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ABSTRACT

Recently, the Internet of Things (IoT) has become wider and adopted many features from social

networks and mainly uses sensing devices technologies, causing a rapid increase in production

and adoption. However, security and privacy are serious threats that users usually take precau-

tions to protect their devices and information. Thus, understanding the security shortcomings at

first stage will educate IoT users to protect their connected things. Understanding IoT software

through analysis, comparison (with other types of malware), and detection (from benign IoT) is

an essential problem to mitigate security threats. We focus on two central perspectives, the graph

and string representations of the software, typically extracted from the software binaries. First,

we look into a comparative study of Android and IoT malware through the lenses of graph mea-

surements. We construct the abstract structures of the malware, using Control Flow Graph (CFG)

to represent malware binaries, and use them to conduct an in-depth analysis of malicious graphs.

Machine Learning (ML) algorithms are actively used in the process of detecting and classifying

malicious software. Toward detection, we use different CFG-based features as mentioned above,

and augment them with CFGs of the benign dataset and build a detection system. Furthermore,

we classify the IoT malware to their corresponding families. However, adversarial ML attacks on

malware detectors are proposed in the literature. For example, Adversarial Examples (AEs) on the

CFG can be generated by applying small perturbation to the graph features that force the model

to misclassification. Thus, we propose Soteria, a CFG-based AEs detector utilizing deep learning

with random walks to construct in-depth features. Moreover, we detect the malicious shell com-

mands by extracting and analyzing the malicious commands of IoT malware. We utilize Natural

Language Processing (NLP) for feature generation, followed by a deep learning model to detect

malicious commands, hence detecting malware samples.
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CHAPTER 1: INTRODUCTION

Internet of Things (IoT) is a new networking paradigm interconnecting a large number of devices,

such as voice assistants, sensors, and automation tools, with many promising applications. This

paradigm brings about many benefits, including a shift in lifestyles, as featured by home automa-

tion applications. IoT also facilitate the communication between smart objects together without

the need for humans’ participation [42]. The wide-range of IoT-based applications is featured by

a rapid increase in production and adoption. Recent reports have shown that the number of IoT

devices will be around 64 billion devices by 2025, with a global market between 4 and 11 trillion

U.S. dollars in economic value [23]. The increasingly persistent connection between these IoT

devices makes their role lie somewhere on the continuum between advantageous and susceptibil-

ity. Each of those devices runs multiple pieces of software, or applications, which are increasingly

complex, and could have vulnerabilities that could be exploited, hence controlled to launch vari-

ous attacks, such as Distributed Denial of Service (DDoS) attacks [74, 121, 132, 39]. For example,

Dyn, a Domain Name System (DNS) infrastructure company, was targeted by a large amount of

DNS lookup requests from millions of IoT devices, causing a significant impact on multiple web

services globally [61, 66]. In another incident, baby monitoring systems are reportedly compro-

mised and used for controlling the cameras, and delivering messages through associated speakers,

violating the privacy of users, and putting them at risk [21]. Finally, Github experienced a DDoS

attack with a peak bandwidth of 1.3 Terabits per second [88].

It is essential to analyze and understand the IoT software stack for malicious behavior detection

in order to mitigated possible security threats and vulnerabilities. Existing malicious software

analysis and detection mechanisms are impractical, for the resource constraints of the current IoT

devices. Thus, it is worthwhile to explore new techniques for securing IoT environments, starting

with IoT devices, and utilizing perhaps easy to obtain information from those devices/software.

1



A major reason for the susceptibility of IoT devices to attacks is the broad software system they

utilize, merging components of close and open source software, and utilizing (at times) insecure

functions and services. As such, adversaries exploit these vulnerable services (and functions) to

deliver malware and to launch orchestrated attacks, such as the ones mentioned earlier. A viable

approach towards understanding such IoT software is through program analysis, which is the key

tool used in this dissertation.

Program analysis approaches utilized for malware include both static and dynamic analyses. Dy-

namic analysis requires executing malware for obtaining behavior features that are fed into ma-

chine learning algorithms for detection. Although the dynamic features are comprehensive, dy-

namic analysis techniques are subject to various shortcomings, and most importantly, their com-

plexity and time consumption, resulting in poor scalability. Static analysis, on the other hand, does

not require running programs, but relies on programs’ contents, obtained from the static binary.

A popular static analysis technique is using CFG to build a representative feature modality for

malware detection, and is shown to be effective in various studies [65, 131]. Another example is

the use of shell commands by malware by infecting the hosts using Command and Control (C2)

servers to obtain payloads that include instructions to compromised machines (or bots) synchroniz-

ing their actions, including their cycles of activity by attacking targets, propagation by recruiting

new bots and acting as a source of propagation, and by a stealthy operation to evade detection. In

their operation,

Program analysis provides insight into the constructs of software, but alone does not address the

key requirement for our problem scale: given the large number of IoT software samples, including

those that are malicious, there is a need to automate decisions concerning whether such software

is malicious or benign. Machine Learning (ML) and deep learning algorithms are actively used in

the process of classifying and detecting malicious software from the benign ones [83, 85]. Gen-

erally, they are widely used in a wide range of applications, such as health-care [9], finance [58],
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computer-vision [68], and cybersecurity [108, 29]. For instance, ML theory is leveraged into the

process of software graph analysis to build more powerful analysis tools [13]. One such applica-

tion is exploring IoT malware using both graph analysis and machine learning [7]. These models

not only can learn the representative characteristics of the graph, but can also be utilized to build

an automatic detection system to predict the label of the unseen software.

ML and deep learning models learn the inherent pattern of the input dataset. Therefore, the rise

in the utilization of deep learning models in security-related domains creates incentives for ad-

versaries to manipulate the underlying model to produce their desired outputs. It has been shown

that the ML and deep learning networks are prone to vulnerabilities. For example, an adversary

can force the model to produce his desired output, e.g. misclassification, through crafting the Ad-

versarial Examples (AEs) [93, 87]. The AEs are being crafted by applying a small perturbation

to the input dataset. Note that the crafted samples are very similar to the original ones, and are

not necessarily outside of the training data manifold. Recently, researchers presented several algo-

rithms for generating adversarial examples, such as the fast gradient sign method [44], DeepFool

method [87], the Jacobin-based saliency map method [93].

1.1 Statement of Research

The limited existing literature on IoT malware, and despite malware analysis, classification, and

detection being a focal point of analysts and researchers [85, 84, 105, 83], points at the difficulty,

compared to other malware types. Thus, understanding IoT software through analysis, abstrac-

tion, and classification is an essential problem to mitigate those security issues. More specifically,

understanding the similarity and differences of IoT malware compared to another prominent mal-

ware type, i.e. Android malware, will help analysts understand the differences and use them to

build detection systems upon those differences. One such approach is a graph-theoretic analysis

where each malware sample is abstracted into a Control Flow Graph (CFG), which could be used
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to extract representative static features of the IoT malware. To figure out how different the IoT mal-

ware is from other types of emerging malware, such as Android mobile applications, we perform

a comparative study of the graph-theoretic features in both types of software, which highlights the

difference of CFG between IoT malware and Android malware.

Moreover, it should be noted that the research works on IoT software analysis and detection

have been very limited not only in the size of the analyzed samples, but also the utilized ap-

proaches [14, 109]. A promising direction leverages a graph-theoretic approach to analyze and

detect IoT malware. As IoT software can be represented using graph-based features from CFG,

those features can be utilized to build an automatic detection system to identify whether a given

software is malicious or benign. Moreover, the type of malicious software can be identified through

malware family-level classification and label extrapolation, a concept widely applied [85]. We de-

velop our next component of this work around the detection technique using ML algorithms over

features extracted from abstract graph structures.

While deep learning algorithms bring about a great advantage in the classification and detection of

such malware, they are also susceptible to various security vulnerabilities, such as adversarial ML

(also known as adversarial examples; or AEs) [94, 2]. Adversarial ML aims to fool and mislead

the ML models to generate wrong predictions by manipulating the input data, a process that is

done by introducing minimal perturbations [44, 87, 46], resulting in targeted or non-targeted

misclassification. Adversarial ML is an active research area, although there is a lack of research

on studying the impact of adversarial ML on IoT malware detection, practical implications, and

mitigations [3, 46], which we pursue as the next component in this dissertation.

Finally, with the unique characteristics of IoT devices and applications, there is an intrinsic need

for developing new analysis and detection techniques that utilize new modalities. There has been

some recent work in the past on analyzing shell codes, and using them to understand malicious

end-points, although the majority of such work has been focused on other shell interpreters (e.g.,
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Powershell and web shell). Motivated by such work, and given the emergence of Linux-based

IoT malware that heavily utilize Linux shell, understanding and detecting the malicious use of

Linux shell command in context is critical. For instance, IoT devices use a packed version of

Linux libraries, called Busybox [125], to achieve Linux capabilities. Such attacks by well-known

malware, such as Mirai and Tsunami, misuse the access to the device’s shell to infect the host

device, to propagate itself, and to launch much powerful attacks. For example, the Carna botnet

hacked into 420,000 IoT devices, through default password scans, and was used to conduct an

Internet-wide census [98]. Understanding how effective are shell codes obtained from the analysis

of IoT malware in detecting them is essential.

1.2 Need for Work and Scope

It is to be noted that this work utilizes various advances in program analysis and machine learning

to malware analysis and detection. There has been a large body of work on analyzing and detecting

malicious software, i.e. Windows, Android, etc., in general. Different techniques were proposed,

such as permissions, string analysis, etc.. For instance, Android malware has experienced high

growth and spread rapidly in the last decade. Various Android applications that offer multiple

services were targeted by different malware to take control of the Android devices. This is done due

to the lake of underlying security mechanisms to design Android applications. Different malware

analyses have been done toward analyzing Android platforms. One example is the static feature

analysis that can be used to detect Android malware. Such analysis is permissions where the

applications request frequent permissions from malware applications, unlike the benign ones [72,

126] that allow to access control to use the app that may raise other privacy concerns [38, 122].

These techniques are specific and cannot be extended and applied to the low-end IoT environment,

such as a smart lightbulb that has computation constraints.

On the other hand, some other basic analysis techniques are proposed, i.e. CFG, to analyze and
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detect different malware types. This technique provides the representation of the software during

their execution. Some graph-based works have been done on Android, such as CFG [76], func-

tion call graphs [40, 55], and Application Programming Interface (API) dependency graphs [133].

Whether such techniques can be extended to IoT malware, how the compare to the state-of-the-art

in other malware domains, and whether they can be used for detection is an open direction that we

pursue in this dissertation.

In addition, adversarial attacks on malware detectors have recently been conducted by [3, 63, 67].

While Abusnaina et al. [3] shows the susceptibility of the CFG-based detectors to the adversarial

attacks, the other works append bytes to the binary file. Both of these methods change the files

while preserving the practicality and functionality of the clean IoT malware. Given those works,

it is essential to understand defenses to those attacks on machine learning algorithms utilized for

IoT malware detection using such modality to make the detection practical and sustainable.

Malware use C2 servers to obtain payloads that include instructions to compromised machines (or

bots) synchronizing their actions, including their cycles of activity by attacking targets, propagation

by recruiting new bots and acting as a source of propagation, and by a stealthy operation to evade

detection. Thus, another artifact that can be used for malware analysis and detection is the malware

strings. Malware strings are a way to provide hints and clues about the malware functionality, i.e.

changing the privileges by executing chmod command on the shell. Android malware can be

identified statically using a string-based approach. This analysis helps to extract, understand, and

analyze the content of the string to be able to detect the malware using different features extracted

from the strings [36, 123]. This as well constitute the fourth part of this dissertation.

All in all, our primary motivation is how we can generalize the graph-based approach as well as the

shell commands to the IoT environment to detect the IoT malware. Then, due to the susceptibility

of the ML and deep learning algorithms to the AEs on the CFG-based systems, we build a CFG-

based detector against such attacks to detect the AEs. En route, we conduct a comparative analysis
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between Linux-based IoT malware and Android counterparts to understand how CFG-based mod-

eling differ in both cases.

1.3 Contributions

In this dissertation we make the following contributions:

1. We start by assembling a dataset of emerging and recent Android and IoT malware samples,

and conduct an in-depth analysis of their CFGs.

2. Using various general and algorithmic features extracted from the CFGs, we uncover various

findings to distinguish between IoT malware and Android malware.

3. Using the extracted discriminative features from the CFGs, we gathered a dataset of IoT

benign samples, and build a CFG-based detection system for IoT malware.

4. Motivated by the recent work on developing AEs on machine learning-based malware detec-

tion models, we propose Soteria, a CFG-based model to detect AEs IoT malware.

5. Toward detecting IoT malware using shell command, we extracted the shell command from

a dataset of 2,891 recent IoT malware, and a dataset of benign applications, and build a de-

tection model capable of detecting malicious shell commands as well as malicious software.

1.4 Dissertation Organization

This dissertation encompasses material from four papers, three published papers by the author [5,

7, 8], and one another paper under submission [6]. Chapter 2 uses material from reference [7],

coauthored with Afsah Anwar, Jeman Park, Jinchun Choi, DaeHun Nyang, and Aziz Mohaisen,

which represent the comparative study and analysis between two prominent malware types in the
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wild, namely IoT and Android malware, through the lens of the CFG representations of the soft-

ware. Chapter 3 uses material from reference [8], coauthored with Aminollah Khormali, Afsah

Anwar, Jeman Park, Jinchun Choi, Ahmed Abusnaina, Amro Awad, DaeHun Nyang, and Aziz

Mohaisen, which represent the CFG-based IoT malware detection system to detect IoT malware.

Chapter 4 uses material from reference [5], coauthored with Ahmed Abusnaina, RhongHo Jang,

Mohammed Abuhamad, Afsah Anwar, DaeHun Nyang, and David Mohaisen, where we tackle the

problem of generating AEs in the malware CFGs by building Soteria, a deep learning-based model

that defends the CFG-based classifiers for malware detection against the AEs. Finally, Chapter 5

uses material from reference [6], coauthored with Afsah Anwar, Ahmed Abusnaina, Mohammed

Abuhamad, and David Mohaisen, where a deep learning-based detection model is introduced to

detect the malicious commands for the IoT malware.
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CHAPTER 2: GRAPH-BASED COMPARISON OF IoT AND ANDROID

MALWARE 1

The goal of this chapter is to understand the underlying differences between modern Android

and emerging IoT malware through the lenses of graph analysis. The abstract graph structure

through which we analyze malware is the Control Flow Graph (CFG). Unique to this chapter;

however, we look into various algorithmic and structural properties of those graphs to understand

code complexity, analysis evasion techniques (decoy functions, obfuscation, etc.).

2.1 Motivation

From the perspective of the software, IoT software is different from well-understood ones on the

other platforms, such as Android applications, Windows binaries, and their corresponding mal-

ware. Thus, we look into a comparative study of Android and IoT malware through the lenses of

graph measures: we construct abstract structures, using the CFG to represent malware binaries.

Using those structures, we conduct an in-depth analysis of malicious graphs extracted from the

Android and IoT malware. By reversing 2,962 and 2,891 malware binaries corresponding to the

IoT and Android platforms, respectively, extract their CFGs, and analyze them across both general

characteristics, such as the number of nodes and edges, as well as graph algorithmic constructs,

such as average shortest path, betweenness, closeness, density, etc.. Using the CFG as an abstract

structure, we emphasize various interesting findings, such as the prevalence of unreachable code

in Android malware, noted by the multiple components in their CFGs, the high density, strong

closeness and betweenness, and larger number of nodes in the Android malware, compared to the

1This content was reproduced from the following article: Hisham Alasmary, Afsah Anwar, Jeman Park, Jinchun
Choi, Daehun Nyang, and Aziz Mohaisen, ”Graph-based Comparison of IoT and Android Malware,” In Proceedings
of the Seventh International Conference on Computational Data and Social Networks, (CSoNet), 2018.
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IoT malware, highlighting its higher order of complexity. We note that the number of edges in

Android malware is larger than that in IoT malware, highlighting a richer flow structure of those

malware samples, despite their structural simplicity (number of nodes). We note that most of those

graph-based properties can be used as discriminative features for classification.

In this chapter, we make the following contributions:

1. Building on the existing literature of mobile apps analysis and abstraction using CFGs, we

look into analyzing CFGs of emerging and recent IoT malware samples.

2. Towards analyzing the CFGs, we disassemble a large number of samples. Namely, we use

close to 6,000 samples in total for our analysis. We use a dataset of 2,962 IoT malware

samples and a dataset of 2,891 Android malware samples collected from different sources.

3. Using various graph-theoretic features, such as degree centrality, betweenness, graph size,

diameter, radius, distribution of shortest path, etc., we contrast those features in IoT malware

to those in mobile applications, uncovering various similarities and differences. Therefore,

the findings in this chapter can be utilized to distinguish between IoT malware and Android

malware.

2.2 Related Work

While prior works have analyzed the differences between the software or malware in general, there

has been a few works on analyzing and detecting IoT malware in particular.

Graph-based Approach. The limited number of works have been done on analyzing the differ-

ences between Android (or mobile) and IoT malware, particularly using abstract graph structures.

Hu et al. [55] designed a system, called SMIT, which searches for the nearest neighbor in malware

graphs to compute the similarity across function using their call graphs. They focused on find-
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ing the graph similarity through an approximate graph-edit distance rather than approximating the

graph isomorphism since few malware families have the same subgraphs with others. Shang et al.

[105] analyzed code obfuscation of the malware by computing the similarity of the function call

graph between two malware binaries – used as a signature – to identify the malware. Christodor-

escu and Jha [24] analyzed obfuscation in malware code and proposed a detection system, called

SAFE, that utilizes the control flow graph through extracting malicious patterns in the executables.

Bruschi et al. [18] detected the self-mutated malware by comparing the control flow graph of the

malware code to the control flow graphs for other known malware. Moreover, Tamersoy et al.

[115] proposed an algorithm to detect malware executables by computing the similarity between

malware files and other files appearing with them on the same machine, by building a graph that

captures the relationship between all files. Yamaguchi et al. [130] introduced the code property

graph, which merges and combines different analyses of the code, such as abstract syntax trees,

CFGs, and program dependence graphs in the form of joint data structure to efficiently identify

common vulnerabilities. In addition, Caselden et al. [20] generated a new attack polymorphism

using hybrid information and CFG, called HI-CFG, which is built from the program binaries, such

as a PDF viewer. The attack collects and combines such information based on graphs, code and

data, as long as the relationships among them. Moreover, Wüchner et al. [127] proposed a graph-

based detection system that uses a quantitative data flow graphs generated from the system calls,

and use the graph node properties, i.e. centrality metric, as a feature vector for the classification be-

tween malicious and benign programs. Jang et al. [56] build a tool to classify malware by families

based on the features generated from graphs.

Android Malware. Gascon et al. [40] detected Android malware by classifying their function

call graphs. They found reuse of malicious codes across multiple malware samples showing that

malware authors reuse existing codes to infect the Android applications. Zhang et al. [133] pro-

posed a detection system for Android malware by constructing signatures through classifying the
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API dependency graphs and used that signature to uncover the similarities of Android applications’

behavior. Ham et al. [50] detected Android malware using the Support Vector Machine (SVM).

Milosevic et al. [80] proposed a dynamic detection system for Android malware and low-end IoT

devices by analyzing a few features extracted from the memory and CPU usage, and achieved a

classification accuracy of 84% with high precision and recall.

2.3 Dataset

The goal of this study is to understand the underlying differences between modern Android and

emerging IoT malware through the lenses of graph analysis. The abstract graph structure through

which we analyze malware is the control flow graph (CFG), previously used in analyzing malware

as shown above. Unique to this study; however, we look into the various algorithmic and structural

properties of those graphs to understand code complexity, analysis evasion techniques (e.g., decoy

functions, obfuscation, etc.).

Towards this goal, we start by gathering datasets required to accomplish the end goal of this study.

As such, we create a dataset of binaries and cluster them under three different categories: Android

malware samples, and IoT malware samples. For our IoT malware dataset, we collected a new and

recent IoT malware, up to late January of 2019, using CyberIOCs [30]. For our Android dataset,

various recent Android malware samples were obtained from a security analysis vendor [106].

2.3.1 Dataset Creation

Our IoT malware dataset is a set of 2,962 malware samples, randomly selected from CyberI-

OCs [30]. Additionally, we also obtained a dataset of 2,891 Android malware samples from [106]

for contrast. These datasets represent each malware type. We reverse-engineered the malware

datasets using Radare2 [32], a reverse engineering framework that provides various analysis capa-
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bilities, including disassembly. To this end, we disassemble the IoT binaries, which in the form

of Executable and Linkable Format (ELF) binaries, as well as the Android Application Packages

(APKs) using the same tool, Radare2. Which is an open source command-line framework that

supports a wide variety of malware architecture and has a Python API, which facilitated the au-

tomation of our analysis.

Labeling. To determine if a file is malicious, we uploaded the samples on VirusTotal [33] and

gathered the scan results corresponding to each of the malware. We observe that each of the

IoT and Android malware is detected by at least one of the antivirus software scanners listed in

VirusTotal, whereas the Android dataset has a higher rate.

Differences. We notice that the IoT malware have a lower detection rate compared to the Android

malware, which is perhaps anticipated given the fact that the IoT malware samples are recent

and emerging threats, with fewer signatures populated in antivirus scanners compared to the well-

understood Android malware. In particular, we plot the detection ratio (across multiple scanners,

where 1 means that the sample is detected by all scanners) against the frequency of samples with

the given detection ratio. We notice that the Android samples a distribution focused around 0.6–

0.7 detection ratio, were the larger number of IoT samples have detection concentration around the

ratio of 0.4–0.5, as shown in figure 2.1.

To examine the diversity and representation of malware in our dataset, we label them by their

family (class) using AVClass [103], a tool that ingests the VirusTotal results and provides a family

name for each sample through various heuristics of label consolidation. We gather a new IoT

malware dataset and a larger Android malware dataset compared to the ones used in our prior

work [7]. Moreover, we ignore IoT malware families with less than ten samples. We notice the IoT

malware belong only to three families, while the Android malware belong to 180 unique families.

The IoT malware families and top three Android families, with their share in their corresponding

datasets are shown in table 2.1.
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Figure 2.1: Android and IoT malware detection rate on VirusTotal.

Table 2.1: Dataset: Top 3 Android and IoT families.

Android Family # of samples IoT Family # of samples
Smsreg 1061 Gafgyt 1,351
Smspay 381 Mirai 1,349

Zdtad 139 Tsunami 262

Processing. In a preprocessing phase, we first manually analyzed the samples to understand their

architectures and whether they are obfuscated or not, then used Radare2’s Python API, r2pipe, to

automatically extract the CFGs for all malware samples not obfuscated—in this work we assume

it is possible to obtain the CFG, and addressing obfuscation is an orthogonal contribution that we

defer for future work. Then, we used an off-the-shelf graph analysis tool, NetworkX, to compute

various graph properties. Using those calculated properties, we then analyze and compare IoT and

Android malware. . We start by disassembling the binaries, we look into the main function in the

assembly instruction and extract the CFG from that point. Otherwise, we extract the CFG for those
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Figure 2.2: Pipeline of analysis and detection using CFGs. A.I. (Assembly Instructions).

without main from the entry point. Then, we use the extracted CFGs for further analysis. The

analysis workflow we follow to perform our analysis is shown in figure 2.2.

2.4 Methodology

We use the CFGs of the different malware samples as abstract characteristics of programs for their

analysis.

Program Formulation. For a program P , we use G = (V,E) capturing the control flow structure

of that program as its representation. In the graph G, V is the set of nodes, which correspond to

the functions in P , whereas E is the set of edges which correspond to the call relationship between

those functions in P . More specifically, we define V = {v1, v2 . . . , vn} and E = {eij} for all

i, j such that eij ∈ E if there is a flow from vi to vj . We use |V | = n to denote the size of G,

and |E| = m to denote the number of primitive flows in G (i.e., flows of length 1). Based on

our definition of the CFG, we note that G is a directed graph. As such, we define the following

centralities in G. We define A = [aij]
n×n as the adjacency matrix of the graph G such that an entry

aij = 1 if vi → vj and 0 otherwise.
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/ (fcn) fcn.00000000 53

|   fcn.00000000 ();

| 0x00000000      push rax

| 0x00000001      add rax, qword [r12 + r10]

| 0x00000005      invalid

| 0x00000006      or byte [rax], al

| 0x00000008      or byte [rax], al

| 0x0000000a      imul eax, dword [rbx + 0x4722], 0

| 0x00000011      add byte [rax], al

| 0x00000013      add byte [rax], al

| 0x00000015      add byte [rax], al

| 0x00000017      add byte [rax], al

| 0x00000019      add byte [rax + rax], dl

| 0x0000001c      add byte [rax], al

| 0x0000001e      push r12

| 0x00000021      sub eax, 0x2f464e49

| 0x00000027      push r11

| 0x0000002e      push rsp

| 0x0000002f      jne 6

\ 0x00000034      retf

  0x0000b2fd      pop rbx

  0x0000b2fe      push rsp

  0x0000b2ff      cmp ecx, ebp

  0x0000b301      xchg eax, edx

/ (fcn) fcn.0000b338 11

|   fcn.0000b338 ();

| 0x0000b338      jae 0xb2fd

| 0x0000b33a      cdq

| 0x0000b33b      pop rdi

\ 0x0000b33d      retf

Figure 2.3: CFG of a malware highlighting unreachable codes, depicting use of decoy or obfusca-
tion techniques in malware.

2.4.1 Graph Algorithmic Properties

Using this abstract structure of the programs, the CFG, we proceed to perform various analyses of

those programs to understand their differences and similarities. We divide our analysis into two

broader aspects: general characteristics and graph algorithmic constructs. To evaluate the gen-

eral characteristics, we analyze the basic characteristics of the graphs. In particular, we analyze

the number of nodes and the number of edges, which highlight the structural size of the program.

Moreover, we assess the graph algorithmic constructs; in particular, we calculate the theoretic met-

rics of the graphs, such as the diameter, radius, average closeness centrality, etc.. We later define

the various measures used for our analysis. Additionally, we evaluate the graph components to

analyze patterns between the two malware types. Components in graphs highlight unreachable

codes, which are the result of decoys and obfuscation techniques. This can be a result of obfuscat-

ing the parent node of the branching component, as can be observed in the example of the Android

malware sample in figure 2.3. We now define the various measures used for our analysis.
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Definition 1 (Degree Centrality) For a graph G = (V,E) as above, the degree centrality is de-

fined as the number of relations or number of edges of a node. Mathematically, it is defined as,

D+ = [d+i /
∑n

j=1 d
+
j ]1×n and D− = [d−i /

∑n
j=1 d

−
j ]1×n for the in- and out-degrees of the graph.

Definition 2 (Density) The density of a graph is defined as the closeness of an edge to the maxi-

mum number of edges. For a graph G = (V,E), the graph density can be represented as the aver-

age normalized degree; that is, Density = 1/n
∑n

i=1 deg(vi)/n− 1, where V = {v1, v2, . . . , vn}.

Definition 3 (Shortest Path) For a graphG = (Vi, Ei), the shortest path is defined as: vxi , v
x1
i , v

x2
i

, vx3
i , . . . v

y
i such that length(vxi → vyi ) is the shortest path. It finds all shortest paths from vxi → vyi ,

for all vxj

i , which is arbitrary, except for the starting node vi. The shortest path is then denoted as:

Svxi
.

Definition 4 (Closeness centrality) For a node vi, the closeness is calculated as the average

shortest path between that node and all other nodes in the graph G. This is, let d(vi, vj) be the

shortest path between vi and vj , the closeness is calculated as cc =
∑
∀vj∈V 6 |vi d(vi, vj)/n− 1.

Definition 5 (Betweenness centrality) For a node vi ∈ V , let ∆(vi) be the count of shortest paths

via vi and connecting nodes vj and vr, for all j and r where i 6= j 6= r. Furthermore, let ∆(.) be

the total number of shortest paths between such nodes. The betweenness centrality is defined as

∆(vi)/∆(.).

Definition 6 (Connected components) In graph G, a connected component is a subgraph in

which two vertices are connected to each other, and which is connected to no additional ver-

tices in the subgraph. The number of components of G is the cardinality of a set that contains such

components.
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Figure 2.4: The logarithmic scale distribution of the number of nodes.

Definition 7 (Diameter and Radius) The diameter of a graph G = (V,E) is defined as the maxi-

mum length of shortest path between any two pairs of nodes in G, while the radius is the minimum

shortest path between any two nodes in G. This is, let d(vi, vj) be the shortest path length between

two nodes in G, then the diameter is max∀i 6=j d(vi, vj) while the radius is min∀i 6=j d(vi, vj).

In this chapter, we use a normalized version of the centrality, for both the closeness and between-

ness, where the value of each centrality ranges from 0 to 1.

2.5 Results

2.5.1 General Analysis

The logarithmic scale that show the skewness to the large values and to show the difference of

percent change between the Android and IoT malware in terms of two major metrics of evaluation

of graphs, namely the nodes and edges, is depicted in figure 2.4 and figure 2.5.

18



 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104 105

C
D

F

Edges

Android
IoT

Figure 2.5: The logarithmic scale distribution of the number of edges.

Size Analysis: Nodes. The Android and IoT malware samples have at least 28,691 and 260 nodes,

respectively. We note that those numbers are not close to one another, highlighting a different level

of complexity and the flow-level. In addition, we notice a significant difference in the topological

properties in the two different types of malware at the node count level. This is, while the Android

malware samples seem to have a variation in the number of nodes per sample, characterized by

the slow growth of the y-axis (CDF) as the x-axis (the number of nodes) increases. On the other

hand, the IoT malware have less variety in the number of nodes: we also notice that the dynamic

region of the CDF is between around 1 and 60 nodes (slow curve), corresponding to around [0–

0.15] of the CDF (this is, 60% of the samples have 1 to 60 nodes, which is a relatively small

number). Furthermore, with the Android malware, we notice that a large majority of the samples

(almost 80%) have around 100 nodes in their graph. This characteristic seems to be unique and

distinguishing. The CDF logarithmic scale for the number of nodes in both malware datasets

that highlights the percent change towards large node values of the Android samples is shown in

figure 2.4.
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Figure 2.6: The distribution of density.

Size Analysis: Edges. The top 1% of the Android and IoT malware samples have 33,887 and

439 edges, respectively, which shows a great difference between them. The Android samples have

a large number of edges in every sample that can be shown from the slow growth on the y-axis.

Similar to the node dynamic region for the IoT, the IoT samples seem to have a smaller number of

edges; the active region of the CDF between around 1 to 90 edges correspond to around [0–0.15]

(about 15% of the samples). Additionally, we notice that the smallest 60% of the Android samples

(with respect to their graph size) have around 40 edges whereas the percentage of the IoT samples

have around 90 edges. The CDF logarithmic scale of the edges count for both malware datasets is

represented in figure 2.5.

This combined finding of the number of edges and nodes in itself is very intriguing: while the

number of nodes in the IoT malware samples is relatively smaller than that in the Android malware,

the number of edges is higher. This is striking, as it highlights a simplicity at the code base (smaller

number of nodes) yet a higher complexity at the flow-level (more edges), adding a unique analysis

angle to the malware that is only visible through the CFG structure.
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Graph Density Analysis. We notice almost 90% of the IoT samples have a density around 0.07

whereas the Android samples have a diverse range of density over around 0.65. By examining the

CDF further, we notice that the density alone is a very discriminative feature of the two different

types of malware: if we are to use a cut-off value of around 0.08 – 0.09, for example, we can

successfully tell the different types of malware apart with an accuracy exceeding 90%. The density

of the datasets is shown in figure 2.6.

Graph Components Analysis. We notice that all IoT samples (100%) have only one component

that represents the whole control graph for each sample. These samples have a range of file sizes

from 1,100 – 2,300,000 bytes. The Android malware have a large number of components. We

find that 13.83%, or 400 Android samples, have only one component, where their size ranges from

around 4,200 – 9,400,000 bytes. On the other hand, 2,491 samples (around 86.17%) have more

than one component. We note that the existence of multiple components in the CFG is indicative

of the unreachable code in the corresponding program (possible a decoy function to fool static
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Figure 2.8: Average of closeness centrality

analysis tools). As such, we consider the largest component of these samples for further CFG-

based analysis. However, we notice that 298 Android samples have the same node counts in the

first and second largest components. Furthermore, we find 197 samples that have the same number

of nodes and edge counts in the first and second largest components. The number of nodes and

edges in these samples ranges from 0 – 18, but the file sizes range from around 12,000 – 25,700,000

bytes. The illustration of the number of components in both the IoT and Android malware’s CFGs

is depicted in figure 2.7.

Root Causes of Unreachable Code / Components. We notice that the median of the number of

components in IoT samples is 1, whereas the majority of Android malware lies between 5 and 29,

with a median of 13 components. We notice this issue of unreachable code to be more prevalent

in the Android malware but not in the IoT malware, possibly for one of the following reasons.

1) The Android platforms are more powerful, allowing for complex software constructs that may

lead to unreachable codes, whereas the majority of the IoT platforms are constrained, limiting the

number of functions (software-based). 2) The Android Operating System (OS) is advanced and can
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handle large code bases without optimization, whereas the IoT OS is a simple environment that is

often time optimized through tools that would discard unreachable codes before deployment. The

boxplot of the number of components that captures the median and 1st and 3rd quartile as well as

the outliers for both the Android and IoT malware is shown in figure 2.7.

2.5.2 General Algorithmic Properties and Constructs

The aforementioned analysis represents the general trend for the graphs, while there are different

graph algorithmic properties towards further analysis for the resulting graph to uncover deeper

characteristics. These algorithmic features provide more information about graph constructs. We

elaborate on further analysis using those features in the following.

Graph Closeness Centrality Analysis. We generalize the definition in 4 by aggregating the aver-

age closeness for each malware sample and obtaining the average. As such, we notice that around

5% of the IoT and Android have around 0.14 average closeness centrality. This steady growth
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Figure 2.10: Average of degree centrality.

in the value continues for the Android samples, as shown in the graph; 80% of the nodes have a

closeness of less than 0.6. On the other hand, the IoT samples closeness pattern tend to be within

the small range: the same 80% of IoT samples have a closeness of less than 0.29, highlighting that

the closeness of 0.3 can also be used as a distinguishing feature of the two different types of the

malware, but with low detection rate of around 65%. The CDF for the average closeness centrality

for both datasets is depicted in figure 2.8.

Graph Betweenness Centrality Analysis. The average betweenness is defined by extending def-

inition 5 in a similar way to extending the closeness definition. Similar to the closeness centrality,

10% of the IoT and Android samples have almost 0.06 average betweenness centrality, which con-

tinues with a small growth for the Android malware to reach around 0.26 average betweenness

after covering 80% of the samples. However, we notice a significant increase in the IoT curve,

where 80% of the samples have around 0.09 average betweenness that shows a slight increase

when covering a large portion of the IoT samples. The CDF for the average betweenness centrality

for both datasets is shown in figure 2.9.
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Figure 2.11: The distribution of diameter.

This huge gap is quite surprising although explained by correlating the density of the graph to

both the betweenness and the closeness: Android samples tend to have a higher density, thus an

improved betweenness, which is not the case of IoT as shown in figure 2.8 and figure 2.9.

Graph Degree Centrality Analysis. We notice that 10% of the IoT and Android malware have an

average degree centrality of around 0.03 and 0.09, respectively. The slow growth continues with

Android malware to reach around 0.42 after covering 80% of the samples. However, there is a

significant increase in the IoT samples; around 0.08 after covering the same 80% of the samples.

This huge gap can also be used as a feature to detect IoT malware. The average of degree centrality

in the largest components is shown in figure 2.10.

Diameter, Radius, and Shortest Paths Analysis. Almost 10% of the IoT samples have a diameter

of around 8 that can be noticed from the slow growth in the CDF, whereas the Android malware

have around 1. The CDF for the diameter of the graphs is depicted in figure 2.11.

After that, there is a rapid increase in the CDF curve for the diameter in the 80% of both samples,
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reaching around 10 and 18 for the Android and IoT, respectively. We notice that 15% of the

Android samples have a radius of around 1, while the IoT samples have around 4. In addition,

80% of the Android samples have around 4 while the IoT samples have around 7. This shows a

significant increase for both datasets. As a result, from these two figures, we can define a feature

vector to detect the Android and IoT samples. Similarly, the CDF of the radius of the graphs is

shown in figure 2.12.

Similar to the other feature vectors, we notice almost 80% of the IoT malware have an average

shortest path greater than 5, whereas the Android malware have an average of less than 5. The

CDF for the average shortest path of the graphs are represented in figure 2.13.

Upon increasing the number of Android malware samples to be similar to the IoT samples, we

notice that the gap between both datasets can still be noticed, showing the new trend shift of the

IoT malware to accommodate the low-end IoT devices with less computational resources. This,

in turn, can lead to differentiating between the IoT malware and Android, and possibly to other

malware, such as Windows malware.
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2.6 Comparison and Discussion

CFG of a program represents the flow of control from a source to an exit node. A CFG can be

exploited by adversaries to reveal details pertaining to the nature of programs, specifically, the flow

of control, the flow of functions, the start and the exit nodes, the functions that force a program to

go into an infinite loop, etc.. Moreover, it also gives the user a hint about packing and obfuscation.

In this study, we conduct an empirical study of the CFGs corresponding to 5,853 malware samples

of IoT and Android. We generate the CFGs to analyze and compare the similarities and differences

between the two highly prevalent malware types using different graph algorithmic properties to

compute various features.

Comparison. Based on the above highlights of the CFGs, we observe a major difference between

the IoT and Android malware in terms of the nodes and edges count, which are the main evaluation

metric of the graph size. Our results show that unlike the Android samples, the IoT malware

samples are more likely to contain a lesser number of nodes and edges. Even though around 4.4%
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of the IoT malware, or 131 samples, have less than 20 nodes and 31 edges, we notice they have

various file sizes ranging from around 1,100 to 1,000,000 bytes per sample. This finding can be

interpreted by the use of different evasion techniques from the malware authors in order to prevent

analyzing the binaries statically.

With the high number of nodes and edges in the Android malware, and unlike the IoT samples,

we observe that the CFGs of almost 86.16%, or 2,491 Android samples, have more than one com-

ponent, which shows that the Android malware often uses unreachable functions. This is shown

when using multiple entry points for the same program, and the multiple components (unreachable

code) is perhaps a sign of using decoy functions or obfuscation techniques to circumvent the static

analysis. In addition, the prevalence of unreachable code indicates the complexity of the Android

malware: these malware samples have a file size ranging from 12,000 to 114,000,000 bytes, which

is quite large in comparison to the IoT malware 1,100 - 1,000,000 bytes.

Discussion. After analyzing different algorithmic graph structures, we observe a major variation

between the IoT and Android malware graphs. We clearly notice a cut-off value for the density,

average closeness, average betweenness, diameter, radius, average shortest path, and degree cen-

trality for both datasets that can be applied to the detection system and reach an accuracy range of

around 65% – 90% based on the feature vector being applied. For example, the cut-off points for

the closeness centrality can set apart 65% of the malware, while the density of graphs can differen-

tiate 90% of the IoT malware and Android malware. We notice that those differences in properties

are a direct result of the difference in the structural properties of the graphs, and can be used for

easily classifying different types of malware based on their distinctive features.

In most of the characterizations we conducted by tracing the distribution of the properties of the

CFGs of different malware samples and types, we notice a slow growth in the distribution curve

of the Android dataset, whereas a drastic increase for the IoT dataset. These characteristics show

that the Android malware samples are diverse in their characteristics with respect to the measured
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properties of their graphs, whereas the IoT malware is less diverse. We anticipate that due to the

emergence of IoT malware, and expect that characteristic to change over time, as more malware

families are produced. We also observe that the IoT malware samples are denser than Android

malware. We observe that 4 Android malware have a density equal to 2. By examining those

samples, we found that they utilize an analysis circumvention technique resulting in infinite loops,

as shown in figure 2.6.

Moreover, we found 32 Android samples with a degree centrality greater than one, and CFGs that

contain 3 – 32 nodes with file sizes ranging between 29,400 – 3,000,000 byte, where the parent

node leads to a child loop operating in another sign of infinite loop which may be because of

obfuscation of the other functions, as shown in figure 2.10.

Our analysis shows the power of CFGs in differentiating Android from IoT malware. It also

demonstrates the usefulness of CFGs as a simple high-level tool before diving into lines of codes.

We correlate the size of malware samples with the size of the graph as a measure of nodes and

edges. We observe that even with the presence of low node or edge counts, the size of malware

could be huge, indicative of obfuscation.

2.7 Conclusion

We conduct an in-depth analysis of the general and algorithmic features of the CFGs of the Android

and IoT malware datasets, including the number of nodes and edges, closeness, betweenness, and

density, etc.. We highlight the shift in the graph representation from the IoT to the Android. We

observe different tracing size of nodes, edges, and components. We also observe decoy functions

for circumvention, which correspond to multiple components in the CFG. The general and algo-

rithmic features of the graphs are shown to be discriminative features at the malware type level, so

they will be used for classification and detection systems.
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CHAPTER 3: ANALYZING AND DETECTING EMERGING INTERNET

OF THINGS MALWARE: A GRAPH-BASED APPROACH 1

In chapter 2, we provide a CFG-based analysis of the two prominent malware types, IoT and

Android, to uncover the similarities and differences between them from the graph perspective.

In this chapter, we extend the work by designing a deep learning-based detection system to detect

IoT malware by utilizing various CFG features. The analysis workflow as well as the IoT detection

flow system are shown in figure 3.1.

3.1 Motivation

The goal of this chapter is to use the aforementioned graph characteristics, the algorithmic and

structural properties of the graphs, to build an IoT detection system to distinguish the malware from

the benign binaries. As such, graph-related features from the CFG can be used as a representation

of the software, and classification techniques can be built to tell whether the software is malicious

or benign, or even what kind of malicious purposes the malware serves (e.g., malware family-level

classification and label extrapolation). We make the following contributions:

1. Towards detecting the IoT malware based on the CFGs, we use the analyzed IoT malware

dataset of 2,962 samples used in Section 2.3. Additionally, we assemble a dataset of 2,999

benign files capable of running on IoT devices towards effective malware detection. The

datasets, for Android malware, IoT malware, and IoT benign samples, and their associated

CFGs will be made public to the community for reproducibility.

1This content was reproduced from the following article: Hisham Alasmary, Aminollah Khormali, Afsah Anwar,
Jeman Park, Jinchun Choi, Ahmed Abusnaina, Amro Awad, Daehun Nyang, and Aziz Mohaisen, ”Analyzing and
Detecting Emerging Internet of Things Malware: A Graph-based Approach,” In IEEE Internet of Things Journal,
(IoT-J), 2019.
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2. Using the different features as described in Section 2.4.1, grouped under seven different

groups as a modality for detecting IoT malware, we design a deep learning-based detection

system that can detect malware with an accuracy of ≈ 99.66%. Additionally, the system has

the ability to classify malware into their respective families with an accuracy of ≈ 99.32%.

3.2 Related Work

IoT Malware Detection. Pa et al. [91] proposed IoTPOT, an IoT honeypot and sandbox to analyze

and capture IoT telnet-based attacks targeting IoT environment that run on multiple CPU architec-

tures. Su et al. [112] proposed an IoT detection system capable of capturing DDoS attacks on IoT

devices by generating gray-scale images from malware binaries as feature vectors. Their system

achieved an accuracy of 94% using deep learning. Wei and Qiu [124] analyzed IoT malicious

codes and built a detection system by monitoring the code run-time on the background of the IoT

devices. Moreover, Hossain et al. [53] proposed an IoT forensic system, named Probe-IoT, that

investigates IoT malicious behaviors using distributed digital ledger. Shen et al. [107] proposed an

intrusion detection system for the low-end IoT networks that run on the cloud and fog computing

to overcome malware propagation and to preserve multistage signaling privacy on IoT networks.
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Other research works have been done for detecting and analyzing IoT botnets. For example, An-

tonakakis et al. [12] analyzed Mirai botnets that launch DDoS attacks using IoT devices. Kolias et

al. [61] examined the operation and communication life-cycle of Mirai botnets used for launching

and observed traffic signatures that can be used for their detection. Donno et al. [37] analyzed a

taxonomy of DDoS attacks, more specifically for a Mirai botnet, and classified these attacks into

malware families and found out the relationship between them. The literature works (represented

in Sections 2.2 and 3.2) on analyzing and detecting different malware types on different operating

systems platforms using various approaches are highlighted in table 3.1.

3.3 Dataset

To accomplish the end goal of this chapter, we created a dataset of binaries and clustered them

under two different categories: IoT malware samples and benign IoT samples. For the IoT malware

samples, we used the aforementioned dataset of 2,962 IoT malware samples that we analyzed in

section 2.3. Finally, to test our proposed IoT malware detector, we manually assembled a dataset

of 2,999 benign samples from source files on GitHub [31]. For our analysis and detection, we

augment the datasets by reversing the samples to address various analysis issues. Using an off-the-

shelf tool, Radare2, we then disassemble the benign samples to obtain the CFG corresponding to

each of them. We use the CFG of each sample as an abstract representation and explore various

graph analysis measures and properties.

3.4 IoT Detection

This section is devoted to the detection of the IoT malware based on the CFGs features, as men-

tioned earlier (Section 2.4.1). To investigate the robustness of the classifier, we conducted two

experiments that detect the IoT malware samples from the benign ones; and classify the IoT sam-
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Table 3.1: Summary of the related works represented in Sections 2.2 and 3.2. Abbreviations:
SVM (Support Vector Machine), CNN (Convolutional Neural Network), NB (Naive Bayes), LR
(Logistic Regression), DT (Decision Tree-based J48), and RF (Random Forest).

Work Platform Dataset Sample size Task Approach
[55] x86 malware 102,391 Analysis Function Call Graph

[105] x86 malware, benign 51 Analysis Function Call Graph
[24] x86 malware, benign 14 Detection Control Flow Graph
[20] x86 benign programs 2 Analysis Information Flow Graph,

Control Flow Graph
[127] x86 malware, benign 7,501 Detection Quantitative Data Flow Graph
[115] x86 malware, benign 43,353,581 Detection File-Relation Graph
[56] x86 malware, benign 3,768 Classification System Call Graph
[18] Linux malware, benign 572 Analysis Control Flow Graph

[130] Linux vulnerabilities 88 Analysis Code Property Graph
[40] Android malware, benign 147,950 Detection Function Call Graph /

Machine Learning (SVM)
[133] Android malware, benign 15,700 Detection Weighted Contextual API

Dependency Graphs
[50] Android malware, benign 28 Detection Machine Learning (SVM)
[80] Android malware, benign 2,199 Detection Classifier (NB, LR, DT)
[91] IoT malware 106 Collection IoT Honeypot

[112] IoT malware, benign 865 Detection Deep Learning (CNN)
[124] IoT malware, benign 554 Detection Algorithm
[53] IoT N/A N/A Forensic Digital ledger (Blockchain)

[107] IoT malware N/A Detection Theoretical analysis
[12] IoT malware 1,028 Analysis Static analysis
[61] IoT malware N/A Analysis Analyze Mirai source code
[37] IoT malware N/A Analysis Analyze Mirai source code

Chapter 2 IoT, Android malware 5,853 Analysis Control Flow Graph
This Chapter IoT malware, benign 5,961 Detection Control Flow Graph/

Deep Learning (CNN)

ples to the corresponding family. In addition, we utilized both traditional Machine Learning algo-

rithms, such as Linear Regression (LR) classifier, Support Vector Machine (SVM), and Random

Forest (RF) as well as more advanced deep learning methods, such as Convolutional Neural Net-

work (CNN) in our experiments. A brief description of these algorithms is in the following.
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3.4.1 Detection Algorithms

Logistic Regression (LR). LR is a method borrowed from the field of statistics for linear clas-

sification of data into discrete outcomes. LR is a popular statistical modeling method where the

probability of dichotomous outcome event is transformed into a set of explanatory variables as

followed:

logit(P1) = ln

(
P1

1− P1

)
= β0 + β1x1 + ...+ βnxn = β0 +

n∑
i=1

βixi,

where, x1, x2, . . . , xn are the variables and β1, β2, ..., βn are corresponding coefficients and β0 is

the intercept. Maximum Likelihood Estimation (MLE) method is used to estimate the value of

these coefficients. MLE aims to maximize the log likelihood in an iterative process. Interested

readers are referred to [52] for more information about logistic regression.

Support Vector Machine (SVM). SVM classifies the data by finding the best hyper-plane that

separates the data from the two classes. SVM selects a class t by applying:

f(xt) = argmax
n

[(wn × xt) + bn], n = 1, ..., N,

where, f(xt) is the feature vector of sample, n is a binary classifier, wn is the weight vector and bn

is the cut-off of the classifier. Both wn and bn master and learn from training. For training a new

classifier to achieve a preferable class, the training analyses are considered as positive examples,

which are included in the class, while the remaining attempts are negative examples. To classify a

new analysis, the classifier computes the margin and selects the hyperplane with the largest margin

between the two classes.
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Random Forest (RF). RF classifier is a powerful classification algorithm specifically for nonlin-

ear classification tasks as they offer good accuracy, low over-fitting, and controlled output vari-

ance [120]. Incorporation of random feature selection with bagging is used to train T decision

trees (weaker learners), which allows a variance reduction in the output of individual trees [17]. In

this study, we set the number of weak learners to T = 60 as it offers the best performance in our

case. Generally, a T-sized random forest model is grown as followed:

• A bootstrap sample is chosen from the training set to grow each tree. Usually, two-thirds

of samples are used to grow each tree, and the remaining samples are used to calculate the

out-of-bag error.

• n variables out of N variables are randomly selected in the training process. Generally, n

less than
√
N is considered as the starting point.

• One variable, out of n selected variables, is used at each node to conduct the best split.

Convolutional Neural Network (CNN). The general design of the CNN consists of several layers,

including convolution, activation, pooling, and a dropout followed by a classification layer. The

convolution layer extracts a feature map by applying a convolutional filter to the input data. The

pooling layer makes features more distinct and reduces the amount of data. Final discrimination

of the input data is conducted in the classification layer. In this study, the input X of the CNN

model is a one-dimensional (1D) vector containing extracted features formatted as 1 × 23. The

CNN design consists of three blocks, namely convolutional block 1 (CB1), convolutional block 2

(CB2), and classification block (CL). The detailed description of these blocks are as follows:

• CB1. This block is made up of 1D convolutional layer with padding and 46 filters Fb1
′ of

size 1 × 3. The filters convolve over the input data X with a stride of 1. The output of this

layer Cb1
′ is a 2D tensor of size 23×46. The output of the first convolutional layer is then fed
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into a similar 1D convolutional layer without padding, resulting in a 2D tensor Cb1
′′ of size

21×46. Afterward, a max-pooling with size and stride of 2 and dropout with the probability

of 0.25 are applied, which results in a 2D tensor Sb1 of size 10× 46.

Cb1
′
i = X ⊗ Fb1

′
i, i = 1 : 46

Cb1
′′
i = Cb1

′
i ⊗ Fb1

′′
i , i = 1 : 46

Mb1i = maxpool(Cb1
′′
i , 2, 2), i = 1 : 46

Sb1i = dropout(Mb1i, 0.25), i = 1 : 46

• CB2. Fed by the output of CB1 Sb1, this block is similar to CB1 except for the number of

filters Fb2
′ in the convolutional layers. This block consists of a 1D convolutional layer with

padding and 92 filters of size 1 × 3, convolving over the data with a stride of 1. The output

of this layer is forwarded to a similar 1D convolutional layer without padding, resulting into

a 2D tensor Cb2
′′ of size 8 × 92. Then, we perform max pooling with a size and stride of 2,

followed by dropout with probability of 0.25. The output of this block is a tensor Sb2 of size

4× 92.

Cb2
′
i = Sb1 ⊗ Fb2

′
i, i = 1 : 92

Cb2
′′
i = Cb1

′
i ⊗ Fb2

′′
i , i = 1 : 92

Mb2i = maxpool(Cb2
′′
i , 2, 2), i = 1 : 92

Sb2i = dropout(Mb2i, 0.25), i = 1 : 92

• CL. The generated tensor in CB2 Sb2 is then fed into this block, forwarding the tensor to

flatten layer, converting it into 1D tensor of size 368, followed by a dense layer of size 512

resulting into a fully connected layer feature map FCL and a dropout with probability of
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Figure 3.2: The internal design of the architecture with a 1D convolutional neural network of
multiple layers followed by a softmax classifier and used for our the detection task in this work.
Notice that 46@1x3, for example, stands for “applying 46 filters, each of size 1x3 on the input
data.

0.5 resulting into SFC . Finally, SFC is fed to the softmax layer as classification layer. The

outputs of the softmax layer will be evaluated based on various metrics, such as accuracy

rate (AR), false negative rate (FNR), etc. to measure the performance of the model.

FCL = dense(Flatten(Sb2)), 512))

SFC = dropout(FCL, 0.5)

output = softmax(SFC)

We trained our model using 200 epochs with a batch size of 100. Each epoch took an average

time of 0.7 seconds on a system comprised of an i5-8500 CPU, 32GB DDR4 RAM, and NVIDIA

GTX980 Ti Graphics Processing Unit (GPU). Note that all convolutional and fully connected lay-
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ers use a Rectified Linear Units (ReLU) activation function. In addition, we used dropout to prevent

model over-fitting. We refer the interested reader to [69] for more details on CNN internals. The

architecture of the CNN design is shown in figure 3.2.

3.4.2 Evaluation Metrics

In order to investigate the generalization of the classifier, the K-fold cross validation method [60] is

used. Although K is an unfixed parameter, K=10 is commonly used in the literature [16, 1, 71]. For

a 10-fold cross-validation, the dataset is partitioned into ten different partitions. Then, the model

is trained over nine partitions and tested on the remaining partition. This process is repeated ten

times until all portions are evaluated as test data, and the average result is reported. The confusion

matrix is used to evaluate the performance of the classifiers, which are shown in tables 3.2 and 3.3.

For evaluation, we use the following defined metrics. For classes C1 and C2: True Positive (TP) is

all C1 classified correctly, True Negative (TN) is all C2 classified as C2, False Positive (FP) is all

C2 classified as C1, and False Negative (FN) is all C1 classified as C2. Moreover, the Accuracy

Rate (AR), False Discovery Rate (FDR), False Positive Rate (FPR), False Omission Rate (FOR),

and False Negative Rate (FNR) are calculated as follows:

AR = [(TP + TN)/(TP + FP + FN + TN)]× 100

FDR = (FP/(FP + TP))× 100

FPR = (FP/(FP + TN))× 100

FOR = (FP/(FN + TP))× 100

FNR = (FN/(FN + TN))× 100
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3.4.3 System Flow

For IoT samples, we extract 23 different features from the general and algorithmic characteristics of

the CFGs, and categorize them into seven groups. Five different features are extracted from each of

the four feature categories of average closeness centrality, average betweenness centrality, average

degree centrality, and average shortest paths represent minimum, maximum, median, mean, and

standard deviation values for the extracted parameters. Other remaining features are the nodes

count, edges count, and density. These features are used to train machine/deep learning-based

models, including LR, SVM, RF, and CNN. The performance of these models is evaluated based

on 10-fold cross-validation method, which highlights the generalizability of the trained models.

Furthermore, standard metrics such as AR, FNR, FPR, FDR, and FOR are used to evaluate the

model’s performance. The analysis workflow we follow to perform our analysis, as well as the IoT

detection flow system is depicted in figure 3.1.

3.4.4 Evaluation

While there have been many studies on the usage of CFGs for malware detection, understanding

the uniqueness and difference of CFGs corresponding to different malware still unexplored. Sun et

al. [113] uses component-based CFGs to detect code reuse in Android application with a detection

rate of 96.60% for malware variants. Bruschi et al. [18] proposes a strategy to detect malicious

metamorphic codes in a program by comparing the CFG of the program with that of CFG of

known malware. In this study, to evaluate our detection system, we extracted the CFGs of 2,999

benign IoT samples to build a detection system for the IoT environment utilizing a similar insight:

CFGs of benign and malicious samples differ significantly, and we can base our machine learning

algorithms on those differences for detection.

We implemented four machine learning techniques for: 1) detection of IoT malware, and 2) classi-
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Table 3.2: Results of IoT malware detection. Here, FNR, FPR, FDR, FOR, and AR are percent-
ages.

Model FNR FPR FDR FOR AR
LR 3.66 1.35 1.36 3.64 97.47
SVM 3.32 1.35 1.35 3.32 97.65
RF 2.33 0.67 0.67 2.33 98.48
CNN 0.33 0.33 0.33 0.33 99.66

Table 3.3: Malware family-level classification of IoT samples. Here, FNR, FPR, FDR, FOR, and
AR are percentages.

Model FNR FPR FDR FOR AR
LR 8.88 1.79 12.27 2.05 97.22
SVM 10.53 1.78 13.09 2.01 97.23
RF 5.14 1.03 7.35 1.20 98.40
CNN 2.93 0.45 2.17 0.44 99.32

fication of malware families. The main goal of the detection models is to identify whether a sample

is benign or malicious. The goal of the classification models is to label each sample to one of the

following classes: Benign, Gafgyt, Mirai, or Tsunami. Moreover, we evaluate our classification

in terms of several standard evaluation metrics, e.g. AR, FNR, FPR, etc. (detailed list of these

metrics are provided in section 3.4.2).

For our evaluation, we use the 10-fold cross-validation method to generalize our results. In this

method, we partition the dataset into ten equal portions, where the model is trained over nine

portions and then tested over the remaining portion. This process is repeated ten times until all of

the portions are evaluated as test data, and the average result is reported.

We observed that all models are able to reach a high detection accuracy. Specifically, the CNN

model detects IoT malware from benign samples with an accuracy rate of 99.66% with FNR and

FPR of 0.33%. Furthermore, we found that, in general, all models are able to achieve high clas-
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sification metrics. In particular, the CNN model is able to correctly classify IoT malware families

with an accuracy rate of 99.32% with FNR of 2.93% and FPR of 0.45%. The detailed results of

our malware detection and classification models are listed in table 3.2 and table 3.3, respectively.

Feature reduction. Although, there has been substantial work on feature reduction based on

features’ discriminative power [134, 62], in our study, and due to the limited number of initial

features (only 23) we do not need such feature reduction. Additionally, although we might be able

to score the deep features extracted by the convolutional layers for reduction, these features will

lack interpretability.

Future Work. Although CFG-based features are shown in this work to detect IoT malware with

high accuracy, these features are vulnerable to obfuscation. For example, a function-level obfus-

cation of the IoT malware might lead to an increase in the number of components, reduced flow of

control, and reduced complexity, which will affect the accuracy of our detection system. Certain

program-level obfuscations will prevent obtaining a CFG altogether. Moreover, our approach does

not assume adversarial inputs that may attempt to tamper with the guarantees of the deep learning

architecture [3]. We notice that regardless of the static obfuscation, once executed, the malware has

to expose its true contents and behavior, loading the unobfuscated code in memory. The unobfus-

cated code can then be extracted using dynamic analysis for our detector. Addressing those issues

with other static features and using them for detection, addressing adversarial learning attacks to

harden defenses, and using dynamic analysis in tandem with static analysis for comprehensive

CFGs are our future work.

3.5 Conclusion

In this chapter, we build a detection model to detect IoT malware by augmenting features generated

from Control Flow Graphs (CFGs). Towards this, we conduct an in-depth graph-based analysis of
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two different datasets, namely, IoT malware and IoT benign samples to build a detection system for

the emerging IoT malware. Toward this goal, we first extract the CFGs as an abstract representation

to characterize them across different graph features. We then utilize various features extracted from

the CFGs of IoT benign and malware datasets, such as the closeness, betweenness, and density,

to build a deep learning-based detection system. We evaluate the detection model by leveraging

four different classifiers and achieve an accuracy rate of ≈99.66% with 0.33% FNR and 0.33%

FPR using CNN. Moreover, we classify the IoT malware based on their families and achieve an

accuracy of ≈99.32% with 2.93% FNR and 0.45% FPR.
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CHAPTER 4: SOTERIA: DETECTING ADVERSARIAL EXAMPLES IN

CONTROL FLOW GRAPH-BASED MALWARE CLASSIFIERS 1

Given that ML models’ output depends on the input patterns, ML models can be prone to targeted

attacks on their inputs. Particularly, an adversary may fool the models by applying perturbations

to the input to generate Adversarial Examples (AEs) [3, 44, 54, 87]. Nevertheless, there have been

several attempts to defend against the adversarial attacks on ML models by including the AEs

in the training process [79]. Although prior works have shown the inefficiency of the malware

detection models when subjected to adversarial examples, to the best of our knowledge, there is no

work on defending such models from adversarial attacks. Identifying the research gap, with this

work, we inch closer towards bridging the gap.

The AE creation of malware is limited due to the risk of un-executability. Acknowledging the

importance of having an effective defense to detect AEs, Soteria utilizes features from the CFG to

detect them. Particularly, Soteria consists of two major components, the AEs detector, and the IoT

malware classifier. Soteria starts by labeling the CFG nodes based on two approaches: density-

based labeling and level-based labeling. Then, Soteria applies a set of random walks, with a length

proportional to the number of nodes in the CFG, on every labeling approach to deeply express and

represent the behaviors of the software processes manifested in the CFG. The nodes making up

the random walks are then used as the features for the operation of Soteria. In the first phase, the

detection system that uses the deep features from the CFG to detect the AEs, thereby stopping their

access to the malware classifier with an accuracy of 97.79%. In the next phase, with a flexibility

to re-use the feature-set from the detection phase, it classifies the input file as benign or assigns an

1This content was reproduced from the following article: Hisham Alasmary, Ahmed Abusnaina, Rhongho Jang,
Mohammed Abuhamad, Afsah Anwar, DaeHun Nyang, and David Mohaisen, ”Soteria: Detecting Adversarial Ex-
amples in Control Flow Graph-based Malware Classifiers,” In International Conference on Distributed Computing
Systems, (ICDCS), 2020.
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appropriate family label to the malware with an accuracy of 99.91%.

Contributions. In this chapter, we make two contributions:

1. Motivated by the recent body of work on developing adversarial examples on machine

learning-based malware detection algorithms, we propose the design and implementation

of Soteria, a system for detecting IoT malware. Similar to other efforts in this space, Soteria

utilizes CFG based feature representations. Unique to Soteria, we use both density-based

and level-based labels for CFG labeling, a random walk-based traversal approach for feature

extraction, and n-gram based module for feature representation. End-to-end, Soteria’s rep-

resentation ensures a simple yet powerful randomization property of the used classification

features, making it difficult even for a powerful adversary to launch a successful attack. Sote-

ria also employs a deep learning approach, consisting of an auto-encoder for detecting AEs,

and eliminating them from the classification process, and a CNN architecture for detecting

and classifying malware samples.

2. We evaluate the performance of Soteria, using a large dataset consisting of 16,814 IoT sam-

ples, and demonstrate its superiority in comparison with state-of-the-art approaches. Soteria

yields an accuracy rate of 97.79% for detecting AEs, and 99.91% overall accuracy for clas-

sification malware families.

4.1 Related Work

Machine and deep learning algorithms widely leveraged towards securing software against adver-

saries in general and detecting malware in particular. For instance, Alasmary et al. [8] analyzed

two prominent malware, IoT and Android, based on the CFG-graph representation of the mali-

cious software. Moreover, Alam et al. [4] analyzed the malware and proposed a malware detection

system to detect malware with even small CFGs and then to address the changes that occurred in
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the frequencies of opcodes. Bruschi et al. [18] proposed a malware detection method that uses two

CFG techniques to compare and detect malware based on two CFGs of malware code and other

known malware.

Several research works have been proposed to defend against adversarial machine learning. Most

of these approaches are image-based methods. For example, Goodfellow et al. [44] proposed

to train the model with a set of AEs to minimize the test error between the real and AEs of the

model’s result. Papernot et al. [92] designed a network distillation model to defend against ad-

versarial attacks such as fast gradient sign method [44] and L-BFGS attack [114]. Cui et al. [27]

introduced a malware detection method for malicious codes using deep learning by transferring

the malicious code into grayscale images. Ni et al. [89] proposed a malware family classification

system that converts malicious codes of nine different malware families into grayscale images.

Metzen et al. [79] proposed a detection method for adversarial perturbation over trained AEs.

Moreover, Rozsa et al. [99] proposed a machine learning model that tested the adversarial ex-

amples. They correlate their robustness of the three adversarial attacks to the accuracy of eight

deep network classifiers. In addition, Miyato et al. [82] proposed a detection method on the text-

domain. They trained the model over adversarial examples that apply small perturbation to the

word that is embedded in RNN.

Several methods have been proposed to generate adversarial examples that can manipulate the de-

sired output to fool the classifiers [3, 44, 54, 87]. Adversaries can make small modifications to

the malware to misclassify them as benign, yet they remain malware files [29, 45]. Other methods

apply and add small noise or perturbation to optimize the images to generate the adversarial exam-

ples [70, 44, 19]. For example, Carlini and Wagner [19] proposed three adversarial attacks against

distilled neural networks that break many defenses models. Moreover, Moosavi-Dezfooli et al.

[87] proposed a DeepFool method that generates minimal perturbation to change the classification

labels based on iterative linearization of the classifiers. Recently, Abusnaina et al. [3] proposed
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adversarial attacks over the CFGs of malware binaries through designing two adversarial attacks

to craft the IoT detector.

4.2 Background and Motivation

Adversarial examples (AEs) can be generated by slightly manipulating a sample to fool the clas-

sifier, and done in the context of malware on either the binary or the code level. 1 Binary-level

AEs the generation of such AEs entails manipulating the bytes of the malware sample upon com-

pilation, without any regard to the function and purpose of such bytes, as has been done in several

works [10, 129, 64]. Another method for binary-level AEs generation would entail injecting a be-

nign block of bytes into an unreachable part of the malware binary, e.g., by adding a new section

or appending the benign bytes to the end of malicious code, thus altering the feature representation

introduced by the AE. 2 Code-level AEs the generation of those AEs entails applying perturba-

tion over the original code by either modifying the structure of the code or inserting an external

code into it. For instance, augmenting or splitting functions results in a structure modification, thus

altering the resulting feature space representation of the sample (e.g., CFG-based).

4.2.1 Practical Adversarial Examples

For adversarial attacks against machine learning-based malware detection models to be practical,

adversaries must ensure the AEs resulting from the manipulation of a malware sample should still

be executable (undamaged), making many of the algorithms proposed in the literature for AEs

generation impractical for the malware detection domain. To this end, AEs can be categorized into

impractical and practical AEs.

Impractical Adversarial Example. An AE is impractical if the injected code is compiled as an

unused function during the compilation process. In the binary level, a sample that manipulated
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Table 4.1: Current adversarial attacks defenses. The focus of the adversarial attacks defenses is
on AEs in the context of image classification. Note: MLP is Multilayer Perceptron, DNN is Deep
Neural Network, and RNN is Recurrent Neural Network.

Paper Model Dataset Application
Goodfellow et al. [43] MLP 130,000+ Image
Xu et al. [128] DNN 6,000 Image
Meng et al. [78] DNN 121,000 Image
Liao et al. [73] DNN 280,000 Image
Dhillon et al. [35] DNN 60,000 Image
Papernot et al. [95] DNN 130,000 Image
Samangouei et al. [101] DNN 70,000 Image
Miyato et al. [82] RNN 805,753 Text

by any form of byte injection (e.g., adding a new section or appending at the end of file) is not

considered as the practical adversarial example.

Practical Adversarial Example. A practical AE is a mixture of the benign and/or malicious

functions where the manipulated components are reachable (part of the code flow) and executable

(do not damage the code).

Both code- and binary-level approaches can be used for generating practical AEs, although binary-

level approaches are difficult to apply for fine-grained perturbations. A recent study by Abus-

naina et al. [3] showed that adding external code to the original one leads to a high misclassifi-

cation rate of the model’s outputs while preserving the functionality of the original code. Such

behavior can be critical as it results in changing the source code, execution flow, signature, and bi-

naries, which reduces the performance of state-of-the-art classifiers. In this study, we focus on the

injection of external code as a capability for creating AEs, since such an approach affects various

representations of the original samples (see subsection 4.2.4).
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4.2.2 Limitation of Adversarial Learning

Adversarial training is a defense to increase the learning model’s robustness by training over clean

and adversarial datasets. For example, this technique is used for enhancing the robustness of image

classifiers by perturbing the training data, as listed in table 4.1.

Drawbacks. A large number of studies on adversarial learning were implemented to generate AEs

by perturbing the feature space, typically an image. Training a model over AEs generated by one

method may not increase its robustness against other methods. This highlights the problem of

adversarial learning, training against a set of methods does not guarantee the robustness against

different attacks. This problem becomes critical with the existence of code-level manipulation.

Where an adversary can change the outcome of the attack by changing the embedded code, or

slightly changing the attack method et al. [3]; e.g., an adversary can decide which portion of the

code he wants to execute. Therefore, adversarial benign and malicious samples can co-exist within

the same feature space, calling for methods to detect AEs, by only relying on the structure of the

clean sample.

4.2.3 Graph Embedding and Augmentation

Graph Embedding and Augmentation (GEA) is an approach [3] that is shown to produce AEs that

are executable, while allowing targeted adversarial attacks, addressing limitations of the literature.

GEA inserts benign code into a target malware sample to generate an AE, with different feature

representations. GEA applies direct modifications to the CFG of the sample, affecting the extracted

features and resulting in a misclassification, both targeted and non-targeted.

Generating AEs with GEA. The process of generating adversarial examples is done by merging

the code of the original sample with the code of a targeted sample. The targeted sample belongs to

the class, which the adversary desires to misclassify to. The generated CFGs of each sample are
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Figure 4.1: GEA adversarial approach. The CFG in figure 4.1(c) is obtained by embedding the
CFG of a selected sample in figure 4.1(b) into the CFG of the original sample in figure 4.1(a). It
can be done by injecting the code directly.

shown in figure 4.1. The generated CFG of the original sample code is depicted in figure 4.1(a),

whereas, the CFG of the embedded code is represented in figure 4.1(b). Combining both the

original and external code results in figure 4.1(c). The combination is done by creating a shared

entry and exit blocks, where only one branch is executed. In this case, the left branch that belongs

to the original sample will be executed. Note that changing in the structure of the code will change

the extracted features, resulting in misclassification.

4.2.4 Threat Model

The adversary’s goal is to fool the classifier by misclassifying malicious samples as benign and

vice versa while preserving the functionality and practicality of the original sample. Our threat

model focuses on AEs generated based on code-level manipulation using GEA (see section 4.2.3).

We assume that the adversary has full access to the source code of benign and malicious samples.

Moreover, the adversary can edit, compile, and merge samples, and knows the model’s design and

its internal architecture. The adversary’s goal is to conduct targeted and non-targeted misclassifi-
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to adversarial example detector. All non-AEs are then forwarded to the classifier to be classified
into its corresponding family.

cation. The objective of Soteria is to provide a robust and accurate classification in the presence of

this model.

4.3 System Design

4.3.1 High-Level Architecture

To address the impracticability of modification-based adversarial examples, we propose Soteria,

a malware classification framework that incorporates two modules: adversarial sample detection

and malware classification. Soteria manifests the following advantage. It eliminates the cost of

extracting new features, meaning that it can re-use the features generated during the detection of

the AEs to classify a sample as benign or malicious. Alternatively, the user has the flexibility over

the choice of classifier, meaning that the user can make use of different set of features, classifier

parameters, or another classifier altogether. The high-level architecture of Soteria, comprising

of three major components, feature extractor, AEs detector, and malware classifier is shown in

figure 4.2.

Feature Extractor. Soteria utilizes the features from the graphical representation of a program’s

flow execution, i.e., CFG. For a graph G, such that, G = (V,E), and nodes (V ) and edges (E)
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Figure 4.3: Soteria feature extraction process. IoT samples binaries are disassembled to extract
their corresponding CFGs. Then, two nodes labeling techniques are used (Dense-based and level-
based), then, several random walks are done over each labeled graph. The trace of the random
walk is then used for feature extraction by using n-grams with TF-IDF.

represent the basic blocks and the traversed paths, respectively. A critical advantage of the CFG

is that it summarizes the control flow by connecting the entry block with reachable blocks directly

or indirectly. Particularly, if a block of code is appended to an existing program, with an intention

to fool the classifiers, knowing that the appended blocks are unreachable, our feature extraction

methodology ignores such blocks, in contrast to binary- and image-base classifiers. The features

driven from the CFG ignore the non-executable part of samples, eliminating the effect from noise

injection and unused functions in the sample.

AEs Detector. The detector is a standalone component used prior to the classification process to

filter out practical AEs. In this way, we eliminate the model’s vulnerability to AEs by forwarding

only legitimate samples (i.e. benign or malicious) to the classifier that was trained using a non-

adversarial dataset. Unlike the commonly used approaches in the literature, the detector is trained

using the only non-adversarial dataset, while maintaining a distinguishable feature representation

that enables detecting potential AEs.

Classifier. Soteria requires a classifier that can accurately classify the samples into malicious

and benign with the resistance towards the impractical AEs. For evaluation, we make use of an

ensemble of CNN classifiers, however, it can be replaced with another desired method.
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4.3.2 Adversarial Examples Detector

The purpose of the detector is to distinguish normal samples from adversarial ones, regardless of

whether the sample is malicious or not. The flow of the feature extraction, including sample pre-

processing with CFG extraction and labeling, followed by feature extraction using n-gram of the

obtained random walks on the labeled CFG is shown in figure 4.3.

4.3.2.1 Sample Pre-processing

The pre-processing phase is concerned with nodes labeling. For a graph, G = (V,E), we use two

labeling approaches: density-based and level-based.

I Density-based Labeling (DBL). The density of a node is defined as the summation of in- and

out-edges over the total number of edges in the graph. DBL sorts all nodes according to their

density, where the densest node is labeled as 0 and the least dense node is labeled as |V | − 1, and

the centrality factor of a node is used to rank nodes with tied density CFvi
2. If two or more nodes

still have the same centrality factor, we assign labels based on their levels, considering the main or

entry block function as the entry node. We notice some cases where two nodes with equal values

are at the same level (symmetric nodes), and label them in ascending order since switching their

labels will not affect the consistency of labeling.

Nodes 0 and 1 are the densest nodes because they are connected to four blocks, and node 0 has a

higher centrality factor value. The labeling ends by assigning label 10 to the entry block as the least

dense node with the lowest centrality factor, as shown in the result of the density-based labeling in

figure 4.4(a).

2Centrality factor of a node is the sum of node’s betweenness and closeness centrality values, CFvi = Bvi
+Cvi .

The betweenness centrality (Bvi ) of a node vi is defined as ∆(vi)/∆(m), where ∆(vi) is the count of shortest paths
travel through vi and connecting nodes vj and vt, for all j and t where i 6= j 6= t, and ∆(m) is the total number of
shortest paths between such nodes. The closeness centrality (Cvi ) of a node is defined as the average shortest path
between node vi and all other nodes in the graph G.
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Figure 4.4: Graph labeling using two approaches, density- and level-based. Each node has a label
in [0, |V | − 1], where |V | is the number of nodes in G. Figures 4.4(b) and 4.4(d) show the labeling
of the GEA generated CFG over the original graphs in figures 4.4(a) and 4.4(c), respectively.

II Level-based Labeling (LBL). The level of a node vi is defined by the smallest number of

steps Svi from the entry node to reach vi, where the level of a node is equal to 1 + Svi . In LBL,

we consider the main or entry block function in the CFG as the first level layer, and follow (in

breadth-first search manner) other levels for labeling them. For nodes at the same level, we follow

the same labeling mechanism in DBL.
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The entry block is assigned with label 0. In the second level, there are two nodes with the same

density values, and the centrality factor values are used. The process ends by labeling the last level

nodes. Note that the entry block will always have the label 0 when using the LBL method, as

shown as an example for the LBL labeling result in figure 4.4(c),

Both density- and level-based labeling follow the strict predefined rules to guarantee consistency of

representation and ensures that any modification applied to the graph will be reflected in the labels’

assignment. It is worth noting that the labels’ assignment varies for each graph, even when they

share a sub-graph. Labels’ assignment over GEA results in changing the labels, and the feature

extraction process, hence affecting the detector’s behavior. The labeling result of the generated

graphs using GEA is shown in figure 4.4(b) and figure 4.4(d).

4.3.2.2 Feature Representation

For feature generation and representation, we apply a random walk and use a method based on the

n-gram model to approximate the graph.

? Random Walk: A random walk describes random steps in the graph space and is used to

estimate the graph state space. Let G be an undirected graph with a marker placed at vi, initially

the entry block. At each step, the marker moves to an adjacent vertex vj with probability 1
deg(vi)

,

where deg(vi) is the degree of vi. The marker keeps track of the visited vertices’ labels as it moves.

For example, random walks over the original sample graph may generate W = “10 9 2 1 2 . . . ”

when using DBL, and W ′ = “0 2 4 3 4 . . . ” when using LBL. We define the length of the random

walk as |W | (the number of labeled nodes collected by a random walk of length |W | is (|W |+ 1).

In Soteria,W = 5×|V |, and repeat the walk ten times over DBL and ten times over LBL, resulting

in 20 vectors. The use of random walk helps to randomize the feature extraction process, making

it difficult to generate practical AEs. We observed that the repetition of the process improves the

quality of the random walks’ feature representation, corresponding to the underlying graph.

54



? n-grams: The n-gram technique can be used in different models for feature representation

of text, documents, graphs, etc. Unique terms or n-gram are extracted from the entire corpus

before counting the frequencies in individual samples. Inspired by node2vec [47], we use n-gram

representation of the graphs from the sequences of nodes obtained by the random walk. From the

derived random walks with the lengths specified above, we extract n-grams of lengths 2, 3, and 4

as a feature representation of the CFG. Given that, the number of n-grams is large even for small

graphs. We select and use the top 500 discriminative features for each LBL and DBL (thus, 1,000

features in total). The selection of the top discriminative feature is based on the frequency of W .

4.3.2.3 Building Detection Model

The auto-encoder reconstructs the given input at the output layer, and consists of four main blocks;

an input layer, an output layer, hidden layers, and a validation unit, which are described below. The

core of the detection model is an auto-encoder that consists of five fully connected dense layers, as

shown in figure 4.5.

• Input Layer. This layer is a one-dimensional vector of size 1 × 1000 fed by the density- and

level-based features vectors.

• Hidden Layers. These layers consist of three fully connected dense layers, and extract a deep

representation of the features. The design is based on decoding the features from 1 × 1000 to

1× 2000 and 1× 3000. Afterward, a third layer encodes the features presentation to 1× 2000.

This structure eliminates the features dependencies in the reconstruction process, as the extracted

features are mutually independent.

• Output Layer. This layer is fully connected to the third hidden layer. With a shape of 1× 1000,

the output layer reconstructs the features seen at the input as its output, which is then returned

as a density- and level-based vector.
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Figure 4.5: The proposed AEs detector: The detector consists of five fully connected layers auto-
encoder. The input to the auto-encoder is density- and level-based feature vectors, where the output
is the reconstructed feature vectors. A validation unit is used to calculate the reconstruction error.
A sample is considered as AE if reconstruction error exceeds a threshold.

• Validation Unit. The validation unit computes the Reconstruction Error (RE) by calculating the

Root Mean Square Error (RMSE) between the original input x and the reconstructed output x̂.

If the RMSE exceeds the threshold, set to be 50%, the sample x is labeled as AE.

4.3.3 Classifier

As the detector distinguishes between adversarial and clean samples, the classifier distinguishes

clean samples into benign or one of three malicious families: Gafgyt, Mirai, and Tsunami. For this

purpose, two CNN classifiers are utilized to incorporates separately the density- and level-based

features.
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Figure 4.6: The structure of Soteria classifiers. The classifiers consist of four convolutional layers
with max-pooling and dropout functions. The output of the classifier is the softmax probability of
each class.

4.3.3.1 CNN Classifiers

The input to the classifier in Soteria is a one dimensional (1D) vector of size 1× 500 representing

the density- or level-based extracted features. All layers use the Rectified Linear Units (ReLU) ac-

tivation function, and dropout regularization to prevent model over-fitting. Below, we describe the

CNN structure in the following using the notation p as the dropout probability, s as the stride, m as

the max-pooling size. The structure of the classifier, which consists of three blocks: convolutional

blocks (ConvB) 1 and 2 and a classification block (CB), is shown in figure 4.6.

• ConvB1. ConvB1’s input is the extracted features, and consists of two consecutive convolutional

layers with 46 filters of size 1 × 3, that operate convolutions with s = 1 with no padding to

generate feature maps of size 46× 498. Each convolutional layer is followed by a max-pooling

with s = m = 2 and a dropout with p = 0.25.
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based feature vectors. The classification decision is the majority vote of the CNN classifiers output
probabilities over the feature vectors.

• ConvB2. Similar to ConvB1, except for the number of filters. ConvB2 consists of two convolu-

tional layers with 92 filters of size 1× 3, followed by max-pooling and dropout.

• CB. CB’s input is the flattened feature maps of ConvB2, fed to a fully connected layer of size

512 with a dropout p = 0.5. The output of the fully connected layer is fed to a softmax layer for

the classification.

4.3.3.2 Majority Voting

For each sample, we perform ten random walks and generate 20 feature vectors (from both DBL

and LBL). These feature vectors are forwarded to their corresponding CNN classifiers. The final

output is based on the majority voting unit, where the class with the highest vote is used as the

sample’s label, as shown in figure 4.7.

4.4 Dataset and Evaluation

4.4.1 Dataset

To evaluate Soteria, we assembled a dataset of IoT benign samples and IoT malware. We collected

13,798 malware samples, randomly selected from CyberIOCs [30] during the period of January
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Table 4.2: Distribution of IoT samples across benign and malicious families. Gafgyt is the most
popular IoT family with 66.18% of the dataset samples, while Tsunami is the least popular with
only 262 samples (1.55% of the samples). The dataset is split into the train (80%) and test (20%)
subsets.

Class
# of Samples

% of Samples
# Train # Test # Total

Benign 2,416 600 3,016 17.94%
Gafgyt 8,911 2,217 11,128 66.18%
Mirai 1,935 473 2,408 14.33%
Tsunami 210 52 262 1.55%
Overall 13,472 3,342 16,814 100%

2018 to late February of 2019. For the benign samples, we manually assembled a dataset of 3,016

samples from source-code projects available on GitHub [31]. Next, we used Radare2 [32] to obtain

the CFGs of the samples. Throughout the study, wherever required, we use 80% of our dataset for

training and validation and 20% for evaluation.

Malware Family (Class). To determine the family label of the malware, we inspect the malware

samples through VirusTotal [33]. The scan results from the VirusTotal are then passed through

AVClass [104] to label them with their family class. VirusTotal scans include scan results from

multiple anti-virus software, each of which assigns a family name to the malware. AVClass further

uses the majority vote to determine the family label. Soteria classifies the samples into different

classes, i.e., family labels and benign. We divided our dataset into 80% for training and validation,

and 20% for evaluation. The distribution of IoT samples across classes is shown in table 4.2.

Adversarial Dataset. Recall that we utilize the GEA to generate the AEs to evaluate Soteria’s

robustness. These AEs are generated from the test dataset (20% of the samples per class). Towards

this, we start by selecting three samples from each class, i.e., one from each size: small, medium,

and large. We define small, medium, and large by the minimum, median, and maximum number

of nodes in the dataset. Taking a sample from a class for each size, as the targeted sample, we
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Table 4.3: GEA selected targeted samples. These samples are used to generate the AEs to evaluate
Soteria. Three samples from each class are selected of different sizes (number of nodes), i.e. small,
medium, and large.

Class Size # Nodes # AEs

Benign
Small 10 2742

Medium 50 2742
Large 443 2742

Gafgyt
Small 13 1125

Medium 64 1125
Large 133 1125

Mirai
Small 12 2869

Medium 48 2869
Large 235 2869

Tsunami
Small 15 3290

Medium 46 3290
Large 79 3290

generated adversarial examples by applying GEA over every sample in the test dataset of all the

classes except for the targeted sample class. For example, if we select a sample of size Small from

the benign dataset, we then apply GEA over this sample and each of the samples in the test dataset

of Gafgyt, Mirai, and Tsunami, giving us a total of 2,742 AEs (Gafgyt, Mirai, and Tsunami have

2,217, 473, and 52 samples, respectively, aggregating to 2,742 AEs). The number of generated

AEs of each class is reported in table 4.3.

4.4.2 Feature Analysis

We extract features from 200 random samples from each class. Recall that we extract density- and

level-based features from each sample. We use both of these feature vectors together to create a

combined feature vector of size 1×1000. We used Principal Component Analysis (PCA) [81] with

a dimension of two. PCA converts a set of observations of possibly correlated variables into a set

of values of linearly uncorrelated variables called principal components.
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Table 4.4: Distribution of dense- and level-based feature vectors extracted by n−grams technique
from the random walk traces among the IoT benign and malware classes.

Class
# Features % Features

Dense Levels Total Dense Levels Total
Benign 153 290 443 30.6% 58.0% 44.3%
Gafgyt 445 450 895 89.0% 90.0% 89.5%
Mirai 162 251 413 32.4% 50.2% 41.3%
Tsunami 114 240 354 22.8% 48.0% 35.4%
Shared 51 129 180 10.2% 25.8% 18.0%
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Figure 4.8: The PCA comparison between the benign and malware families using features used in
Alasmary et al. [8].

Baseline Comparison. Prior works, like, Alasmary et al. [8] and Abusnaina et al. [3] use graph-

theoretic features extracted from the general structure of the CFG. With the comparative analysis

of such features with our feature considerations, we exhibit our feature sets to be more discrimina-

tive. We notice that our feature representation is more discriminative of the classes. Additionally,

61



-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
Principal Component 1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

P
rin

ci
pa

l C
om

po
ne

n
t 2

Tsunami
Mirai
Gafgyt
Benign

(a) Benign and malware

-0.4 -0.2 0 0.2 0.4 0.6
Principal component 1

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

P
rin

ci
pa

l c
om

po
ne

nt
 2

Normal
Adversarial

(b) Normal and adversarial

Figure 4.9: Soteria: Dense-based labeling feature vector comparison. Figure 4.9(a) shows the PCA
distribution of benign and malware samples. Figure 4.9(b) shows the PCA distribution comparison
between the normal and GEA generated AEs.

we notice that the malicious classes in the figures are indistinguishable using the graph theoretic

features. The PCA visualizations of the feature vectors between the classes of features considered

in the prior works and our features design are shown in figure 4.8, figure 4.9(a), figure 4.10(a), and

figure 4.11(a), respectively.

Moreover, the distribution of the discriminative features over the four classes with 51 and 129

density-based and level-based features, respectively, shared between classes is reported in table 4.4.

AE vs. Clean Features. To detect AEs, i.e., distinguish the AEs from the clean samples, under-

standing the differences in feature representation between clean and AEs is important. To examine

this, we applied PCA on the clean and adversarial feature vectors. We notice that the clean and AEs

are distinguishable, particularly when using the combined feature vectors. The results of which are

shown in figure 4.9(b), figure 4.10(b), and figure 4.11(b).
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Figure 4.10: Soteria: Level-base labeling feature vector comparison. Figure 4.10(a) shows the
PCA distribution of benign and malware samples. Figure 4.10(b) shows the PCA distribution
comparison between the normal and GEA generated AEs.

4.4.3 Evaluation and Analysis

Recall that Soteria has two major functionality, AE detection and classification. Below, we present

the evaluation of Soteria’s performance and also compare it with the baseline.

4.4.3.1 Adversarial Example Detector

We evaluated AE detector of Soteria by its ability to detect AEs and distinguish them from the

clean samples, regardless of their class. The spatial differences between clean and adversarial

samples are shown in figure 4.9(b), figure 4.10(b), and figure 4.11(b).

Training Parameters. The reconstruction error (RE) is the RMSE between the original and re-

constructed samples; we set the number of epochs to 100 with a batch size of 128. We trained
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Figure 4.11: Soteria: Combined labeling feature vector comparison. Figure 4.11(a) shows the
PCA distribution of benign and malware samples. Figure 4.11(b) shows the PCA distribution
comparison between the normal and GEA generated AEs.

Soteria on reconstructing the training data in table 4.2.

Testing. Given the trade-off between adversarial detection sensitivity (false negatives) and the

clean samples misdetection (false positive), setting a proper RE threshold is essential. We calculate

the RE and set the threshold (Th) as Th = µ( ~RE) + σ( ~RE), where ~RE is a vector of all RE values

of the training samples, and µ and σ are the mean and standard deviation of the training samples

RE, respectively. To consider a sample as adversarial, half of its feature vectors should have a RE

higher than the threshold. The RE distribution over the clean and adversarial features vectors is

depicted in figure 4.12.

Performance. Overall, Soteria detector detects 97.79% of the AEs. In most cases (9 out of 12),

the detector was able to detect AEs with an accuracy greater than 99%. The performance results

of Soteria against AEs are reported in table 4.5.
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Figure 4.12: Reconstruction Error (RE) comparison between normal and the generated AEs. Fig-
ure 4.12(a) shows the distribution frequency of the RE among the normal and adversarial samples.
Figure 4.12(b) represents the accumulated frequencies of samples and their corresponding RE. The
vertical dashed line is the chosen threshold for Soteria AEs detector.

Furthermore, We notice that only samples from the Gafgyt family were misdetected as AEs, mainly

because of the high number of discriminative features associated with this family. The detection

performance against clean samples is reported in table 4.6.

In conclusion, we detected AEs and distinguish them from the clean samples with high accuracy.

The detected samples are labeled as adversarial and will not be forwarded to the classifier.

Analysis. To show the importance of setting the right threshold, we re-implement the threshold as

Th = Mean( ~RE)+α×SDV ( ~RE),where α is an arbitrary value. We test the detector performance

against the clean and adversarial samples by varying α from 0 to 2.0. With α = 0, all AEs were

detected, although more than 60% of the clean samples were classified as AEs. With α = 2.0,

all clean samples were correctly detected, and no AEs were detected by Soteria. Note that our

selected threshold was chosen without access to the test dataset. The effect of α on the detection

error is depicted in figure 4.13.
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Table 4.5: GEA: Detector Performance over adversarial samples. The detector was able to detect
an overall percentage of 97.79% of the AEs. DE refers to the detected samples.

Class Size # AE # DE % DE

Benign
Small 2,742 2,741 99.96%

Medium 2,742 2,739 99.89%
Large 2,742 2,340 85.34%

Gafgyt
Small 1,125 1,115 99.11%

Medium 1,125 1,125 100%
Large 1,125 1,120 99.55%

Mirai
Small 2,869 2,865 99.86%

Medium 2,869 2,864 99.82%
Large 2,869 2,680 93.67%

Tsunami
Small 3,290 3,289 99.97%

Medium 3,290 3,287 99.91%
Large 3,290 3,248 98.72%

Overall 30,078 29,413 97.79%

Table 4.6: GEA: Detector Performance over clean samples. Only 6.16% of the clean samples were
misclassified as AEs. All Benign clean samples passed the detector. DE refers to the detected
samples (lower is better).

Class # Samples # DE % DE
Benign 600 0 0%
Gafgyt 2,217 206 9.29%
Mirai 473 0 0%
Tsunami 52 0 0%
Overall 3,342 206 6.16%

4.4.3.2 Classifier

The classifier aims to correctly distinguish a sample into the aforementioned classes (Benign,

Mirai, Gafgyt, or Tsunami). We evaluate the performance of Soteria alongside the existing ap-

proaches.
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Figure 4.13: Effect of varying the detector threshold (α) on the detection error. The selected α in
Soteria is the intersection between the error rates of normal and adversarial samples.

Training Parameters. We set the number of epochs to 100 with a batch size of 128 and evaluated

the performance of each model individually and against the majority voting.

Performance. We evaluated Soteria’s classifier’s performance against two existing models: 1

Graph-based: Alasmary et al. [8] propose a malware detector based on features extracted from the

general structure of the CFG. , and 2 Image-based: Cui et al. [28] uses an image-based design

where each sample is represented as an image of a fixed size to detect malware. We implemented

the above two systems. The model accuracy over each class is measured by the number of samples

correctly classified over the total number of samples that belong to that class. For the image-based

model, we implemented the four models mentioned in their design. The evaluation of 96 × 96

and 192 × 192 based models shows poor performance, with an overall accuracy rate of 66.37%.

Therefore, we did not include it in the comparison. Our evaluation shows that Soteria outperforms
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Table 4.7: Classification performance of Soteria dense-, level-, and voting-based classification
systems in classifying normal (non-adversarial) samples.

Class
Model Accuracy

Soteria
[3]

[28]
DBL LBL Voting 24× 24 48× 48

Benign 99.45 99.70 100 99.00 99.00 99.50
Gafgyt 99.70 97.00 100 98.55 98.87 99.14
Mirai 99.49 98.73 99.36 97.67 92.81 92.81
Tsunami 100 100 100 84.61 32.69 59.61
Overall 99.63 97.77 99.91 98.29 97.01 97.70

Table 4.8: Soteria’s classifier predictions over AEs misdetected by the detector. Most of the mis-
detected samples are generated using GEA with large size selected samples.

Class Size # AE
Classification

Benign Gafgyt Mirai Tsunami

Benign
Small 1 1 0 0 0

Medium 3 1 2 0 0
Large 402 287 115 0 0

Gafgyt
Small 10 10 0 0 0

Medium 0 0 0 0 0
Large 5 4 1 0 0

Mirai
Small 4 4 0 0 0

Medium 5 5 0 0 0
Large 181 145 36 0 0

Tsunami
Small 1 1 0 0 0

Medium 3 3 0 0 0
Large 42 39 3 0 0

the existing systems, as particularly shown in the Tsunami classification and overall accuracy rate.

The performance results of the models for the different classes are reported in table 4.7.

Analysis. Recall that the accuracy of our AE detector was 97.79%, meaning that 2.21% of the

AEs were not detected by Soteria, and were forwarded to the classifier. Given its application, it
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is important to understand the classifier’s behavior against those samples. The classifier detects

them as benign or Gafgyt, with a large percentage (76.1%) of the samples classified as benign. It

is worth noting that there is a clear difference in the feature representation between clean and AEs,

as shown in figure 4.9(b), figure 4.10(b), and figure 4.11(b) .

However, due to the variety in the benign samples’ features distribution, the adversarial examples

that pass the detector are likely to be classified as benign. This can be critical, even with a detection

rate of as high as 97.79%, given the application domain. The classifier’s behavior over these

samples is shown in table 4.8.

4.5 Discussion

System Robustness. Our evaluation shows that Soteria is robust, with the ability to detect AEs

with an accuracy of 97.79%, and a trade-off of detecting 206 Gafgyt samples as adversarial. More-

over, Soteria outperforms other systems over the same training and testing datasets. The compared

systems had an overall low Tsunami classification accuracy due to the small dataset. Soteria, on

the other hand, and using a majority voting system, achieved an accuracy of 100% in classify-

ing Tsunami sample. In fact, the majority voting classifier only failed in classifying three Mirai

samples in the evaluation, classifying them as benign samples.

Operation Mode for Detector. Soteria is used to distinguish AEs and detect them. To enable

Soteria’s operation, the extracted features distribution of normal and AEs should be different.

Moreover, we argue that the detector should not be aware of the AEs and their patterns in the

training process, as this will bias the detector’s performance towards specific attacks, decreasing

the robustness against other attacks.

Adversarial Capabilities. In section 4.2.4, we discuss the threat model and adversarial capabil-

ities. We assumed that the adversary can access the source code of the samples, and can modify
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and merge them. Moreover, he has prior knowledge of the design and its internal architecture. So-

teria’s success implies that the adversary cannot generate practical AEs. What the adversary does

not have in Soteria is the ability to know in advance what features are being used for the classifier,

since those features are randomized for every run of the system. For instance, inserting a single

block with a low density near the exit block will not highly affect the labeling of the sample, and

will not be detected as an AE by Soteria. However, Soteria can classify the sample to its original

class since the labels are intact. Moreover, the adversary needs to ensure that the labels change in

such a way the classification decision will be toggled without being detected by the AE detector,

which happened in our evaluation in 2.21% of the generated AEs. Finally, and due to the change

in the labeling, the adversary cannot force the classifier into a targeted misclassification.

Alternative Features for Classifier. In Soteria, we built a classifier that is based on the utilized

features from the detector design process. However, the classifier can be replaced, with some

caveats. The detector decision is based on the extracted CFG. Appended binaries at the end of

the file will not affect the detector decision. Clean samples with adversarial binaries appended to

them will not be detected as AEs by Soteria. While this is an advantage of Soteria classifier, it is

equally a serious shortcoming with other approaches, such as image-based malware classifiers [75].

Ideally, the classifier should be at least as good as the classifier proposed in this chapter, meaning

that it should only consider the executable binaries in the classification process. Moreover, the

discriminative features are highly distinguishable among classes, and the feature extraction process

is immune to feature space manipulation.

Limitations. Our work has two major limitations. 1 CFG-based Features: CFG-based features

are effective compared to other feature designs. However, CFG does not necessarily reflect the

actual code. Editing the code without even changing the functionality (by creating an equivalence)

would affect the structure of the CFG, which might be exploited by the adversary to evade detec-

tion in the first place. For example, an adversary may inject a sample of code that would not result
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in a new branching, but would still affect the structure of the CFG. While such an event is well

within the scope of our adversary model, and would not affect the classification results, it would

only affect the feature space, requiring us to retrain Soteria to capture the new feature space. 2

Binary Obfuscation: Obtaining a representative CFG would not be possible under obfuscation,

typically done using string obfuscation, resulting in hiding parts of the code, or function obfus-

cation, resulting in an incomplete CFG. An incomplete CFG may result in an incomplete feature

representation of the sample, and thus a misclassification. Obfuscation is a shortcoming of our

work, and deobfuscation is an active research area in its own right, where developed tools can be

used as the basis for our work to obtain representative CFGs.

4.6 Conclusion

In this chapter, with Soteria, we address the need to detect adversarial machine learning attacks by

proposing an adversarial machine learning detector for IoT malware. Particularly, Soteria defends

the CFG-based classifiers for malware detection against the AEs. The first component, the AE

detector, is a Control Flow Graph (CFG)-based model that can detect adversarial samples without

training the model over adversarial samples (as shown by prior works). The model computes the

Reconstruction Error (RE) between the input data and the reconstructed output of auto-encoder,

and uses a threshold to detect the adversarial samples with an overall accuracy of 97.79%. Addi-

tionally, the second component of Soteria performs a family-based classification with an accuracy

of 99.91% on the clean samples. These two models operate independently, increasing the robust-

ness of Soteria.
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CHAPTER 5: SHELLCORE: DEFEATING IOT MALWARE THROUGH

IN-DEPTH ANALYSIS AND DETECTION OF IOT SHELL CODE

Malware-infected hosts use Command and Control (C2) servers to obtain payloads that include

instructions to compromised machines (or bots) synchronizing their actions, including their cycles

of activity by attacking targets, propagation by recruiting new bots and acting as a source of propa-

gation, and by stealthy operation to evade detection. To achieve those goals, the Linux shell comes

to their rescue. For example, to change privileges, it uses the shell to execute chmod command,

to infect other hosts it uses the shell to launch dictionary brute-force attack, to propagate (bot)

it connects to C2 servers to download instructions using the HTTP protocols via Linux shell, to

launch an attack it uses the shell to flood the HTTP of the victim, to remove the traces of execution

it executes rm command on the shell, etc. [12].

IoT devices utilize a packed version of Linux libraries, called Busybox [125], to implement Linux

capabilities. Linux shell is susceptible to brute-force, privilege escalation, Shellshock, and other

vulnerabilities (e.g., CVE-2018-9310, CVE-2019-1656, CVE-2018-0183, CVE-2017-6707) etc. [90,

34, 22, 119]. Having access to the shell on a device would allow the adversary a full control to

the device. With the emergence of Linux-based IoT devices and the fact that the majority of work

in the literature has been focused on other shell interpreters (e.g., power and web), analyzing and

detecting the malicious use of the Linux shell in IoT devices is of prime importance, which we

address in this chapter.

5.1 Motivation

Shell Commands and Automation. Most IoT malware uses stealthy operations to evade detec-

tion. In their operation, IoT botnets heavily rely on Unix-based shell commands. For example,
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1 wget \%s −q −O DNS. t x t
2 | | busybox wget \%s −O DNS. t x t
3 | | / b i n / busybox wget \%s −O DNS. t x t
4 | | / u s r / busybox wget \%s −O DNS. t x t

Figure 5.1: Retrieving a list of target hosts.

bots use the shell to execute chmod command to change privileges. Further, bots use the shell to

launch a dictionary brute-force attack and to propagate by connecting to the C2 server to download

instructions using the HTTP protocols. To launch an attack a bot typically obtains a set of targets

from a dropzone by invoking a set of commands that uses the shell to flood the HTTP of the victim

and to remove the traces of execution by executing the rm command [12], as shown in figure 5.1 .

Adversaries today leverage the results from search engines for Internet-connected devices, such

as Shodan [77]. For example, a simple “default password” search on Shodan returned 72,763

results. Moreover, malware authors can arm themselves by exploiting a set of vulnerabilities, such

as those present in services run on the device (e.g. CVE-2018-0183) and/or in outdated firmware

(e.g. CVE-2016-1560), to gain access to the shell. On top of all, zero-day vulnerabilities can

be abused to access the shell to achieve short-term attacks. Therefore, detecting malicious shell

commands to harden the security of a device is of paramount importance. Prior works have studied

the malicious use of Windows PowerShell. However, the malicious utilization of the Unix shell is

not fully-investigated, especially when used by IoT devices. This chapter aims to study and detect

the malicious shell commands used in common IoT malware.

In this chapter, we design, implement, and evaluate ShellCore, a system for detecting malicious

shell commands used in IoT malware. To this end, we collect a dataset of residual shell commands

used by IoT malware samples from IoTPOT [91].

Our analysis of such samples shows that shellcodes can be found embedded in the disassembled

code of the malware binaries. Therefore, we utilize static analysis to search through the disas-
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sembled code of malware to extract shell commands used in malware samples. For the benign

shell commands, we collect a dataset from benign applications and users. In particular, we use the

traffic generated from applications in a real-time environment. For analyzing and detecting ma-

licious commands, ShellCore utilizes a Natural Language Processing (NLP) approach for feature

generation, followed by a deep learning-based model to detect malicious commands.

Contributions. This chapter aims to utilize static analysis to detect the malicious use of shell com-

mands in IoT binaries, and to use those shell commands as a modality for IoT malware detection.

As such, we make the following two contributions::

• Using shell commands, extracted from 2,891 recent IoT malware samples along with com-

mands from a benign dataset, we design an accurate detection system that detects malicious

shell commands with more than 95% accuracy. Compared to the state-of-the-art approaches,

our approach is more efficient and accurate. Using token- and character-level features, the

feature space on the shell commands is easy to explain and interpret. Features contributing

to malicious behavior can be easily identified and restricted to legitimate use.

• We extend our command-level detection approach and design a detection model for ma-

licious files (malware samples), which often include multiple commands. Extending the

results of detecting individual commands, we group the commands by file and detect the

malicious files with more than 99% accuracy. Our detection approach can be applied to files

compiled for any IoT hardware architecture (e.g. ARM, MIPS, Power PC, etc.) as long as

the shell commands are extracted (which can be done statically and efficiently).

5.2 Related Work

Shell Commands. Hendler et al. [51] detect malicious PowerShell commands using a combi-
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Work Shell Type Dataset Capability Performance Method

[51] PowerShell 66,388 Detection
AUC [98.5–99.0%]
TPR [0.24–0.99%]

NLP Methods
CNN Architecture

[97] PowerShell/.NET 6 Analysis —
Static Analysis
Dynamic Analysis

[119] Linux shell 13,257 Analysis — Diversification

[110] Web shell 481 Analysis —
Static Analysis
Dynamic Analysis

[116] Web shell 7,681 Detection
Precision [98.6%]
Recall [98.6%],
F1-score [98.6%]

CNN Architecture

[117] Web shell 39,596 Detection
AUC [82.9-100%]
TPR [74.5-100%]
TNR [88.9-100%]

Malware Signature
Malware Functions
Longest Word (header)

[100] PowerShell 4, 079 Detection AC [85%] Deep Learning

Ours Linux shell 1,637,658 Detection
AC [92.9-99.9%]
FNR [0-31.7%]
FPR [0-8.5%]

NLP Methods
Deep Learning
Support Vector Machine

Table 5.1: Previous works for analysis and detection of the shell commands. Abbreviations: Area
Under the Curve (AUC), True Positive Rate (TPR), True Negative Rate (TNR), Accuracy (AC),
False-Negative Rate (FNR), False-Positive Rate (FPR), Natural Language Processing (NLP), and
Convolutional Neural Networks (CNNs).

nation of Machine Learning (ML) approaches, Natural Language Processing (NLP), and Conven-

tional Neural Network (CNN). Pontiroli and Martinez [97] analyze PowerShell and .NET malware

by analyzing the code execution. We note that both works are focused on shell commands that can

only run on Microsoft Windows, for a single architecture, and it is unclear if the same insight can

be applied to IoT software and command artifacts. On the other hand, Uitto et al. [119] proposed

a diversification technique to Linux shell commands by modifying and extending commands to

protect against injection attacks.

Web Shell. The web shell is a script that allows the adversary to run commands on a web server to

control a targeted web server remotely as an administrator. There have been some works on detect-

ing malicious usage of the web shell. Starov et al. [110] statically and dynamically analyzed a set
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of web shells to uncover visible and hidden features of malicious Hypertext Preprocessor (PHP)

shells. Leveraging VirusTotal, they achieved an accuracy of 90% and 88.5% for the obfuscated

and de-obfuscated shells, respectively, that are detected by at least one antivirus engine. Tian et

al. [116] proposed a system to detect malicious web shell commands using CNN and word2vec-

based approaches with precision, recall, and F1-score performance around 98.6%. Additionally,

Tu et al. [117] proposed a detection system to identify the web shells by calculating the threshold

score values calculated from Malware Signature (MS), Malware Functions (MF), and the Longest

Word (LW) in the header of the files by comparing the values with a database that have MS and MF

values, and achieved an accuracy of 82.9%, 93.7%, and 100% for MS, MF, and LW, respectively.

Moreover, Rusak et al. [100] proposed a deep learning approach to classify malicious PowerShell

by families based on two features from the abstract syntax trees representation of the PowerShell

codes, and achieved an accuracy of 85% with 3-fold cross-validation. The literature works related

to the analysis and detection of the different malware types using shell commands are highlighted

in table 5.1.

IoT Malware Detection. A few works have been done on IoT malware detection. Kirat et al. [57]

proposed an elegant sequencing-based system for detecting obfuscation and evasion techniques.

Pa et al. [91] proposed IoTPOT, a detection system that analyzed and detected Telnet-based at-

tacks on IoT devices. The system used a sandbox that supports different malware architectures.

Bertino and Islam [15] stated that IoT devices are vulnerable to botnet attacks, and proposed a

behavior-based approach that combines behavioral artifacts and external threat indicators for mal-

ware detection. This approach, however, relies on external online threat intelligence feeds (e.g.,

VirusTotal) and cannot be generalized to other than home network environments (due to offload-

ing).

Hossain et al. [53] proposed Probe-IoT, a forensic system that investigates IoT-related malicious

activities. Montella et al. [86] proposed a cloud-based data transfer protocol for IoT devices
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to secure the sensitive data transferred among different applications, although not addressing the

insecurity of the IoT software itself. Angrishi [11] outlined the anatomy of IoT botnets and rec-

ommended several security measures to address them. Dahl et al. [29] classified a large number

of malware samples by minimizing their representation (features) using the Principal Component

Analysis (PCA), allowing a large number of algorithms that could otherwise be impractical to be

applied to the problem domain. Pascanu et al. [96] detected malware using language-level instruc-

tions and a standard classifier. Cozzi et al. [26] analyzed a large scale Linux malware through

studying and investigating the malicious behavior of malware, and discussed obfuscation tech-

niques that malware authors use. We note that in all of those studies, IoT malware is addressed

indirectly by addressing generic malware that is not particularly tailored for IoT devices.

5.3 Background

This work studies the malicious shell commands extracted by analyzing IoT malware samples. The

embedded IoT devices use wrapped utilities and libraries of the Unix systems, such that it has the

Unix capabilities without much overhead to the device. Thus, many malware authors design their

malware to abuse Unix capabilities, e.g. to gain access to the devices and to further propagate and

launch attacks. Gaining insights into IoT malware through shell access analysis and understanding,

by distinguishing between shell commands used by malware and benign software, form the basis

of this work. We utilize static analysis to extract the commands from the malware samples. This

section elaborates on the use of shell commands as a weapon, and the static analysis approach in

detail.

The Use of Shell as a Weapon.

Shell is a command-line interpreter that provides a command-line interface for operating systems

by executing a particular command from the terminal to perform specific tasks by calling the ap-
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propriate OS command. It abstracts the details of the communication between the kernel and the

operating system by managing the technical operation. However, adversaries use the shell com-

mands to gain access to host devices to launch attacks. This can be facilitated by the use of default

credentials by the owners, vulnerabilities in the services such as SSH and device firmware. The

vulnerabilities in the firmware could be due to the usage of outdated firmware or due to delayed

upgrading of firmware or services. For example, in 2014, Shellshock bash attacks caused a vul-

nerability in Apache systems through HTTP requests, and using the wget command to download

a file from a remote host and save it to the tmp directory to cause infection [59]. Additionally, a

recent vulnerability (CVE-2019-1656), which results from the improper input validation in Linux

operating system and can be exploited by the adversaries by sending crafted commands to gain

access to targeted devices, was reported [90].

By abusing the shell, adversaries can utilize the shell to brute-force the credentials of users to gain

access to the device by launching a dictionary attack. Additionally, they can use the shell to connect

to C2 servers to download instructions; e.g. infecting the device, propagating itself, or launching a

series of directed flooding attacks. Moreover, malware can use bash to find command to look for

uninfected files in the host device and use the tmp directory to download and run malware. The

use of Unix shell by a malware to abuse the device by executing shell commands, where the use of

or operator is to brute-force different commands, is depicted in figure 5.1.

Static analysis. To defend against malicious utilization of the Unix shell, it is important to have a

baseline of the shell commands injected by the malware. Static analysis approaches employ various

techniques to reveal indicators that determine whether a software is malicious or benign. One such

indicator is command executions, which can be utilized to observe and analyze the shell commands

used by the malware, thereby hinting at possible execution patterns of the malware. This goal can

be achieved by observing the strings, functions, and disassembled code of the program etc.. While

executing programs can show commands being used in a real-time, static analysis can provide the
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Figure 5.2: The high-level workflow of ShellCore. The malware contains HTTP requests and com-
mands. We gather the benign dataset by crowd-sourcing and sniffing over an IoT network. Upon
extracting the shell commands (i.e. the commands and the HTTP requests), we featurize them
as n-grams. We then perform feature reduction, followed by a machine learning-based malware
detection system.

commands more efficiently.

We employ static analysis on our malware dataset to create our final dataset of malicious com-

mands. To do so, we disassemble every malware sample in our dataset and extract the strings

from them. We then utilize the strings to (i) create a dataset of shell commands and label them as

malicious commands and (ii) group the commands by file (malware sample) and label each as a

malicious sample.

5.4 Dataset and Approach Overview

As we aim to detect malicious commands and files, we begin by disassembling the malware sam-

ples to extract strings from their code base. For our detection modules, we implement ML-based

algorithms to detect malicious commands.

5.4.1 Dataset and Data Processing

We obtain a dataset of 2,891 randomly selected malware samples from the IoTPOT project [91],

a honeypot emulating IoT devices. To test our detector, ShellCore, we build a dataset of be-
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nign samples gathered from real-time networks and voluntary submission of shell history. Our

approach, split into three modules: initial discovery, command extraction, and detection. In the

initial discovery module, we disassembled the malware binaries. To create a set of rules that we

can automatically apply to samples for obtaining the relevant commands, we manually examined

all shell commands extracted from the strings of 18 malware samples and established patterns of

those commands. Those common patterns are used to automate the extraction of shell commands

from the rest of the samples.

The second component (module) in our workflow, namely the command extraction module, takes

the command patterns obtained in the initial discovery phase and applies those patterns on the text

obtained from each sample. More precisely, in the command extraction module, we extract the

shell commands from the malicious and benign binary samples, by concentrating on the strings,

and label them as malicious or benign. More details on the patterns are below. The system flow

for ShellCore is shown in figure 5.2.

5.4.1.1 Malicious Dataset Creation

Using an off-the-shelf tool, Radare2, we disassemble each malware sample (among the 2,891

samples in our initial dataset) and extract the strings from the disassembled code. We then utilize

the strings appearing in each sample to magnify the commands assimilated in them, then add

them to our dataset of malicious commands. For coverage of the shell commands appearing in

malware, we gather the strings from the disassembled code. For faster extraction of the shell

commands, we calculate the offset where the strings reside, i.e., the memory address where the

string is referenced in the disassembled code, and then conduct the disassembly from that offset.

We pull the instruction set at the offset and extract the desired command. Before automating

the process of command extraction, we manually analyzed many samples to observe patterns that

could uniquely identify the shell commands. This manual analysis included 18 malware samples
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Table 5.2: Malware dataset by architecture. Percentage is out of the total samples for the given
architecture.

Architecture # of Samples Percentage

ARM 668 23.11%
MIPS 600 20.75%
Intel 80368 449 15.53%
Power PC 270 9.34%
X86-64 242 8.37%
Renesas SH 233 8.06%
Motorola m68k 217 7.51%
SPARC 212 7.33%
Total 2,891 100%

and their associated strings. In total, we identified 1,273 patterns that we used later to extract

shell commands from other samples in our dataset. Such patterns include keywords, e.g. kill, wait,

disown, suspend, fc, history, break, etc.—we utilize online resources to build a dataset of keywords

of shell commands to augment our automation process. For example, strings beginning with shell

command keywords such as, ”cd ”, between if and fi, among other similar command structures,

are extracted. Such examples of the shell commands are shown in table 5.3.

Based on the determined patterns to identify the shell commands, we use regular expressions to

search for the specific patterns within the strings obtained from the malware to automate the pro-

cess for all the malware samples. Although the commands contained in the strings may not be

syntactically correct, e.g. the spaces are masked with special characters or spaces, they, however,

hint to the location of shell command references. With an intent to find the actual commands,

we go to the address where a particular string is quoted and disassemble at that offset. We then

store the command gathered from the offset and label it as malicious. The steps used to extract the

strings from the malware samples, from which the shell commands are then obtained, is shown in

algorithm 1. We follow this process on all the malware samples, obtaining a total of 2,008 unique
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Algorithm 1: Command extractor
Input : directory to malware
Output: commands in the malware

1 malwareDirectory ← directory to malware
2 for malware in malwareDirectory do
3 Extract the strings in the program.
4 strings← split strings by new line
5 for i← 0 to len(strings) by 1 do
6 if pattern in strings[i] then
7 offset← offset of strings[i]
8 Traverse to the offset
9 instructionSet← Disassemble at offset

10 command← command in the instructionSet

11 else
12 continue
13 end
14 end
15 end

commands.

We also analyzed our malware samples to find the architecture for which they are compiled. To do

so, we use the Linux File command that determines a file’s format, target architecture, etc.. The

malware distribution according to their architectures and their percentage in our dataset is depicted

in table 5.2.

5.4.1.2 Assembling a Benign Dataset

To evaluate our proposed detection system, we need a dataset of benign commands along with the

malicious command dataset. Compared to the malicious dataset, assembling the command line

usage by a benign application is a challenging task. For example, while Linux-based applications

are ubiquitous, and one can easily collect a set of Linux binaries, extracting the corresponding

shell commands, and use them as a baseline for our benign dataset. Note that such binaries are not

necessarily intended for embedded devices. Another approach to collect benign shell commands
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1. Network traffic
2. 30 GB
3. Millions of packets

> tcpdump -w pci.pcap

Figure 5.3: Monitoring stations for benign dataset creation. Two network implementations are
used: NAT and a home network.

is by observing shell access and usage by benign users. Collecting a large-scale dataset requires

monitoring network traffic to collect shell commands by benign users. Since the majority of traffic

nowadays carried over HTTPS, the encrypted traffic represents a major hurdle in extracting such

benign shell commands in the wild.

Therefore, we build our monitoring network setup to collect a set of benign commands. In par-

ticular, we look for commands coming from various Linux-based tools, frameworks, and software

inject. Since an entry point for many malware families is the abuse of many application-layer

protocols, such as HTTP, FTP, TFTP, etc., with the intent to distribute malicious payloads and

scripts, we attempt to monitor those protocols in benign use setup for similar but benign data col-

lection. As such, we build our benign command collection framework with two separate networks,

as highlighted in figure 5.3.

The first network is hidden behind a NAT and consists of five stations, while the second network

is a home network with 11 open ports: 21, 22, 80, 443, 12174, 1900, 3282, 3306, 3971, 5900,

and 9040. The main purpose of this setup is to capture the incoming and outgoing packets from
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Table 5.3: Data sources in our dataset. “Sources” is the number of files used to extract commands,
while “Commands” is the total number of commands obtained from the source files.

Data Sources #Sources #Commands An example

PCAP Network 1 5 1,625,143 GET/update− delta/hfnkpimlhhgieaddgfemjhofmfblmnib/
5092/5091/193cb84a0e51a5f0ca68712ad3c7fddd65bb2d6a60619
d89575bb263fc5dec26.crxdHTTP/1.1nrnnHost : storage.
googleapis.comnrnnConnection : keep− alivenrnnUser − Agent
: Mozilla/5.0(X11;Linuxx8664)AppleWebKit/537.36(KHTML,
likeGecko)Chrome/72.0.3626.121Safari/537.36nrnnAccept−
Encoding : gzip, deflatenrnnnrnn

PCAP Network 2 5 4,735 GET/favicon.icoHTTP/1.1nrnnConnection : closenrnnUser−
Agent : Mozilla/5.0(compatible;NmapScriptingEngine;https :
//nmap.org/book/nse.html)nrnnHost : 192.168.2.1nrnnnrnn

Bash Commands 9 5,772 sudowgethttps : //download.oracle.com/otn− pub/java/jdk/
8u201− b09/42970487e3af4f5aa5bca3f542482c60/jdk − 8u201
−linux− x64.tar.gz

Malware 2,891 2,008 GET/cdn− cgi/l/chkcaptcha?id = %s&g − recaptcha− response
= %sHTTP/1.1User − Agent : %sHost : %sAccept : ∗/Referer :
http : //%s/Upgrade− Insecure−Requests : 1Connection :
keep− alivePragma : no− cacheCache− Control : no− cache

the home network. Our home network in this experimental setup consisted of two 64-bit Linux

devices, one Amazon Alexa, one iPhone device, one Mac device with voice assistant, Siri, being

continuously used, and a router. These two networks that represent the high-level illustration of

our benign data collection system are depicted in figure 5.3.

In the first network, we have five devices that are used in a lab setting under “normal execution”,

i.e. for everyday use. The network is monitored over a period of 24 hours, where all network traffic

is captured (as shown in the left network in figure 5.3).

The second network is a home network designed by selecting a variety of devices, also operating

under “normal execution” with the exception that the configured voice assistants in the second

network are actively queried during the monitoring time. To establish a baseline, the network is

monitored without the devices and continuously as the devices are added to the network. For the

voice assistants, we iterate over a set of questions requiring access to the Internet and actively
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monitor the traffic at the router for seven hours. Using these settings, we gathered a dataset of

approximately 34 GB from the first network and approximately 1 GB from the second network.

In addition to the network traffic, we also gathered bash history data from nine volunteers. To pro-

tect the privacy of the users, we anonymize users’ identity by manually observing the commands

and removing every clearly identifying information, including usernames, domain names, IP ad-

dresses, etc.. Overall, we collected a dataset of approximately 143 MB of data, consisting of 5,772

commands. The collected commands correspond to services such as ssh, git, apt, Makefile, curl,

etc., and generic Linux commands, such as cd, rm, chmod, cp, find, etc..

The traffic gathered from the five volunteers in Network 1 resulted in a total of 28,578,754 individ-

ual payloads, where the majority of them are encrypted and cannot be used for our data collection.

On the other hand, the same dataset had 1,625,143 un-encrypted payloads, which we utilize for our

data collection. Similarly, the five sources in Network 2 generated 4,735 un-encrypted payloads,

while the bash data source consisted of a total of 5,772 commands from nine volunteers. A sample

of the payloads from the four data sources described earlier: three benign and one malicious, is

shown in table 5.3.

5.4.2 Methodology: High-Level Overview

The shell is a single point of entry for malware to launch attacks. Accordingly, detecting malicious

commands before they are executed on the host will help secure the host. Even though the malware

aims to exploit a vulnerability in the device to access its shell, detecting malicious commands will

help mitigate such exploits. Our analysis highlights the use of shell commands for infection,

propagation, and attack by malware authors. The Unix capabilities of embedded IoT devices give

adversaries the required avenue to abuse the shell.

For example, the malware attempts to download a file named DNS.txt from a dropzone, the address
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of which is stored in variable s. This variable contains a list of target devices for malware prop-

agation. As is evident from the figure, the malware first attempts to download DNS.txt at home

directory (default entry point upon gaining access). In case of failure, the malware attempts to ini-

tiate BusyBox by attempting three different locations, the success of which is dependent on where

the BusyBox is installed on the device, followed by downloading the DNS.txt file, as shown in the

usage of the shell for propagation in figure 5.1.

We exploit this insight to build ShellCore. In the following, we explain ShellCore and its different

building blocks. The goal of ShellCore is to realize a design with an effective detection system

that detects malicious files based on their usage of the shell. To this end, we break down the

problem into two parts – (i) detecting malicious commands and (ii) detecting malicious files. We

use real-world IoT malware samples and disassemble them to extract shell commands. We then

extract features from the commands, by taking advantage of the bag of words technique that is

commonly used in NLP applications. In particular, we create a corpus of words from individual

commands, considering all commands in our dataset, and establish a feature space based on their

occurrences in the corpus to represent each command as a feature vector. Along with the words,

we also use the n-grams to represent the commands as feature vectors. Moreover, we augment the

feature representations of commands in our dataset using PCA.

Upon representing the malicious and benign commands as feature vectors, ShellCore aims to de-

tect malicious commands. To do so, ShellCore employs machine learning algorithms to classify

commands. To evaluate ShellCore, we train and test the detection model using our dataset. We use

cross-validation to limit the bias and measure the generalization capabilities of the model. Using

the same model architecture, we extend the detection system to detect malicious files. For detect-

ing malicious files, we group the commands by each malware sample and benign application in

one single record that is represented as one feature vector to be analyzed. This is well abstracted

in the command extraction block in figure 5.2.
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5.5 Detection Model

We utilize the capabilities of deep learning techniques to detect malicious commands using NLP-

based feature generation. To help better learn the specifics of shell commands, we tune the default

NLP algorithms to enrich the feature representation of the commands. We represent the commands

as a feature vector using the bag of words method, reduce the features using PCA, and use ML-

based algorithms for the malicious command and sample detection.

5.5.1 Featurization

Feature representation is a method to present the attributes of samples. It is the process of cleansing

and linking the data such that it is transformed in a format that is understood by the employed

algorithms for detection. In this section, we discuss selecting features that better represent the

characteristics of the samples in the dataset. There are many methods of featurization depending

upon the nature of the data. Considering the textual nature of our samples, we focus on text-

based featurization methods. Towards this, we leverage the traditional NLP-based approach by

considering words in the samples as features. Additionally, since such an approach misses on very

crucial attributes, we then employ a customized NLP approach to meet our goals.

5.5.1.1 Traditional NLP-based model

We leverage NLP for feature generation, by considering independent words as features and oc-

currence of space and/or characters as tokenizers, while words with a length greater than two are

considered in the bag of words for feature vector creation. We adopt the bag of words approach

along with n-grams. Let I1 be the words in a command, and n is the total number of words in the

command. Therefore, each word in the command can be represented as I1i, where i ∈ [1, n], such

that I1 = I11, I12, I13, ..., I1n.
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5.5.1.2 Customized NLP-based model

The traditional NLP-based approach does not take into consideration the operational symbols in a

command, which undermines many discriminating and dominant characteristics of the shell com-

mand, thereby not representing the commands accurately. The presence of many shell commands

utilizing keywords l ≤ 2 called for building a more accommodating feature generation mecha-

nism. To do so, we change the boundaries of the definition of a word by considering every space,

special characters, alphabets, and numbers as words, along with n-grams and command statistics.

This augments our vocabulary with more granular features to capture the attributes precisely. Let

I2 be a representation of each character, alphabet, number, etc. constituting a command, and n is

the total number of such constituents in the command. Therefore, every such constituent in the

command can be represented as I2j , where j ∈ [1, n], such that I2 = I21, I22, I23, ..., I2n.

5.5.2 Feature Representation

To represent every element in the dataset from a defined reference point, we represent every el-

ement with respect to axes in a space. In particular, every command/sample in the dataset is

represented as a feature vector in the defined feature space. To train our detection model, each

command is represented as a feature vector, where every element represents a distinct feature of

the input. In this regard, we begin by finding the feature space to determine the dimensionality of

the vectors. Particularly, the commands are augmented such that every feature of the commands

in the dataset has a representation in the feature space. Every command in the dataset is then rep-

resented in a space of n axes, where n is the size of feature space. To do so, we devise multiple

representations of commands, such as by including the words in the commands and by splitting

the commands by spaces and every special character. We also form a feature vector by considering

each and every letter and special character as features combined with the special characters. We

implement the bag of words method to define our feature space. The rest of this section explains
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our feature representation mechanism using the bag of words technique.

Bag of Words as Command Embedding. We realize a representation of commands/samples

using the bag of words technique. Depending upon the splitting pattern of the samples, we create

a central vector that stores all the words in the samples. Each sample in the dataset is then mapped

to an index in the sparse vector representation, i.e. feature vector for every element in a dataset,

where the vector has an index for every word in the vocabulary—every word, in n different words

in the central vector, is converted into n bits, among which the bits are left zero, except for their

occurrence (multi-hot encoding). Translating this into perspective, to generate the vector space,

we add every word to an array. For every sample, we initialize its feature vector with a size equal

to the bag of words. For every occurrence of a word in a sample, its index location is incremented.

Therefore, every feature vector of a sample represents the frequency of the corresponding word in

the dictionary.

Encoding Syntax. An important characteristic of the commands is their syntax. This syntax is

dependent on the structure of the command. Therefore, in addition to the standard features gathered

from the commands, we also augment the feature space with feature proximity, to capture the

structure of the commands. To do so, we also include the features of n-grams. Every n contiguous

words in a sample’s shell command are considered a feature. When using n-grams as features,

every n contiguous words occurring in a sample are added to the bag of words corresponding to

them in the feature space.

For each of the two models as aforementioned, we create separate bag of words, such that, the

bag contains all the words Ik1i, where i ∈ [1, n] and k ∈ [1,m], such that n is the total number

of words in a command and k is the total number of commands in the dataset. along with the

n-grams. Therefore, the words in all the commands as per the traditional NLP model, can be

combined as I111, I
2
11, I

3
11, ....I

1
12, I

1
13, ....I

m
1n Let B be the bag of word for the dataset, such that

B = B1, B2, B3, ..., Bt, where t ≤ m ∗ n and Bp, such that p ∈ [1, t], in unique in B. Moving

89



forward, each command Ii, where i ∈ [1, n], can be represented as a feature vector (F ) with respect

to the bag of words B, such that the tth index can be represented as the frequency of occurrence, of

the tth word in the bag, in the command. F = fB1 , fB2 , fB3 , ..., fBt , such that fBp , where p ∈ [1, t],

depicts the frequency of the word, appearing at index p in the bag B, in the command Ii.

5.5.3 Feature Reduction

We capture as many features as possible to achieve accurate results. However, beyond a certain

point, the performance of the model becomes inversely proportional to the number of features.

The usage of a wide variety of features to represent samples leads to a very high dimensional

feature vector which leads to (i) high cost to perform learning and (ii) overfitting, i.e. the model

may perform very well on the training dataset, but poorly on the test dataset. Dimensionality

reduction or feature reduction is applied with an aim to address the two problems. We implement

the principal component analysis (PCA) for feature reduction to improve the performance and

the quality of our classifier of ShellCore. PCA features (components) are extracted from the raw

features. It is a statistical technique used to extract features from multiple raw features, where raw

features are of n-grams and statistical measurements. PCA creates new variables, named Principal

Components (PCs). PCs are linear combinations of the original variables, where a possible number

of correlated variables are transformed into a low dimension of uncorrelated PCs. It normalizes

the dataset by transforming them into a normal distribution with the same standard deviation [49].

This generates a standard representation of variables in order to identify a subset of them that can

best characterize the underlying data [118]. We reduce the d-dimensional vector representation of

commands to q number of principal components onto which the retained variance under projection

is maximal.
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5.5.4 Classification Methods

After representing each sample as a feature vector, we classify these samples into classes/targets

– malicious or benign. Considering the text-based non-linear features and high dimensionality of

the feature vectors, we utilize two well-known machine learning algorithms for non-linear classi-

fication tasks: Deep Neural Networks (DNN) and Support Vector Machine (SVM).

1) Deep Neural Networks (DNN). DNN is a type of connected and feed-forward neural networks

with multiple hidden layers between the input and output layers. The hidden layers consist of a

number of parallel neurons, connected with a certain weight to all nodes in the following layers to

generate a single output for the next layer.

Given a feature vector X of length q and target y, the DNN-based classifier learns a function f(.) :

Rq −→ Ro, where q is the input’s dimension and o is the output’s dimension. With multiple hidden

layers, the dimension of the output of every hidden layer decreases with transformation. Each

neuron in the hidden layer transforms the values of the preceding layer using linearly weighted

summation, w1 +w2 +w3 + ...wq, which passes through a non-linear activation function such that,

g(.) : R −→ R. The output of the hidden layers is then fed to the output layer, and passed to an

activation function f , outputting the prediction of the classifier.

2) Support Vector Machine (SVM). SVM classifies the data by finding the best hyperplane that

separates the data from the two classes. For training a new classifier to achieve a preferable class,

the training analyses are considered as positive examples, which are included in the class, while

the remaining attempts are negative examples. To classify a new analysis, the classifier computes

the margin and selects the hyperplane with the largest margin between the two classes [111]. We

use SVM due to its effectiveness in high dimensional spaces, its effectiveness when the dimension

is greater than number of samples, and it being memory efficient. To achieve the goal, we utilize

the following decision function [48, 25] sgn(
∑n

i=1 yiαiK(xi, x) + ρ) where xi, i ∈ [1, q], is the
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Table 5.4: Size characteristics of the different datasets. Net. stands for Network.

Data Commands Max length Min length Avg. length Median length Standard deviation

Net. 1 1,625,143 1,564 52 184.68 185 4.88
Net. 2 4,755 1,536 8 209.01 167 146.26
Bash 5,772 356 2 23.00 14 27.71
Malware 2,008 984 5 293.91 384 168.03

training feature vector of sample, ρ is the hyperplane margin, yi are the output labels, and the

kernel function K(xi, x) is defined as, K(xi, x) = φ(xi)
Tφ(xj)

5.6 Evaluation and Discussion

In this section, we evaluate ShellCore’s performance and discuss the results. We start by classi-

fying individual commands using the NLP-based approach. In all evaluations, our model exhibits

high accuracy. We divide our evaluation into two parts. First, we build a detection system to de-

tect malicious commands by considering every individual command in the dataset. Second, this

detection system is then extended for detecting malicious files, where the above commands cor-

responding to an application are combined together when representing a single file as a feature

vector of multiple commands.

In the following, we provide further details of the datasets and their characteristics, and the utilized

evaluation metric. We then describe the traditional and customized NLP-based models. Finally,

we describe how these two models are leveraged for detecting individual commands and malicious

files.

Dataset. We notice that the low deviation of length in commands in Net. 1 indicates that the

commands have a similar length. Moreover, we notice that Net. 2 (corresponding to the IoT

devices setting) and Malware datasets have closest lengths overall, per the average and standard
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deviation characteristics of their distributions. The number of commands as well as the length

statistics (maximum, minimum, average, median, and standard deviation) are shown in table 5.4.

Parameters Tuning. For a better representation of commands’ features, we utilize n-grams. Par-

ticularly, we use 1- to 5-grams. For the DNN-based classifier, we also try multiple combinations

of parameters to tune the classifier for better performance. We achieve the best performance when

using five hidden layers.

K-Fold Cross-Validation. The evaluation of a machine learning algorithm depends on the training

and testing data. To generalize the evaluation, cross-validation is used. For K-fold cross-validation,

the data are sampled into K subsets. Then, the model is trained on one of the K subsets and tested

on the other K-1 subsets. The process is then repeated allowing each subset to be the testing data

while the remaining nine are used for training the model. The performance results are then taken

as the average of all runs. In this work, We used 10-fold cross-validation to minimize bias towards

a certain data. For 10-fold cross-validation, the model is trained for one sample and it is tested on

the other nine samples, for ten iterations.

Evaluation Metric. We evaluate the results of the classification task in terms of accuracy, false-

negative rate, and false-positive rate. Accuracy (AC) is defined as the sum of true positive and true

negative divided by the sum of true positive, false positive, false negative, and true negative. For a

class Ci, (where i ∈ {1, 2, 3}), False Positive (FP), False Negative (FN), True Positive (TP), and

True Negative (TN) are defined as:

1. TP of Ci is all Ci instances classified correctly

2. TN of Ci is all non-Ci not classified as Ci

3. FP of Ci is all non-Ci instances classified as Ci

4. FN of Ci is all Ci instances not classified as Ci.

93



Table 5.5: Evaluation results: Malicious commands detection.

Traditional NLP Customized NLP
SVM DNN DNN

AC 0.9290 0.9340 0.9530
FNR 0.0317 0.0210 0.0271
FPR 0 0.0085 0.0853

Mathematically, Accuracy (AC) is defined as the sum of true positive and true negative divided by

the sum of true positive, false positive, false negative, and true negative. The False-Negative Rate

(FNR) is the sum of false negative divided by the sum of the true positive and false negative. The

False-Positive Rate (FPR) is the sum of false positive divided by the sum of false positive and true

negative. We report the metrics as mean accuracy, mean FNR, and mean FPR for the ten folds.

5.6.1 Traditional NLP-based model

The traditional NLP-based learning model uses words as features, with spaces and other special

characters as tokenizers. Additionally, it does not consider words less than three characters long.

Moreover, to better represent the locality of the words, the model utilizes n-grams. Particularly,

it uses 1- to 5-grams. With 10-fold cross-validation, the model achieves the results for both SVM

and the DNN-based classifiers, with the DNN-based classifier yielding better results, as shown in

table 5.5.

5.6.2 Customized NLP-based model

We note that the traditional approach only considers words, and neglects the characters, spaces,

and words that have a length of less than three. This, in turn, presents a major shortcoming,

since a large number of command keywords have a length less than three, including cd, ls, etc.,
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or consist of special characters, such as ||, &&, etc.. To address the shortcoming, we create the

feature generation step such that it considers these important domain-specific characteristics that

would otherwise be ignored. To do so, we change the way in which a word is defined by carefully

declaring the tokenizers such that no character is ignored. Subsequently, the changed bag of words

considers the character-level, and contain every letter, number, and character represented as an

individual feature. Moreover, to capture the placement of the letters, characters, and spaces, we

also consider combinations of these elements in the form of n-grams (up to 5-grams) into a vector

space. Finally, for feature reduction, we use PCA such that it covers for 99% of the variance in the

training dataset.

5.6.3 Detecting Malicious Commands

We use ShellCore for detecting individual malicious commands. We first present the results of the

traditional model followed by the customized NLP model.

When used with DNN, the traditional model provides an accuracy of 93.4% along with an FNR of

only 2.1% and FPR of 0.85%. While the SVM shows an accuracy of 92.9%. We observe that the

accuracy rate, although greater than that of SVM, is relatively low. We, therefore, work towards

improving the accuracy and reducing the false positives and the false negatives by considering other

important features of the samples by evaluating the customized model. Moreover, we observe

improved performance with DNN classifier. Therefore, we select the DNN-based model as the

classifier for ShellCore, as can be observed in table 5.5.

We test the veracity of the customized NLP-based model for detecting individual malicious com-

mands over the same dataset. The approach improves the performance of the model, where the

improvement in the accuracy over the traditional model is about 2%, i.e. 95.3%. The results of the

approach is shown in table 5.5
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Figure 5.4: Accuracy variations over the 10 fold cross-validation when detecting malicious com-
mands.

Table 5.6: Evaluation results of malware detection.

Metric Traditional NLP Customized NLP

AC 0.996 0.998
FNR 0.001 0.002
FPR 0.006 0.001

The difference in the evaluation results of the two models is expected and is mainly because of

the difference in the features of the two models, and hint on the importance of special characters

and letters with length less than three. Moreover, the accuracy is in the range of 97.4% to 97.8%

in every fold when using the traditional model for the training phase, while the accuracy for the

testing phase is in the range of 78.8% to 99.1%. For the customized model, however, the testing

accuracy range is between 67.3% to 99.7, with only once going less than 95%. Overall, the 95.3%

accuracy in detecting malicious commands shows the effectiveness of the latter model, as shown

in the accuracy for each fold in the 10-fold cross-validation in figure 5.4.

96



5.6.4 Malware Detection

The next natural step is to generalize from the shell command detection to binaries (malware)

detection, which we pursue in the following. In particular, in this section, we classify files as

malicious or benign using vectors of feature per file that combine the feature values of the shell

commands associated with each file.

Dataset. We use the same malware samples and the collected benign dataset as in the other ex-

periments and analyses. Particularly, we cluster the commands by their source. For the mali-

cious dataset, we group the commands by malware sample. However, we do not have designated

source information for the benign commands dataset. To generate a benign dataset, we cluster

the commands in the benign dataset under separate file labels. Keeping in mind the susceptibility

of clustering to human and algorithmic biases, we cluster the commands such that the probability

distribution of the benign dataset across files remains intact. We observe that the probability dis-

tribution of the number of commands in every malicious software and sample the distribution such

that every sample represents the number of commands in a benign software. With the number of

commands in every file, we then randomly select those many commands from the pool of benign

commands.

We use ShellCore to train and test the model over the file specific dataset. Particularly, com-

mands corresponding to a file are represented as a feature vector of that file. Similar to individual

commands detection, we try both the traditional and customized NLP-based approaches. The per-

formance results of ShellCore for malware detection is represented in figure 5.4.

Also, it is demonstrated that ShellCore can detect malicious commands with high accuracy and

very low error (false positive and false negative). Moreover, the results show that the accuracy of

ShellCore is improved when using the customized NLP-based model, as shown in table 5.6.
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5.6.5 Discussion

This chapter studies the usage of shell commands, with the aim to detect malicious shell com-

mands and malware utilizing them. To do so, the proposed system, ShellCore, leverages the power

of machine learning- and deep learning-based algorithms. The system is then evaluated, and the

results are presented. Our results show that, however, ShellCore does not detect individual com-

mands with very high accuracy, although performing very well in detecting malware that uses those

commands. We elaborate on those results.

Detecting individual shell commands. Although researchers have looked into the malicious us-

age of Windows PowerShell, and except for analyzing the vulnerabilities in Linux shell (e.g.,

shellshock), the malicious usage of shell commands has not been analyzed in the past. Prior works

have analyzed and detected the use of shell commands to propagate attacks e.g., sending malicious

bots [41], and installing ELF executables on Android systems [102]. Given the larger ecosystem

of connected embedded devices with Linux capabilities, and sensing the urgency, we analyze the

usage of shell commands used by malware. This work presents a system to detect the malicious

commands with 95.3% accuracy.

Malware Detection. IoT malware has been on the rise. Given the difficulty of obtaining samples,

very few works have been done on detecting IoT malware, and even less using residual strings

in the binaries either. Section 5.2 discusses the methods that work on detecting IoT malware.

In this work, we use the commands in the malware samples for detecting them. Our detection

model achieves an accuracy of 99.8% with FNR and FPR of 0.2% and 0.1%, respectively. As

malware abuse the shell of the host device, detecting them at the shell will safeguard the device

from becoming infected. Additionally, malware access a device by breaking into the host device

by launching a dictionary attack, typically a single shell command execution. Alternatively, a host

device can also be infected by a zero-day vulnerability or an outdated device with an existing
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exploitable vulnerability, among others, which are all also executed by individual shell commands.

For a successful event, where the adversary breaks into a host, it will then abuse the shell to

infect the host, followed by propagating the malware, and creating a network of botnets to launch

attacks. As such, having a detector of such a high accuracy, at both the individual command level

and malware sample level, with low FPR and FNR, will help stop the host device from being used

as an intermediary target for launching attacks, despite the presence of vulnerabilities or the host.

This makes this work very timely and necessary.

Dataset. One of the biggest challenge in developing and studying systems for detecting malicious

commands is the absence of a benign dataset. We propose a way to assemble such a dataset.

Additionally, to reduce the bias, we collect the dataset from two different networks with a diverse

set of devices and behaviors. Moreover, we assemble the benign usage of shell by end-users, based

on several volunteers’ device usage. For generating benign dataset for malware detection, we

use mathematical models that aggregate files into groups while respecting the distribution of the

original sample size in both benign and malicious files. As such, and to remove the possible human

bias, we cluster the benign commands by files, such that the probability distribution of the number

of commands in both malicious and benign dataset is the same. While the shell commands of

both the benign and malicious datasets used in this study will be made public, we leave exploring

additional methods for obtaining benign datasets and contrasting them to the datasets used in this

study as a future work.

5.7 Conclusion

In this chapter, we propose a system, called ShellCore, for detecting malicious commands and mal-

ware in IoT devices. We analyzed malicious shell commands from a dataset of 2,891 IoT malware

samples, along with a dataset of benign shell commands assembled corresponding to benign ap-

plications. ShellCore leverages deep learning-based algorithms to detect malicious commands and
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files, and an NLP-based approaches for feature creation. ShellCore detects individual malicious

commands with an accuracy of more than 95%, and an accuracy of around 99.8%, with low FPR

and FNR, when detecting malware. The results reflect that despite a comparatively low detection

rate for individual commands, the proposed model is able to detect their source with high accuracy.
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CHAPTER 6: CONCLUSION AND FUTURE WORK

At the beginning of this research, an in-depth analysis of the general and algorithmic features of

the malware CFGs was conducted between two prominent malware datasets, IoT and Android

malware. We constructed the CFGs, as an abstract representation of the software binaries, and

conducted a deep comparative study between the two malware types. We highlighted the CFG-

based shift between them by analyzing both general characteristics, such as the number of nodes

and edges, and graph algorithmic features, such as average shortest path, betweenness centrality,

closeness centrality, density, etc.. To understand the difference, we contrasted those features to

uncover the similarities and differences between IoT and Android malware. We observed various

interesting findings, such as the different sizes of nodes and edges. We found a larger number of

nodes in Android malware, compared to the IoT malware, highlighting its higher order of com-

plexity. We also observed the prevalence of unreachable code in Android malware, noted by the

multiple components, which is a sign of decoy functions for circumventing malware analysts.

Then, using the aforementioned general and algorithmic features of the CFGs, as shown to be

discriminative, we built an IoT classification and detection system. Toward this, we assembled a

dataset of IoT benign samples for detection. Specifically, we build a CFG-based detection model

to detect IoT malware by utilizing various CFG features of IoT benign and malware samples. We

evaluated the detection model by leveraging four different classifiers (LR, SVM, RF, and CNN) and

achieved an accuracy rate of ≈99.66% with 0.33% FNR and 0.33% FPR using CNN. Moreover,

we classified the IoT malware based on their families and achieved an accuracy of ≈99.32% with

2.93% FNR and 0.45% FPR.

Further, to tackle the need to detect adversarial ML attacks that generates AEs, we proposed Sote-

ria, an adversarial ML detector for IoT malware. More precisely, Soteria defends the CFG-based

classifiers for malware detection against the AEs. Soteria consists of two main components: an
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AEs detector and a family-based classifier. The AE detector is a CFG-based model capable of

detecting AEs without training the model over adversarial samples. The model computes the re-

construction error between the input data and the reconstructed output of the auto-encoder, and

uses a threshold to detect the AEs with an overall accuracy of 97.79%. Moreover, the CFG-family-

based classifier achieved an accuracy of 99.91% on the clean samples. To increase the robustness

of Soteria, the two models are independent.

Finally, we proposed ShellCore, an IoT malware detection system to detect malicious commands

in the Linux-based IoT devices. We assembled a dataset of IoT malware and benign samples and

analyzed the malicious shell commands of the IoT malware. Then, we used NLP-based approaches

for feature generation, and neural network-based algorithms to detect malicious commands and

files. We achieved an accuracy of more than 95% to detect individual malicious commands, and

≈99.8%, with low FPR and FNR, to detecting malware files. Despite the low detection rate for

individual commands, the model detects their files with a high accuracy rate.

As future work, The obfuscated binary will result in hiding some parts of the code or functions, re-

sulting in an incomplete CFG representation of the software, hence, affecting the feature represen-

tation of the malware. Moreover, CFG does not necessarily reflect the actual code representation.

So, the code can be edited without changing its functionality; thus, it would affect the structure of

the CFG, which might be exploited by the adversary to evade detection models. Additionally, we

will extend our static analysis works to be dynamic by executing the IoT malware on real-time IoT

devices to understand the behaviors of the malware, including execution pattern, memory traces,

API calls, etc..
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