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ABSTRACT

While the DNS (Domain Name System) has become a cornerstone for the operation of the Internet,

it has also fostered creative cases of maliciousness, including phishing, typosquatting, and botnet

communication among others. To address this problem, this dissertation focuses on identifying

and mitigating such malicious domain names through prior knowledge and machine learning. In

the first part of this dissertation, we explore a method of registering domain names with deliberate

typographical mistakes (i.e., typosquatting) to masquerade as popular and well-established domain

names. To understand the effectiveness of typosquatting, we conducted a user study which helped

shed light on which techniques were more successful than others in deceiving users. While certain

techniques fared better than others, they failed to take the context of the user into account. There-

fore, in the second part of this dissertation we look at the possibility of an advanced attack which

takes context into account when generating domain names. The main idea is determining the pos-

sibility for an adversary to improve their success rate of deceiving users with specifically-targeted

malicious domain names. While these malicious domains typically target users, other types of

domain names are generated by botnets for command & control (C2) communication. Therefore,

in the third part of this dissertation we investigate domain generation algorithms (DGA) used by

botnets and propose a method to identify DGA-based domain names. By analyzing DNS traf-

fic for certain patterns of NXDomain (non-existent domain) query responses, we can accurately

predict DGA-based domain names before they are registered. Given all of these approaches to

malicious domain names, we ultimately propose a system called D-FENS (DNS Filtering & Ex-

traction Network System). D-FENS uses machine learning and prior knowledge to accurately

predict unreported malicious domain names in real-time, thereby preventing Internet devices from

unknowingly connecting to a potentially malicious domain name.
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CHAPTER 1: INTRODUCTION

In today’s connected world, billions of devices are able to access the Internet to allow their users

to connect and exchange information. At the heart of this global information infrastructure is the

DNS, which allows people to use text-based human-readable domain names instead of numeric

IP addresses to provide a distributed directory service. While the majority of all domain names

ultimately resolve to a web server that hosts meaningful content, there are an alarming amount of

malicious ones that involve nefarious activities such as phishing, typosquatting and botnet com-

mand & control (C2) channels among others.

Typosquatting, for example, are domain names that use deliberate typographical mistakes to im-

itate popular and well-known domain names. Typically, these typosquatted domains are used for

malicious purposes such as redirecting web browsers to phishing sites or stealing web traffic away

from the authoritative domains (for financial gain). Typosquatting has long been around for over

twenty years and is still being used today. As recently uncovered on the popular cybercrime blog

KrebsOnSecurity.com [70], there is “a vast network of potentially malicious Web sites ending in

‘.cm’ that mimic some of the world’s most popular Internet destinations (e.g. espn.cm, aol.cm

and itunes.cm)” which demonstrates a common typosquatting tactic: omitting a character from

the top-level domain (TLD).

Additionally, domain names and the DNS infrastructure are increasingly being utilized by bot-

nets to establish communication between bots and their C2 servers. The typical botnet consists

of various infected hosts, C2 channels, and a botmaster. The infected hosts (“zombies”) are of-

ten massively distributed, whereas the command and control are channels used by a mastermind

(the “botmaster”) to instruct bots to perform various forms of malice; e.g. launching distributed

denial-of-service (DDoS) attacks [114]. To communicate with bots, there are several potential
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ways utilized by botmasters, and domain names as a C2 channel are one of the most common

and preferred methods–because they are easy to acquire and recycle [69]. One way of mitigating

these botnets is to prevent them from registering their C2 domains in the first place, or by tak-

ing such domain names down [89, 77]. However, the adoption of domain generation algorithms

(or DGAs), which can produce thousands of pseudo-random domain names, has made traditional

domain takedowns and detection more difficult for law enforcement and security researchers [4].

1.1 Statement of Research

Whether it was from mistyping a URL into a web browser or clicking on a hyperlink with a

deceptively-familiar domain name, malicious domain names which use intentional typos to appear

similar as authoritative domains have long been pervasive in the DNS infrastructure since the

late 1990’s [51]. This so-called typosquatting attack involves applying different techniques such as

adding or substituting characters to already established and well-known domain names in the hopes

that it will deceive unsuspecting users in navigating to unwanted destinations. While previous work

in the literature has identified all of the techniques that typosquatters employ in the wild [117, 31],

there is little work that investigated the efficacy of such techniques and how successful they were at

deceiving users. The first problem we would like to solve is how effective is typosquatting against

the average Internet user and what techniques actually deceive them?

Building upon the first problem, a second question arises: If an adversary could take the con-

text of a user into account when creating targeted malicious domain names, will their chances

of successfully deceiving the user improve? The typical modus operandi of adversaries that en-

gage in typosquatting will seek the best return on their investment and target the most-popular

domain names to lure the most victims. Typosquatting a domain name that is well-known for a

certain demographic of users may not have the same effect for other groups of users. For example,
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tistory.com is a popular South Korean blog-publishing service with 91.0% of visitors origi-

nating from South Korea while only 1.6% are from the United States1. As such, the typical Internet

user from the United States may not be familiar with this domain name and any attempts to deceive

them with a typosquatted variant may fail.

The third issue we would like to explore is the fact that not all malicious domain names are crafted

manually from human adversaries, but rather dynamically from domain generation algorithms

(DGAs). As mentioned above, these generated domain names are employed by botnets to serve as

rallying points for C2 servers to instruct the infected “zombie” machines to perform various cyber

attacks, such as DDoS. Knowing that some infected machines will make out-of-sync DNS queries

to the generated C2 domain names prior to them actually being registered (due to misconfigura-

tion), is it possible to identify such DGA-based domain names before they are registered by the

botmaster?

To address these issues, we seek to design experiments and create systems that will help us under-

stand and identify malicious domain names. The overarching goal behind this research is to design

and implement a tool that will identify and intercept malicious domain names in real-time, thereby

preventing users and devices from unwanted destinations.

1.2 Approach

To tackle these issues, we conducted two user studies that resulted in a better understanding of

which malicious domain names were more effective than others when used in typosquatting at-

tacks. We also designed and implemented a system to proactively classify DGA-based domain

names before they are registered with high accuracy. The results and methodologies of these ap-

1According to: https://www.alexa.com/siteinfo/tistory.com
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proaches allowed us to develop a system that was capable of identifying malicious domain names

in real-time.

In the first user study, we attempted to measure the effectiveness of several typosquatting tech-

niques identified in the literature. We conducted a multi-phase user study that exposed participants

to several URLs in which a subset were deliberately modified using known typosquatting tech-

niques. Our results showed that the participant’s correct identification of typosquatting improved

(with quicker response times) after being incrementally shown all typo techniques. We also dis-

covered which typosquatting models were more successful than others in deceiving users, and

attributed it to studies in Cognitive Science that highlighted how the human brain encodes jumbled

characters in words.

The second study explored the possibility of an Adversary taking a user’s context into account

when devising an attack strategy involving malicious domain names. The results of the first user

study showed that while some typosquatting techniques fared better than others in deceiving users,

the actual selection of the target domain names to typosquat may play a role. To this end, we con-

ducted another online user study to establish context by dynamically fetching domain names based

on user input (e.g. country, subject interest, favorite websites) and similarly applied a random ty-

posquatting model. Our results confirmed which typosquatting strategies were the most successful

for an Adversary when taking context into account.

For the third problem, we designed a system called DRIFT to proactively classify DGA-based

malicious domain names before they are registered in the DNS by botmasters in an effort to sever

their C2 communication. While previous efforts to identify and prevent DGA-domain names from

operating have relied on reverse-engineering and intrinsic analysis, DRIFT uses DNS query analy-

sis to look for tell-tale patterns of NXDomain responses. Ultimately, we achieved a 99% accuracy

on average as early as 48 hours prior to the registration of a malicious DGA-based domain name.
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For our final problem, we build upon these previous approaches and ultimately developed a system

called D-FENS to detect and intercept malicious domain names in real-time. While typical defense

systems employ the use of blacklists, such as Google Safe Browsing, we augment the use of black-

lists by dynamically determining if a given domain name is malicious through prior knowledge

and machine learning. Since blacklists offer an efficient means to lookup potentially-malicious

domain names, they are only effective if such domain names are actually reported and added to

the blacklist. As a result, there is a window of vulnerability for users to be exposed to malicious

domain names allowing adversaries to wreak havoc until their domain names are blocked or taken

down. As with the case of the aforementioned malicious activities involving both typosquatting

and DGA-based domains used by malware, domain names are low-cost and disposable resources:

once the adversary is done with the malicious activity, the domain names are most likely blocked

or de-registered (within the grace period of registration; often up to 7 days allowed by registries).

Ideally, D-FENS will act as a middlebox and intercept DNS requests before they enter the DNS

resolution phase thereby preventing clients from ultimately connecting to a malicious IP address.

1.3 Contributions

In this dissertation we:

• Completed a comprehensive study on the landscape of the malicious domain name type

known as typosquatting.

• Designed a user study for gauging how effective typosquatting is being used “in the wild”.

• Explored the possibility of an Adversary to take a users context into account when devising

an attack strategy involving malicious domain names.
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• Investigated a large-scale analysis of domain names and their NXDomain queries to under-

stand and identify DGA-based domains.

• Designed a system capable of identifying and intercepting malicious domain names in real-

time using machine learning.

In order to realize these contributions, we:

• Conducted an online user study in which participants were exposed to several URLs, a subset

of which were deliberately typosquatted to determine their effectiveness. Our results showed

that participant scores improved overall after being incrementally shown all typo techniques.

• Deployed a custom-developed online user study to establish context by dynamically fetching

domain names based on user input and similarly applied a random typosquatting model. Our

results found which typosquatting strategies were the most successful for an Adversary when

taking context into account.

• Developed a simple classification algorithm for the proactive detection of DGA-based mali-

cious domain names based on the NXDomain query patterns used by botnets. Our evaluation

results showed high accuracy scores as early as 2 days prior to the registration of a DGA-

based domain name.

• Implemented a new system that employs deep learning to produce a model that is used in a

live DNS server to accurately predict malicious domain names in DNS queries in real-time.

1.4 Dissertation Organization

This dissertation encompasses material from three papers by the author [105, 106, 107]. Chapter

2 uses material from Reference [105], coauthored with DaeHun Nyang and Aziz Mohaisen, which

6



presents the results of the user study to understand the effectiveness of malicious and typosquatted

domain names. Chapter 3 explores the possibility of taking context into account when devising an

attack strategy involving malicious & typosquatted domain names. Chapter 4 is based on Reference

[106], coauthored with Jeman Park, Joongheon Kim, and Aziz Mohaisen, which presents a system

called DRIFT to proactively detect algorithmically-generated malicious domain names typically

employed by botnets. Finally, Chapter 5 proposes a system called D-FENS which will serve as the

first line of defense against malicious domain names. Some material from each of these papers has

also been incorporated into this introductory Chapter.
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CHAPTER 2: THE EFFECTIVENESS OF MALICIOUS &

TYPOSQUATTED DOMAIN NAMES1

In this chapter, we describe the form of a malicious domain name that involves deliberately reg-

istering domains containing typographical errors so they appear similar to other (more popular)

domain names. Typosquatting, as this practice became known as, exploits common typographical

errors made by users that manually type URLs into web browsers in an attempt to steal traffic or

redirect users to unintended destinations. While much of the existing literature has examined vari-

ous typosquatting techniques and how they change over time, none have considered how effective

they are in deceiving users. In this work, we attempt to fill in this gap by conducting a user study

that exposes subjects to several uniform resource locators (URLs) in an attempt to determine the

effectiveness of several typosquatting techniques that are prevalent in the wild. We also attempt to

determine if the security education and awareness of cybercrimes such as typosquatting will affect

the behavior of Internet users.

2.1 Motivation

Typosquatters employ several techniques in the wild to register domain names that can sufficiently

capture enough traffic for monetary gain. For example, a typosquatter may target a popular domain

name and register a typo variant in which only a single character is added or substituted. This is

demonstrated by the famous case outlined in [97] where typosquatters targeted the immensely pop-

ular social-networking site Facebook to produce domain names such as www.fagebook.com

1This content was reproduced from the following article: J. Spaulding, D. Nyang, and A. Mohaisen, “Understand-
ing the effectiveness of typosquatting techniques,” In Proceedings of the Fifth ACM/IEEE Workshop on Hot Topics in
Web Systems and Technologies, HotWeb 17, pages 9:19:8, New York, NY, USA, 2017. ACM. The copyright form for
this article is included in the appendix.
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and www.facewbook.com

Approaches to Typosquatting. Much of the research in identifying and understanding typosquat-

ting generally falls under two approaches:

(i) Identifying typosquatted domain names from domain name registration information.

(ii) Identifying typosquatted domain names through network traffic analysis.

One of the first large-scale studies in the first approach was conducted in 2003 by Edelman [48],

who located more than 8,800 registered domains that were minor typographical variations of pop-

ular domain names. A few years later, Wang et al. [117] introduced a system called the Strider

Typo-Patrol for systematically identifying typo domains via “typo-generation models”. Subse-

quent studies including Banerjee et al. [31] and Edelman [49] utilized the typo-generation models

in [117] to produce a corpus of typographical variations of popular domain names, which were ul-

timately verified by domain registration look-ups or automated web crawlers. Recent studies such

as Szurdi et al. [110] examined a wider scope of popular domain names while Agten et al. [26]

examined the nature of typosquatting over time. Rather than validating potentially typosquatted

domain names through registration records, the most recent study by Khan et al. [64] introduced

a novel approach called the conditional probability model. This model essentially identifies ty-

posquatted domains by investigating which domains have high proportions of visitors leaving for

more popular domains with lexically-similar names soon after landing.

The prior work described above has proven to be valuable in understanding the landscape of ty-

posquatting. First, it highlights the prevalence of the problem with direct empirical evidence on

how domain names are being typosquatted. Second, it quantifies the various techniques utilized

by these adversaries for generating typographical variations of the domains they target. Addition-

ally, several of these studies have paved the way for introducing countermeasures to combat the
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problem. Defensive registration, for example, is perhaps the best countermeasure which involves

domain name owners to register lexically-similar domain names to eliminate the opportunity for

typosquatting altogether.

Limitations. While these previous studies have showcased the prevalence of various typosquat-

ting techniques, they fail to account for certain realities. For example, examining DNS queries

can produce very useful data through DNS tracing–but it does have limitations. First, domain

name queries are not necessarily the result of actual queries by users, but rather from browser pre-

fetching or automated web crawling. In addition, the typical analysis of DNS traffic was based on

a short period of collection time, from which the identification of typosquatted domain names is as

only good as the users who explicitly query for them.

Since DNS is inherently complex and diverse, it is difficult to exactly quantify the relevance of

typosquatting techniques at any point in time due to acquiring DNS zone files for several domains.

For example, obtaining the top-level domain (TLD) zone file for .com requires approval from

Verisign [21] which updates them daily (at the time of this writing, 120,517 new domain names

were added in the .com TLD alone [18]). This problem is further exacerbated with the adoption of

the new gTLD program, which provides even more opportunities for registering domain names and

thus the potential for typosquatting [10]. Even worse, the registration of a domain name is generally

a low-cost activity–to the point where typosquatted domain names are disposable resources: once

the adversary is done with the malicious activity, the domain names are most likely blocked or

de-registered (within the grace period of registration; often up to 7 days allowed by registries). In

conclusion, while there is fair amount of work on the problem at hand, none of such work measured

how users behave when exposed to a typosquatted domain name.

Contributions. To ultimately address the issues described above, we chose to design and im-

plement a user study which would provide several benefits: 1) it can be made scalable, 2) it can
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provide insight into how various (theoretical) typosquatting techniques compare to each other, 3)

it can determine why certain people fall for typosquatting while others do not (e.g. demograph-

ics), and 4) it can help discover the effectiveness of various techniques to mitigate the prevalence

of typosquatting (e.g. security education and its benefits)–which could hopefully be useful for

developing strategic defenses.

In this work, we design and evaluate a user study to gauge the effectiveness of several typosquatting

techniques that are used “in the wild”. More specifically, we make the following contributions:

(i) We validate typosquatting techniques presented in prior studies by examining their prevalence

using various carefully sampled domains from several data sources.

(ii) We experimentally demonstrate how security education and awareness of cybercrimes, par-

ticularly typosquatting, will affect the behavior of Internet users.

(iii) We highlight various correlations between attributes of participating subjects and their prone-

ness to accepting typosquatted domains, and hint on leveraging cognitive traits of Internet

users to strengthen the defense against typosquatted domains.

(iv) We publicly release our data so others can verify and build upon our research findings and

results.

2.2 Background & Related Work

While typical Internet users may not have come across the term typosquatting, they may have inad-

vertently stumbled upon a typosquatted domain when they either typed the wrong URL into their

web browser’s address bar or clicked on an external hyperlink. The actual term typosquatting was

coined in the late 1990’s [51] to describe a new trend appearing alongside cybersquatting, a noto-
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rious practice where opportunistic individuals preemptively registered domain names in the hopes

of selling them back to companies and trademark owners for a substantial profit. Over the years,

several studies have been conducted to understand models of typosquatting, including various fea-

tures of typosquatted domain names. In the following, we review the technical anatomy of these

typosquatting models and provide an overview of the various features prevalent in typosquatted

domain names.

2.2.1 Identifying Typosquatted Domains

Prior studies conducted on typosquatting typically began their data collection phase by first identi-

fying a set of domain names and then generating a list of possible typo variations on those domain

names. Often these studies used a subset of the top-ranking domain names according to some

domain ranking websites, such as Alexa. The rationale of using such domains is that typosquatters

will naturally target the most popular domain names to increase the chances of obtaining unsus-

pecting visitors. Table 2.1 summarizes these several approaches which includes the authoritative

domains they studied, the number of possible typosquatted domains they generated, and what per-

centage of them resolved to an actual web server’s IP address. In the following, we describe the

models that generated typo variations of an authoritative domain.

Typo-generation models. One of the first and widely cited approaches for typo domain name

generation was introduced in 2006 by Wang et al. [117], where the following five typo-generation

models were used in the wild:

1. Missing-dot: this typo happens when omitting the dot after the “www” label,

e.g. wwwSouthwest.com.

2. Character-omission: this typo happens when a character in the original domain name is
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removed, e.g. Diney.com (a typo of the Disney brand).

3. Character-permutation: this typo happens when two consecutive characters are swapped

in the original domain name, e.g. NYTiems.com.

4. Character-substitution: this typo happens when characters are replaced in the original do-

main name by their adjacent ones on a specific keyboard layout, e.g. DidneyWorld.com,

where “s” was replaced by the QWERTY-adjacent character “d”.

5. Character-duplication: this typo happens when characters are mistakenly typed twice

(where they appear once in the original domain name), e.g. Googlle.com.

Table 2.1: Summary of Typo Domain Identification Approaches.

Approach Authoritative Domains Typo Models Domains
Generated

Active Domains

Wang 2006 [117]

Alexa Top 10,000 (1) Missing-Dot 10,000 51% (5,094)

Alexa Top 30 (1-5) 3,136 71%(2,233)

MillerSmiles1Top 30 (1-5) 3,780 42%(1,596)

Top 50 Children’s Sites (1-5) 7,094 38%(2,685)

Keats 2007 [63] Top 2,771 (Various Sources) (1-5) 1,920,256 7% (127,381)

McAfee Labs 2008 [49] Top 2,000 (Unknown Source) Unknown Unknown 80,000

Banerjee 2008 [31] Top 900 (Various Sources) (6-8) ∼3 million 35%

Moore 2010 [87] Alexa Top 3,264 (1-5) 1,910,738 ∼49%(938,000)

Szurdi 2014 [110] Alexa Top 1 million (1-5) ∼4.7 million ∼20%

Agten 2015 [26] Alexa Top 500 (1-5) 28,179 61% (17,172)

While this previous study presented the first attempt to systematically understand the most preva-

lent typosquatting techniques based on certain usage aspects, later studies looked at exhaustively

1www.MillerSmiles.co.uk is one of the web’s largest collection of phishing scams and scam emails.
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generating typo domains using other methods. For example, a similar approach in 2008 by Baner-

jee et al. [31] suggested the following for generating typosquatted domains:

6. 1-mod-inplace: the typosquatter substitutes a character in the original domain name with

all possible alphabet letters.

7. 1-mod-inflate: the typosquatter increases the length of a domain name (or URL) by one

character. Unlike in [117] characters are added based on distance (e.g. using a keyboard

layout), this work considers all characters as potential candidates.

8. 1-mod-deflate: similar to the approach in [117], this typo happens when a typosquatter

removes one character from the original domain name (or URL).

Certain aspects of the techniques proposed in [31] can be viewed as generalization of the tech-

niques proposed in [117]. For example, rather than substituting adjacent characters on a keyboard

as shown by Wang et al.’s fourth model, Banerjee et al. substituted all possible alphabet characters

when generating typo domains. In addition, they also experimented with two and three charac-

ter modifications for their inplace, inflate and deflate schemes thereby generating roughly three

million possible typo domain names starting with a corpus of 900 original domain names.

After probing for the existence of a possible typo domain, Banerjee et al. observed that approx-

imately 99% of the “phony” typosquatted sites they identified utilized a one-character modifica-

tion of the popular domain names they targeted. Essentially, these are domain names that have

a Damerau-Levenshtein distance [44, 76] of one from the domains they target. The Damerau-

Levenshtein distance is “the minimum number of operations needed to transform one string into

another, where an operation is defined as an insertion, deletion, or substitution of a single character,

or a transposition of two adjacent characters” (a generalization of the Hamming distance).
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2.2.2 Features of Typosquatted Domains

In the following, we review features of typosquatted domain names as confirmed by measurements

and their evolution over time, including length of domain names (2.2.2.1), popularity of domain

names (2.2.2.2), popularity of top-level domain (TLD) (2.2.2.3), and domain landing behavior

(2.2.2.4).

2.2.2.1 Domain Name Length

While investigating if domain name length affects the chances of being typosquatted, Banerjee et

al. [31] observed that more than 10% of all possible “phony” typosquatted sites registered on the

Internet have URLs with less than 10 characters. This fulfills their expectation that typosquatters

target domains with shorter names, since popular sites often have short names. However, in a

contradictory study by Moore and Edelman [87], the authors show that “no matter the length of the

popular domain, typo domains within the Levenshtein or fat-finger distance 1 of popular domains

were overwhelmingly confirmed as typos.” Naturally, we can expect that as the length of domain

names increases the probability of it being typosquatted increases, since the number of possible

typo variations increases. This concept is solidified in the results of the 2015 study by Agten et al.

[26], which concluded that “typosquatters have started targeting longer authoritative domains in

the past six years (from 2009)”, due to the fact that typosquatted domain names with short lengths

were already registered. Our study, on the other hand, confirms that users are equally likely to fall

for typosquatted domains regardless of their length.
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2.2.2.2 Domain Name Popularity

Another feature of domain names that has been investigated for its correlation with typosquatting

is their popularity. It is naturally expected that typosquatters will target the most popular domain

names to maximize the return on their investment (i.e. the number of visits by unsuspecting users).

The results of Banerjee et al. [31] initially suggest that “the percentage of active typosquatting

domains for a given authoritative domain reduces significantly with the decreasing popularity.”

This is in contrast to the results presented by Szurdi et al. [110], who performed a comprehensive

study of typosquatting domain registrations within the .com TLD—the largest TLD in the domain

name ecosystem. They concluded that 95% of typo domains target the “long tail” of the popularity

distribution. The longitudinal study by Agten et al. [26] also confirms this trend, suggesting a shift

in trends and behaviors of typosquatters.

2.2.2.3 Effect of the Top-Level Domain

The popularity of a TLD has been also investigated as a feature for its correlation with typosquatted

domain names. For example, since the .com TLD was introduced as one of the first TLDs when

the Domain Name System (DNS) was first implemented in January 1985 [12], it makes up a large

portion of the total number of registered domain names—As of June 30, 2015, the total number

of registered domain names was 294 million, out of which 117.9 million domain names were

registered under .com, making up roughly 40% of the total domain names (http://bit.ly/

1VKiMr3). As such, a majority of the existing studies conducted on typosquatting have only

considered domain names in the .com TLD. In their results, Banerjee et al. [31] observed that for

nearly a quarter of all initial .com URLs, at least 50% of all possible phony sites exist; confirming

that a domain name ending with .com has a high chance of being typosquatted. Interestingly,

the results of Agten et al. [26] finds that certain country-code TLDs (.uk, .jp, etc.) affect
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the number of typosquatted domains they contain due to either an unconventional domain dispute

policy or domain cost (i.e. cheaper domain names are more likely to be typosquatted).

Additionally, the TLD portion of a domain name may also be a target for exploitation. As men-

tioned previously, typosquatters have targeted popular .com domain names by registering a simi-

lar domain name in the country code TLD (ccTLD) for Oman (e.g. Netflix.om). Furthermore,

.com domains may have a malicious .org counterpart unbeknownst to the original registrant of

the .com domain. A noteworthy example of this was mentioned in [41], where unsuspecting view-

ers inadvertently typed www.whitehouse.com instead of www.whitehouse.gov and were

exposed to questionable content in lieu of the official United States White House website. Banerjee

et al. [31] further studied this effect and observed that: “1) Original URLs with a .com extension

are impersonated primarily in .biz, .net and .org domains. 2) Original URLs without a .com

extension are impersonated primarily in .com, .net and .org domains”.

2.2.2.4 Probability Models for Domain Landing

The 2015 study by Khan et al. [64] introduced a novel approach for detecting typosquatting do-

mains called the conditional probability model, which requires “a vantage point at the network

level to examine DNS and HTTP traffic records”. This model identifies domains that have a high

proportion of visitors that navigate to similar-looking popular domains after having landed on a

particular site (domain name). Specifically, they generated “pairs of domains (d1,d2) such that

each load was performed within 33 seconds of each other, and the Damerau-Levenshtein edit dis-

tance between the two domains is one”. When dealing with lexically-similar domain pairs, where

one of the two domains is unlikely a typo of another, e.g. nhl.com and nfl.com, the advantage

of applying the conditional probability model is that it does not correlate such domain pairs. In the

results reported by Khan et al., “a request for nhl.com is only followed by a load of nfl.com
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.08% of the time where the reverse rate is even lower at < 0.01%”. However, they reported that

users attempting to visit eba.com will immediately navigate to ebay.com 90% of the time,

which indicates that eba.com might be a typoquatted domain.

2.3 User Study: Identifying Typo Domains

To gauge the effectiveness of typosquatting techniques discussed in Section 2.2.1 that are prevalent

in the wild, we conducted a user study. Subjects were presented with a list of actual domain name

URLs where a subset of them were modified using all of the techniques shown in Section 2.2.1 to

represent possible typosquatted domain names. The subjects were asked to indicate that for each

given domain name URL, select “Yes” if it appears to be a typosquatted domain name or “No” if

it is an authoritative domain name.

2.3.1 User Study Objectives

The primary objectives of the user study are to:

(i) Gauge the effectiveness of various techniques of typosquatting on users.

(ii) Study the benefits on how security education can improve users’ awareness of typosquatted

domain names.

Secondary objectives include:

(iii) Understanding correlations between user demographics and the outcomes of typosquatting

(whether they fall for it or not).

(iv) Determining features of successful typosquatted domains.
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In particular, we hope to answer the following questions:

Q1. Are users more susceptible to typosquatted domain names containing certain kinds of typos

(e.g. missing characters) than others (e.g. substituted characters)?

Q2. Does security education play a role in helping users correctly identify typosquatted domain

names?

Q3. Does a user’s demographic (e.g. age, education) affect how they perceive typosquatted domain

names?

Q4. Do users more easily identify typosquatted domain names that target popular domains?

Q5. Are certain types of typosquatted domain names (e.g. alphanumeric) more susceptible than

others?

Q6. Does the TLD (e.g. .com, .uk) affect a user’s identification of a typosquatted domain name?

To answer these questions and achieve our objectives, we rely on a systematic method for the

selection of domains and subjects, as well as experimental design and evaluation criteria. In the

following, we elaborate on each of those aspects.

2.3.2 Selection of Domain Names

The list that was presented to each subject comprised of 200 domain names that were chosen from

the Alexa top 1 million websites (globally). Rather than sample domain names randomly, the entire

collection of 1 million domain names were split into four unequal partitions with the first partition

representing the top 1,000 domain names. Subsequent partitions were increased in size by a factor

of 10 and then 50 domain names were randomly sampled from each partition to bring us a total
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of 200 candidate domain names. This method allowed us to favor domain names that appeared

towards the popular end of the spectrum.

Next, we simply iterated through the candidate domains and randomly decided if it should be

typosquatted or not. If chosen to be typosquatted, a candidate domain is then modified using one

of the techniques from Section 2.2.1, which was also randomly chosen. Ultimately, 93 (46.5%)

candidate domains were randomly chosen to be typosquatted, with Table 2.2 showing a breakdown

of how many candidate domains were modified using a particular typosquatting model. Since

Model 8 (1-mod-deflate) is similar to Model 2 (Character-omission), we only considered Models

1-7 in our study.

Table 2.2: Number of candidate domains per model

Typosquatting Model # of Domains

1 (missing-dot) 15

2 (character-omission) 11

3 (character-permutation) 12

4 (keyboard-substitution) 11

5 (character-duplication) 19

6 (1-mod-inplace) 12

7 (1-mod-inflate) 13

Total Domains Modified: 93

2.3.3 Selection of Subjects

The participants of the study primarily consisted of University students, followed by University

staff and researchers. Despite the lack of choice in participants, we strove to include a good rep-

resentation of demographics that would address the questions raised in our study’s objectives (i.e.
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Does a user’s demographic affect how they perceive typosquatted domain names?). Additionally,

we attempted to include diverse sample characteristics (with respect to subjects) so that we can un-

derstand other objectives of the study (e.g. whether security education, familiarity, or educational

background, help identify typosquatted domain names).

2.4 Design of the User Study

To assess how prior knowledge and awareness of security concepts affect a user’s behavior, the user

study encompassed three phases which incrementally introduced subjects to all of the typosquat-

ting techniques discussed in Section 2.2.1. To deploy the user study, we created an online survey

form so each participant could complete the survey anytime they wish using their own computers

and devices.

Figure 2.1: Phase 1 of the malicious domain name user study.
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For Phase One (Fig. 2.1), participants were given a URL link to the online survey website and were

presented with a brief introduction to typosquatting (omitting any of the previously-discussed tech-

niques from Section 2.2.1). Following the introduction section, a series of questions were included

to gather the following demographical data: Name, E-mail, Gender, Age, Education, and Famil-

iarity of Security Concepts (on a scale 1-5). Before participants could proceed to the next page

of the online survey, they must enter the current time (this was necessary in order to calculate the

amount of time each subject completed the survey). Each subsequent page of the survey presented

10 candidate domain URLs with a “Yes” or “No” choice to indicate a typosquatted domain.

Phases Two and Three (Fig. 2.2) followed a similar template as Phase One, except they only asked

for the e-mail provided in Phase One (to uniquely identify subjects) and the current time. Addi-

tionally, the same corpus of candidate domain name URLs used in Phase One are shown except

the order in which they appear are randomly shuffled. To provide subjects with more knowledge

about typosquatting techniques, the introduction sections of Phases Two and Three include typo-

generation models mentioned in Section 2.2.1.

(a) Phase 2. (b) Phase 3.

Figure 2.2: Screenshots of phases 2 & 3 of the malicious domain name user study. Notice that
each phase introduces the participants to increasing levels of knowledge about typosquatting.
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2.5 Results & Discussion

In our user study, we recruited 34 participants who completed all three phases of the survey over

a one week period. After completing each phase of the survey, each participant received an au-

tomated e-mail containing the total number of correct responses (out of 200) which forms their

score.

2.5.1 Evaluation Criteria

For our evaluation, we primarily observed two performance metrics among users: 1) correct re-

sponses and 2) the amount of time to complete each phase of the study. For a given domain name, a

correct response is defined as to whether the user answered “No” if the given domain name was an

authoritative domain name (unaltered) or “Yes” if the given domain name was indeed typosquatted

(altered according to Section 2.2.1). We examined the total completion time for each user and cal-

culated the average amount of time spent (in seconds) to answer each question of the 200-question

survey.

As will be shown in the next section, users generally performed better (i.e. correctly identified

typosquatted domain names) with each subsequent phase of the survey. However, if we drill down

and examine the users’ demographical data, we can see that variables such as their Age and Educa-

tion affect not only how they perceive potentially typosquatted domain names–but also how long

they spend analyzing them. These interesting findings are discussed further in our demographical

results outlined in Section 2.5.3.
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(a) Correct Responses Per Phase (b) Completion Time Per Phase

Figure 2.3: Plots of the study results depicting correct responses and completion time per phase.

2.5.2 Participant Scores and Completion Time

As illustrated in Figure 2.3(a), the average number of correct responses improved with each sub-

sequent phase. For Phase One, the scores ranged from 78 to 186 correct responses with a mean,

standard deviation and variance of 142.2, 23.6 and 557.1, respectively. In Phase Two, the mini-

mum score increased to give us a range from 110 to 188 (Mean=147.1, s.d.=18.6, variance=345.7).

Phase Three’s minimum score increased slightly to range of 117 to 183 (Mean=149.9, s.d.=15,

variance=225).

As depicted in Figure 2.3(b), the average number of seconds per response decreases slightly with

each phase. For Phase One, the average elapsed time per response ranged from 3.1 to 29.8 sec-

onds (Mean=9.6, s.d.=6.7, variance=44.5). In Phase Two, the minimum average time per response

decreased to give us a range from 1.9 to 23.8 seconds (Mean=6.7, s.d.=4.7, variance=21.8). Phase

Three’s minimum score also decreased slightly to range of 0.1 to 25.5 (Mean=5.5, s.d.=4.6, vari-

ance=20.8).
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(a) Correct Responses By Age (b) Completion Time By Age

Figure 2.4: Plots of the user study results according to age.

Those results are interesting in several ways. First, the more subjects were educated about the

security problem at hand, the faster they became at identifying typosquatted domains. Second,

subjects also became better at identifying those domains (i.e. better identification rate).

2.5.3 Demographics

Age. The ages of the participants ranged from 22 to 39 (Mean=25, s.d.=4.1, variance=16.5). As

we can see in Figure 2.4(a), younger participants generally scored higher than older participants

across all phases of the study. Interestingly, Figure 2.4(b) shows that even though the younger

participants scored higher, they also spent more time per question on average compared to their

older counterparts.

In the fields of Psychology and Optometry, it is generally understood that older adults often take

longer to read than young adults. As Paterson et al. [91] points out, this age-related difference

is “due to optical changes and changes in neural transmission that occur with increasing age”.
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(a) Correct Responses By Education (b) Correct Responses By Familiarity

Figure 2.5: Plots of the user study results according to education and familiarity

Conversely, the results of our study show a trend where older participants spent less time per

survey question on average than their younger counterparts. This trend of spending more time on

each question in the survey could explain why the younger participants scored better, as the older

participants appeared less patient and tended to perform worse at identifying typosquatted domain

names.

Education level. The majority of participants were University students with University staff mak-

ing up the rest of the test subjects. Of the participants, there was only 1 High School Graduate

and 1 participant who reported some College Education. For the rest, 17 participants (50%) had

a Bachelors degree, 13 participants (38.2%) had a Masters degree, and 2 held Doctorate degrees

(5.88%). As shown in Figure 2.5(a), participants holding higher degrees of education actually

scored worse than participants with less education.

Familiarity of security concepts. On a scale of 1 to 5 in the familiarity of security concepts,

only 1 participant chose a value of “2”. 15 participants (44.1%) chose the middle value of “3”,
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14 participants (41.1%) chose the higher value of “4”, and the remaining 4 participants (11.8%)

stated they were very familiar with security concepts by choosing “5”. As we can see in Figure

2.5(b), the self-identification of one’s familiarity with security concepts coincides with how well

they performed as scores generally increased.

(a) Responses By Domain Ranking (b) Responses By Typo Model

Figure 2.6: Plots of the user study results according to domain ranking and typo model.

2.5.4 Domain Name Features

Domain ranking. As mentioned previously, the entire collection of 1 million domain names

were split into four unequal partitions with Partition 1 representing the top 1,000 domain names.

Subsequent partitions were increased in size by a factor of 10, so Partition 2, Partition 3, and

Partition 4 represented the ranges: [1,001-10,000], [10,001-100,000], and [100,001-1,000,000],

respectively. As expected, Figure 2.6(a) demonstrates that participants were more successful in

correctly identifying typosquatted domain names that targeted popular domains.

Typosquatting model. Since Model 8 (1-mod-deflate) is similar to Model 2 (Character-omission),

we only considered Models 1 through 7 in our study. As shown in Fig. 2.6(b), participants were

very likely to distinguish a typosquatted domain name that used Model 1 (Missing-dot), Model 5
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(Character-duplication) and Model 7 (1-mod-inflate). The models that caused most participants

to incorrectly identify typosquatted domain names were Model 2 (Character-omission) and Model

6 (1-mod-inplace). Essentially, users tend to correctly identify typosquatting which adds charac-

ters (e.g. duplicate or random) while the most effective typosquatting involves permutations and

substitutions.

To ascertain why certain typosquatting techniques are more effective than others, we can look at

studies in Cognitive Science. For example, Grainger and Whitney [53] highlight the fact “that a

text composed of words whose inner letters have been re-arranged can be can be raed wtih

qutie anazimg esae!” This so-called “jumbled word effect” has to do with how our brains

perceive the placement of characters in words.

Domain Name type. Given our sample size of 200 domain names, 167 (83.5%) were made up

of all alphabetic characters with the remaining 33 (16.5%) containing alphanumeric characters.

Fig. 2.7(a) illustrates that participants were more likely to identify a domain name that contained

all alphabetic characters as opposed to alphanumeric characters.

TLDs. According to the Internet Assigned Numbers Authority (IANA), the organization who

delegates administrative responsibility of TLDs (Top-Level Domains), there are different “groups”

of TLDs which include [14]:

• Infrastructure top-level domain (ARPA)

• Generic top-level domains (gTLD)

• Restricted generic top-level domains (grTLD)

• Sponsored top-level domains (sTLD)

• Country code top-level domains (ccTLD)

• Test top-level domains (tTLD)
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(a) Responses By Domain Type. (b) Responses By TLD Type.

Figure 2.7: Plots of the user study results according to domain type and TLD.

The initial set of TLDs that were created in the early development of the Internet (e.g. .com

and .net) are now grouped under the “generic” category mentioned above. For our purposes;

however, we labeled the following TLDs under the “historic” group, since they are widely-known

to the average Internet user: .com, .org, .net, .int, .edu, .gov, and .mil. As a result,

our sample size of 200 domain names were only categorized into three groups where 119 (59.5%)

fell into the “historic” TLD group, 75 (37.5%) fell into the “country-code” TLD group, and 6 (3%)

were in the “generic” TLD group. As illustrated by Fig. 2.7(b), participants performed better when

presented with a domain name with a “historic” TLD than domain names from either the “generic”

or “country-code” groups.

Typosquatting difficulty. Table 2.3 lists the top 10 domains which caused the most incorrect

responses (averaged over all phases) for the participants, which coincides with our earlier statement

that the most effective techniques involve permutations and substitutions.

The first-most incorrectly identified site could be attributed to the fact that most participants were
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based in the United States and therefore unfamiliar with the .ua TLD, which is the ccTLD for

Ukraine. However, it should be pointed out that the fourth-most incorrectly identified domain

name, umblr.com, turned out to be an edge case that is in fact an actual typosquatted domain.

Most participants most likely thought it was a typosquatted variant of tumblr.com, a popular

microblogging and social networking website. During the study design phase, our algorithm se-

lected the domain umblr.com but did not actually modify it with a typosquatting model and

subsequently marked it as not typosquatted. According to WHOIS records, the domain name

umblr.com is actually owned by “Tumblr, Inc.” which makes this a perfect example of a defen-

sive registration against potential typosquatters.

Table 2.4 lists the top 10 domain names that were correctly identified (averaged over all phases) by

the participants of the study. Again, this coincides with that fact that users easily spot typosquat-

ted domain names which adds characters–especially if they target popular domain names such as

google.* or blogger.com.

Table 2.3: Top 10 incorrectly identified domains (unmodified domains shown in gray).

Typo Domain Authoritative Domain Typosquatting Model Rank Phase 1

Correct

Phase 2

Correct

Phase 3

Correct

Average

Correct

--- onlainfilm.ucoz.ua --- 6,345 24% 9% 9% 14%
ngbus.com tgbus.com 6 (1-mod-inplace) 998 24% 15% 3% 14%
afg.com avg.com 4 (keyboard-sub) 366 24% 9% 21% 18%
--- umblr.com --- 506 18% 26% 15% 20%
egadget.com engadget.com 2 (char-omission) 403 29% 21% 12% 21%
vc.cn ivc.cn 2 (char-omission) 1,778 29% 24% 18% 24%
zasgames.com oasgames.com 6 (1-mod-inplace) 7,942 32% 29% 15% 26%
hispress.com hespress.com 6 (1-mod-inplace) 536 41% 26% 24% 31%
--- 05tz2e9.com --- 5,988 32% 29% 36% 33%
rudupoint.com urdupoint.com 3 (char-permutation) 443 44% 26% 30% 34%
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Table 2.4: Top 10 correctly identified domains (unmodified domains shown in gray).

Typo Domain Authoritative

Domain

Typosquatting Model Rank Phase 1

Correct

Phase 2

Correct

Phase 3

Correct

Avg.

Correct

googlje.dz google.dz 7 (1-mod-inflate) 370 97% 100% 94% 97%
--- wayfair.com --- 568 94% 97% 100% 97%
blogger.comm blogger.com 5 (char-dup) 72 91% 97% 100% 96%
--- office.com --- 63 94% 94% 100% 96%
--- audible.com --- 840 94% 100% 94% 96%
wwweromode.net eromode.net 1 (missing-dot) 697,652 94% 94% 97% 95%
--- popsugar.com --- 837 91% 94% 100% 95%
syosetu.comm syosetu.com 5 (char-dup) 930 94% 97% 94% 95%
wwwiklan-
oke.com

iklan-oke.com 1 (missing-dot) 688,829 91% 97% 94% 94%

financial-spread-
bettin.gcom

financial-spread-
betting.com

3 (char-perm) 729,388 85% 97% 100% 94%

2.6 Conclusions & Recommendations

This study has allowed us to gain valuable insight into the effectiveness of various typosquatting

techniques and how security education affects the behavior of users. Our results confirm that

participants generally performed better and faster at identifying typosquatted domain names after

being educated about typosquatting models between each phase of the study.

Recommendations. Based on our results, we offer some recommendations for strengthening the

defenses against typosquatting.

As demonstrated by the improved scores with each subsequent phase of the study, we can confi-

dently say that thoroughly educating users about all known typosquatting techniques will surely

help them fend off against malicious domain names. As more organizations and businesses adopt

security training programs in this day and age, it would be most beneficial to incorporate a training

module that specifically explores typosquatting in more detail (perhaps alongside the commonly-
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taught Phishing attacks).

The results of the study, pertaining to the particular features of the domain names that were used,

can most certainly aid in the design of a defense system that uses heuristic analysis. While typical

defense systems use blacklists (e.g. Google Safe Browsing), a heuristic-based defense system

that dynamically analyzes URLs can incorporate our findings to help “rank” potentially malicious

domains. For example, domain names from a gTLD or ones with alphanumeric characters can

be “flagged” for closer inspection since users are more likely to fall victim to their typosquatted

variants.
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CHAPTER 3: MALICIOUS & TYPOSQUATTED DOMAIN NAME

ATTACKS WITH CONTEXT

In Chapter 2, we presented an overview of current state-of-the-art typosquatting techniques and

how effective they were in deceiving users. While some techniques fared better than others (e.g.

swapping characters vs. adding characters), such typo generation techniques fail to take the context

of the user into account. As evidenced by the results of the user study presented in Section 2.5.4, the

most incorrectly identified domain name in the study was likely attributed to a user’s geographical

setting as most were unfamiliar with domains ending with a ccTLD for Ukraine (.ua).

In this chapter, we explore the possibility of taking context into account when devising an attack

strategy involving malicious & typosquatted domain names. Some of these approaches may in-

clude: 1) profiling a user by eavesdropping on their network activity (e.g. HTTP or DNS traffic)

and 2) profiling a user by co-locating on the same host (e.g. extracting browsing history, etc). The

motivation behind this approach is to determine if an attacker can improve their “success” rate of

utilizing such malicious domain names. In turn, this will lead into an initial study of the effective-

ness of such advanced attacks which will help aid in the development of possible countermeasures.

3.1 Background & Related Work

As mentioned previously, we can profile a user by eavesdropping (i.e. network snooping or pack-

ing sniffing) on their network activity. This is typically accomplished by capturing TCP/IP or

other protocol packets and decoding the contents using a protocol analyzer or similar tool such as

Wireshark. However, as Laboshin et al. [73] state: “most of these tools are designed to run on

single high-performance servers which are not capable of handling huge amounts of traffic data
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captured at very high-speed”. Even the official Wireshark Guide [15] warns that using the tool

with a high-traffic network will generate large capture files: “Capturing on a gigabit or even 100

megabit network can produce hundreds of megabytes of capture data in a short time”. Given the

potentially large volumes of network traffic, if one was to do HTTP eavesdropping then the main

challenge would be to know what is relevant and what is not. As Campbell points out [92], tradi-

tional packet capture tools cannot keep up unless you know exactly where to look: “Relying only

on traditional packet capture would be like using a scalpel to cut down a tree”.

3.1.1 The DNS Protocol

Alternatively, we can focus on the DNS protocol to conduct user profiling since DNS requests

and responses are typically small (originally capped at 512 bytes as a requirement, today under

1500 bytes as a practical matter) [127] and usually sent “in the clear” (i.e. unencrypted)[99]. In

choosing the DNS protocol for eavesdropping, there are yet additional challenges to consider such

as: 1) DNS resolution on shared hosting entities (which are not of particular interest to the users)

and 2) DNS prefetching, which could affect the accuracy of profiling users since certain browsers

attempt to pre-resolve the domains found in hyperlinks when loading webpages. Despite these

challenges, an adversary who is determined can still profile users to a high degree by just using

standard eavesdropping tactics out-of-the-box.

Domain names essentially allow us to map human-readable strings to machine-readable IP ad-

dresses. In the case of IPv4, the address on the network is composed of 4 bytes (32 bits) in

total, and can be represented by four number segments separated by dots as in 1.2.3.4. IPv6,

which has an address space that is four times larger than IPv4, has a total of 8 segments in its

address structure, with each segment being 2 bytes that are represented by hexadecimal numbers

(e.g. 2a03:2880:f10c:83:face:b00c:0:25de). It is a herculean task for users to remember all the
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numerical addresses of the Internet services they want to access. DNS, which is designed to im-

prove the usability, allows users to access them through the familiar natural language, such as

www.example.com.

Figure 3.1: An illustration of the steps of DNS resolution through the recursive, root, TLD, and
authoritative name server.

3.1.2 DNS Resolution

DNS is a hierarchical and distributed database structure for resolving domain names. The string

address entered by users is converted to an IP address through root, Top-level domain (TLD), and

authoritative name servers. Figure 3.1 shows the translation of the domain name. When users

attempt to access a particular service through an Internet web browser such as Chrome or Firefox,

the DNS resolution process begins.

Local cache and host table. As the first step of DNS resolution, the local resolver initially finds

its local cache and host table. If there is no corresponding entry for the given domain, the local

resolver generates and sends the DNS query to the recursive server for the DNS resolution. Step

1© in Figure 3.1 shows the initial DNS query from the client to the recursive server. The query
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includes a special flag to indicate that is a recursive query. Once the recursive server receives

the query from the client, it begins the recursive steps 2© through 7© with the root, TLD, and

authoritative name servers.

Root name server. In step 2©, the recursive name server (which does not have a corresponding

entry for the received query from the client) sends a iterative (i.e. non-recursive) query to the root

name server. This server is responsible for the translation of the root zone in the DNS system using

stored data, such as the IP address and location of an authoritative TLD name server. Upon receiv-

ing the query of www.example.com in step 3©, the root name server returns the appropriate list

of authoritative TLD servers for the .com TLD.

TLD name server. The next phase, step 4©, is querying for the translation of the TLD in given

domain. The resolver that found the TLD name server list through the previous step sends the

domain name query to the .com TLD name server. The .com TLD name server searches for

the record of the authoritative name server corresponding to the queried domain and responds to

the recursive server with a list as shown in step 5©. For example, if example.com has two

authoritative name servers, namely ns1 and ns2, the information about ns1.example.com and

ns2.example.com would be returned as well.

Authoritative name server. The final step of recursive domain name resolution process goes

through the authoritative name server. In step 6©, the recursive name server contacts the name

server from the records received from the .com TLD name server. The authoritative name server,

which knows the A address record for www.example.com (or AAAA address record in the case

of IPv6), sends the result to the recursive server in step 7©. At this point, the recursive name server

determines the IP address of the requested domain name and forwards it to the local machine shown

in 8©. The local resolver, which finally knows the IP address of www.example.com, delegates

it to a web browser. As a result, the web browser will be able to initiate the loading of a web page
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by sending a Hypertext Transfer Protocol (HTTP) request to the resolved IP address.

3.1.3 DNS Prefetching

As described in the previous section, there are several steps in the process of resolving a domain

name which can cause a considerable amount of latency. As the Chromium documentation [2]

explains: “The time that DNS resolution takes is highly variable, where latency delays can range

from around 1ms (locally cached results) to commonly reported times of several seconds.” This

prefetching attempts to alleviate this latency by resolving domain names automatically to help

speed up Internet browsing.

For example, when the open-source Chromium browser encounters hyperlinks in web pages, it

parses the domain name from each link and resolves them to an IP address [2]. When a user

clicks on any of these pre-resolved domains, the Chromium team claims that this saves on average

about 200 milliseconds (assuming they have not already visited the domain recently) and avoids

the “worst case” delay, which are regularly over 1 second. In addition to resolving domain names

found in links of web pages, Krishnan and Monrose [71] point out that browsers such as Chrome

“will attempt to guess the site a user might be attempting to visit as she types in the location bar,

simultaneously performing pre-resolutions for the predicted destinations”.

3.1.4 Establishing Context

Eavesdropping. As mentioned earlier, DNS queries and responses are usually sent unencrypted

and “in the clear” [99]. While the original DNS specification [90] supports both UDP and TCP,

UDP is the recommended method for standard queries over the Internet while TCP is typically

used for zone transfers. Because of the connection-less nature of UDP, Zhu et al. [128] argue
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that the use of this protocol in DNS “is the root cause of a range of fundamental weaknesses in

security and privacy that can be addressed by connection-oriented DNS”. To this end, an adversary

wishing to eavesdrop on DNS traffic will gleam much information if they intercept unencrypted

UDP packets at certain vantage points in the DNS resolution process shown in §3.1.2. According

to Bortzmeyer [99], “the best place to setup a network tap, from an eavesdroppers point of view, is

clearly between the stub resolvers and the recursive resolvers” (see Figure 3.1), because traffic is

not limited by DNS caching.

Co-Locating on the Same Host. Our threat model assumes that an adversary has access to the

same host as the target user, such as a shared workstation or public computer at a library or school.

These systems will most likely be locked down by an administrator with little to no privileges. If

such shared computers were unrestricted, or if the adversary manages to circumvent these restric-

tions, then this scenario would fall outside the scope of our threat model since that opens up the

possibility for a wider range of attacks (e.g. malware, etc.). To that end, we are most concerned

with the aspect of privacy and whether it is possible to access information on a shared host about

its users in order to accurately profile them to launch more sophisticated and successful attacks.

Figure 3.2: An example of a browser extension using the chrome.history API to extract the
browser’s history.

Web browsing history, for example, is one of the most crucial types of information that will help
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us achieve our goal. Being able to access a user’s browsing habits will allow us to generate specific

malicious domain names that will be personalized for the target user. Essentially, these custom-

crafted malicious domain names have a greater potential to “succeed” in deceiving the user. Ac-

cessing the browsing history of a web browser on a shared host may be problematic, as most

modern browsers now have “private browsing” mode which does not store any history or cache

between sessions. However, as recently shown by Zhao and Liu [125], browser extensions can

circumvent this since they may not always abide by the private browsing policy; some keep data

even after the private browsing session ends. For example, a Google Chrome browser extension

was specifically developed to extract browsing history in an effort to profile a user. As shown in

Figure 3.2, the use of the chrome.history API allowed us to access the browser’s database of visited

URLs and query for them in the browser’s history.

3.2 User Study: Malicious Domain Names with Context

As a continuation of the user study presented in Section 2.3, we conducted a follow-up study

to establish if taking context into account will result in a more “successful” attack strategy that

utilizes malicious domain names. Similar to the previous study, subjects were first asked a series

of demographic questions followed by a list of actual domain name URLs in which some were

deliberately modified according to the typosquatting techniques shown in Section 2.2.1. The survey

instructed subjects that they will be presented with several domain names that were sampled from

Alexa’s most popular domain names and asked to indicate if they appear to be malicious or not by

selecting ”Yes” or ”No”. Unlike our previous user study which sampled from the Alexa’s global

list of top sites, this survey dynamically sampled from a pool of domain names that were generated

based on a user’s input (e.g. country, subject interest, favorite websites). The primary objective

here was to determine the effectiveness of “personalized” malicious domain names that takes the
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context of the user into account.

(a) Screen 1. (b) Screen 2.

Figure 3.3: Screenshots of screens 1 & 2 of the context user study.

3.2.1 User Study Design & Implementation

Since we required the ability to dynamically sample domain names from the Amazon Web Ser-

vices (AWS) API, we chose to develop and host our own custom web application. Rather than

relying on third-party survey services like Google Forms or SurveyMonkey, we chose to adopt the

newly released open-source SurveyJS library which allowed us to dynamically generate the survey

on-the-fly. The survey web application was developed primarily using JavaScript, HTML, and

PHP and featured a series of navigable pages with input questions with error-handling (i.e. blank

or invalid responses). Following the introduction and consent page, Fig. 3.3(a) shows a series of
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questions were presented to the user to gather demographical data: Age, Gender, Race/Ethnic-

ity, Education, and Familiarity of Security Concepts (on a scale 1-5). Unlike the previous user

study which asked the user to input the current time (necessary to calculate the total time spent),

our custom-developed web application allowed us to easily record the actual time spent using

JavaScript timers. Fig. 3.3(b) shows the next page where the user is prompted for which country’s

websites they mostly visit (e.g. if mostly South Korean websites, then select ”South Korea”). They

are also ask to select a pair of category/sub-category of websites they mostly visit, which is directly

mapped from the categories specified by the AWS API (e.g. Computers/Security). The input from

these questions are then used in web service API calls to AWS to return a list top domain names

for a particular country or category which will be included in the pool of available domain names

discussed in the following section.

3.2.2 Selection of Domain Names

To avoid “survey fatigue” [17] and to ensure our subjects were not overwhelmed with answering

several questions, we strove to limit the amount of domain names to 30. Rather than sampling

from a pool of domain names representing the global top sites from Alexa, the pool of avail-

able candidate domain names was constructed dynamically using the Alexa top sites for specific

countries and categories. For example, Alexa lists the third-most popular website in South Korea

as naver.com (a.k.a. “the Google of South Korea”) while its global rank is 110. If a subject

chooses “Arts & Music” for a category/sub-category pair, then the top ranking results includes

websites such as ultimate-guitar.com and billboard.com which may be more familiar with that

particular user.

To avoid the invasive approach of having an application attempt to scan your browsing history

(as shown in Fig. 3.2), this study prompts the user for 5 of their most-frequently visited web-
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sites (Fig. 3.4(a)). After validating each of the user-supplied domain names through the AWS

API (to prevent invalid or non-existent domains), these 5 user-supplied domains along with 25

domains sampled from the country/category pool form a total of 30 candidate domain names to

be presented to the user. Fig. 3.4(b) shows a “word cloud” visualization of all the user-supplied

domain names with google.com and naver.com being the most-commonly supplied domains

frequently visited by users.

(a) Screen 3: User-supplied Domains. (b) “Word Cloud” of User-supplied Domains.

Figure 3.4: User-supplied domains from the context user study.

As before, we simply iterated through the candidate domains and randomly decided if it should be

typosquatted or not with a random technique chosen from Section 2.2.1. For this study, we only

considered Models 2-7 in our study since Model 1 (i.e. removing the ‘.’ in “www.”) was the most

easily-recognizable typo technique that failed to deceive users. Fig. 3.5 shows a snippet of the

algorithm that generates a typosquatted variant given a domain name and typo model number.
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1 function generateTypo(input, model) {
2 if (model == 1) {
3 // "Missing-dot typos: the dot following ’www’ is forgotten, e.g., wwwexample.com"
4 if (domain.indexOf(’www.’) !== -1) {
5 return domain.replace(’www.’, ’www’)
6 }
7 } else if (model == 2) {
8 // "Character-omission: one character is omitted, e.g., www.exmple.com"
9 while (true) {

10 i = getRandomArbitrary(0, strLen);
11 if (domain[i] !== ’.’) {
12 if (i == 0) {
13 typoDomain = domain.slice(1);
14 } else {
15 typoDomain = domain.slice(0, i) + domain.slice(i + 1);
16 }
17 typoDomain = origPrefix + typoDomain + origSuffix;
18 if (isValidDomain(typoDomain)) {
19 return typoDomain;
20 }
21 }
22 }
23 } else if (model == 3) {
24 // "Character-permutation: two consecutive characters swapped e.g., www.examlpe.com"
25 var sample = range(strLen - 1);
26 shuffle(sample);
27 for (i = 0; i < sample.length; i++) {
28 var next = i + 1;
29 if (domain[i] !== domain[next]) {
30 typoDomain = domain.slice(0, i)
31 typoDomain += domain[next] + domain[i] + domain.slice(next + 1);
32 typoDomain = origPrefix + typoDomain + origSuffix;
33 if (isValidDomain(typoDomain)) {
34 return typoDomain;

Figure 3.5: JavaScript code snippet for generating a typosquatted domain name.

3.3 User Study Results

Our preliminary study included 18 participants who completed the survey with a median time of

410 seconds (approx. 7 minutes). Similar to our first study, our evaluation primarily focused on

two performance metrics:

(i) Correct responses

(ii) Amount of time to complete the survey

As before, a correct response is defined as to whether the user answered “No” if the given domain

name was an authoritative domain name (unaltered) or “Yes” if the given domain name was altered
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according to Section 2.2.1. As illustrated in Fig. 3.6(a), the scores ranged from 18 to 29 (out

of 30) with a mean, standard deviation and variance of 22.5, 2.98, and 8.85, respectively. The

completion time ranged from 125 seconds (approx. 2 minutes) to 1,630 seconds (approx. 27

minutes) with (Mean=544.4, s.d.=358.1, variance=128,268.3). The longest completion time may

have been attributed to the fact that a survey participant may have left the survey website and

returned at a later time to complete it. In future work, we will ensure a timeout mechanism is

built-in to warn the user that a timeout will occur if no activity is detected after some threshold.

(a) Correct Responses. (b) Completion Time (Sec). (c) Correct Responses by Age

Figure 3.6: Overall correct responses and completion time, as well as correct responses by age.

3.3.1 Demographics

The ages of the participants ranged from 23 to 77 (Mean=35.1, s.d.=16.9, variance=285.2). As

shown in Fig. 3.6(c), there is an upward trend in the number of correct responses followed by an

overall decline as the age of the participants increased. This is in contrast to the results of our first

user study shown in Fig. 2.4(a) where those younger participants scored higher, but it should be
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noted that the range of ages was only from 22 to 39. Also in contrast to the first user study was

the results of the correct responses grouped by a participant’s education, which shows an upward

trend as the higher educational degree increases (Fig. 3.7(a)). Ethnicity was a new demographic

question introduced in this user study, which shows that participants who identified themselves as

“White / Caucasian” (who are most likely native English speakers) as having the highest scores

among the ethnic groups (Fig. 3.7(b)).

(a) Correct Responses by Education. (b) Correct Responses by Ethnicity.

Figure 3.7: Plots of the context user study according to education and ethnicity.

3.3.2 Typosquatting Model Effectiveness

Similar to our findings from the first user study, the typo model which caused the most participants

to incorrectly identify typosquatted domain names was Model 2 (Character-omission). As can be

seen in Fig. 3.8(a), Model 2 had the least amount of correct identifications and most amount of

incorrect identifications of typosquatted domain names. Table 3.1 also reinforces the previous fact,

which depicts the top incorrectly identified domains which were supplied by the participants them-
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selves. It should be noted that the top domains in Table 3.1 were from South Korean participants,

as the first entry (tstory.com) is most likely a misspelling of tistory.com (a popular South

Korean blog-publishing service).

(a) Correct Responses by Typo Model. (b) Incorrect Responses by Typo Model.

Figure 3.8: Plots of the context user study according to correct/incorrect by typo model.

Table 3.1: Top incorrectly identified user-supplied domains (unmodified shown in gray).

Domain Orig. Domain Typo Model User Speci-
fied?

Num
Correct

Num
Incorrect

tstory.com --- --- Yes 0 1
naver.com --- --- Yes 4 1
stackoverlow.com stackoverflow.com 2 (char-omission) Yes 0 1
gogle.com google.com 2 (char-omission) Yes 1 1
bofa.com --- --- Yes 0 1
miguided.com.us misguided.com.us 2 (char-omission) Yes 0 1
amanzon.com amazon.com 7 (1-mod-inflate) Yes 0 1
dam.net daum.net 2 (char-omission) Yes 0 1
fb6o.gov fbo.gov 7 (1-mod-inflate) Yes 0 1
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3.4 Conclusion

Due to the lack of context, certain malicious domain names are more successful than others in

deceiving users. The direction of this work explores the possibility of taking context into account

when devising attack strategies that utilize malicious domains. One such method is profiling users

by co-locating on the same host in an effort to extract vital information, such as browsing history,

to aide in the development of advanced attacks. Such data exfiltration is possible with a browser

extension that can programmatically extract the user’s browsing history.

In avoiding the previous invasive approach (and possible privacy concerns), we opted to conduct

another online user study to determine if context can play a role in generating successful malicious

domain names. To establish context, the online survey asked participants which country’s websites

they most-frequently visit in addition to a specific category of websites (e.g. Arts & Music). Their

responses were then used as inputs into web service calls to the Amazon Web Services (AWS) API

for Alexa domain name ranking information, which returns the top domains grouped by countries

and categories. We also prompted participants to enter 5 websites they visit frequently, which

is then mixed into the domain pool and fed into an algorithm that applies a random typosquat-

ting model. To account for generating dynamic survey questions, a custom web application was

developed using open-source technology such as the SurveyJS JavaScript library.

The results of this study confirms that the most “successful” typosquatting technique for an adver-

sary to utilize is Model 2 (character-omission), which should be applied to domain names which

takes the context of a user into account (e.g. the country and categories of websites they visit).

It should be noted that in order for this to be “successful” in deceiving users, the character that

is omitted from the domain name should not be the first and last characters. This is due to the

so-called “jumbled word effect” that was discussed in Section 2.5.4, which is how our brains per-

ceive the placement of characters in words. This phenomenon may help explain that if a user
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sees a domain name they are very familiar with (i.e. context-specific domain names such as

stackoverflow.com from Table 3.1), which also happens to be typosquatted with a char-

acter missing in the middle (e.g. stackoverlow.com; missing character ‘f’), then there is a

high probably they will perceive the typosquatted domain name as the authoritative domain name

they are familiar with and thus be deceived by our adversary.
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CHAPTER 4: PROACTIVE DETECTION OF ALGORITHMICALLY

GENERATED DOMAIN NAMES1

Figure 4.1: An illustration of a botnet infrastructure.

In this chapter, we examine another type of malicious domain name that is primarily used for com-

mand & control (C2) communications within botnets–which are becoming increasingly one of the

most prevalent threats on the Internet [37, 111, 113, 112]. The typical botnet consists of various

infected hosts, command and control (C2) channels, and a botmaster. The infected hosts (“zom-

bies”), as shown in Figure 4.1, are often massively distributed, whereas the command and control

is a channel used by a mastermind (the “botmaster”) to instruct bots to perform various forms of

malice; e.g. launching DDoS attacks [114]. To communicate with bots, there are several potential

ways utilized by botmasters, and domain names as a C2 channel are one of the most common and

preferred methods—because they are easy to acquire and recycle [69]. To generate such domain

names, domain generation algorithms (or DGAs) are widely used today by botmasters. Usually,

1This content was reproduced from the following article: J. Spaulding, J. Park, J. Kim, and A. Mohaisen, “Proac-
tive detection of algorithmically generated malicious domains,” In 2018 International Conference on Information
Networking, (ICOIN), pages 2124, Jan 2018. The copyright form for this article is included in the appendix.
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DGAs use time as a seed to dynamically and automatically generate potentially pseudorandom

domain names that are registered by botmasters and used by bots for C2 communication. Variants

of the Mirai botnet, for instance, started to adopt DGAs to better avoid detection and keep a con-

stant contact with C2 servers [30]. One way of mitigating these botnets is to prevent them from

registering their C2 domains in the first place, or by taking such domain names down [89, 77].

Detecting DGA-based Domains. To address DGAs by detection, there have been two schools of

thought either: 1) relying on reverse engineering of the bot software [85] or 2) using the intrinsic

features of the generated domains [119]. The first method, while powerful in generating all do-

main names to be potentially used by a malware family (even in the future and can thus be used to

proactively block those domains by pre-registering them), is very expensive. This method requires

obtaining samples of the malware family that utilizes such DGAs. However, obtaining such mal-

ware is not the biggest hurdle: many of today’s malware families employ obfuscation techniques

that make their analysis a difficult task.

The second school of thought uses pseudorandomness of algorithmically-generated domains and

exploits the fact that those domains have a high entropy for their detection [29]. Registered domain

names that are queried by infected hosts are evaluated, a measure of their pseudorandomness using

their entropy is calculated, and the likelihood of them being malicious based on their entropy score

is assigned. While shown to identify malicious domains reasonably well, such techniques suffer

from various drawbacks. First, domain names need to be registered in order for a monitor to be

able measure such entropy and determine if a domain is malicious or not. Thus, such techniques

cannot be used proactively to detect malicious domains. Second, those techniques assume that

randomly generated domain names are only used in malicious activities: it is not far-fetched to

imagine that domain names with high entropy are utilized for domain name parking, non-public

facing domains (e.g. content delivery network (CDN) addressing), among others.
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4.1 Motivation

To this end, this work addresses the problem of proactive malicious domain name identification

focusing on DGAs. We aim to identify such domain names before they are registered using our

detection system known as DRIFT. Our main source of inference is the DNS query and resolution

of domain names. We motivated for our study by a large-scale analysis of domain names and

their queries. We find that, domains that are used for malicious activities, and especially those

generated algorithmically, tend to have unique and distinguishing patterns. In particular, domain

names that are algorithmically generated tend to have a large number of DNS queries even before

their registration, typically resulting in NXDomain (non-existent domain) responses. This trend

persists, and the number of queries increases and peaks at the time of registration, then declines

gradually–indicating the ephemeral use of those domain names for their major purpose. On the

other hand, domain names that are being used for benign applications tend to have significantly

less queries before registration, while their post-registration query volumes (which may fluctuate

over time) do not have a single declining curve, thus highlighting a fundamentally different use

model.

Contributions. The contribution of this work is as follows. First, we highlight a fundamental

difference between the query patterns for domain names that are used by botnets, often generated

using DGAs, and those by benign ones. We use this insight to differentiate between those domain

names using a simple classification algorithm for proactive detection of malicious domains.
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4.2 Related Work

4.2.1 Domain Generation Algorithm

Primarily used for a botnet’s C2 channel, DGAs are widely used in malware families such as

Conficker, Kraken and Torpiq. As the potential impact of DGAs continues to expand, a wide

range of research has been well underway in the broad field of computer security. One of the

first academic publications that introduced the concept of malware utilizing DGAs was in 2009

by Stone-Gross et al. [109], who described their experiences attempting to seize control of the

Torpig botnet. They pointed out that in the past, botnet authors would use IP fast-flux techniques

where a certain domain is mapped to a set of frequently changing IP addresses to avoid take-downs.

Realizing that a single domain name constituted a single point failure, the authors discovered that

the Torpig botnet starting using a domain flux technique that employed the use of a DGA for

locating its C2 server. Shin et al. [102, 103] conducted a large-scale survey of the distribution of

Conficker (one the most notorious DGA-based malware) and the effectiveness of existing detection

systems. The Kraken botnet, another notorious DGA-based malware, was closely analyzed by

Royal [98] who detailed its behavior and provided sample DGA domains as well as MD5 hashes.

Recently, Fu et al. [50] proposed a pair of DGAs that can avoid the latest detection methods by

using hidden Markov models (HMMs) and probabilistic context-free grammars (PCFGs).

4.2.2 Detection of DGA-based Botnet

To counter the prevalence of DGA-based malware, several approaches have been proposed over

the years to identify algorithmically-generated malicious domain names by DGA-based botnets.

As mentioned previously, all of these works usually fall into two schools of thought either: 1)

relying on reverse-engineering of the bot software or 2) using the intrinsic features of the generated
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domains. Table 4.1 summarizes the most recent studies on how to proceed with the detection of

DGA-based botnets. As a result of the development of machine learning technology, the rate of

research for identifying algorithmically-generated domains using various intrinsic features is high.

Table 4.1: Summary of DGA Domain Identification Approaches.

Study Approach Malware Families

Stone-Gross et al. 2009 [109] 1) Reverse-engineer 1 (Torpig)
Yadav et al. 2012 [120] 2) Intrinsic 3 (Conficker, Torpig & Kraken)
Antonakakis et al. 2012 [29] 2) Intrinsic 12 Botnets
Barabosch et al. 2012 [32] 1) Reverse-engineer 4 Families
Guerid et al. 2013 [55] 2) Intrinsic 2 (Conficker & Kraken)
Zhang et al. 2013 [124] 2) Intrinsic 3 (Conficker, Torpig & Srizbis)
Haddadi & Zincir-Heywood 2013 [56] 2) Intrinsic 3 (Conficker, Kraken & Alexa)
Davuth & Kim 2013 [46] 2) Intrinsic 3 (Conficker, Torpig & Kraken)
Mowbray & Hagen 2014 [88] 2) Intrinsic 19 DGAs
Schiavoni et al. 2014 [100] 2) Intrinsic 3 (Conficker, Torpig & Bamital)
Bilge et al. 2014 [35] 2) Intrinsic 2 (Conficker, Torpig)
Sharifnya & Abadi 2015 [101] 2) Intrinsic 3 (Conficker, Kraken & Murofet)
Grill et al. 2015 [54] 2) Intrinsic 6 families
Wang et al. 2016 [116] 2) Intrinsic 1 (Conficker)
Kwon et al. 2016 [72] 2) Intrinsic 26 Botnets
Zhang et al. 2016 [122] 2) Intrinsic 2 (Conficker & Kraken)
Plohmann et al. 2016 [94] 1) Reverse-engineer 43 Families
Wang et al. 2016 [115] 2) Intrinsic 3 (newGoZ, Ramnit & Qakbot)

Approach through reverse-engineering. The recent work by Plohmann et al. [94] is the epitome

of the first school of thought that relies on reverse-engineering malware. The authors performed

an all-encompassing study of several malware families featuring DGAs in a bottom-up fashion

by reimplementing their algorithms to ultimately produce over 159 million unique DGA domains.

Using a WHOIS dataset from DomainTools (containing over 9 billion WHOIS records spanning
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14 years) the authors removed any DGA domain for families not in the WHOIS dataset, which left

them with a set of over 18 million unique DGA domains. By studying the registration status of

these DGA domains, they were able to determine that their dataset can be employed as a black-

list for C2 domains in addition to the identification of malware families with virtually no false

positives.

Approach employing intrinsic features. More research is being conducted to identify malicious

domains through intrinsic features such as behavior and dynamics in DGA-based botnets. Yadav

et al. [120] conducted a study that computed the Shannon entropy for the distribution of n-grams

for groups of domain names. Antonakakis proposed Pleiades which focuses on NXDomain re-

sponses. Pleiades classifies the domains based on the similarity to detect malicious domain names

based on known models of DGA. The approach suggested by Guerid et al. [55] performs bot

grouping based on NXDomain responses in privacy-preserving manner by using Bloom filters.

Zhang et al. [124] built the system detecting the DGA-based malicious domain names by taking

entropy, bigram, and length into account. Haddadi & Zincir-Heywood [56] proposed a Stateful-

SBB classifier based on the genetic programming (GP) which takes string domain name as input

to determine whether it is malicious. Davuth & Kim [46] implemented a Support Vector Machine

(SVM) classifier which only takes a domain name as input to reduce the burden of collecting and

managing large amounts of metadata. Mowbray & Hagen [88] identified DGA domain names by

analyzing client IP addresses with abnormal distributions of second-level strings lengths in their

DNS queries. Phoenix presented by Schiavoni et al. [100] labels the malicious domain names

automatically using DNS and IP-related features, which can be applied to not only groups of do-

mains but also a single domain. Bilge et al. [35] proposed a system, Exposure, that utilizes 4

time-based, 4 DNS answer-based, 5 TTL value-based, and 2 domain name-based features to de-

tect DGA-based domains. DFBotKiller proposed by Sharifnya & Abadi [101] is a reputation-based

system which distinguishes malicious domains by considering suspicious activities as well as DNS
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query failures. Grill et al. [54] presented a DGA-malware detection system only using NetFlow

information, which is a gathering of identical protocol packets representing the communication

between the source IP/port to a destination IP/port pair. Wang et al. [116] employs social network

analysis which divides the hosts and NXDomains into clusters and identifies them as either benign

or malicious. PsyBoG proposed by Kwon et al. [72] is a malicious domain name detection sys-

tem that uses a signal processing technique and power spectral density (PSD) analysis. Zhang et

al. [122] presented Botdigger which looks at data from single network to identify individual bots.

Wang et al. [115] devised BotMeter which assesses the populations of DGA-based botnets over

large networks by analyzing the DNS lookups at upper-level DNS servers.

4.3 Preliminaries

Section 3.1.1 provided an overview of how the DNS functions and the domain name resolution

process once a user initiates a DNS query. For this section, we discuss the procedure of how a

domain name is registered in the DNS and how DNS queries can be skewed by “clock drift”.

4.3.1 Domain Name Registration Process

In late 1998, the United States Department of Commerce named the newly-formed non-profit

ICANN (Internet Corporation for Assigned Names and Numbers) as the new entity to oversee the

assignment of both IP addresses and domain names [13]. As outlined by ICANN, the process

works as follows [20]: a domain name Registrant (a person or organization) will submit an online

application to an ICANN-accredited domain Registrar (e.g. GoDaddy) or through a third-party

Reseller. The Registrar will in turn generate a WHOIS entry populated with the applicant’s data,

after determining if the domain name is not already registered. Note that while these Registrars
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manage the daily transactions of selling domain registrations, it is the Registries (e.g. Verisign) that

are primarily responsible for a TLD’s registry. These registries are also responsible for accepting

registration requests, and as ICANN states [20]: “maintaining a database of the necessary domain

name registration data and providing name servers to publish the zone file data (i.e. information

about the location of a domain name) throughout the Internet.”

4.3.2 Understanding Clock Drift

Since our approach exploits the fact that DGA domains tend to receive a large number of DNS

queries before their registration, we attribute this to a phenomenon known as “clock drift”. A drift

is introduced by many factors, as Jackson [62] states: “...including network jitter, delays introduced

by software, and even the environmental conditions in which the computer is operating”. In the

following, we discuss the history of how hardware clocks were introduced into PCs and what could

contribute to their drift.

How a Computer Keeps Time. Back in late 1981 when the original IBM PC was introduced, most

first-generation PCs did not include real time clock (RTC) hardware. As Becker [33] mentions,

“whenever the system was booted up, the date and time was initialized to 1980/01/01 00:00:00 and

the user was expected to manually set them”. With the introduction of the IBM-AT in 1984, all

PC-compatible computers have now kept time the same way: software and hardware clocks [80].

The software clock runs when the computer boots up and stops when the computer shuts down.

The hardware clock, on the other hand, uses a battery and runs even while the computer is turned

off. The hardware clock uses a crystal oscillator that runs at a specific frequency of 32.768 kHz,

which is described by [104] as “the magical number for computer-based clocks because it is eas-

ily divisible into 1Hz by counting every 215 pulse”. However, it has been shown that computer
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manufacturers will tend to use inexpensive crystals which affect the clock’s accuracy [62].

Drifting apart. As Kohno et al. point out [68], the clocks on machines that are managed pro-

fessionally by administrators tend to be synchronized with the correct time via Network Time

Protocol (NTP). Non-professionally managed machines, on the other hand, are less likely to be

synchronized by an external time source. For example, the default behavior on recent versions of

the Windows operating system is to synchronize the system time with Internet servers on a weekly

basis [5].

4.4 Dataset and Characteristics

Our dataset was originally used by Thomas and Mohaisen in their work on detecting and clustering

botnet domains using DNS traffic [111]. The dataset consists of DNS traffic from July 2012 from a

large DNS operator’s authoritative name servers for the COM, NET, TV and CC top-level domains

(TLDs). As the registry of large TLDs, this large DNS operator has a global view of DNS traffic,

giving a unique observation of malware-associated DNS traffic.

4.4.1 Malware Data

Conficker is one of the most well-known malware samples that employed the use of DGAs [86].

The family was originally discovered in 2008, and has been active for the past several years by

infecting many hosts world-wide and by mutating several times (i.e. variants A through E [102]).

Through reverse-engineering, the coalition of public and private researchers known as the Con-

ficker Working Group [11] was able to successfully determine the domain names that are gener-

ated daily for multiple variants of Conficker. As shown in Table 4.2, the Conficker variants A

and B generate hundreds of DGA domains daily while variant C generates 50K domains per day
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across several TLDs. Since the A and B Conficker variants generate domains in the COM, NET

and CC TLDs, we can conduct our analysis using the DNS traffic dataset mentioned earlier. By

mid-April 2009 all of the domain names to be generated by Conficker A were registered, thereby

severing further update attempt by the malware [82]. With Conficker variants A and B generating

a combined total of 15,500 domains in July 2012, [111] showed that 30 of the DGA domains were

registered in either the COM or NET TLD with their name servers returning YXDomain (name

exists when it should not) responses. For the rest of the generated DGA domains, much of traffic

resulted in NXDomain (non-existent domain) responses.

Table 4.2: Conficker DGA by variant and domains per day. Adapted from [111].

Variant Domains / Day TLDs
A 250 biz, info, org, net, and com
B 250 biz, info, org, net, com, ..., cn
C 50K 110 ccTLDs not tv or cc

4.4.2 NXDomain Data

When a domain name is not registered, any queries for that particular domain name will not resolve

to an IP address and will return the NXDomain response. This term was originally used to represent

DNS response code 3 in RFC 1035 [84] and RFC 2308 [27]. As mentioned above, the following

data represents the state of the DNS traffic gathered from a large DNS operator in July 2012.

We emphasize that only the TLDs (e.g. COM, NET, TV and CC) for which we had DNS traffic

available for that fell with the TLDs of the Conficker DGA domains (shown in 4.2) were examined.

In our dataset, as described by Thomas and Mohaisen [111], “a typical day in the COM zone

has 2.5 billion NXDomain requests for more than 350 million unique second-level domains while

NET receives around 500 million NXDomain requests for more than 60 million unique second-
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level domains”. Since the TV and CC TLDs have considerably less domains than COM and NET,

they naturally receive far less NXDomain requests. We also noticed that for a given epoch of time,

the bulk of specific NXDomains that were observed only received a few requests compared to the

large volumes of daily requests to specific domain names. Figure 4.2 (subplot for each zone) shows

the cumulative distribution of NXDomain traffic received daily, which demonstrates that over 95%

of specific 2nd-level NXDomains receive fewer than 10 requests daily.
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Figure 4.2: NXDomain traffic volumes to major TLDs: .cc, .tv, .com, and .net, respectively. Notice
that the majority of domains receive small number of queries, and a small percentage (∼3%)
receive more than 10 queries.
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Figure 4.3: Conficker NXDomain DNS lookups.

4.4.3 Conficker NXDomain DNS Traffic

The bulk of DGA domains generated by Conficker is classified under the NXDomain category.

To grasp the creation process of a DGA domain, we examined various aspects of the DNS traffic

before, during and after the domain’s generation date. Utilizing the DGA domains produced by the

Conficker Working Group [11] mentioned previously, we grouped them according to generation

date and examined their DNS traffic. Similar to the approach by [111], “for a given domain to be

generated on day x, we measured the domain’s DNS traffic on days x− 5 to x + 5”. As shown in

Figure 4.3, the box plots depict the DNS traffic patterns 5 days before and after the generation of

a DGA domain (day 0) from Conficker variant B. No matter the generation date, this plot clearly

shows that DGA-based domains see considerable amounts of DNS queries before and after they

are generated by the malware.
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4.5 Online Detection Algorithm

Compared to the whole population of NXDomain traffic across several TLDs, the specific NXDo-

main traffic generated by DGA-based domain names makes them stand out. We saw previously

that this NXDomain traffic spikes both the day before and after the domain is generated by the

DGA. As noted by [111], for an average DGA domain: “traffic volumes on the exact generation

date soar several magnitudes higher than the ±5 days baseline to 42, 887 unique /24 recursive

name servers consisting of 199, 097 total NXDomain requests from 211 unique countries”. In the

following, we describe the rationale behind our detection algorithm and walk through the models

created for the classification process.

4.5.1 Rationale of Feature

There are potentially various explanations for why domain names get queried before their regis-

tration. First, domain names intended for benign usage might get queried by interested registrants

who want to acquire them, thus explaining the small number of queries some of them receive be-

fore registration. On the other hand, the large number of queries that DGA domains receive might

have to do with the fact that those domain names are time-dependent. As highlighted in Figure 4.4

for the DGA domain used initially by CryptoLocker, a bot calculates a domain name using time

features as the main inputs. A large drift in the time or clock misconfiguration would result in bots

contacting the domain name before or after its registration.

We use such verified observation as the main feature for identifying malicious domain names.

Using this a priori knowledge captured in a training model, we devise a method that can detect

those domains even before they are registered with a high accuracy rate. The proposed approach

based on this feature has various plausible benefits over the state-of-the-art. Among others, the

61



proposed technique is robust to the behavior of the adversary.

1 d e f g e n e r a t e d o m a i n ( y , m, d ) :
2 domain = ” ”
3 f o r i i n range ( 1 6 ) :
4 y = ( ( y ˆ8∗ y )>>11) ˆ ( ( y&0xFFFFFFF0 )<<17)
5 m= ( (mˆ4∗m)>>25) ˆ 1 6∗ (m&0xFFFFFFF8 )
6 d = ( ( d ˆ ( d<<13) )>>19) ˆ ( ( d&0xFFFFFFFE )<<12)
7 dm+=chr ( ( ( y ˆmˆ d ) %25) +97)
8 r e t u r n domain

Figure 4.4: An example of the algorithm used by CryptoLocker for initially generating algorithmic
domain names for command and control [78].

4.5.2 Online Detection

In determining the maliciousness of a given domain name, we use the notion of the difference

function. Given a function y = f(x) that is defined on an interval [x, x+ h], the average rate of

change of the function on the interval [x, x+ h] is:

f(x + h)− f(x)

(x + h)− x
=

f(x + h)− f(x)

h
(4.1)

For an interval of [x− a, x+ a], (a is some constant), we have:

f(x + a)− f(x− a)

(x + a)− (x− a)
=

f(x + a)− f(x− a)

2a
(4.2)

Using this simple concept, in the following we outline how to build a feature vector, how to build

a model, and how to label various domain names as malicious (used for C2) or benign.
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4.5.2.1 Building Feature Vectors

For a window of size 2a (a from left and right of a point x; note that x here can be any point in

time), we calculate the difference as the change in the number of NXDomain responses to a given

domain, normalized by the total time units corresponding to 2a. The parameter a is used based

on the desired performance, and x is used for all values of the observed traffic. We highlight the

operation of the basic feature with an example. Let’s consider an observation of [oj1, o
j
2 . . . , o

j
k] (for

a domain j), where each observation is the total number of NXDomain responses for a domain j

over a fixed period of time (e.g. hour). If we are to consider a = 1 in Eq. 4.2, we calculate f j
i

as |oji+1 − oji |/2 for all i (resulting in a vector of values, representing the use of the given domain;

[f j
i ]1×k). For a unified treatment of the vector, we normalize each element in it by the sum of

all of its elements; this is f j
i /

∑
∀i f

j
i . Our detection algorithm then uses the same idea as above,

over a sliding window of observations. As time goes, the window slides by forgetting the oldest

observations of NXDomain responses for the given domain. Additionally, the detector updates the

count vector of the NXDomain responses for the domain, and calculates our feature vector as the

difference function.

4.5.2.2 Building a Model

Given a set of malicious domain names d1, . . . , dt, we create model M that is calculated as a

centroid feature vector corresponding to the average of the feature values of the different domains.

As such, we defineM as:

M = [m1, . . . ,mk] : mi = 1/t
t∑

j=1

f j
i (4.3)
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As above, for a unified treatment, we normalize each element in it by the sum of all of its elements;

this is mi/
∑
∀i mi

4.5.2.3 Learning Labels of Domains

The labeling of the domains is divided into two learning types: 1-class, which is concerned with

the associated label if the distance between the feature vector and a reference is at most ∆, and

2-class learning, which is concerned of associating a domain name with the label that is closest to

it (based on the comparison of the feature vector corresponding to each of them). Below, we will

describe both approaches formally.

1-class learning. For a candidate domain x defined by its difference function fx as above, we de-

termine the label of the domain by conducting the following. We calculate the Manhattan distance

betweenM and fx. That is, we calculate:

D(M, fx) =
∑
∀i

|mi − fx
i | (4.4)

Then, we label the domain as malicious if D(M, fx) > ∆ and as benign otherwise. ∆ is deter-

mined through measurements and tuning, based on the learning of the underlying distribution of

the NXDomain queries and their difference functions of malicious domains.

2-class learning. Alternatively, we create a model for a set of known benign domains, namely B,

where B = [b1, . . . , bk] and assign the label of a sample x based on the following:

Label =


Malicious : D(B, fx) > D(M, fx)

Benign : D(B, fx) ≤ D(M, fx)

(4.5)
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We note that our scheme is less aggressive, since it prioritizes benign over malicious, as shown

above. Depending on the detector objective, we might also be more aggressive by assigning a

malicious label to a domains when the two quantities are equal; this is, alternatively:

Label =


Malicious : D(B, fx) ≥ D(M, fx)

Benign : D(B, fx) < D(M, fx)

(4.6)

4.5.3 Detection Algorithm

The approach behind DRIFT in classifying domains into “malicious” or “benign” is based on the

supervised learning technique of the Nearest Centroid Neighborhood (NCN) classifier introduced

by Chaudhuri in 1994 [38]. The key idea behind this algorithm is that it assumes a target class

is represented by a cluster and uses its mean (i.e. centroid) to determine the class of a new sam-

ple point based on its distance. Typically, Euclidean distance calculations are used, but this can

be any distance function. In DRIFT, we calculate the Manhattan distance between feature vec-

tors as shown in Equation 4.4. For a sample with an unknown class, the NCN classifier chooses

a class with the closest centroid for the given sample. Despite this simple approach, Chaudhuri

emphasizes that the NCN classifier can obtain high accuracy [38]. As shown in a study by Han

and Karypis [57], “the centroid-based classifier consistently and substantially outperforms other

algorithms such as Naive Bayesian, k-nearest neighbors (k-NN), and C4.5, on a wide range of

datasets”. The k-NN alogorithm, for example, requires computing and sorting every distance be-

tween the unknown sample and all others in the dataset--which is computationally expensive when

the dataset is very large.

The first step in DRIFT is to build a model based on a set of confirmed malicious domain names,

which is outlined in section 4.5.2.2. Using a set of NXDomain observations for each malicious do-
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main, the feature vectors are built using the function shown on Line 1 of Algorithm 1. The feature

vectors are then fed into the function shown on Line 12, which produces a model representing a

centroid feature vector. For 1-class learning, we just use the malicious domain model and thresh-

old value ∆ as shown on Line 8 in Algorithm 2 to determine the label of a candidate domain (i.e.

feature vector). The 2-class learning method is similar, but the threshold value ∆ is substituted for

a benign domain model.

Algorithm 1: DRIFT Algorithm 1

Input : O = [ojk] (k observations for domain j), a (window size)
Output: F (vector of feature values f j

i )
1 Function buildFeatureVector (O, a)
2 sum = 0
3 for i = 1 to k do
4 f j

i = |f j
i+a − f j

i−a|/2a

5 sum = sum + f j
i

6 end
7 for i = 1 to k do
8 f j

i = f j
i /sum

9 end
10 return F

11

Input : F (vector of t feature values f j
i )

Output:M (vector of k centroids mi)
12 Function buildModel (F )
13 summ = 0
14 for i = 1 to k do
15 sumf = 0
16 for j = 1 to t do
17 sumf = sumf + f j

i

18 end
19 mi = (1/t)× sumf

20 summ = summ + mi

21 end
22 for i = 1 to k do
23 mi = mi/summ

24 end
25 returnM
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Algorithm 2: DRIFT Algorithm 2
Input :M (model), fx (feature for candidate domain x)
Output: D (distance)

1 Function distance (M, fx)
2 sum = 0
3 for i = 1 to k do
4 sum = sum + |mi − fx

i |
5 end
6 return sum

7

Input :M (model), fx (feature candidate), d (threshold)
Output: l (label)

8 Function OneClassLearning (M, fx, d)
9 if distance(M, fx) > d then

10 return “malicious”
11 else
12 return “benign”
13 end
14

Input :M, B (benign model), fx (feature candidate)
Output: l (label)

15 Function TwoClassLearning (M,B, fx)
16 if distance(B, fx) > distance(M, fx) then
17 return “malicious”
18 else
19 return “benign”
20 end

In terms of computational complexity, the building of feature vectors is O(k) where k is the number

of observations for a given domain j. Building a model of centroid feature vectors, on the other

hand, requires O(kt) where t is the number of domains that the model represents. Note that

building models of centroid feature vectors for the malicious and benign domains is only a pre-

processing step prior to the actual learning phase which runs in O(k) time. Thus, the overall

computational complexity of DRIFT is very low since the main learning phase is linear time.
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4.6 Threat Model and System Overview

In this section, we describe the objective and the approach taken by adversaries that DRIFT would

like to address as well as an overview of the system.

4.6.1 Threat Model

With botnets quickly becoming the one of the most prevalent threats on the Internet, the key threat

we are most concerned with is ultimately the botmaster who commands a herd of bots. To com-

municate with their bots, botmasters typically use domain names as its C2 channel because they

are easy to acquire and recycle [69]. Since using a single domain name for C2 communication

can constitute a single point of failure (i.e. law enforcement take-downs), botnet authors (e.g.

Conficker, Torpiq, Kraken etc.) began adopting algorithmically-generated domain names. These

algorithms that generate domain names typically use a pseudorandom number generator (PRNG)

that is seeded with a time value. As this algorithm is shared among bots participating in the bot-

net, using a synchronized seed value such as the current time will allow each bot to generate a

similar list of DGA domain names to query in a sequential fashion. In the meantime, a botmaster

knowing full knowledge of the potential DGA domain names for any given time can easily reg-

ister one of those domain names in the DNS. Given that these DGAs can produce hundreds of

domain names a day (250 in the case of Conficker A & B), it is becomingly difficult to deduce and

reverse-engineer these algorithms due to high entropy of its output. To this end, DRIFT aims to

sever the C2 communication link between a botmaster and its bot herd by proactively identifying

DGA domain names before they are registered.

68



Reference Dataset

DGA-based 
domains

Benign domains

NXDomain data

Machine 
Learning

Time feature 
extractor

Classifier

DNS lookup data

DNS data

djiqwe.
malico
us.com

DGA-based
malicious domains

Domain 
Name Server

<DRIFT>

<Training>

<Application>

Figure 4.5: A system diagram for the detection of DGA-based malicous domains.

4.6.2 System Overview

The structure of DRIFT is shown in Fig. 4.5, which is a malicious domain detector based on the

supervised learning technique discussed in Section 4.5.3. The system is comprised of two stages,

a training stage and an application stage. In the training stage, feature extraction and learning

are performed using pre-collected data. Afterwards, the application stage classifies DGA-based

domain names through the learned classifier.

Training stage. The data elaborated on earlier in section 4.4 is used for training as ground-truth

data. As mentioned previously, a NXDomain response is returned if there is a connection attempt
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from a bot to a DGA domain that is not yet registered in the DNS. The time features of the collected

NXDomain responses are extracted and used for supervised learning along with the labels of the

domain name (benign or malicious). By analyzing the change of the NXDomain volume over time,

the DRIFT system learns about the unique pattern evident of DGA-based botnets.

Application stage. Through the training process, the system has a general understanding of the

volume of changes in NXDomain responses caused by the clock drift between systems as shown in

Figure 4.3. Based on the learned result, it becomes possible to proactively distinguish the queries

for the DGA domain names among all queries coming into the DNS in real time. In other words, at

this point, the DRIFT system connected to the DNS is able to detect the suspicious domain names

which could potentially be used for C2 channel communication in botnets.

4.7 Evaluation

To evaluate the performance of our scheme, we use the dataset described in Section 4.4, with

the head of the distribution of the dataset corresponding to malicious domains, and the rest of

the distribution corresponding to benign domains. With labels known in advance, we proceed to

evaluate the labeling capability of our scheme. For 1-class learning, and based on the distribution of

the various malicious domains, we set ∆ = 0.08, which corresponds to 99% of detection accuracy

of all the domain name samples considered and included for building the baseline modelM. To

build the model M, and to simulate a real-world scenario, we use 1,000 domains. For the unit

a, we calculate the number of queries every hour, and consider a sliding window size W as 8,

16, 24, 36, and 48 hours (thus, a window of size 24 would move a step of 1 hour at a time to

simulate lazy learning of a new difference vector). We start “observing” responses for each 5 days

(as highlighted in our dataset) before the registration of a domain. For our evaluation, we consider

a variety of evaluation metrics:
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Standard metrics.

(i) True positives (Tp): domains correctly identified as malicious.

(ii) False positives (Fp): domains incorrectly marked as malicious.

(iii) True negative: (Tn) domains marked correctly an not malicious.

(iv) False negative (Fn): domains incorrectly marked as not malicious.

Using those outcomes, precision, recall, accuracy, and F1 score are P = Tp

Tp+Fp
, R = Tp

Tp+Fn
, A =

Tp+Tn

Tp+Tn+Fp+Fn
, and F1 = 2× P×R

P+R
.

Time. We use how much in advance (before registration) a domain can be detected as a measure

of “proactiveness”.

The results for 2-class learning are shown in Table 4.3 and Figure 4.6 across multiple evaluation

metrics. We notice that the performance of our scheme is quite promising, especially with a limited

amount of knowledge (expressed in a small window size). As for time as an evaluation metric, we

notice that our scheme can learn with an accuracy of more than 0.90 (on average) for more than 88

hours in advance (= 24× 5− 8− 24) and can achieve an accuracy of more than 0.99 (on average)

for more than 48 hours in advance (= 24× 5− 48− 24).

Table 4.3: Standard measurements of performance: true positive, true negative, false positive, false
negative for different windows size (average, over 24 slides for the given W size).

W TP TN FP FN P R A F1

8 91.3 89.4 10.6 8.7 0.89 0.91 0.90 0.90
16 97.4 92.7 7.3 2.6 0.93 0.97 0.95 0.95
24 98.1 94.5 5.5 1.9 0.95 0.98 0.96 0.96
36 99.3 95.5 4.5 0.7 0.96 0.99 0.97 0.98
48 99.4 98.3 1.7 0.6 0.98 0.99 0.99 0.99
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Figure 4.6: Plotting the standard measurements of performance: false negative/true positive, false
positive/true negative for different windows size (average, over 24 slides for the given W size).
Notice that an accuracy of 0.99 can be achieved for more than 48 hours in advance.

4.8 Discussion

In this section we cover possible tactics that bots and botmasters can employ to circumvent the

DRIFT system. As evident in the Conficker NXDomain DNS dataset which clearly shows signifi-

cant traffic volume before and after a Conficker-based DGA domain is registered (see Figure 4.3),

we attribute this distinguishing pattern to a phenomena known as “clock drift” as outlined in sec-

tion 4.3.2. Since DGAs tend to use time as a seed into a pseudorandom number generator (PRNG)

to ultimately generate a list of domains to query for C2 communication, any deviation from the

actual time will cause the infected hosts to query domains prematurely (or late).
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4.8.1 Synchronizing to Internet Time

Since DRIFT relies on the fact that DGA-domains will be queried pre and post their registration

date, one simple tactic botnet authors can employ to evade DRIFT is to ensure that the time value

used for the PRNG seed originates from a reliable remote host--such as an internet time server. For

example, the botnet author can include code that initiates a HTTP request to a NIST (The National

Institute of Standards and Technology) time server located at “http://nist.time.gov/actualtime.cgi”

which returns the number of milliseconds since Jan 1, 1970.

Indeed the above approach is the case for the Conficker family of malware to obtain the time. As

noted by [95], “(Conficker) randomly selects one of six search engines (w3.org, ask.com, msn.com,

yahoo.com, google.com and baidu.com)”. By initiating a HTTP GET request to one of these

websites, the Conficker DGA can extract the date string GMT from the HTTP header. No matter

what time of day, multiple HTTP requests to these websites will have the same result since the

DGA only uses the values from the day, month, and year [95]. As Leder et al. [75] point out, the

selection of these highly-ranked websites to obtain the current time makes it infeasible to launch a

coordinated effort to disable all of them at the same time.

If Conficker queries one of the 6 high-profile websites mentioned previously for the actual time,

how is it possible that there were NXDomain queries prior to the registration of a Conficker DGA

domain name on a given day? This may indicate that an incorrect time was returned from one of

those high-profile websites, which is highly unlikely. One plausible scenario could be an incorrect

or Network Time Protocol (NTP) configuration, especially with virtual machines that typically run

web servers. As evidenced on the official NTP.org known issues [8]: “NTP server was not designed

to run inside of a virtual machine. It requires a high resolution system clock, with response times

to clock interrupts that are serviced with a high level of accuracy.” Another unlikely scenario is an

attack on the NTP itself, which is highlighted in the work by Malhotra et al.[25] where adversaries
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can abuse un-authenticated NTP traffic to modify the system clocks on client machines.

The most likely scenario to explain the clock drift in Conficker, despite obtaining a valid time

from a reliable internet source, is revealed in the work of Leder and Werner [75] who illustrated

an issue in the PRNG based on a re-implementation in the C programming language. Essentially,

they discovered that a cross-compiled version (using MinGW) of the DGA “drifts out of sync

after a few hundred operations because the log() function used by MinGW differs slightly from

the implementation in the msvcrt.dll used by Conficker”. Because of rounding errors, they noticed

that the digit at position 1013 was slightly different which ultimately affected pseudo-randomness

of the algorithm and thus rendered the DGA unsynchronized.

4.8.2 Circumventing DNS

As stated previously, one of the main mechanisms of DRIFT to proactively identify DGA domain

names is the use of the DNS protocol for C2 communication. As such, botnets can simply cir-

cumvent DNS (i.e. use IP addresses directly) entirely or use another communication protocol (e.g.

P2P) that does not rely on domain names or DNS resolution to ultimately evade detection by the

DRIFT system. In the following, we discuss these circumvention techniques and alternative C2

communication protocols and their implications.

Hardcoding C2 Addresses. In the early days of botnets, bot authors would attempt a stealthy

approach of avoiding the DNS entirely by embedding the IP address of the C2 server directly into

the bot’s source code [65]. As Khattak et al. point out, this was a rather naı̈ve approach since we

can reverse engineer the bot to expose the C2 server’s address, thus allowing an eventual takedown

by law enforcement. Additionally, these C2 server IP addresses can simply be added to access

control lists (ACL) by network administrators, which eliminates C2 communication among all the
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bots.

Along the same lines, bot authors can also embed the domain names for C2 servers into the bot’s

source code, which offers more flexibility than embedding the IP address. This is due to the

fact that if the C2 server’s IP address is taken down, the domain name can be associated with

another IP address so the botmaster can resume their malicious campaign without updating the

bots themselves. As mentioned earlier, using a single domain name for C2 communication can

constitute a single point of failure--which gave rise to the adoption of DGAs. Since the nature of

takedown procedures has grown complex over time [4], botmasters are at an advantage when the

takedown procedure begins. Once a DGA-based domain is finally taken down, the C2 server has

most likely moved to another domain (in a process known as bot-herding) [65].

DNS NXDomain Hijacking. The NXDomain response from botnets querying DGA domains pre-

maturely is the key mechanism behind the DRIFT system. With that said, altering or “hijacking”

this response would throw off the measurements utilized by DRIFT since it analyzes the number of

NXDomain responses over a fixed period of time (e.g. hour). As a case in point, a previous study

[43] has shown that the DNS servers operated by certain ISPs: “may hijack such responses in an

effort to ‘assist’ users by sending them to a ‘search help’ page filled with advertisements”--rather

than returning the NXDomain response. Disconcerting as it sounds, a recent large-scaled study

[40] concluded that NXDomain hijacking by ISPs is quite rare since it only affected 4.8% of the

1.2M network nodes they measured (which were spread across 14k autonomous systems (ASes)

in 172 countries).

Another possible way that botmasters can mitigate NXDomain responses (thereby avoiding de-

tection by DRIFT) is to employ caching DNS servers or “rogue” DNS servers on compromised

systems. A typical caching DNS server does not contain any domain resource records, it simply

resolves DNS queries from clients and caches the answer to respond quickly for future queries. As
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Heron [59] describes, adversaries would only need a compromised machine or a server hosted in

a country with lax cyber crime laws. Essentially, when a botnet-originated DNS query is accepted

by one of these servers, it could avoid returning a NXDomain response and possibly provide a

legitimate IP address under its control.

4.8.3 Botnet Topologies

Centralized botnet. A centralized botnet is a topology with a clear distinction between the bot-

master and its participating bots, shown prominently in Figure 4.1. In this topology, the botmaster

prepares the C2 channel to issue commands so that bots accessing the channel can receive instruc-

tions to take future actions. In addition to HTTP, these commands can be sent through various

protocols such as UDP, TCP, IRC, and so on. In the case of using pre-assigned IP addresses for

TCP or UDP, the approach by DRIFT in utilizing the characteristics of the DNS NXDomain re-

sponses cannot be directly applied here. However, if a centralized botnet does not use HTTP or

DNS resolution, the botmaster can be easily be thwarted simply by using the countermeasures we

discussed previously to determine the C2 server’s IP address. We highlight that DRIFT’s approach

focuses on DGA-based botnets, which have become increasingly difficult to take down due to the

coordination of law enforcement and different agencies [4].

Decentralized botnet. In contrast to a centralized topology, decentralized botnets have no obvious

commander which makes the C2 communication not concentrated around a specific node (i.e.

botmaster). Applying DRIFT’s detection mechanisms here will likely be difficult, especially if the

C2 communication protocol does not use DNS resolution. For example, a typical decentralized

botnet uses peer-to-peer (P2P) technology and works by allowing participating bots to relay the

commands to each other (rather than from a centralized node). The decentralized topology is free

from the single-point-of-failure issues discussed previously, because different parts of the botnet
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also functions as C2 servers. In summary, DRIFT will likely perform well for decentralized botnets

that use DNS resolution because it takes advantage of patterns in NXDomain responses due to

clock drift. However, since the role of the C2 server is distributed, the amount of NXDomain

responses that occur will be significantly lower than that of the centralized botnet. In future work,

we will use the same approach for the analysis of decentralized botnets using DNS resolution.

4.9 Conclusion

In this chapter, we proposed a system called DRIFT to proactively detect algorithmically-generated

malicious domain names typically employed by botnets. We highlighted the fact that DGA do-

mains tend to have a large number of DNS queries prior to registration, resulting in NXDomain

responses which is then followed by a gradual overall decline. We then devised a detection algo-

rithm using the notion of the difference function over the number of NXDomain responses for a

given domain with a sliding time window. Using DNS traffic gathered from certain TLDs for the

pre-calcuated list of generated domains by the Conficker malware variants, our detection algorithm

was able to achieve 99% accuracy (on average) as early as 48 hours prior to registration.
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CHAPTER 5: DNS FILTERING & EXTRACTION NETWORK SYSTEM

In this chapter, we propose a system called D-FENS (DNS Filtering & Extraction Network System)

which will serve as the first line of defense against malicious domain names. Given that the primary

objective of D-FENS is to provide real-time predictions of identifying malicious domain names,

we sought a machine learning approach that would allow fast and accurate classification. While

there are previous studies that have developed classification systems to detect malicious domain

names, they often used a traditional machine learning approach which required engineering several

features (e.g. URL lexical analysis, network traffic, host-based). Some of these features required

costly lookups and complex computations which would potentially affect real-time systems [45].

With the recent success in using deep learning to identify domain names created by malware using

DGAs (domain generation algorithms) [121, 118], we chose to adopt a similar strategy for success-

fully detecting other types of malicious domain names such as phishing and typosquatting. Deep

learning is essentially an artificial neural network with multiple hidden layers, which has seen more

widespread use with the adoption of faster hardware and graphical processing units (GPUs) that

significantly reduce computation time. In their seminal article, LeCun et al. [74] states that: “the

key aspect of deep learning is that these layers of features are not designed by human engineers:

they are learned from data using a general-purpose learning procedure”.

In this work, we make the following contributions:

1. We develop and evaluate D-FENS, a system for classifying malicious domain names in real-

time.

2. We describe the implementation of D-FENS as a network middlebox that accepts DNS query

requests and routes clients to a safe destination if queries are deemed malicious.
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5.1 Background & Related Work

Previous studies in malicious domain name identification have typically relied on traditional ma-

chine learning methods that require the human effort of feature engineering. With the advent of

cloud computing and faster hardware with GPUs to accelerate computation, the most recent work

that detects malicious domain names has adopted the use of deep learning for classification. In

the following sections, we outline the related work that uses feature-based classifiers and new

approaches that use deep learning to identify malicious domains.

5.1.1 Feature-based Classification

The 2009 work of Ma et al. [81] presented a system that classifies URLs solely based on lexical

and host-based features and avoids features which requires examining page content by visiting a

potentially unsafe URL. For the lexical features, they considered the “bag-of-words” model along

with additional attributes like the lengths of both the host-name and URL. For the host-based fea-

tures, they examined: IP address properties (e.g. blacklist status, autonomous system information,

etc.), WHOIS properties (e.g. registration date, expiration, etc.), domain name properties (e.g.

TTL value) and geographic properties (e.g. country of IP, connection type, etc.). They evaluated

four different classifiers (Naive Bayes, Logistic Regression, and Support Vector Machines with

linear and radial basis function kernels) over a dataset of 20-30K URLs from various sources and

achieved an accuracy of 95-99% when the false positive rate was low.

The 2010 work of He et al. [58] is similar to the previous work of Ma et al. in that they avoid the

large overhead of fetching and examining page content, but rely on extracting features from the

URL to build several Markov Chain models. Using a larger dataset of domains from the “.com”

top-level domain (TLD), He et al. [58] studied: “three classification techniques, logistic regression,
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decision tree, and random forest”. Using 7-fold cross-validation, the results of their experiments

showed that the random forest classifier performed the best with the Area Under the Receiver

Operating Characteristic Curve (AUC) of 0.88819 and a True Positive (TP) rate of 46.463% when

the False Positive (FP) rate was 1%. He et al. [58] stressed that: “any classifier with FP-rate larger

than 1% is not acceptable”.

Also in 2010, Antonakakis et al. [28] introduced a dynamic reputation system for DNS which

uses historical DNS information which was collected passively from multiple DNS resolvers. To

classify domain names, Notos uses clustering algorithms with three groups of features: network-

based (e.g. total number of IPs, geographical location, autonomous systems, etc.), zone-based (e.g.

average length of domain, number of TLDs, character frequencies, etc.) and evidence-based (e.g.

malware associated with the domain name or its IP address). Their results showed the system had

high accuracy scores when classifying new malicious domains in the DNS traffic they observed

(TP-rate of 96.8% and FP-rate of 0.38%). However, one limitation they point out is that since the

system relies on passive DNS data, it cannot classify malicious domain names when they are newly

bought (along with new address space) and never used again for malicious activities.

Similar to [28], Bilge et al. [34] proposed Exposure in 2011 which also examines passive DNS to

detect malicious domain names. Exposure uses a Decision Tree classifier with 15 features divided

into four classes: time-based (e.g. short-lived domains, similar daily behavior, etc.), DNS answer-

based (e.g. unique IP addresses and countries, etc.), TTL value-based (e.g. average TTL, number

of distinct TTL values, etc.) and domain name-based (e.g. percentage of numerical characters).

Exposure’s classifier was evaluated using a 10-fold cross validation and percentage split (66% for

training) method which resulted in a detection rate around 98%. Exposure was also deployed in a

real-world ISP network for two weeks where it analyzed and classified 100 million DNS queries,

resulting in 3117 unknown malicious domains being detected.
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5.1.2 Neural-based Classification

To evade detection and takedowns by law enforcement, malware authors have turned to DGAs

to produce pseudo-random domain names for use in command and control (C2) communication

within botnets [106]. With some malware families, such as the C variant of Conficker which

produces up to 50,000 domains per day [96] (a small subset of which is actively probed), DGAs

have made it extremely difficult for researchers and law enforcement to sever C2 communications.

To combat this, researchers have proposed DGA-based domain name classifiers [29, 94] which uses

similar features to the aforementioned domain name classifiers that typically dealt with malicious

types of domains like spam and phishing.

Recent work, such as the 2016 study by Woodbridge et al. [118], have started adopting the use of

deep learning networks to aid in the identification of DGA-based domain names. In their paper,

they present a feature-less approach that leverages Long Short-Term Memory networks (LSTMs)

to classify DGA-based domain names in real-time. To train their neural-based LSTM classifier,

they used a dataset consisting of the Alexa top 1M (for non-DGA domains) and the DGA domain

feed from [1] containing 750,000 samples from thirty DGA families. Their experimental results

showed that their LSTM classifier identified 90% of DGAs with a FP-rate of 0.01%.

Similar to Woodbridge et al., the 2017 study by Yu et al. [121] also uses deep learning techniques

to classify DGA-based domain names. Instead of relying on open datasets such as the Alexa top

1M and synthetically-generated DGA domains, the authors used proprietary data from a real time

stream provided by Farsight Security [3]. In addition to a LSTM neural network, they also train a

Convolutional Neural Network (CNN) and achieve a 40.31% TP-rate when the FP-rate was 0.01%.

Most recently, the early 2018 work by Lison et al. [79] presented a deep learning model that

classifies both domain names and IP addresses into 3 classes: benign, malicious, or sinkholes.
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Their model was trained on a large passive DNS database provided by Mnemonic [7] (not freely

available to the public) which contained over 567 million DNS queries over four years. They

extracted a total of 171M distinct domain names and 17M IP addresses. Rather than using the

domain name as the sole input to the neural network, the authors also used numerical (e.g. number

of TTL changes, lifespan of the DNS record, etc.) and categorical (e.g. ISP associated with the

IP address or the TLD) features as inputs. While the domain names were fed into a Recurrent

Neural Network (RNN), the categorical features were fed into an embedding layer and ultimately

all three inputs were fed into dense feed-forward layers to produce an output. Their evaluation

results demonstrate that their model is capable of detecting 95% of the malicious hosts with a false

positive rate of 0.1%.

5.2 D-FENS System Model

In Figure 5.1, the system architecture of D-FENS depicts a Training Phase and a Live Phase that

acts as a custom DNS Server. In the Training Phase, the Domain Names Collector aggregates

malicious and benign domain names from several different sources (see 5.3.1) into a database to

ensure there are no duplicates. Labeled data is then fed into the Learning Module which performs

deep learning on the data for multiple iterations to produce a model that is loaded by the D-FENS

Classifier in the Live Phase discussed below.

5.2.1 Implementation

Both phases of D-FENS was primarily written using the Python2 scripting language and a suite of

open-source libraries. The Live DNS Server employed the use of Python’s built-in web server ca-

pabilities to handle HTTP requests and DNS queries were handled by dnslib [19] to encode/decode
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DNS wire-format packets. The Learning Phase employed the use of Keras [23], a high-level neural

networks API that runs on top of the popular machine learning framework TensorFlow [22] that

does numerical computation using data flow graphs. The model was trained on an Amazon Elastic

Compute Cloud (Amazon EC2) virtual server instance with access to GPUs (graphics processing

units) for accelerated deep learning computation.

Figure 5.1: An overview of the D-FENS architecture. The Training Phase aggregates domain
names and feeds labeled data into the Learning Module, which produces a model for the Classifier
in the Live DNS Server Phase. The Live DNS Server accepts DNS queries and checks the current
whitelist/blacklist before entering the D-FENS classifier to determine maliciousness.

5.2.2 Live DNS Server

D-FENS will ideally be located between the end user and the recursive DNS resolver so it can ana-

lyze and process all incoming DNS queries. As shown in Figure 5.1, a DNS query originating from

an end user will first be checked against a whitelist of domain names and proceed to the recursive

DNS resolver if the DNS query’s domain name has been white-listed. If not, then it proceeds to
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check if the queried domain name appears in a blacklist and will forward to a local IP address if it

has been blacklisted. The local IP address will be a webserver module controlled by D-FENS and

will display a webpage indicating to the end user that the requested domain name is considered

malicious. The user will also have an option to add the current domain name to the whitelist so

future DNS queries will be sent upstream to the recursive DNS resolver. Following the blacklist

check, the domain name is sent to the D-FENS Classifier to determine its maliciousness probabil-

ity. If D-FENS determines the queried domain name is not malicious, then the DNS request is sent

upstream to the recursive resolver as normally to return the appropriate DNS response. Conversely,

a domain name that D-FENS classifies as malicious will return a DNS response to redirect the user

to a local webserver.

5.2.3 Deep Learning Model

Our deep learning model employs the use of two mainstream architectures that have been typ-

ically used with sentence and document modeling: Convolutional Neural Networks (CNN) and

Recurrent Neural Networks (RNN). As described by Zhou et al. [126], you can achieve excellent

performance and classification results when you combine the strengths of both of these architec-

tures by feeding the output of the CNN into the RNN. Similar to the architecture proposed in [66],

we build our deep learning model with an Embedding Layer following by a 1-dimensional CNN

which is then fed into LSTM recurrent neural network.

5.2.3.1 Embedding Layer

The first step of our deep learning model uses the Embedding Layer, which is a common approach

in Natural Language Processing (NLP) for representing words and documents as dense vectors.

Unlike traditional approaches which produce sparse vectors composed of mostly zeros (i.e. one-hot
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encoding), the embedding layer turns the input integers (indexes) into dense vectors of fixed size

for computational efficiency. As noted by [36], “the Embedding Layer is initialized with random

weights and will learn an embedding for all of the words”, this is specifically for our model while

it trains. It is also possible to initialize the weights of the Embedding Layer to incorporate other

approaches of word embeddings such as Word2Vec [83] and GloVe [93].

In preparation for the Embedding Layer, we must first convert the raw domain name strings into a

sequence of integers corresponding to each character in the domain. Using the index returned from

Python’s lookup table of 100 printable characters [9], we systematically convert each character

into a unique integer. Since each input must be the same length, we use Keras’ pad sequences

preprocessing utility to pad each input with zeros. We chose a length of 87 since the label of the

domain name is limited to 63 characters [84] and the longest TLD currently in existence is 24

characters long [6]. For the embedding size, we used a 32-dimensional vector but this can be tuned

per model since previous approaches like [118] and [121] used a 128-dimensional vector.

5.2.3.2 Convolutional Layer

The output from the Embedding Layer is fed into a 1-dimensional (“temporal”) CNN, which are

a specialized kind of neural network as noted by [52]: “(CNNs) are networks that use a math-

ematical operation called convolution instead of a matrix multiplication in at least one of their

layers”. Since CNNs were found to be very useful in extracting information from raw signals (e.g.

images, speech), they have also proven to be state-of-the-art when it treats text as raw signals at

the character level [123]. Convolution in 1-dimensional operates on two signals where one is the

raw “input” signal and the other is the “filter” (also called a kernel) which slides over the input to

produce an output (also called a feature map). In terms of image processing, for example, we can

apply convolution in 2-dimensions with an image where the kernel can be a 3x3 box of pixels that
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calculates the mean. When this kernel is applied to each pixel in the image, the resulting output ef-

fectively blurs the image. To automatically learn these filters, CNNs apply backpropagation when

it is trained with labeled data. The CNN layer in our model uses 256 kernels, each having a size

of 5 with the output activation function using an Exponential Linear Unit (ELU) [42] along with a

max pooling operation with a window of size 4.

5.2.3.3 LSTM Layer

The next layer is a Long Short-Term Memory network, which is an improved version of the Recur-

rent Neural Network introduced in 1997 by Hochreiter and Schmidhuber [61] that was motivated

by the vanishing gradients problem which causes neural networks to stop training. Recurrent net-

works essentially work by adding a cycle to a feedforward neural network, which is described by

[39] where: “they transmit the information in only one direction, forward, from the input nodes,

through the hidden nodes, and to the output nodes”. The cycle added by RNNs is effectively a

feedback loop that allows previous decisions (stored in the hidden layers) to affect new decisions

on the current input. Over long time steps, however, the gradients calculated during each training

iteration tend to either go really small (“vanish”) or increase exponentially (“explode”) causing

unstable networks. Instead of a single neural network layer used by RNNs, LSTMs use memory

cells containing three gates that essentially control the information flowing through the network

allowing it to learn over several time steps. The LSTM layer in our model uses 32 LSTM cells

with the default tanh activation function followed by the last fully connected (“dense”) layer that

uses a sigmoid activation function.

The final model was compiled using the Adam optimizer [67] which combines the advantages of

two popular stochastic optimization methods: AdaGradD [47] and RMSProp [60]. Additionally,

we used Dropouts between each of the layers described above, which were introduced by Srivas-
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tava et al. [108] as a technique to “randomly drop units (along with their connections) from the

neural network during training to prevent units from co-adapting too much”, thereby preventing

the model from over-fitting.

5.3 Evaluation

D-FENS was evaluated using real datasets containing 10’s of thousands of both malicious and

benign domain names. In the following, we review the breakdown of the datasets and the evaluation

metrics that were used for training the deep-learning model.

5.3.1 Data Sets

The list of domain names we used were mainly sourced from open and freely available datasets,

such as the Alexa Top 1M websites for our benign data set. We restricted to only using the top

1,000 websites from Alexa, due to the probability of a high number of malicious domains that may

be present in the top 1M [110]. We collected most of our benign domain names from DMOZ,

which is a manually-managed archive of the entire Internet approved by human editors [16].

Our malicious domain names came a few sources, including phishing data from OpenPhish.org

and Phishtank.com (which is verified by human editors) as well as malware domain names from

malwaredomains.com and malwaredomainlist.com. Table 5.1 shows the breakdown of each data

source where the total amount of domain names used for training was 713,465. For typosquatting

data, we leveraged the use of the dataset that was made publicly-available1 by Agten et al. from

their work described in [26] which also included a small set of benign domains not featured in our

other sets.

1https://distrinet.cs.kuleuven.be/software/typos15/dataset.php
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Table 5.1: The data sets used in model training.

Data Source # of Domains

Phishtank 15,863

Openphish 501

malwaredomains.com 20,907

malwaredomainlist.com 1,080

Agten et al. (malicious) 12,682

Total Malicious 51,033 (7%)

Alexa 1,000

Agten et al. (benign) 117

DMOZ 675,037

Total Benign 676,154 (93%)

Total Domains: 727,187

5.3.2 Evaluation Metrics

The entire dataset of was evaluated using a 10-fold stratified cross validation method where each

model was trained for 10 epochs. The total running time for training the model on AWS EC2 was

approximately 18 hours and 20 minutes. We used the Receiver Operating Characteristic (ROC),

which is created by plotting the fraction of True Positives vs the fraction of False Positives [24]

where the True Positive Rate (TPR) is:

TPF =

∑
Tp∑

Tp +
∑

Fn

(5.1)

and the False Positive Rate (FPR) is:

TPF =

∑
Fp∑

Fp +
∑

Tn

(5.2)
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(a) Small subset of data trained for 1 epoch.

(b) Entire dataset trained for 10 epochs.

Figure 5.2: ROC curves for each fold of the cross validation of the deep learning model.
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The area under the ROC curve is known as the AUC, which should be greater than 0.5 for a model

to be acceptable (i.e. a AUC of 0.5 is no better than chance). Essentially, the AUC area is a measure

of predictive accuracy of our model. After running our model for 10 epoch iterations through 10

folds of the cross validation, we achieved a mean AUC value of 0.95 as shown in 5.2(b). For

comparison, early results using a small subset of the data with only 1 epoch is shown in 5.2(a).

Once the learning phase completes, the model is loaded by the Classifier and used to make predic-

tions in real-time when answering DNS requests. We tested the live DNS Server by deploying it

on a local machine (MacBook Pro 2.3 GHz Intel Core i5 with 8GB) and ran several nslookup

requests. As shown in Figure 5.3, the elapsed times for several predictions ranged from 2.5 - 3.1

milliseconds.

Figure 5.3: Sample prediction times for DNS queries showing elapsed times from 2.5 to 3.1 mil-
liseconds.

5.4 Summary & Future Work

There were several challenges when attempting to develop a real-time system capable of identify-

ing malicious domain names in a timely fashion. For example, DNS resolution latency delays can

range from 1ms (locally cached results) to several seconds [2]. As such, it is crucial that such a sys-

tem is efficient so far as to not introduce additional delays for the end user while also still striving

for accurate classification of malicious domain names. To this end, we proposed a system called
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D-FENS which identifies malicious domain names in real-time and operates under two phases:

Training and Live prediction that runs inside a DNS server. Rather than identifying features to

be used in a traditional machine learning approach, we opted for a deep learning approach which

automatically learns the features from the input data. The trade-off is that while the training phase

is typically longer than traditional machine learning approaches, execution of live predictions is

fast which ranges from 2.5 - 3.1 milliseconds on consumer hardware.

Future work. The current results of evaluating the prediction model yielded a mean AUC value of

0.95, after running 10 folds of 10 epoch iterations. We would like to continue running the model

for several more epoch iterations and evaluate the results, which could lead to an improved score

and more accurate predictions. In addition, we could improve our model by possibly sourcing

more malicious domain name data since a large percentage of our existing data was comprised of

the DMOZ benign domains. As such, we envision the Training Phase of D-FENS to incorporate a

dynamic data collector which constantly updates itself to be aware of the latest reported malicious

domains.
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CHAPTER 6: CONCLUSION

Internet users heavily depend on the DNS infrastructure to provide a fast and reliable method to

resolve human-readable domain names to IP addresses, which may not always result in benign

destinations. Our proposed system called D-FENS will attempt to alleviate this malicious course

of action by redirecting users to a safe destination through the use of machine learning and standard

lookups in white/black-lists. To our knowledge, this will be the first system that attempts to redirect

users away from malicious domain names in real-time by using a hybrid approach of white/black-

lists and deep learning.

At the beginning of this research, a comprehensive study on the landscape of the malicious do-

main name type known as typosquatting was conducted. Several techniques of typosquatting were

identified in the literature as well as certain features of domain names that lend to the probability

of them being typosquatted. To measure the effectiveness of such techniques and how “success-

ful” they are in deceiving users, we conducted a multi-phase user study that exposed participants

to several URLs in which a subset were deliberately modified using known typosquatting tech-

niques. Our results showed that participants generally performed better and faster at identifying

typosquatted domain names after being educated about their techniques. We also discovered which

typosquatting models were more “successful” than others in deceiving users, and attributed it to

studies in Cognitive Science that highlighted how the human brain encodes jumbled characters in

words.

Following this trend, we also explored the possibility of an Adversary to take a user’s context into

account when devising an attack strategy involving malicious domain names. The results of the

user study mentioned previously showed that while some typosquatting techniques fared better

than others in deceiving users, the actual selection of the target domain names to typosquat may
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play a role. For example, the most incorrectly identified domain name in the study included a

ccTLD from Ukraine (.ua) which is not well-known for the average Internet user in the United

States. To this end, we designed another user study to establish context by dynamically fetching

domain names based on user input (e.g. country, subject interest, favorite websites) and similarly

applied a random typosquatting model. We found that the most successful typosquatting strategy

for an Adversary is to remove inner-character in domain names that users are most familiar with.

Further research brought us into an area of malicious domain names that were not strictly used

for deceiving users, rather for a communication channel between a botmaster and its botnet. To

avoid detection and takedowns by law enforcement, botnet authors starting using domain gen-

eration algorithms (DGA) to produce pseudo-random domain names for use in C2 communica-

tion. Previous efforts to identify and prevent DGA-domain names from operating have relied on

reverse-engineering and intrinsic analysis. We proposed a system called DRIFT to proactively de-

tect DGA-based domains by using DNS query analysis to look for tell-tale patterns of NXDomain

responses. Ultimately, we achieved a 99% accuracy on average as early as 48 hours prior to the

registration of a malicious DGA-based domain name.

Building upon these previous identification approaches and methods, we ultimately implemented

a system to detect malicious domain names in real-time. Our system called D-FENS uses deep

learning to produce a model that is used in a live DNS server to accurately predict malicious domain

names in DNS queries, thereby preventing users from navigating to unintended destinations.
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