Increasing Fault Tolerance
	3.4.3.4 Detecting Malicious Nodes

	3.5 Experiment and Evaluation
	3.5.1 Simulation Environment
	3.5.2 Simulation Results

	3.6 Discussion
	3.6.1 Limitations
	3.6.2 Optimization

	3.7 Summary

	CHAPTER 4: BLOCKTRAIL
	4.1 Introduction and Problem Statement
	4.2 Background and Preliminaries
	4.2.1 Audit Logs
	4.2.2 Application-specific Scope of Audit Logs
	4.2.3 Challenges
	4.2.4 Design Approach

	4.3 BlockTrail Design
	4.3.1 Application Architecture
	4.3.2 Transaction Examples
	4.3.2.1 City-level Events
	4.3.2.2 County-level Events
	4.3.2.3 State-level Events
	4.3.2.4 States within a country

	4.3.3 System Architecture
	4.3.4 Consensus Protocol and Access Control

	4.4 Analysis of Blocktrail
	4.4.1 Transaction Processing and Throughput
	4.4.2 Time and Space Complexity Analysis
	4.4.2.1 Consensus Complexity
	4.4.2.2 Space Complexity

	4.4.3 Security Analysis
	4.4.3.1 Trust Model
	4.4.3.2 Threat Model
	4.4.3.3 Positioning Malicious Replicas
	4.4.3.4 Countering Targeted Attacks
	4.4.3.5 Approval Withholding
	4.4.3.6 Denial-of-Service

	4.5 Implementation and Evaluation
	4.5.1 Experiment and Results
	4.5.2 Discussion and Limitations

	4.6 Related Work
	4.7 Summary

	CHAPTER 5: PERFORMANCE EVALUATION OF CONSENSUS PROTOCOLS
	5.1 Introduction and Motivation
	5.1.1 Challenges
	5.1.2 Approach
	5.1.3 Contribution

	5.2 Preliminaries
	5.3 Testbed Design and Deployment
	5.3.1 Audit System Requirements
	5.3.2 Blockchain Nodes
	5.3.3 Communication Model
	5.3.4 System Adjustments

	5.4 Results and Evaluation
	5.5 Related Work and Discussion
	5.6 Summary

	CHAPTER 6: CONCLUSION AND FUTURE WORK

