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ABSTRACT

The usage of Internet of Things (IoT) devices is growing fast. Moreover, the lack of security

measures among the IoT devices and their persistent online connection give adversaries an oppor-

tunity to exploit them for multiple types of attacks, such as distributed denial-of-service (DDoS).

To understand the risks of IoT devices, we analyze IoT malware from an endpoint standpoint. We

investigate the relationship between endpoints infected and attacked by IoT malware, and gain

insights into the underlying dynamics in the malware ecosystem. We observe the affinities and

different patterns among endpoints. Towards this, we reverse-engineer 2,423 IoT malware sam-

ples and extract IP addresses from them. We further gather information about these endpoints

from Internet-wide scans. For masked IP addresses, we examine their network distribution, with

networks accumulating more than 100 million endpoints. Moreover, we conduct a network pen-

etration analysis, leveraging information such as active ports, vulnerabilities, and organizations.

We discover the possibility of ports being an entry point of attack and observe the low presence

of vulnerable services in dropzones. Our analysis shows the tolerance of organizations towards

endpoints with malicious intent. To understand the dependencies among malware, we highlight

dropzone characteristics including spatial, network, and organizational affinities. Towards the anal-

ysis of dropzones’ interdependencies and dynamics, we identify dropzones chains. In particular,

we identify 56 unique chains, which unveil coordination among different malware families. Our

further analysis of chains suggests a centrality-based defense and monitoring mechanism to limit

malware propagation. Finally, we propose a defense based on the observed measures, such as the

blocked/blacklisted IP addresses or ports. In particular, we investigate network-level and country-

level defenses, by blocking a list of ports that are not commonly used by benign applications, and

study the underlying issues and possible solutions of such a defense.
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CHAPTER 1: INTRODUCTION

IoT has reshaped the way in which people, businesses, and even cities interact with their environ-

ment through Internet-connected devices. Whether it is remotely unlocking a smart door lock [86]

or accessing your home appliances from anywhere in the world. There is no doubt that IoT de-

vices have benefited the global economy and made our lives more efficient. The number of IoT

devices soaring into the tens of billions [28, 56], and Gartner, a global research and advisory firm,

predicts that the number of IoT devices will grow to 25 billion by 2021, from 14.2 billion devices

in 2019 [68]. However, potential adversaries have set their sights on these devices knowing that

they are always connected and online. The majority of these IoT devices are at a high risk to the

new threats due to the lack of security awareness among consumers and the lack of consensus on

security standards among the IoT industry [62]. Also, given the low computational power of the

IoT devices, a single device would not be sufficient to carry out an attack [22]. However, exploit-

ing IoT’s scale, adversaries form a network of bots or intermediary targets, large enough to launch

an attack of substantial magnitude. As the number of applications of IoT devices is significantly

increasing, so is the number of malicious software (malware) targeting IoT, which have seen a

consistent increase in the past few years as well [52]. In part due to their sheer number, as well as

the constrained operation environments (e.g., limited standards, lack of maintenance and updates,

etc.), IoT devices are more likely to be a target for malware infections, bringing about botnets used

often in launching catastrophic distributed-denial-of-service (DDoS) attacks [17, 50, 63, 81].

With the vulnerability of the IoT devices against adversaries, such devices can be easily exploited

and controlled. For instance, Bashlite (also known as Gafgyt, LizardStresser, Lizkebab, Qbot, and

Torlus) is a malware family that exploits default login IDs and passwords to propagate and infect

targets [24]. Based on this infection, the Bashlite malware family made a large botnet that is capa-

ble of launching large DDoS attacks [55]. Among many capabilities that Bashlite has, it can update
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bots payload, in continuous evolution and morphing, and—more interestingly–remove competing

botnets from infected hosts [53]. Mirai is the most notorious malware successor of the Bashlite,

and has been used for demonstrating some significant damages by launching DDoS attacks several

times on several pieces of critical infrastructure and prominent services [22]. Among other inci-

dents, Mirai’s attacks temporarily disrupted “Krebs on Security” (security blog) [51], OVH (cloud

computing company) [42], and Dyn (domain service company) [48]. In the case of the Dyn attack,

many other services, such as Airbnb, Github, and Twitter, among others, were indirectly affected.

The same botnet was able to take down the Internet of the African nation of Liberia [64].

Competition and coordination among botnets are not well explored, although recent reports have

highlighted the potential of such competition as demonstrated in adversarial behaviors of Gafgyt

towards competing botnets [53]. Understanding a phenomenon in behavior is important for multi-

ple reasons. First, such analysis would highlight the competition and alliances among IoT botnets

(or malactors; i.e., those who are behind the botnet), which could shed light on cybercrime eco-

nomics. Second, understanding such competition would necessarily require appropriate analysis

modalities, and such competition signifies those modalities, even when they are already in use.

Third, the signified modalities may shed light on possible effective defenses; e.g., a piece of infras-

tructure used by the majority of infected hosts in an IoT botnet makes an excellent candidate for a

botnet takedown.

Considering the landscape and the risks IoT devices possess, the malware authors can exploit the

vulnerability to either attack them or hire them as intermediary targets for a future large scale

attack. Reckoning that the malware sources, command and control (C2) servers, the intermediary

targets, and the victim must be connected to the Internet in the attack scenario, which makes it

important to study these endpoints.
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1.1 Motivation

The focus of this work is to conduct a comprehensive analysis of endpoints in IoT malware, in-

cluding sources, C2’s, intermediary targets, and victims. In particular, we formulate questions that

we answer through a data-driven analysis to find the correlations between the endpoints of the

dropzones and targets, addressing the following:

Dropzone-Target Inter-Relationships. Since malware associated with certain dropzones point

to specific target IP addresses, could these IP addresses be similar or identical to the addresses

of targets in other dropzones? To answer this, we reverse-engineered and analyzed the malware’s

disassembly to extract all target IP addresses for each dropzone.

Geographical Analysis. What are the characteristics of the areas where the dropzones are located?

How does this affect the distribution of dropzones and targets? For that, we analyze the distribu-

tions of the distance between the dropzones and their targets, and look at these distributions from

various perspectives at the country and state level.

Attack Exposure. How exposed are the IP addresses in the target’s network address space? To-

wards this, we analyze the targets and look for vulnerabilities in the services that they use. For the

masked targets, we analyze the network space and examine their up-to-date susceptibility.

Network Penetration Analysis. What are the vulnerable services being used for both dropzones

and target IP addresses? Which organizations own these IP addresses and how do they affect the

dropzone-target relationships? We analyze the attributes of dropzone and target IP addresses such

as their active network ports, owning organization, and known vulnerabilities from Internet-wide

scanners; Shodan and Censys [3].

To this end, we analyze the characteristics of the IP addresses, using a search engine that retrieves

the characteristics of the IP addresses. The features we collect are the ports that are active on the
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endpoint devices, known vulnerabilities related to the addresses, and organizations that operate the

IP addresses. In this work, we set questions that we answer through conducting experiments and

network and endpoint analysis.

1.2 Approaches

Analyze IoT Malware Ecosystem. In this work, we extracted endpoints from IoT malware sam-

ples by reverse-engineering those samples and perform a data-driven study to analyze their dif-

ferent traces, such as geographical affinities, organizations, open ports, and their susceptibility to

attacks. We also try to understand the pattern shared among victims by different malware.

Network Penetration Analysis. We focused on the network penetration analysis, which is the

characteristics contained in the IP address, leveraged the information gathered from a search engine

for Internet-connected devices, such as active ports, vulnerabilities and organizational information.

The vulnerabilities in the dropzones reflect that the attackers override their authentication status

and then utilize the OpenSSH vulnerabilities to gain access to the device. Our analysis also sheds

light on the tolerance of organizations towards the endpoints with malicious intent. The tug of war

between the profit and the loss of trust among the users (prospective domain buyers) deserve the

community’s focus.

Malware Behavior Analysis. We attempt to understand the dynamics between different IoT bot-

nets through the lenses of static analysis hoping to unveil competitive behaviors among those bot-

nets. By obtaining endpoints from the residual strings of IoT malware binaries upon static analysis,

we proceed to categorize those endpoints based on the context in which they appear into dropzones

and targets. Dropzones are IP addresses used by the malware to control bots and to retrieve up-

dated malware binaries (payloads) or scripts from an external server. Targets, on the other hand,

are IP addresses subjected to an attack by the malware sample being analyzed.
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1.3 Roadmap

The rest of this dissertation is organized as follows. In chapter 2, we introduce a unified related

work based borrowing contents from several studies by the dissertation author. In chapter 3, we

introduce our analysis of the IoT ecosystem. In chapter 4, we introduce our analysis of the IoT

malware network penetration analysis. Both of these chapters are based on our work published in

ACM HoTWot 2019 [26]. In chapter 5, we introduce our analysis of the dynamics and interde-

penendeices in IoT malware through the lenses of dropzone-target chains, which is based on our

work published in IEEE IDSC 2019 [25]. In chapter 6, we introduce our insight into defenses. A

brief discussion is introduced in chapter 7, followed by concluding remarks in chapter 8.

5



CHAPTER 2: RELATED WORK

2.1 IoT Malware Ecosystem Analysis

Recent studies related to IoT malware in the past few years have primarily focused on classify-

ing IoT Malware. Su et al. [78] proposed a light-weight classification system based on image

recognition that was tested on real IoT malware samples collected by IoTPOT [66], one of the

first honeypots specifically for IoT threats. Using a dataset of 500 malware samples comprised of

multiple families (including the Mirai botnet and Linux.Gafgyt) and benign samples from Ubuntu

16.04.3 system files, they converted each sample into 64x64 gray-scale images that were fed into

a convolutional neural network achieving an average accuracy of 94%. Abusnaina et al. [15]

presented Graph Embedding and Augmentation (GEA), a method to generate adversarial IoT soft-

ware. With their approach, they successfully achieved a high misclassification rate in Control Flow

Graph (CFG)-based features and deep learning network detection method, while ensuring that the

generated software is executable.

Cozzi et al. [27] investigated the different patterns and trends among the Linux malware in depth.

Sivanathan et al. [74] analyzed the traffic of smart IoT environments gathered over a period of 3

weeks to characterize different traffic attributes. They differentiate IoT traffic from other traffic as

well as identifying IoT devices with an accuracy of 95%. Alasmary et al. [18–20] studied methods

of malware detection based on graph-based features from CFGs. They show that CFGs, even

with smaller size than similar software, can be powerful in identifying IoT applications, including

distinguishing between benign and malicious ones. Related work on analyzing malware of other

systems and evaluating the accuracy of their detection using various modalities are explored in [59,

60, 72].

West and Mohaisen [83] used 28,000 expert-labeled endpoints extracted from ≈100K malware
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binaries for binary threat classification with an accuracy of 99.4%. The endpoints were extracted

using dynamic execution of malware in a sandboxed environment. Ouellette et al. [65] used deep

learning to detect malicious endpoints. They used the features from obfuscated malware samples

to feed to the classifier that performing classification on the cloud. Rafique and Caballero [70] used

the network signatures from executing malware binaries to cluster them into families. Although

limited, prior works have looked into investigating Linux malware, and the malware endpoints

have not received the attention. Antonakakis et al. [22] analyzed the relationship between domains

that were extracted by reverse-engineering the Mirai malware. With this work, we push towards

filling the gap.

2.2 Network Penetration Analysis

Studies have also utilized a combination of Shodan, an Internet-wide search engine for IoT de-

vices [12], and known vulnerability databases to realize the potential risks inherent to Internet-

connected devices. For example, Genge and Enachescu [41] proposed ShoVAT (Shodan-based

Vulnerability Assessment Tool) and collected IoT device information such as open ports, when

they were scanned, banner data, and their operating system through the Shodan API. They then

used this information to confirm their identities in the NVD and revealed 3,922 known vulnerabili-

ties among 1,501 services in 12 different institutions. Formby et al. [40] security challenges in the

existing Industrial Control Systems (ICS) and address them by leveraging fingerprinting methods.

Feng et al. [39] proposed a rule to discover and annotate IoT devices.

2.3 Dynamics and Interdependencies in IoT Botnets

Malware analysis helps to understand the behavior of the malware, thus defending against it. Dy-

namic analysis executes malware in a monitored environment and observes its behavior and func-
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tionality [84]. In contrast, Static analysis inspects the executable files without executing them. It

analyzes the malware through the strings and function calls necessary for malware operation and

structure. Kendall et al. [49] described the static analysis in-depth, a malware executable file might

be disclosing only basic properties such as file type, the checksum for file fingerprinting, simple

extractable strings and Dynamic-Link Library (DLL) import information, or fully disassembled

with powerful tools and specialized knowledge. One of the obstacles to static analysis of malware

is code obfuscation. Moser et al. [61] examined the limitations of the static analysis in the de-

tection of malicious code. Soliman et al. [75] set a taxonomy for the tools and analysis method.

They analyze the pros and cons of each static and dynamic analysis approaches. The prior work

focused on analyzing IoT malware and evolution. However, it is equally important to understand

the communication and relationships between bots to fully understand the operation of a malware,

thus defensing against them.

Several IoT malware have the capability to launch DDoS attacks [30]. Mirai is one of the notori-

ous IoT malware that is targeting vulnerable IoT devices such as Digital Video Recorders (DVRs),

security cameras, routers [22]. Wang et al. analyzed multiple IoT malware and categorized them

by the approach in which they infect targets, such as, brute-forcing the weak user credentials, and

exploiting vulnerabilities found in the devices. They found that Mirai brute-force the target based

on the dictionary of popular usernames and passwords [82]. Sinanović presented the result of the

dynamic and static analysis of Mirai. They set up a virtual environment for dynamic analysis to

replicate controlled DDoS attack [73]. Similarly, Ceron et al. [24] studied DDoS capable mal-

ware, such as Mirai and Bashlite by handling the network traffic. They utilized Software-Defined

Networking to control the network environment. Furthermore, De Donno et al. [31] studied the

taxonomy of DDoS attacks in the different subject of IoT. They did a detailed analysis of how

Mirai’s design and components perform their attacks.

To the best of our knowledge, there is no recent work that analyzes the relationships between the
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endpoints of IoT malware dropzones and their target devices. With that said, the closest study

to our work is by Holz et al. [45] who presented one of the first empirical studies of malware and

dropzones. Specifically, they focused on keyloggers and harvested data from dropzones which con-

tained stolen credentials. Since keyloggers typically contact dropzones upon execution (to obtain

a configuration file), the authors managed to successfully obtain the locations of several dropzones

from several Autonomous Systems and countries, shown to be Russia and the US, among others.
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CHAPTER 3: IOT MALWARE ECOSYSTEM IN THE WILD: ANALYSIS

AND EXPOSURES1

3.1 Motivation

We perform IP centric analysis and network centric analysis. In the IP centric analysis, we analyze

the dropzone-target inter-relationships. Specifically, we investigate the target IP addresses among

different dropzone IP addresses. Also, we perform a geographical analysis of the dropzones and

targets. Towards this, we analyze the locations of dropzones and their target IP addresses. In the

network centric analysis, we analyze the attack exposure of networks and IP addresses. For masked

target endpoints, we examine the entire network and study the network devices and their exposure

to risk.

The goal of this work is to analyze the affinities between IoT malware endpoints. Towards this

goal, we make the following contributions:

• We analyze the dropzone-target inter-relationships. Specifically, we investigate the target IP

addresses among different dropzone IP addresses.

• We perform a geographical analysis of the dropzones and targets. Towards this, we analyze

the locations of dropzones and their target IP addresses.

• We analyze the attack exposure of networks and IP addresses. For the masked target end-

points, we examine the entire network and study the network devices and their exposure to

risk.

1This content was reproduced from the following article: J. Choi∗, A. Anwar∗, H. Alasmary, J. Spaulding, D.
Nyang and A. Mohaisen, “IoT Malware Ecosystem in the Wild: A Glimpse into Analysis and Exposures”. The
Second ACM/IEEE Workshop on Hot Topics on Web of Things, HotWoT, pp. 413-418, Arlington, VA, USA, 2019.
∗Equal Contributors. The copyright form for this article is included in the appendix.
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Table 3.1: Distribution of malware by family. DZ - Dropzone.

Target family Count Pct. DZ family Count Pct.
Gafgyt 930 95.58 Gafgyt 2,294 98.96
Tsunami 39 4.01 Tsunami 24 1.04
SINGLETON 3 0.31 - - -
Lightaidra 1 0.10 - - -

3.2 Dataset

We describe our dataset and its augmentation towards our goal. We then describe the aims and the

objectives of this work. Specifically, we use an IoT malware dataset, perform static analysis on

them, and finally use the strings to extract endpoints from them. We obtain our dataset from IoT-

POT [66], a honeypot that emulates the Telnet services (later improved to include other services).

We obtained a total of 2,423 IoT malware samples, which were graciously given to us by the au-

thors of IoTPOT. The dataset represents four different malware families, labelled by augmenting

the results from VirusTotal (VT) and by using AVClass [71]. For malware samples that do not have

a decisive family label from the VT results, those malware samples are labeled as SINGLETON.

The distribution of malware families can be seen in Table. 3.1.

We reverse-engineer and analyze the malware samples using Radare2 [11], an open-source mal-

ware analysis framework. We find strings in the malware binary, especially IP addresses, and

classify those addresses by their association with special keywords into two classes: dropzone

and target IP addresses, defined as follows:

• Dropzone IP. Adversaries often keep malware binaries in remote servers to distribute them

after gaining access to victim devices. These remote servers are identified by dropzone IP

addresses, controlled and managed by the adversary and used for malware propagation and

management. As such, the dropzone IP addresses are associated with wget, HTTP, TFTP,
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GET or FTP in the residual strings obtained from the malware analysis.

• Target IP. To infect victim hosts, malware uses a list of IP addresses, including target de-

vices. We refer to these IP addresses as targets. We note that a large number of those

target addresses in our analysis are masked. For example, 123.17.%d.%d is one of the target

IP address that is masked at /16; the attacker can utilize this address targeting all IPs in the

network address space.

Also, we found the internal network addresses (e.g., 192.168.%d.%d), loopback address (e.g.,

127.0.0.1) from our target dataset and remove them, since they are irrelevant to our analysis. Also,

we note that the Mirai source code contained a list of “don’t scan” addresses, including various

U.S. Department of Defense (DoD) address blocks, as well as internal addresses [44], which we

exclude. Fig. 3.1 shows the dropzone and target in the malware life-cycle, including dropzone

setting, victim host (target) compromise, and download of malware from the dropzone to the target.

3.2.1 Data Augmentation

We group the target and dropzone addresses by malware. Since a dropzone can be used by multiple

malware, and to help analyze the overall sample-space a dropzone caters to, we cluster the target

IPs by each dropzone. Using UltraTools [13], a free DNS and domain lookup tool, and Censys [3],

a search engine for Internet-connected devices, each of the targets and dropzones is augmented

with the following information: country, ASN (Autonomous System Number), and location (e.g.,

latitude and longitude), open ports, etc. We observe some dropzone addresses have no current

information, e.g., they are no longer connected to the Internet. This confirms that the dropzones

are short-lived—long enough to carry out an attack and short not to be detected. As such, we

leverage historical data of those IP addresses from Shodan [12] to determine the necessary data

points associated with them.
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Target List

Figure 3.1: An overview of the dropzone and target in the malware life-cycle. 1©: The attacker
uses pre-configured or infected server (dropzone) for attack propagation. 2©: The attacker try to
propagate to targets by exploiting vulnerabilities. 3©: The malware accesses the dropzone and
download scripts and payload to the target. 4©: The malware targets potential victim devices in a
target IP list. 5©: The infected target devices repeat the process.

3.2.2 Preliminary Results

The distribution of the target addresses exposes family-level affinities by highlighting what set of

addresses is being targeted by different malware. In particular, we observe a total of 106,428 target

IP addresses, resulting in 2,211 unique target IP addresses associated with 973 malware samples.

This makes the analysis of affinities, by understanding what makes these target IP addresses the

favorite among malware authors, of paramount importance. The use of dropzone IP addresses by

the malware exhibits that the malware shares dropzones among themselves, with some contacting

multiple dropzones for commands. In particular, for the dropzones, we find that 877 unique drop-

zone IP addresses are being shared by 2,318 malware samples with 2,407 occurrences. Moreover,
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Figure 3.2: Data collection and extraction system. 1©: Collecting malware binaries from IoTPOT.
2©: Assigning known malware family names to the dataset. 3©: Reverse-engineering and extracting

strings from binaries. 4©: Separating IP addresses based on nearby keywords. 5©: Augmenting IP
addresses with Censys and Shodan data.

while we successfully extract dropzone IP addresses from the majority of malware samples, we can

find target IP addresses only in fewer malware samples. This shows a thought pattern of malware

authors, i.e., while they share the dropzone IP addresses in the static code, however, they do not

reveal the target IP addresses. This can be because they obfuscate this part of the code, employ

domain generation algorithms, or use a custom list of IP addresses in the downloaded binary file

(i.e., DNS.txt) from a dropzone at run-time, as shown in Fig. 3.3.

We also notice that 40% of the malware samples contain target IP addresses, while 95.66% of them

contain dropzones in their strings. We also observe disassembled codes of malware samples that

have dropzone but no targets, which is explained either: (i) code-based generation of IP addresses,

rather than static IP address listing [21, 23], and (ii) packing.
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wget \%s −q −O DNS. t x t
| | busybox wget \%s −O DNS. t x t
| | / b i n / busybox wget \%s −O DNS. t x t
| | / u s r / busybox wget \%s −O DNS. t x t

Figure 3.3: Retrieving a list of target hosts.

Table 3.2: Top 5 dropzone IPs per the number of targets. Countries include: France (FR), United
Kingdom (GB), Canada (CA) and United States (US).

Rk. Dropzone IP Country #Malware #Targets
1 163.172.104.150 FR 35 9,529
2 145.239.72.250 FR 22 5,632
3 45.76.131.35 GB 17 4,352
4 64.137.253.50 CA 26 3,066
5 198.175.126.89 US 11 2,816

3.3 Dropzone-Target Inter-Relationship

We inspect the dropzone-target relationship, we examine the affinity between the dropzone and

the target IP addresses. While ≈77% of the unique target IPs received less than 10 attacks, one

unique target IP received 72 attacks. We found one dropzone IP (50.115.166.193) that was

only associated with 1 malware sample. This malware sample pointed to 1,265 network addresses,

which was significantly larger than the average of 121 target IP addresses for a typical malware

sample. Also, they are masked network addresses, which means that one target network address

can be larger dynamically. Conversely, the dropzone IP (5.189.171.210) has 86 associated

malware samples, but each of those point to a single target IP address.

Dropzones can be found distributed mainly in North America and Europe. Moreover, through our

further analysis we found that the first IP address (163.172.104.150) (Table 3.2) is associated

with 35 malware samples affecting 9,529 target IPs.
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3.3.1 Shared Targets Between Dropzones

To inspect the shared targets between dropzone IP addresses, we group the dropzone IP addresses

and capture the common (overlapping) targets among the dropzones. Since dropzones can be

associated with multiple instances of malware, each malware can have its own list of target IP

addresses. If we assume that a dropzone has a union of target IPs for each malware belonging

to that particular dropzone, we can aggregate all of their target IPs into a larger set of target IPs.

We denote Udz as the union of all target IPs for a particular dropzone. To analyze the overlapping

target IP addresses and to understand the criteria for choosing target addresses, we compare Udz of

each combination of dropzone addresses from a dataset of 877 unique dropzone addresses. Using

combinations, we found combinations of

(
877

2

)
=

877!

2!(877− 2)!
= 384, 126.

Upon removing 365,968 cases that do not have common target IP between them, we reduce the

combination to 18,158 dropzone IP pairs. This dataset of 18,158 dropzone IP pairs is a combination

of only 247 unique dropzone IP addresses, from the dataset of 877 unique dropzone IP addresses.

Also, we find 71 cases that had more than 300 overlapped target IPs, and there are 2,199 cases

(12.11%) which are 100% overlapped between dropzones. Overall, we find 6,451 cases (35.53%)

in which the overlap is more than 80%.

3.3.2 Summary

It is evident from the results of the above analysis that a large number of targets are being shared

between dropzones. If the target IP addresses between different dropzones are matched 100%, it

is possible that the attacker obtained the same targets through similar vulnerability analysis (i.e.,

Shodan) or shared the target list from other attackers through underground communities.
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Figure 3.4: CDF graphs showing the distribution of the number of overlapped target IP addresses
and their ratio.

3.4 Geographical Analysis

In this section, we focus on the distribution of the distances between the dropzones and their tar-

get IPs. It will be apparent that a large number of dropzone-target pairs have a certain range of

distances, which is related to the distribution of dropzones and their targets in each country. For

example, we noticed that there are several target IPs located in Vietnam, Brazil, and China. To vi-

sualize the flow of attacks in a holistic sense, we plotted circular areas whose sizes are proportional

to the number of targets and are placed according to their location on a world map with geodesic

lines originating from various dropzone locations (see Fig. 3.6).

3.4.1 Distance Between Dropzone and Target

As mentioned previously, a dropzone IP can be associated with several malware instances where

each malware can point to one or more target IPs. Knowing the locations of these IPs, we calculate
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Figure 3.5: Histogram graph of distances between dropzone and target IPs. One bar represents the
number of dropzone-target pairs with a distance that has a value within the range of x-axis.

Table 3.3: Top 5 countries by the number of target and dropzone IPs. Countries include: United
States (US), Netherlands (NL), France (FR), United Kingdom (GB), Italy (IT), Vietnam (VN),
Brazil (BR), China (CN), India (IN) and Pakistan (PK).

Rk. Country Dropzones Pct. Rk. Country Targets Pct.
1 US 1,041 43.25 1 VN 26,290 24.70
2 NL 278 11.55 2 BR 20,572 19.33
3 FR 188 7.81 3 CN 15,799 14.84
4 GB 183 7.60 4 IN 5,598 5.26
5 IT 177 7.35 5 PK 5,076 4.77

the distance between the dropzone and its target if they are related to the same malware instance.

Each distance shows the locality of the attack. The total number of calculated distance cases is

111,480. Fig. 3.5 presents an alternate view with a histogram plot of the distances between the

dropzones and their target IPs.

Our result of the majority of the distance shows the 8K-10K km range had the most frequent
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Figure 3.6: Attack trends between dropzones and target IPs. We only plot attacks that have over
500 target IPs. The orange circle represents dropzones, and blue, red, and green circles stand for
target areas.

number of cases totaling 34,479 (30.93% of all dropzone-target distance cases). In this range,

countries with the most target IPs are Brazil, Vietnam, and China, in order; while the dropzones

are in European countries, including Italy, France, and the Netherlands. According to Table 3.3,

a large number of dropzones exist in the US, but they also have target IPs in Brazil, Vietnam, and

China, with distance between dropzone and target in the range of 12K-14K km and 10K-12K km.

3.4.2 Country-level Analysis

In this part, we look at the overall attack trend between dropzones and their targets on a world-

scale. For each dropzone, we collect all of the target IP addresses and extract location information

(e.g., latitude, longitude) to display the average position of the target area (not the exact position).

The target areas are scaled according to the number of target IP addresses they contain. Fig. 3.6

shows the results of our country-level analysis, where we limit to only plotting dropzones with

more than 500 target IP addresses. The locations of the dropzones (depicted in orange) are spread
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around various countries, but we highlight that there is a large concentration of target areas focused

in Central Asia.

Table. 3.3 lists top 5 countries by the number of dropzone and target IPs. Note that the US has a

large distribution of dropzones pointing to targets in Asian countries such as Vietnam. Addition-

ally, China and Brazil contain a large number of target IP addresses originating from European

countries. Imperva Incapsula (a global content delivery network and DDoS mitigation company)

confirms that Vietnam (12.8%), Brazil (11.8%) and China (8.8%) were the countries with the most-

infected devices (from the Mirai botnet) [44]. Moreover, intuitively, these countries should contain

the highest representation of vulnerable devices, such as devices with default credentials or known

vulnerabilities. To validate the former, we query “default password” in Shodan. Fig. 3.7 shows the

result of searching in Shodan. We find Taiwan, the United States, China, Vietnam, and Thailand in

the top five countries, which is partially counter-intuitive. In Vietnam, the Deputy Director-General

of Ministry of Information and Communication’s Authority of Information Security indicated the

number of cyber threats and criminals increasing. Moreover, there are a large number of no-name

IoT devices used in the country, such as cameras, which pose a threat to cybersecurity. That lead

the Vietnamese government to develop a national strategy, including specific policies and regula-

tions for IoT products [36]. As reported by the National Law Review [67], the EU and the US

are the most developed regions in regards with establishing IoT Regulations and ethical frame-

works. They have enacted standards and regulations for the devices connected, the network and

their security; and the data associated with the devices.

3.4.3 Region-level Analysis

Using regional information from IPinfo [8], we plot a heatmap representing the distribution of

dropzones and targets for the entire United States. In Fig. 3.8(a), we see that Washington state

and New Jersey contain a high concentration of dropzones. Interestingly, the Washington and New
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Figure 3.7: Result of searching for the “default password” in Shodan. This result indicates East
Asia countries are exposed threat of malware.

York states have lots of data centers as reported by Statista, an online portal for statistics [57]. We

discuss this issue further in §4. Likewise, we see in Fig. 3.8(b) that a high number of target IPs

reside in Florida and New Mexico. Table. 3.4 lists the detailed breakdown of the top 5 dropzone

and target IPs according to their US State. In all, we had 1,037 dropzone IPs distributed over 20

US States and 1,650 target IPs spread over 22 US States.

3.4.4 City-level Analysis

We utilize the search engine Shodan [12] to look up the actual city in which the given dropzone IPs

are, and use IPinfo to find the city information of the target IPs (whenever available). We note that

in our data, city information may not exist for every IP, so our region-level and city-level analysis
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Table 3.4: Top 5 US states by the number of target IPs and dropzone IPs. States include: Wash-
ington (WA), New Jersey (NJ), Missouri (MO), New York (NY), Arizona (AZ), Florida (FL), New
Mexico (NM), California (CA), Illinois (IL), and Michigan (MI).

Rk. State Dropzones Pct. Rk. State Targets Pct.
1 WA 253 24.40 1 FL 506 30.67
2 NJ 188 18.13 2 NM 356 21.58
3 MO 151 14.56 3 CA 283 17.15
4 NY 112 10.80 4 IL 151 9.15
5 AZ 79 7.62 5 MI 83 5.03

(a) Distribution of dropzones by US State. (b) Distribution of targets by US State.

Figure 3.8: Distribution of dropzones and target IPs in the United states. This figure shows drop-
zone and target mainly exist in which state in the US.

show different distributions. Overall, we had 541 dropzone IPs distributed among 75 cities, and

1,003 target IPs spread over 364 cities. In the Table 3.5, we list the top 5 cities per the number of

dropzone and target IPs. We can see the US cities top the rank for the dropzone, and China and

Vietnamese cities top the ranks for targets. In Fig. 3.9(a), we note that the blue circles represent the

number of dropzone IPs in the range (0, 5] with red and green circles representing dropzone IPs

in ranges (5, 30] and (30, 120), respectively. Similarly, Fig. 3.9(b) has the blue circle representing

target IPs in the range (0, 5] with red circles as (5, 30] and green circles as (30, 50).
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Table 3.5: Top 5 cities per dropzone and target IPs. Cities in the US occupy top ranks with respect
to dropzone IPs and cities in Vietnam and China have a lot of target IPs, which demonstrate a case
similar to the countrty-level analysis.

Rk. City Dropzones Pct. Rk. City Targets Pct.
1 Seattle 113 20.89 1 Hanoi 48 4.79
2 Buffalo 49 9.06 2 Guangzhou 32 3.19
3 London 39 7.21 3 Beijing 21 2.09
4 Clifton 29 5.36 4 Rome 19 1.89
5 Kansas City 27 4.99 5 Islamabad 18 1.79

(a) Distribution of dropzones by city. (b) Distribution of targets by city.

Figure 3.9: Distribution of dropzones and target IPs throughout the world. In this figure, we can
see that a large number of dropzones are distributed in the US and Europe, and targets are mainly
distributed in Asia countries (Vietnam, China).

3.5 Network Centric Analysis

Malware specifically aimed at IoT devices tend to recruit a large number of intermediary targets

to launch attacks on high-profile targets ultimately. To do this, the malware typically identify

the intermediary targets using their IP addresses which are either mentioned in their source code

or downloaded via dropzone. Additionally, these IP addresses could be masked IP addresses,

showing only a prefix (e.g., 123.17.%d.%d). For further analysis, we performed masked IP

address mapping to IP addresses through Censys.
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Table 3.6: Composition of target IPs for masked and not-masked networks. “In Total” means the
total number of target IPs, “In Unique” means the composition of non-duplicated target IPs.

Address In Total Pct. In Unique Pct.
/24 137 0.13% 27 1.22%
/16 104,369 98.07% 1,869 84.53%
/8 776 0.73% 126 5.70%

Not-masked 1,146 1.08% 189 8.55%
Total 106,428 100.00% 2,211 100.00%

3.5.1 IP Address Mapping

In the previous sections, we analyzed the IP addresses explicitly stated in the malware code base.

For the masked IP addresses, malware typically uses functions to hide the targets from the malware

analysts and determine the targets dynamically. This functions invoked during run time to deter-

mine the remaining of the masked octets. Malware authors seldom obfuscate these functions – we,

therefore, in this section, examine the entire /16, /24, or /8 network to probe their susceptibility.

Using Classless Inter-Domain Routing (CIDR) notation, Table. 3.6 shows that 98.92% of the target

endpoints are masked, mapping to 126 unique /8 networks and 1,869 unique /16 networks and 27

unique /24 networks. Removing the /16 networks covered in /8 and /24 networks, we have 125 /8

networks and 435 /16 networks. These 560 networks are then searched on Censys [38] which map

to 100,793,403 active IP addresses, which also allows us to analyze their active ports.

Towards this, we made a request to Censys a research access to query all of the Censys data

through Google BigQuery. With a research access permission, we sent a query with the masked

IP addresses to map active IP addresses. We did not only collected IP addresses but also device

and active ports information for each IP addresses which exists in the dataset. Using the collected

information, we can statistically classify ports, whether they are used or not, by devices.
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Figure 3.10: Total number of devices and the number of ports that used less than 10% of devices.
The left Y-axis belongs to the number of ports (blue), the right Y-axis belongs to the total number of
devices (red), and the X-axis is device types. Device types include: DSL/cable Modem (DCM), In-
frastructure Router (IR), Network Attached Storage (NAS), Digital Video Recorder (DVR), Intel-
ligent Platform Management Interface, (IPMI) Power Distribution Unit (PDU), Kernel-based Vir-
tual Machine (KVM), Heating, ventilation, and Air Conditioning (HVAC), Programmable Logic
Controller (PLC), Environment Monitor (EM), Industrial Control System (ICS), and Water Flow
Controller (WFC).

3.5.2 Active Ports and Suspicious Ports

As different devices use different services to operate, we clustered the IP addresses by their device

types and studied which ports were being used by the devices. Considering that open ports lead to

increased security risks, we look for ports that are necessary for a device to operate without any

misfire. Taking a conservative approach, we suggest that if a port is being used by less than 10%

of devices in a given device type, it should be closed to reduce its exposure to risk. We observe

that except for VoIP phone (over 77% of them used 5 ports), more than 75% of the devices among

all the other device types have only two or less port being used. Fig. 3.10 shows the number of

devices within a device type in log scale and the number of ports being used by less than 10% of

the devices. In this figure, the two graphs show a similar pattern. We speculate this result is due to
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Figure 3.11: Number of top 10 devices by active ports and device types.

more attack taking place on the popular devices (e.g., target devices of the Mirai consist of security

cameras, DVRs, and consumer routers [22]). Additionally, the susceptibility of high-wattage IoT

devices, such as heating, ventilation, and air conditioning (HVAC), power distribution units (PDU),

etc., can be abused by the attackers to launch large-scale coordinated attacks, e.g., power grids, as

has been demonstrated by Soltan et al. [76].
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3.5.3 Summary

The division of the endpoints by devices and then determining their exposure to the attackers

represent the chances of an endpoint being compromised. Based on our analysis we suggest the

users close the ports that aren’t necessary for the uninterrupted execution of their devices. These

endpoints need to be further examined in-depth to understand the pattern that could predict an

endpoints chances of being compromised. The suggestions could be finally narrowed, with specific

device centred recommendations, and by probing them individually by performing an offensive

penetration testing. However, in this work, we understand the data-centric landscape and put

forward the suggestions with a conservative approach, and without carrying out any offensive

analysis undermining ethics.

3.6 Summary

In this chapter, we analyze the≈78.2% of total responsive public IPv4 endpoints among dropzones

and their targets as extracted from IoT malware and spread across the globe from diverse perspec-

tives. First, we analyze the dropzone-target inter-relationship and their affinity. We observe that

the list of targets is shared between attackers, or are compiled by abusing shared susceptibilities.

We visualize the target areas representing dropzone locations and their size scaled by the number

of associated targets.

Our distributed analysis shows the exposure of endpoints which we correlate to the risk they pos-

sess. These endpoints need to be carefully and individually analyzed to extract patterns for pre-

dicting the chances of them being compromised.
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CHAPTER 4: IOT MALWARE NETWORK PENETRATION ANALYSIS

4.1 Motivation

In this chapter, we focus on the additional attributes contained in the IP address, leveraging the

information gathered from Shodan and Censys [3] such as active ports, vulnerabilities and organi-

zational information.

• We perform a network penetration analysis of the targets and dropzone IP addresses. To

do this, we analyze the risk associated with the IP addresses through insights gained from

Shodan.

• We analyze characteristics in IP addresses, which is active ports, vulnerabilities, and organi-

zations.

4.2 Active Ports Analysis

For each dropzone and target IP address, we issue an API query call to Shodan and Censys to

obtain a list of active ports. We extracted 5,745 active ports from 716 of the 877 dropzone IPs

and 1,114 active ports from 129 of 189 the non-masked target IPs. It is to be noted that malware

authors also mask the octets of the target IP addresses, which they determine dynamically during

execution. In this analysis, we only use the IP the not masked addresses.

Each port number is typically associated with a computer or network service, such as port 80 for

HTTP traffic. In Table. 4.1 and Table. 4.2, we list the top 10 active ports among dropzone IPs and

target IPs, respectively. As shown in both tables, the largest portion of active ports is common

services like SSH (port 22), HTTP (port 80), and HTTPS (port 443). However, we would like to

point out some of the other active ports among target IPs appearing in Table. 4.2, like the SUN
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Table 4.1: Top 10 active ports in dropzone IPs. The most of ports are used for general purposes.

Rk. Port Count Pct. Service Description
1 22 641 32.57% SSH The Secure Shell (SSH) Protocol
2 80 600 30.49% HTTP World Wide Web HTTP
3 443 350 17.78% HTTPS HTTP protocol over TLS/SSL
4 25 276 14.02% SMTP Simple Mail Transfer
5 21 275 13.97% FTP File Transfer Protocol [Control]
6 3306 224 11.38% MySQL MySQL database system
7 53 187 9.50% DNS Domain Name Server
8 110 175 8.89% POP3 Post Office Protocol - Version 3
9 143 171 8.69% IMAP Internet Message Access Protocol

10 993 165 8.38% IMAPS IMAP over TLS protocol

Table 4.2: Top 10 active ports in target IPs. With the exception of a few, most shown ports are used
for common services.

Rk. Port Count Pct. Service Description
1 80 111 17.85% HTTP World Wide Web HTTP
2 22 106 17.04% SSH The Secure Shell (SSH) Protocol
3 443 67 10.77% HTTPS HTTP protocol over TLS/SSL
4 21 51 8.20% FTP File Transfer Protocol [Control]
5 25 49 7.88% SMTP Simple Mail Transfer
6 3306 40 6.43% MySQL MySQL database system
7 53 29 4.66% DNS Domain Name Server
8 8080 29 4.66% HTTP-alt HTTP Alternate (see port 80)
9 111 28 4.50% SunRPC SUN Remote Procedure Call
10 123 26 4.18% NTP Network Time Protocol

Remote Procedure Call (RPC) on port 111 and the Network Time Protocol (NTP) on port 123.

Port 111. is a well-known port used by the Port Mapper service over the TCP and UDP proto-

cols [69], which essentially is a port lookup service for the Open Network Computing Remote

Procedure Call (ONC RPC) system designed by Sun Microsystems in the 1980s for their Network

File System [10]. As described in RFC 1833 [69], the port numbers for RPC programs and ser-
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vices are determined dynamically on startup so if a client wishes to make ONC RPC calls they

will query the Port Mapper on port 111 to obtain the appropriate RPC service port. Reported by

L3 Communications in August of 2015 [1], the Port Mapper service became a new attack vector

for adversaries seeking to amplify their DDoS attacks. This has to due to the fact that when Port

Mapper is queried, the response size varies significantly depending on which RPC services are

available on the host. In their examples, L3 Communications show that a 68-byte query results

in a 486-byte response for an amplification factor of 7.1x with responses as large as 1,930 bytes

for amplification of 28.4x. If adversaries “spoof” the victim’s source IP for these UDP packets

directed towards several vulnerable devices with port 111 open, they will ultimately be redirected

back en masse towards the victim (i.e., a UDP flood attack).

Port 123. is reserved for the Network Time Protocol (NTP), which was proposed in 1985 by D.L.

Mills [37] to synchronize network clocks using a set of distributed clients and servers. Strangely

enough, the content delivery network (CDN) and DDoS mitigation company called CloudFlare

predicted in late 2013 that the NTP protocol could possibly be abused in DDoS amplification

attacks [43]. This prediction came true in early 2014 [47] because much like the exploit for the

Port Mapper service described above, NTP is also UDP-based and can be prone to “IP spoofing”

for DDoS attacks. As emphasized in [80], exploiting NTP has a great potential for amplification

attacks due to the “monlist” command that a typical attacker sends to an NTP server. The “monlist”

command returns the last 600 IP addresses previously synchronized with the NTP server which is

spread over 30 separate UDP packets, each of which is 448 bytes. The overall size varies depending

on the server, but the data volume is almost 1,000x larger than the packet originally sent by the

attacker.
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4.3 Vulnerabilities Analysis

We then explore the susceptibility of IP addresses. In particular, we examine the vulnerabilities

present in IP addresses. Towards this, we analyze the use of vulnerable services running on end-

points. For the vulnerable endpoints, we gather the Common Vulnerabilities and Exposures (CVE)

identifier, e.g., “CVE-2017-15906”. CVE, maintained by MITRE [29], which standardizes security

vulnerabilities using their own naming schemes.

We analyze the vulnerabilities in the dropzones towards understanding their dynamics. Table. 4.3

depicts the top six vulnerabilities by the number of dropzone IPs. We further analyze the vulnera-

bilities to understand the root cause behind their existence. We found that CVE-2017-15906 is the

most frequent vulnerability which is related to 203 dropzone IPs and 448 instances of malware.

According to the National Vulnerability Database (NVD) [9], CVE-2017-15906 is a “medium”

severity vulnerability where versions of OpenSSH before 7.6 do not properly prevent write op-

erations in readonly mode. This allows attackers to create several zero-length files which could

possibly exhaust disk space. For the second most common CVE among the dropzones (i.e., CVE-

2014-1692), the NVD reports the severity of this vulnerability as “high” since it might allow remote

attackers to launch a DoS through memory corruption due to uninitialized data structures from the

hash buffer function in OpenSSH. These vulnerabilities allow attackers to launch a denial of

service (e.g., memory corruption or disk saturation) of target devices. These vulnerabilities do

not say much about the dropzones. Additionally, we observe that 98.61% of dropzone IPs, which

have the vulnerability of CVE-2014-1692, also possess at least one of the vulnerabilities associ-

ated with unauthorized authentication resulting in access to the device; this is, remote unauthorized

authentication attempts can be an indicator of a potential dropzone.

CVE-2016-0777, CVE-2012-0814, and CVE-2010-4478 are vulnerabilities that allow an attacker

to obtain access permission on target devices by stealing sensitive information; (e.g., private key
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Table 4.3: Top 6 Vulnerabilities by the number of dropzone IPs. Note that the dropzones use
vulnerable version of OpenSSH.

Vulnerability IP Malware Description
CVE-2017-15906 203 448 OpenSSH/DDoS
CVE-2014-1692 142 320 OpenSSH/DDoS
CVE-2016-0777 142 325 OpenSSH/Private Key leakage
CVE-2012-0814 140 307 Cross-privilege boundaries/OpenSSH
CVE-2011-4327 140 307 OpenSSH/Authentication leakage
CVE-2010-4478 140 307 OpenSSH/Authentication override

or authorized key), bypassing the authentication and crossing privilege boundaries. Additionally,

CVE-2011-4237 enables remote attackers to make an unauthorized modification to the kist of

authenticated keys by injecting arbitrary HTTP header. We observe that 17.04% of dropzone IP

addresses (i.e., 144) have at least one of these four vulnerabilities which provides a large attack

surface to the attackers. This is, these vulnerabilities provide a broad range of attack surface that

can be abused by attackers to compromise the devices, then act as dropzones. Moreover, some of

the dropzones use the default credentials making the devices an attractive target.

4.4 IP-Owning Organizations Analysis

We then analyze the organizations that own the given IP space, e.g., Starhub Mobile. In Fig. 4.1 we

have plots for the CDF between the IP-owning organizations and their: number of dropzone IPs,

number of malware instances, and number of target IPs they point to. A breakdown of the top 10

IP-owning organizations is presented in Table. 4.4. Note that for each organization, there is clearly

a relationship between the number of dropzone IPs and the number of malware instances they are

associated with. However, there are abnormal cases in our dataset, such as Cogeco Peer 1 (Canada)

and MAROSNET Telecommunication Company LLC (Russia) who have only 1 dropzone IP but

point to 2,214 and 2,178 target IPs, respectively. In contrast, HOSTKEY (that operates in the
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Figure 4.1: Organization v. the number of dropzone IP, malware and target IP. The similarity in
the CDFs is because there is a high probability that the organization that includes more malware
will contain more dropzone and target, except in a few cases (i.e., where one dropzone refers to
thousands of targets, or one dropzone refers to only one target).

Netherlands and Russia [6]) has only 2 dropzone IPs that are associated with 2 target IPs and 2

instances of malware.

Interestingly enough, the locations of these organizations coincide with the heatmap of US States

presented in Fig. 3.8(a) which illustrates the highest distribution of dropzones. For example, the

organization with the greatest number of dropzone IPs according to our data is Wowrack.com,

which is a cloud service provider with headquarter offices in Seattle, Washington [14]. In addition

to its flagship data center in Seattle, Wowrack operates eight other data centers in multiple cities

across the United States and Southeast Asia. As reported by AbuseIPDB [2], Wowrack.com IPs

have received several complaints of abusive activity from multiple sources. The Canadian Internet

Registration Authority (CIRA) has also urged IT, administrators, to block domains originating

from Wowrack.com (e.g., ns6.wowrack.com) because they are associated with the Mirai IoT

botnet [85].

Referring to Fig. 3.8(a) again, you will notice that New York State contains a high number of

dropzones--which is most likely caused by two organizations from Table. 4.4 that have data centers

in the city of Buffalo, NY (Wowrack.com and ColoCrossing [5]). Also highlighted in red is the
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Table 4.4: Top 10 organizations by the number of their dropzone IPs. In this table, most organiza-
tions increase linearly in the number of dropzone, malware, and target.

Rk. Dropzone IPs Target IPs Malware Organization
1 46 16,586 126 Wowrack.com
2 36 19,878 114 Aruba S.p.A
3 22 10,282 62 Choopa LLC
4 16 3,816 47 DigitalOcean LLC
5 16 3,330 29 ColoCrossing
6 13 8,373 38 NForce Entertainment B.V.
7 11 1,701 24 Hydra Communications Ltd
8 9 4,354 35 Ad Net Market Media Srl
9 9 388 17 Wholesale Data Center LLC

10 6 1,220 8 Input Output Flood LLC

state of Arizona, which is the home of Input Output Flood LLC [7] (ranked 10th for organizations

with several dropzones).

We cannot say for certain why these organizations contain the most dropzone IPs in our dataset;

we can only surmise that they are more tolerant when it comes to harboring customers who engage

in “malicious” activities. For example, the organization with the 3rd-highest number of dropzones

in our dataset is Choopa LLC. With their primary Point of Presence (POP) in the State of New

Jersey [4], you can clearly see that this affects the heatmap (colored dark-red) shown in Fig. 3.8(a).

While online public reviews may not be the most-trustworthy source [79], the low ratings from the

Google reviews of Choopa LLC put them in a negative light when several people post complaints

such as the following:

Why is this company still operating?! Yes, maybe it’s not them trying to hack into my email, but they let

user do it!!!! Crooks!! --M. Alther

Lots of SSH attacks coming from their network. Reported via blocklist.de multiple times and I still am

seeing scans. --C. Simmons
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You guys need to pick your customers better...Our e-commerce site is getting a lot of fraud orders coming

from your IP. I know its not your fault that customers are using your servers for illegal activities. But

do understand they ruining your reputation as a company. --W. Struggle

4.5 Summary

We observe that while port 80 and 22 are the most widely used across endpoints, we see the

usage of port 111 and port 123 by the target IP addresses. Considering the possibility of the

two ports being an entry point for an attacker, the usage should be limited. We also observe

that the low presence of vulnerable services by dropzone IP addresses. The vulnerabilities in

the dropzones reflect that the attackers override their authentication status and then utilize the

OpenSSH vulnerabilities to gain access to the device. Our analysis also sheds light on the tolerance

of organizations towards the endpoints with malicious intent. The tug of war between the profit and

the loss of trust among the users (prospective domain buyers) deserve the focus of the community.
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CHAPTER 5: UNDERSTANDING THE DYNAMICS AND

INTERDEPENDENCIES IN IOT BOTNETS1

5.1 Background

To address IoT security, malware behavior analysis methods are employed, including dynamic

and static analysis. Dynamic analysis is concerned with understanding malware by inspecting

run-time artifacts of IoT executables (typically running in a restricted environment; e.g., sandbox,

virtual machine), in search of malicious behaviors. Despite many advantages, dynamic analysis has

several drawbacks. For example, recent malware families have been shown to utilize randomized

behaviors that make analysis difficult. Evading dynamic analysis techniques is yet another major

shortcoming, often demonstrated by inserting fake code fragments, separate processes, etc. [46].

Dynamic analysis is also time-consuming since a successful analysis needs the malware to run

for a significant amount of time before such a dynamic behavior is exposed. Static analysis, on

the other hand, is concerned with analyzing the contents and the structure of the executables.

Through this analysis, we can find features of malware such as execution-flow as well as the

strings without having to execute the binaries [15, 19, 20], making this approach safer and faster

than dynamic analysis [49], although subjecting to static analysis circumvention techniques, such

as code obfuscation [33, 61], typically addressed with de-obfuscators.

Static Analysis. In this section, we employ static analysis for extracting residual strings in the

IoT malware binaries, and use those strings as an analysis space from which we obtain endpoints,

classified as targets and dropzones. In static analysis, reverse-engineering tools are utilized to

1This content was reproduced from the following article: J. Choi, A. Abusnaina, A. Anwar, A. Wang, S. Chen, D.
Nyang and A. Mohaisen, “Honor Among Thieves: Towards Understanding the Dynamics and Interdependencies in
IoT Botnets”. IEEE Conference on Dependable and Secure Computing, IDSC, pp. 1-8, Hangzhou, China, 2019. The
copyright form for this article is included in the appendix.
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understand circumvention methods in use by the adversary, and to extract static artifacts, such as

strings, function calls, structures (such as control flow graph), etc. However, techniques such as

packing or obfuscation can be used to avoid static analysis or to increase the effort and resources

required for conducting it. In a separate project, we developed various in-house heuristics and tools

to address obfuscation, and to obtain faithful strings representation for IoT malware, which we use

in our analysis in this research. The results of our analysis are further in subsection, IoT Malware

Static Analysis.

Dropzones and Targets. IP addresses extracted from the malware binary through static analysis

are classified into two categories. If the IP address was used with wget, tftp, get, or post,

which are commands used to send files such as script, malware binary, etc., we mark the remote

location of this IP address as a dropzone. The remaining IP addresses that are not used with

these commands are called targets, which are the IP addresses attacked by the malware (confirmed

through the manual inspection). The target IP addresses consist of 16-bit masked addresses and

static IP addresses. Only the static IP addresses are used in our analysis.

5.2 Motivation

• We conduct string static analysis over IoT malware binaries to extract communicated and

referred IP addresses, and keywords reflecting the malware behavior.

• We conduct a spatial distribution analysis on the extracted dropzones and targets, where

region dependencies within the extracted addresses are shown.

• We identify the interdependent dropzone IP addresses, by extracting dropzones “chains”,

capturing the dynamics between different botnets and other malicious infrastructure. We

propose a centrality-based modality of analysis (and defense) to limit the propagation and

impact of malware based on those dynamics.
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Table 5.1: The distribution of malware families in the dataset.

Family Count Percentage

Gafgyt 4,264 88.76%
Mirai 507 10.55%
Tsunami 29 0.60%
Singleton 2 0.04%
Pilkah 1 0.02%
Sambashell 1 0.02%

Total 4,804 100%

5.3 Dataset

In this research, we relied on a dataset of IoT malicious binaries obtained from CyberIOCs [32].

The binaries are recent, and consist of samples that were collected in the CyberIOCs feed in the

period of January 2018 to late January of 2019.

Dataset Creation. Our IoT dataset is a set of 4,804 malware samples, randomly selected from

CyberIOCs [32]. We reverse-engineered the samples using Radare2 [11], a reverse engineering

framework that provides various capabilities including disassembly, which we use for the IoT

malware samples.

IoT Malware Family. To better understand the collected samples, we uploaded the samples to

VirusTotal [34] and gathered the scanning results corresponding to each sample. Then, we used

AVClass [71] to match the samples with their corresponding IoT malware families. Table 5.1 shows

the distribution of malware families in the dataset; as shown Gafgyt and Mirai represent the ma-

jority of our dataset, 99.31%.
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5.4 IoT Malware Static Analysis

We reverse-engineered the malware binaries to extract the IP addresses communicated with or re-

ferred by the malicious binaries. To scale up the analysis, we automate the process using Radare2.

We analyzed the strings in the entry point and the function calls to extract the IP addresses, where

two types of IP addresses can be extracted: (1) C2 servers communicated by the malware for

instructions, such as targets list, malware binaries execution, etc. Such IP addresses can be iden-

tified by command keywords, namely wget, tftp, post, and get. These IP addresses are

designated as dropzone IP addresses. (2) IP addresses referred by the malware, e.g., the malware

communicates with the IP address to infiltrate where successful infiltration causes propagation of

the malware, recruiting an additional bot. These IP addresses are called target IPs.

Dropzone. Controlled by the attackers, a dropzone is a remote location often storing the malware

binaries and infection capabilities. Upon gaining access to a device, a malware instance accesses

the dropzone, via a dropzone IP address, to download the file on the host device. The mentioned

remote addresses are our artifacts of interest, and we study relationships between different drop-

zones’ IP addresses.

Target. Upon successfully infecting a device, the malware uses the infected host to propagate the

infection by setting a list of IP addresses to infect in the future. We refer to these IP addresses as

target IP addresses.

We collected the dropzones and target IPs from each IoT malware sample, to be analyzed in the

next sections. Figure 5.1 shows a general structure of the malware-IP relationship.
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Figure 5.1: General structure of the malware-IP relationship. Malicious binaries are obtained from
the remote dropzone and are accessible using wget, GET, etc.

5.5 IP Addresses Analysis

To better understand the relationship between the dropzones, we start by analyzing the IP ad-

dresses. In our dataset, we observed 1,457 unique dropzone IP addresses and only 294 unique tar-

get IP addresses. Moreover, there were 1,018 unique 16-bit masked target IP addresses. These IP

addresses are generated at run-time using a random number generator, particularly, the SRAND C

library, or by looping over all possible IP addresses within the specified network. Typically, masked

IP addresses are used to infect and compromise vulnerable IoT devices within a network. Figure 5.2

shows the distribution of the dropzones, unique targets, and masked targets. Notice that most of

the dropzones are located in the US and Europe. However, most of the masked targets are located

in Southeast Asia, Brazil and the Eastern Coast of the US.

Unique Target IP Addresses. Our analysis focuses on the unique target IP addresses referred to

in the IoT malware. These addresses are more meaningful than the masked IP addresses as they

are hard-coded within the malware. In the dataset, we extracted 294 unique target IP addresses. In

which, 134 of the addresses are dropzones of other malware samples in our dataset. We scanned the
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Figure 5.2: The distribution of the extracted components worldwide. Here, the target refers to the
location of the unique target IP address extracted from the string analysis of the IoT malware. The
masked target is represented by its center. To estimate the locations of the masked target area, we
convert the masked part to zeros (i.e., 183.229.%d.%d to 183.229.0.0).

Table 5.2: The distribution of the unique target IP addresses.

Type Count Percentage

Dropzone 134 45.58%
Malicious 129 43.88%
Benign 31 10.54%

Total 294 100%

remaining IP addresses using VirusTotal, where 129 of them were identified as malicious. These

malicious IP addresses might be potential dropzones not existing in our dataset, or infrastructure

utilized by other malactors. In addition, the benign IP addresses might be dropzones not yet dis-

covered by VirusTotal, or DDoS attacks targets, which is more plausible given that the dataset is

new, and blacklists against which our IP addresses were scanned take time to populate with the

malicious addresses. Table 5.2 shows the distribution of the unique target IP addresses.

41



Table 5.3: Organization distribution of the benign target IPs.

Organization Type
Amateur Radio Digital Comm. Nonprofit
Apple Inc. Technology
Bank of America, N.A. Financial
Ford Motor Company Automaker
Hewlett Packard Enterprise Technology
Lockheed Martin Corporation Aerospace/Defense
University of Michigan Academic

Information Center Locality

AFRINIC Africa
APNIC Asia Pacific
DoD NIC USA
RIPE NCC Europe

Targeted Organizations. We scanned the benign IP addresses extracted from the IoT malware (31

addresses) and gathered the organizations they belong to. We found that the IP addresses belong to

companies such as Apple, Bank of America, Ford, etc. Moreover, one IP address belonged to the

University of Michigan, while some IP addresses belonged to endpoints in different information

centers. Table 5.3 shows the distribution of the benign target IP addresses over organizations and

information centers, highlighting a wide distribution.

Dropzones Malware Family. Dropzones are remote locations storing malware binaries, among

other artifacts by the adversary. When a new device is infected, it will communicate with the

dropzone to obtain the malicious binaries, along with the infection capabilities, which vary for

each family. We analyze the malware family of each dropzone. Table 5.4 shows the distribution of

the dropzone malware families, with Gafgyt malware binaries existing in 89.63% of the dropzones,

followed by Mirai (10.57%). In addition, we found that different families of malware binaries

contained the same dropzone. In other words, some dropzones contain more than one family

binaries; Table 5.5 shows the distribution of the malware families per dropzone. We notice that
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Table 5.4: The distribution of dropzone malware families.

Family # Dropzones % Dropzones

Gafgyt 1,306 89.63%
Mirai 154 10.57%
Tsunami 14 0.96%
Singleton 2 0.14%
Pilkah 1 0.07%
Sambashell 1 0.07%

Total 1,457 100%

Table 5.5: Malware families distribution per dropzone.

# Families # Dropzones % Dropzones

1 1,437 98.63%
2 19 1.30%
3 1 0.07%

Total 1,457 100%

one dropzone contains the malicious binaries of Gafgyt, Mirai and Tsunami families, highlighting

the shared infrastructure.

Dropzones Distribution. Dropzones have spatial localities in their distribution, as shown in Fig-

ure 5.2. Moreover, Figure 5.3 shows a heatmap of the country distribution of the dropzones, where

the United States, Netherlands, Denmark, Romania, and Russia are hosting 77.82% of the drop-

zones. Table 5.6 shows the top dropzones hosting countries, highlighting—not surprisingly—a

heavy-tailed distribution.

To this end, we have analyzed the IP addresses as independent entities. However, our static analysis

shows that different IP addresses are communicating and being referred by each other. As such, it

is important to study the relationship between them, and among dropzones in particular.
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Figure 5.3: The distribution of dropzones over the countries. The color shade reflects the number
of dropzones within the country, where darker shade represents more dropzones.

Table 5.6: The distribution of the dropzones over countries.

Country # Dropzones % Dropzones

United States 553 37.95%
Netherlands 283 19.42%
Denmark 113 7.75%
Romania 103 7.07%
Russia 82 5.63%
Others 323 22.18%

5.6 Malware-Target Relationship

The IP addresses referred by malicious binaries are the next targets of the malware for either infec-

tion or attack. The malware samples communicate with a target to achieve one of the following:

• Infection. Malware search for vulnerable devices and compromise them, leading to a new

bot. Afterward, malicious binaries with infection capabilities are downloaded from the re-
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mote dropzone to the infected host. The IP address is typically generated at run-time and

referred to in the code as the masked IP address.

• Attack. After infecting a large number of bots, malware samples attack the target by flooding

its servers or network infrastructure with packets, resulting in a DDoS attack. Typically,

these IP addresses are not masked as the bot should be aware of the exact target IP address

prior to the DDoS attack.

• Communication. A malware sample might communicate with an infected bot for many

reasons, e.g., checking its status, updating/pushing files, sending a command message, etc.

The communication is very important for the malware to assess the resources and coordinate

for future attacks.

Limitation. Static analysis is useful to understand the behavior without the need to run the ma-

licious binaries. In the malicious binaries, we observe keywords such as Infect, wget, post,

push, http, and get. These keywords indicate the relationship between the malware and the

targets. However, besides wget, it is hard to match the exact IP address to a certain behavior

if more than one keyword is used. Therefore, we assume that all IP addresses might contain the

behaviors provided by the keywords associated with them.

5.7 Dropzones Chains

In section IP Addresses Analysis, we classified the IP addresses and found that 134 target IP

addresses are also dropzones existing in our dataset. A malware may control a dropzone, and

targets another dropzone; we refer to this phenomenon as dropzones chain. Figure 5.4 shows the

general structure of a dropzones chain of length two. Understanding the chains is important, as

malware may access a dropzone to distribute and update its binaries on other dropzones. Moreover,
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Figure 5.4: Structure of the dropzones chain of length two, where malware access dropzone, and
targets another dropzone.

a dropzone may control several dropzones, forwarding commands and managing attacks. Using

static analysis alone is not sufficient to understand the exact role of each dropzone within the chain.

However, the behavior of the chain is toward propagating information, which plays a major role

in the success of the malicious attacks. Figure 5.5 shows the dropzone to dropzone chain links

visualization worldwide. Notice that some dropzones are directly linked to several dropzones.

Chains Length. We extracted 56 possible chains from our dataset. The majority of the dropzones

(62.5%) are of length 2, and most of the dropzones are of a length less than 10 (96.43%). How-

ever, the longest chain has 42 dropzones. Table 5.7 shows the distribution of the dropzones chains

length. We observe that centralization exists in chains with a high number of dropzones. All of the

extracted chains belong to the Gafgyt and Mirai families. We found one Mirai chain of length 2

and 52 Gafgyt chains. However, there were 3 chains containing both Mirai and Gafgyt dropzones.

One possible explanation for such a characteristic is that Mirai is considered an evolution of the

Gafgyt malware family [22, 54].
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Figure 5.5: Dropzone to dropzone links visualization. Here, a remote location may be a dropzone
of several dropzones. Links connect the location of the dropzone with the location of the targeted
dropzone.

Table 5.7: The distribution of the dropzones chains length.

Chain Length Count

2 35
3 10
4 5
6 3
8 1
17 1
42 1

Total 56

Chains Region Distribution. Dropzones within the chain have locality characteristics. Figure 5.6

shows the country distribution of the links within the chains. Notice that a darker shade indicates

more dropzones within the chain are from the specified country. Table 5.8 shows the top five coun-

tries hosting dropzones within chains. Notice that the countries are the same as Table 5.6. It can be

seen that 24.95% of the United States dropzones are within chains, with an overall 20.66% of the

dropzones are within chains. However, the chains are depending on the collected dataset, mean-
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Figure 5.6: Country level distribution of the dropzones within the chains. Color shade indicates
the number of dropzones within the country. Here, link connect the country of the dropzone with
the country of the targeted dropzone.

Table 5.8: The distribution of the chains dropzones over countries. Here, # Dropzones is the
number of dropzones within the chain, whereas, % Dropzones is the percentage of the dropzones
within the country that is within a chain.

Country # Dropzones % Dropzones

United States 138 24.95%
Netherlands 71 25.09%
Romania 27 26.21%
Denmark 16 14.16%
Russia 14 17.07%
Others 35 10.83%

Total 301 20.66%

ing that the remaining dropzones (79.34%) may be part of chains not observed by the collected

samples.

Chains Centrality. A common observation we make is that large chains usually have one or a

few central dropzones. For instance, one remote location is a dropzone of a large number of other

dropzones. This indicates the importance of that dropzone for the malware to successfully operate.
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Removing or monitoring the central dropzones highly affects the malicious operation of various

samples, and improving our understanding of the malware behavior/defense. To find central drop-

zones, we use graph characteristics, namely the centralities such as the degree-, betweenness-,

closeness-, and eigenvector-centrality. In our experiment, we found degree-centrality is the most

effective way to find the essential nodes of the dropzone chain. We utilize the closeness, be-

tweenness, and eigenvector centrality to remove the center dropzone in the chain, but these factors

remove another node and reduce only two to five edges. Figure 5.7 shows the effect of remov-

ing the central dropzone from the chain. Here, the chain contains 42 dropzones, connected by 44

edges (links), with a central remote location acting as a dropzone for 34 dropzones. In this fig-

ure, a directed edge indicates that a remote location is a dropzone (start of the arrow) to another

dropzone (end of the arrow). Therefore, removing the central dropzone decrease the number of

edges from 44 to 10 (77.27% decrease). Removing the dropzone from the network can be done by

the Internet Service Provider (ISP), as the dropzones have static IP addresses, with known home

ISPs. Moreover, another feasible option is to monitor the traffic from and to the central dropzone

of each chain, as monitoring all bots or dropzones might not be possible. In a related analysis, we

show that dropzones are accessed to obtain malicious binaries, infection capabilities, and attacks

coordinating. Therefore, monitoring the traffic of the central dropzone gives an overview of the

malware behavior as it acts as a dropzone for a large number of dropzones and samples.

5.8 Summary

In this work, we analyzed IoT malware binaries to understand the dependencies and relationships

among malware. We conduct static analysis to extract the addresses communicated to or referred

by the malware. Among a large number of endpoints (dropzones and targets) in static malware

artifacts, we identified dependencies between dropzones, in which we coin the dropzones chain.

We identified 56 unique chains and unveiled interactions among Gafgyt and Mirai families. Further
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(a) Before (b) After

Figure 5.7: The effect of removing the central dropzone over the chain. Fig. 5.7(a) is the chain
before the removal of the dropzone, and Fig. 5.7(b) is the same chain after the removal of the
dropzone. Notice that most dropzones became disconnected and isolated, thus removed from the
chain.

analysis showed the existence of centralization within chains with higher node counts, where a

central dropzone communicates with several dropzones in a decentralized fashion.

We note that all the analysis previously done depends on the collected dataset. By reverse-

engineering the IoT malicious binaries and conducting string static analysis, it has been shown

that some IP addresses are specified within the code prior to the execution of the program. These

IP addresses are within two groups, dropzones, and targets.

Dropzone-Target Relationship. A remote location may be used as a dropzone for a set of drop-

zone targets. This indicates a relationship between the dropzones. The nature and role of the

relationship may vary, as malware may use a master dropzone to update the binaries of a set of lo-

cal dropzones or control the dropzones in order to coordinate future attacks or large area infections.

In addition, large chains are usually centralized, where there is one or a few central dropzones act-

ing as a dropzone for most of the chain dropzones. Analyzing the traffic of the central dropzones

may help us understand the behavior of the malware, while shutting down the central dropzone

highly affects the operation of the malware, especially at early stages. This can be done with the

coordination with ISPs as the dropzone IP is known. Shutting down the central dropzone cuts the
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communication between it and other dropzones, disrupting the functionalities in section Malware-

Target Relationship.

Families Intersection. It has been observed that one remote location may act as a dropzone

for multiple IoT malicious families. In the dataset, this relationship exists within Gafgyt, Mirai,

and Tsunami. Researchers reported a new type of IoT threat known as KTN-RM or Remaiten

which targets IoT devices by combining the capabilities of Linux malware known as Tsunami,

Gafgyt [16, 30]. In addition, it has been reported that Mirai is an evolution of Bashlite malware,

including Gafgyt [22,54]. Our analysis, although not concerned with the capabilities, hint on such

an evolution from an infrastructure standpoint.
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CHAPTER 6: OPTIMIZATION FOR DEFENSE

We analyze the IoT malware ecosystem and the interdependencies of IoT botnets. In the IoT

malware ecosystem, we aim to inter-relationship between dropzones and targets, geographical

distributions, and network centric analysis. Also, we study interdependencies and dynamics in IoT

botnets. Based on this analysis, we define a chain that relationships among the malware dropzones.

Through these studies, we look at methods to mitigate the threat of IoT malware in countries.

We extract the malicious IP addresses from IoT malware through static analysis. Based on this,

we analyze the open ports of the IP addresses targeted by IoT malware. Through this, the device

can be distinguished from the port that is mainly used and the port that is not. If unused ports are

opened, an IoT device that is poorly managed is likely to be an attacker. Therefore, we suggest

blocking the ports that are not used for the main role in the devices. Moreover, similarly, we study

which ports affect country-level through this analysis.

In this work, we make the following contributions:

• We propose a method to mitigate the threat in the IoT malware endpoints. It is based on the

open ports by the countries.

• We inspect open ports in the target IP addresses, we list the open ports and their numbers,

and vulnerabilities.

• We analyze countries ratios in each open ports. In this analysis, we provide insight into

strategy for block open ports.
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Table 6.1: Suspicious ports in the target IP addresses open ports list.

25 2323 1433 8888 502
445 3306 110 143 993

47808 995 1911 1521 5432
102 21 22 8080 53
23 587 7547 20000 443

6.1 Open Ports Distribution

In this section, we analyze the open ports distribution at the country-level. There are vulnerable

ports and we show the distribution for those ports over the countries. We inspect the reason why

they show different patterns. We pick the ports from the previous analysis, attack exposure. We

select ports that used each device under 1%, which is considered they are not the main role for the

function. In the Table 6.1, we choose 25 ports to analyze the method for the mitigation of threats.

These open ports exist in the IP addresses and they are not mainly used.

In the Table 6.2, we list the open port numbers, descriptions, number of vulnerabilities, and count of

open ports, which is essential when using the Internet, occupy a large portion. e.g., 443 (HTTPS),

22 (SSH), 8080 (HTTP alternative), 21 (FTP), etc.

In case port 7547, it is associated with TR-069, which is an application layer protocol for remote

management of end-user devices. This port used by modems, gateways, routers VoIP phones,

and set-top boxes. CVE-2016-10372 is one of vulnerability related to this port, allows remote

attackers to execute arbitrary commands, it is recommended to block or filter it at the NAT router/-

gateway [58, 77]. In the Figure 6.1, US account for 31% of the total number of 7547 port.

For port 8888, this port is used in the alternative of HTTP port. This port has a 6 of known vulnera-

bilities (CVE-2014-2967, CVE-2018-6892, CVE-2018-7886, CVE-2019-7678, CVE-2019-7677,

and CVE-2019-7676). For Autodesk VRED programs that have a vulnerability (CVE-2014-2967)
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Table 6.2: Open ports in the countries sorted by the number of CVE vulnerabilities. TSAP stands
for Transport Service Access Point protocol, DNP stands for Distributed Network Protocol for
SCADA networks, TR-069 stands for application layer protocol for remote management of end-
user devices, BACnet stands for Building Automation and Control Networks, and MTP stands for
Starlight Networks Multimedia Transport Protocol.

Port CVE-Vulnerabilities Count Describe
102 12 3,166 TSAP
22 12 10,574,166 SSH

443 12 32,029,435 HTTPS
502 8 16,982 Modbus Appication protocol
53 8 5,545,751 DNS
23 7 2,382,294 Telnet

8080 7 8,850,356 HTTP (Alternative)
25 6 3,895,884 SMTP

8888 6 2,717,164 althttpd
21 5 7,469,501 FTP

20000 5 168 DNP
110 3 2,877,341 POP3
3306 2 2,961,005 MYSQL
143 2 2,640,195 IMAP
445 2 1,549,161 Microsoft-DS
1433 2 522,370 MSSQL
5432 1 428,575 PostgreSQL
1521 1 58,945 Oracle
2323 1 267,742 Applications
7547 1 15,147,494 TR-069
587 0 2,932,974 SMTP

47808 0 10,202 BACNET
995 0 2,550,497 POP3 over TLS/SSL
993 0 2,631,357 IMAP overTLS/SSL
1911 0 16,900 MTP

that could allow unauthorized remote code execution, this port allows an attacker to remotely

access it. Importing Python’s library, an attacker can execute an attacker’s command with the

privileges the program is running on. From the Figure 6.2, we can see that this port is mainly

distributed in East Asia countries, Taiwan and China, 29.36% and 26.05%, respectively.
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Figure 6.1: Port 7547 distribution by the countries. United States have most portion in the dataset.

Port 1433 uses for the Microsoft SQL Server. This port has two vulnerabilities, CVE-2002-

1123 and CVE-2014-4684. CVE-2002-1123 is a buffer overflow in the authentication function

for MSSQL server 2000 and Microsoft Desktop Engine (MSDE) 2000 allows remote attackers

to execute arbitrary code through this port. CVE-2014-4684 also allows remote authenticated

users to gain privileges with port 1433. This vulnerability exists in the database server in Siemens

SIMATIC WinCC before 7.3 version. We can see the distribution of the port 1433 by the countries

in Figure 6.3. Poland has 26.72% of the total number of port 1433, and China has 21.1% of it.

6.2 Mitigation for Defense

The defense method we propose through this analysis is as follows. It is to analyze the ports that

are more important and account for each country, and block those ports. To do this, a detailed
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Figure 6.2: Port 8888 distribution by the countries. Taiwan and China have a lot of number of
ports.

analysis of the network devices used in each country is necessary. In particular, it is necessary to

analyze the ports that are open in network devices. Through this, it is possible to distinguish a

port used for the main purpose of a device and a port that is not. In this research, we focused on

ports that are not used mainly and analyzed how those ports are distributed by country. In addition,

it should be reflected in the policy of filtering or blocking ports according to the vulnerabilities

revealed by ports. For example, in the case of port 7547, it has one identified vulnerability, and it

can be seen that it is mainly distributed in the UK, Russia, and the like. Even though there is only

one vulnerability, the vulnerability should be managed more intensively in a country or enterprise

because a remote attacker can execute arbitrary commands. Not only port 7547, but also other ports

have vulnerabilities that attackers can exploit and execute remote commands or gain privilege with

unauthenticated login. This is the reason why we focus on the mitigation method and block the

ports.
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Figure 6.3: Port 1433 distribution by the countries. Poland and China have most of the ports.

6.3 Summary

Using our research results, we can select ports that are likely to utilize for the attack. Also, we

analyzed the open ports distributed by country and vulnerabilities of each port. Through this

analysis, we can more aggressively filter and block ports by country to prevent the spread and

attack by IoT malware. If we apply the proposed method, mitigation strategies through these port

blocks, such as router/gateway, can be used by companies in each country, network, and security

within limited resources for defense purpose.
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CHAPTER 7: DISCUSSION

7.1 Limitation

Our study is not without limitations. The key shortcomings in our work have to do with the IP

address-Geolocation mapping, Obfuscated malware binary, dataset and target behavior, as seen

from the static analysis artifacts. In this section, discuss to limitations of this research. We utilize

IP addresses locations to discover affinities and dynamics among IoT malware endpoints. Toward

this, we use Ultratools [13] and Censys services [3]. However, they provide geolocation based on

the mapping service. Also, most of malware binaries are obfuscated to avoid detection and protect

their code from the reverse-engineering. This makes it harder to analyze IoT malware binaries.

7.1.1 Accuracy of IP addresses-Geolocation Mapping

Ultratools derive the country information of an IP address from Regional Internet Registries (RIRs)

and other locational data. RIR is an organization that manages the allocation and registration of

IP addresses and autonomous system numbers within a region of the world. Some ISPs may

contribute information to databases to help geolocation services. They use statistical formulas and

analytical tools and analyze the data provided by online users [13, 35]. However, the location of

IP addresses may be limited. Even if users utilize VPN, proxy, they can change the IP address. If

we use a genuine IP address, it is difficult to analyze the location of the endpoint more precisely

because it depends on the accuracy of a country, state, and city. We analyzed the dynamics and

affinities between the endpoints of IoT malware based on the information released on the public

Internet in this study. Using data about users’ IP addresses and more detailed physical locations

could be used to analyze relationships within a narrower range.
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7.1.2 Obfuscated Malware Binaries

In this study, we used Radare2 to extract strings, especially IP addresses and keywords from non-

obfuscated malware binaries. Manual string extraction from obfuscated malware binary requires

a lot of time and effort. Therefore, we develop an automated tool for string extraction supporting

IoT diverse architectures and using Radare2’s API, and extract and analyze data for more range

of IoT malware binaries. This, however, does not take into account the fact that some malware

samples might be obfuscated, where our tool may not yield meaningful artifacts. This is indeed a

limitation, and we will explore in the future dynamic analysis-based and other de-obfuscation tools

that can be used to gain insight into string artifacts for obfuscated codes and binaries.

7.1.3 Dataset

Table 3.1 and Table 5.1 show the distribution of the families in the dataset utilized in this research.

The dataset is biased toward Gafgyt, where 95%, 88% of the samples belong to these family,

respectively. This bias is reflected in the dropzones chains, as 92.86% of the extracted chains

belong to Gafgyt family. Collecting more samples over longer period of time will enhance the

quality of the analysis, and the extracted chains. We note, however, that this family is the most

popular by far, and the findings in this work are of significant value given its prevalence.

7.1.4 Target Behavior

String static analysis may still not address some ambiguity of the exact behavior of a certain target.

To help understand the role of the referred IP addresses, we analyzed the samples with specific

keywords. However, it is not possible to match the behavior to a certain target. Therefore, we

assume that the behavior applies to all referred targets, as a form of extrapolation from a few tested

samples. Establishing statistical confidence in the findings, though a larger baseline.
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7.1.5 Dropzones Chains

All extracted chains are limited by the collected dataset. The chain quality and size might increase

with the number of collected samples. In this dataset, all chains belong to Gafgyt and Mirai,

although we speculate that other IoT malware families will have similar behavior. Moreover, as

chains with various families may exist due to the combined malicious capabilities, we expect the

limited number of families analyzed in this study will not affect the generality of the findings; a

confirmation of the above anecdote.
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CHAPTER 8: CONCLUSION

There is no doubt that IoT devices have found multiple applications in our daily life, and the

number of those devices in use is soaring into the tens of billions. Simultaneously, adversaries

target the IoT devices for the lack of security mechanisms. To mitigate such threats, we need to

understand the IoT malware ecosystem and underlying dynamics.

In this research, we perform IP and network centric analysis to investigate affinities among the

endpoints. We analyze the≈78.2% of total responsive public IPv4 endpoints among dropzones and

their targets as extracted from IoT software and spread across the globe from diverse perspectives.

First, we analyze the dropzone-target inter-relationship and look for the affinity between them. We

observe that the list of targets is shared between attackers, or are compiled using similar conditions

on IoT search engines like Shodan or Censys. For our geographical analysis, we comprehensively

analyzed the distribution of the number of dropzones and targets (country-, state-, and city-level).

We visualize the target areas representing dropzone locations and their size scaled by the number

of associated targets. Also, we analyze the attack exposure of endpoints and correlate to the risk

they possess. These endpoints need to be carefully and individually analyzed to extract patterns

for predicting the chances of them being compromised.

Moreover, we utilized IoT search engines to facilitate network penetration analysis of the drop-

zones and target IPs. We extract information such as the organization, the number of active ports,

and vulnerabilities associated with the IP address. Knowing which network ports are open for a

particular IP address can potentially allow attackers to exploit them for DDoS attacks, the usage

should be limited. Seeing the number of vulnerabilities associated with dropzone IP addresses, for

example, reveals the level of risk involved and which malware instances they are associated with.

Our analysis also sheds light on the tolerance of organizations towards the endpoints with mali-

cious intent. The tug of war between the profit and the loss of trust among the users (prospective
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domain buyers) deserve the focus of the community.

We analyzed IoT malware binaries to understand the dependencies and relationships among mal-

ware. We conduct static analysis to extract the addresses communicated to or referred by the

malware. Among a large number of endpoints in static malware artifacts, we identified dependen-

cies between dropzones, in which we coin the dropzones chain. We identified 56 unique chains

and unveiled interactions among Gafgyt and Mirai families. Further analysis showed the existence

of centralization within chains with higher node counts, where a central dropzone communicates

with several dropzones in a decentralized fashion. We suggest central dropzone monitoring and

removal, in order to understand and limit the impact of the malware.

We propose a defense method to suggest to countries, where enterprises can use this information to

improve their security. In the academic space, this comprehensive analysis is lacking, and is likely

to stimulate further explorations. We sum up our research results, we choose suspicious ports.

Moreover, we analyze open ports distributed by country, and vulnerabilities of each port. Through

this analysis, we can block ports by country. We can expect the mitigation strategies through these

port blocks, can be used by companies in each country.

62



APPENDIX A: COPYRIGHT INFORMATION

63



ACM Copyright and Audio/Video Release 

Title of the Work: IoT Malware Ecosystem in the Wild: Analysis and Exposures
Submission ID:sedgec19-p127 
Author/Presenter(s): Jinchun Choi; Afsah Anwar; Hisham Alasmary; Jeff Spaulding; Daehun Nyang; Aziz Mohaisen 
Type of material:Full Paper 

Publication and/or Conference Name:     SEC '19: The Fourth ACM/IEEE Symposium on Edge Computing
Proceedings       

I. Copyright Transfer, Reserved Rights and Permitted Uses      

* Your Copyright Transfer is conditional upon you agreeing to the terms set out below.

Copyright to the Work and to any supplemental files integral to the Work which are submitted with it for
review and publication such as an extended proof, a PowerPoint outline, or appendices that may exceed a
printed page limit, (including without limitation, the right to publish the Work in whole or in part in any
and all forms of media, now or hereafter known) is hereby transferred to the ACM (for Government work,
to the extent transferable) effective as of the date of this agreement, on the understanding that the Work
has been accepted for publication by ACM. 

Reserved Rights and Permitted Uses

(a) All rights and permissions the author has not granted to ACM are reserved to the Owner, including all
other proprietary rights such as patent or trademark rights. 

(b) Furthermore, notwithstanding the exclusive rights the Owner has granted to ACM, Owner shall have
the right to do the following:

(i) Reuse any portion of the Work, without fee, in any future works written or edited by the Author,
including books, lectures and presentations in any and all media.

(ii) Create a "Major Revision" which is wholly owned by the author

(iii) Post the Accepted Version of the Work on (1) the Author's home page, (2) the Owner's institutional
repository, (3) any repository legally mandated by an agency funding the research on which the Work is
based, and (4) any non-commercial repository or aggregation that does not duplicate ACM tables of
contents, i.e., whose patterns of links do not substantially duplicate an ACM-copyrighted volume or issue.
Non-commercial repositories are here understood as repositories owned by non-profit organizations that
do not charge a fee for accessing deposited articles and that do not sell advertising or otherwise profit from
serving articles.

(iv) Post an "Author-Izer" link enabling free downloads of the Version of Record in the ACM Digital
Library on (1) the Author's home page or (2) the Owner's institutional repository; 

(v) Prior to commencement of the ACM peer review process, post the version of the Work as submitted to
ACM ("Submitted Version" or any earlier versions) to non-peer reviewed servers;

(vi) Make free distributions of the final published Version of Record internally to the Owner's employees,
if applicable;

(vii) Make free distributions of the published Version of Record for Classroom and Personal Use;

(viii) Bundle the Work in any of Owner's software distributions; and 

(ix) Use any Auxiliary Material independent from the Work. (x) If your paper is withdrawn before it is
published in the ACM Digital Library, the rights revert back to the author(s). 

64



When preparing your paper for submission using the ACM TeX templates, the rights and permissions
information and the bibliographic strip must appear on the lower left hand portion of the first page.

The new ACM Consolidated TeX template Version 1.3 and above automatically creates and positions these
text blocks for you based on the code snippet which is system-generated based on your rights management
choice and this particular conference.

NOTE: For authors using the ACM Microsoft Word Master Article Template and Publication Workflow,
The ACM Publishing System (TAPS) will add the rights statement to your papers for you. Please check
with your conference contact for information regarding submitting your source file(s) for processing. 

Please copy and paste \setcopyright{acmcopyright} before \begin{document} and please copy and
paste the following code snippet into your TeX file between \begin{document} and \maketitle, either
after or before CCS codes.

\copyrightyear{2019} 
\acmYear{2019} 
\acmConference[SEC 2019]{The Fourth ACM/IEEE Symposium on Edge Computing}{November
7--9, 2019}{Arlington, VA, USA}
\acmBooktitle{The Fourth ACM/IEEE Symposium on Edge Computing (SEC 2019), November
7--9, 2019, Arlington, VA, USA}
\acmPrice{15.00}
\acmDOI{10.1145/3318216.3363379}
\acmISBN{978-1-4503-6733-2/19/11}

If you are using the ACM Microsoft Word template, or still using an older version of the ACM TeX
template, or the current versions of the ACM SIGCHI, SIGGRAPH, or SIGPLAN TeX templates, you
must copy and paste the following text block into your document as per the instructions provided with
the templates you are using:

Permission to make digital or hard copies of all or part of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from Permissions@acm.org.

SEC 2019, November 7–9, 2019, Arlington, VA, USA 
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6733-2/19/11…$15.00 
https://doi.org/10.1145/3318216.3363379

NOTE: Make sure to include your article's DOI as part of the bibstrip data; DOIs will be registered and
become active shortly after publication in the ACM Digital Library. Once you have your camera ready copy
ready, please send your source files and PDF to your event contact for processing.

A. Assent to Assignment. I hereby represent and warrant that I am the sole owner (or authorized

agent of the copyright owner(s)), with the exception of third party materials detailed in section III below. I
have obtained permission for any third-party material included in the Work.

B. Declaration for Government Work. I am an employee of the National Government of my country

65



B. Declaration for Government Work. I am an employee of the National Government of my country

and my Government claims rights to this work, or it is not copyrightable (Government work is classified
as Public Domain in U.S. only)

 Are any of the co-authors, employees or contractors of a National Government? Yes No

II. Permission For Conference Recording and Distribution

* Your Audio/Video Release is conditional upon you agreeing to the terms set out below. 

I hereby grant permission for ACM to include my name, likeness, presentation and comments in any and
all forms, for the Conference and/or Publication. 

I further grant permission for ACM to record and/or transcribe and reproduce my presentation as part
of the ACM Digital Library, and to distribute the same for sale in complete or partial form as part of an
ACM product on CD-ROM, DVD, webcast, USB device, streaming video or any other media format now
or hereafter known. 

I understand that my presentation will not be sold separately as a stand-alone product without my direct
consent. Accordingly, I give ACM the right to use my image, voice, pronouncements, likeness, and my
name, and any biographical material submitted by me, in connection with the Conference and/or
Publication, whether used in excerpts or in full, for distribution described above and for any associated
advertising or exhibition. 

Do you agree to the above Audio/Video Release? Yes No

III. Auxiliary Material 

Do you have any Auxiliary Materials? Yes No 

IV. Third Party Materials 
In the event that any materials used in my presentation or Auxiliary Materials contain the work of
third-party individuals or organizations (including copyrighted music or movie excerpts or anything not
owned by me), I understand that it is my responsibility to secure any necessary permissions and/or
licenses for print and/or digital publication, and cite or attach them below. 

We/I have not used third-party material. 
We/I have used third-party materials and have necessary permissions. 

V. Artistic Images
If your paper includes images that were created for any purpose other than this paper and to which you or
your employer claim copyright, you must complete Part V and be sure to include a notice of copyright
with each such image in the paper. 

We/I do not have any artistic images. 
We/I have any artistic images. 

VI. Representations, Warranties and Covenants 

The undersigned hereby represents, warrants and covenants as follows: 

66



(a) Owner is the sole owner or authorized agent of Owner(s) of the Work;

(b) The undersigned is authorized to enter into this Agreement and grant the rights included in this
license to ACM;

(c) The Work is original and does not infringe the rights of any third party; all permissions for use of
third-party materials consistent in scope and duration with the rights granted to ACM have been
obtained, copies of such permissions have been provided to ACM, and the Work as submitted to ACM
clearly and accurately indicates the credit to the proprietors of any such third-party materials
(including any applicable copyright notice), or will be revised to indicate such credit;

(d) The Work has not been published except for informal postings on non-peer reviewed servers, and
Owner covenants to use best efforts to place ACM DOI pointers on any such prior postings; 

(e) The Auxiliary Materials, if any, contain no malicious code, virus, trojan horse or other software
routines or hardware components designed to permit unauthorized access or to disable, erase or
otherwise harm any computer systems or software; and

(f) The Artistic Images, if any, are clearly and accurately noted as such (including any applicable
copyright notice) in the Submitted Version.

I agree to the Representations, Warranties and Covenants

Funding Agents

1. National Research Foundation of Korea award number(s): 2016K1A1A2912757
2. Florida Center for Cybersecurity, University of South Florida award number(s): 

DATE: 09/17/2019 sent to mohaisen@ucf.edu at 23:09:40 

67



1.

2.

3.

4.

5.

6.

1.

2.

 

IEEE COPYRIGHT AND CONSENT FORM
 

 

To ensure uniformity of treatment among all contributors, other forms may not be substituted for this form, nor may any wording

of the form be changed. This form is intended for original material submitted to the IEEE and must accompany any such material

in order to be published by the IEEE. Please read the form carefully and keep a copy for your files.

 

Honor Among Thieves: Towards Understanding the Dynamics and Interdependencies in IoT Botnets

Jinchun Choi, University of Central Florida, United States; Ahmed Abusnaina, University of Central Florida, United States; Afsah

Anwar, University of Central Florida, United States; An Wang, Case Western Reserve University, United States; Songqing Chen, George

Mason University, United States; Daehun Nyang, INHA University, South Korea; and Aziz Mohaisen, University of Central Florida,

United States

2019 IEEE Conference on Dependable and Secure Computing (DSC)

 

 

COPYRIGHT TRANSFER
The undersigned hereby assigns to The Institute of Electrical and Electronics Engineers, Incorporated (the "IEEE") all rights

under copyright that may exist in and to: (a) the Work, including any revised or expanded derivative works submitted to the IEEE

by the undersigned based on the Work; and (b) any associated written or multimedia components or other enhancements

accompanying the Work.

 

GENERAL TERMS
 

The undersigned represents that he/she has the power and authority to make and execute this form.

The undersigned agrees to indemnify and hold harmless the IEEE from any damage or expense that may arise in the

event of a breach of any of the warranties set forth above.

The undersigned agrees that publication with IEEE is subject to the policies and procedures of the IEEE PSPB

Operations Manual.

In the event the above work is not accepted and published by the IEEE or is withdrawn by the author(s) before

acceptance by the IEEE, the foregoing copyright transfer shall be null and void. In this case, IEEE will retain a copy of

the manuscript for internal administrative/record-keeping purposes.

For jointly authored Works, all joint authors should sign, or one of the authors should sign as authorized agent for the

others.

The author hereby warrants that the Work and Presentation (collectively, the "Materials") are original and that he/she is

the author of the Materials. To the extent the Materials incorporate text passages, figures, data or other material from the

works of others, the author has obtained any necessary permissions. Where necessary, the author has obtained all third

party permissions and consents to grant the license above and has provided copies of such permissions and consents

to IEEE
 

You have indicated that you DO wish to have video/audio recordings made of your conference presentation under terms

and conditions set forth in "Consent and Release."

 

CONSENT AND RELEASE
 

ln the event the author makes a presentation based upon the Work at a conference hosted or sponsored in whole or in

part by the IEEE, the author, in consideration for his/her participation in the conference, hereby grants the IEEE the

unlimited, worldwide, irrevocable permission to use, distribute, publish, license, exhibit, record, digitize, broadcast,

reproduce and archive, in any format or medium, whether now known or hereafter developed: (a) his/her presentation

and comments at the conference; (b) any written materials or multimedia files used in connection with his/her

presentation; and (c) any recorded interviews of him/her (collectively, the "Presentation"). The permission granted

includes the transcription and reproduction of the Presentation for inclusion in products sold or distributed by IEEE and

live or recorded broadcast of the Presentation during or after the conference.

In connection with the permission granted in Section 1, the author hereby grants IEEE the unlimited, worldwide,

68



-

-

-

-

-

-

-

irrevocable right to use his/her name, picture, likeness, voice and biographical information as part of the advertisement,

distribution and sale of products incorporating the Work or Presentation, and releases IEEE from any claim based on

right of privacy or publicity.
 

BY TYPING IN YOUR FULL NAME BELOW AND CLICKING THE SUBMIT BUTTON, YOU CERTIFY THAT SUCH ACTION

CONSTITUTES YOUR ELECTRONIC SIGNATURE TO THIS FORM IN ACCORDANCE WITH UNITED STATES LAW, WHICH

AUTHORIZES ELECTRONIC SIGNATURE BY AUTHENTICATED REQUEST FROM A USER OVER THE INTERNET AS A

VALID SUBSTITUTE FOR A WRITTEN SIGNATURE.

 

 

 

 

 

Information for Authors
 

AUTHOR RESPONSIBILITIES
 

The IEEE distributes its technical publications throughout the world and wants to ensure that the material submitted to its

publications is properly available to the readership of those publications. Authors must ensure that their Work meets the

requirements as stated in section 8.2.1 of the IEEE PSPB Operations Manual, including provisions covering originality,

authorship, author responsibilities and author misconduct. More information on IEEE’s publishing policies may be found at 

http://www.ieee.org/publications_standards/publications/rights/authorrightsresponsibilities.html Authors are advised especially of

IEEE PSPB Operations Manual section 8.2.1.B12: "It is the responsibility of the authors, not the IEEE, to determine whether

disclosure of their material requires the prior consent of other parties and, if so, to obtain it." Authors are also advised of IEEE

PSPB Operations Manual section 8.1.1B: "Statements and opinions given in work published by the IEEE are the expression of

the authors."

 

RETAINED RIGHTS/TERMS AND CONDITIONS
Authors/employers retain all proprietary rights in any process, procedure, or article of manufacture described in the Work.

Authors/employers may reproduce or authorize others to reproduce the Work, material extracted verbatim from the Work, or

derivative works for the author's personal use or for company use, provided that the source and the IEEE copyright notice are

indicated, the copies are not used in any way that implies IEEE endorsement of a product or service of any employer, and the

copies themselves are not offered for sale.

Although authors are permitted to re-use all or portions of the Work in other works, this does not include granting third-party

requests for reprinting, republishing, or other types of re-use.The IEEE Intellectual Property Rights office must handle all such

third-party requests.

Authors whose work was performed under a grant from a government funding agency are free to fulfill any deposit mandates

from that funding agency.
 

AUTHOR ONLINE USE
Personal Servers. Authors and/or their employers shall have the right to post the accepted version of IEEE-copyrighted

articles on their own personal servers or the servers of their institutions or employers without permission from IEEE, provided

that the posted version includes a prominently displayed IEEE copyright notice and, when published, a full citation to the

original IEEE publication, including a link to the article abstract in IEEE Xplore. Authors shall not post the final, published

versions of their papers.

Classroom or Internal Training Use. An author is expressly permitted to post any portion of the accepted version of his/her

own IEEE-copyrighted articles on the author's personal web site or the servers of the author's institution or company in

connection with the author's teaching, training, or work responsibilities, provided that the appropriate copyright, credit, and

reuse notices appear prominently with the posted material. Examples of permitted uses are lecture materials, course packs, e-

reserves, conference presentations, or in-house training courses.

Electronic Preprints. Before submitting an article to an IEEE publication, authors frequently post their manuscripts to their

       JINCHUN CHOI              30-09-2019

       
Signature

             
Date (dd-mm-yyyy)

69



own web site, their employer's site, or to another server that invites constructive comment from colleagues. Upon submission

of an article to IEEE, an author is required to transfer copyright in the article to IEEE, and the author must update any

previously posted version of the article with a prominently displayed IEEE copyright notice. Upon publication of an article by

the IEEE, the author must replace any previously posted electronic versions of the article with either (1) the full citation to the

IEEE work with a Digital Object Identifier (DOI) or link to the article abstract in IEEE Xplore, or (2) the accepted version only

(not the IEEE-published version), including the IEEE copyright notice and full citation, with a link to the final, published article

in IEEE Xplore.
 

 

 

Questions about the submission of the form or manuscript must be sent to the publication's editor. 

Please direct all questions about IEEE copyright policy to: 

IEEE Intellectual Property Rights Office, copyrights@ieee.org, +1-732-562-3966

70



APPENDIX B: INSTITUTIONAL REVIEW BOARD LETTER

71



 

Institutional Review Board 
FWA00000351 
IRB00001138, IRB00012110  
Office of Research 
12201 Research Parkway 
Orlando, FL  32826-3246 

 

 Page 1 of 1 

Memorandum  
 

 

 
The IRB reviewed the information related to your dissertation Endpoints and 
Interdependencies in Internet of Things Residual Artifacts: Measurements, 
Analyses, and Insights into Defenses. 
 
As you know, the IRB cannot provide an official determination letter for your 
research because it was not submitted into our electronic submission system. 
 
However, if you had completed a Huron submission, the IRB could make one of 
the following research determinations: “Not Human Subjects Research,” 
“Exempt,” “Expedited” or “Full Board. 
 
Based on the information you provided, this study would have been issued a Not 
Human Subjects Research determination outcome letter had a request for a 
formal determination been submitted to the UCF IRB through Huron IRB system. 
 
If you have any questions, please contact the UCF IRB irb@ucf.edu.  
 
Sincerely, 

 
Renea Carver 
IRB Manager 
 

To: JinChun Choi 

From:  UCF Institutional Review Board (IRB) 

Date: May 15, 2020 

Re: Request for IRB Determination 

72



LIST OF REFERENCES

[1] A new DDoS reflection attack: Portmapper; an early warning to the industry. https:

//bit.ly/2veV3ZM, Aug 2015.

[2] AbuseIPDB. https://bit.ly/2mZ3DZ3, 2018.

[3] Censys landing page. https://censys.io, 2018.

[4] Choopa NJ Datacenter. https://bit.ly/2AqKVTF, 2018.

[5] Colocrossing: Buffalo Colocation. https://bit.ly/2LJAvmH, 2018.

[6] HOSTKEY. https://www.hostkey.com/about/about, 2018.

[7] IOFLOOD. https://bit.ly/2vmT1XA, 2018.

[8] IPinfo, IP address API and data solutions. https://ipinfo.io, 2018.

[9] National vulnerability database. https://nvd.nist.gov, 2018.

[10] Port 111 details. https://bit.ly/2NTS7cP, 2018.

[11] Radare2. https://rada.re/r/, 2018.

[12] Shodan landing page. https://www.shodan.io, 2018.

[13] Ultratools free IP tools. https://bit.ly/2v2cLk4, 2018.

[14] Wowrack. https://bit.ly/2M0THci, 2018.

[15] A. Abusnaina, A. Khormali, H. Alasmary, J. Park, A. Anwar, and A. Mohaisen. Adversarial

Learning Attacks on Graph-based IoT Malware Detection Systems. In 39th IEEE Interna-

tional Conference on Distributed Computing Systems, ICDCS 2019, Dallas, TX, USA, July 7,

volume 10, page 2019, 2019.

73

https://bit.ly/2veV3ZM
https://bit.ly/2veV3ZM
https://bit.ly/2mZ3DZ3
https://censys.io
https://bit.ly/2AqKVTF
https://bit.ly/2LJAvmH
https://www.hostkey.com/about/about
https://bit.ly/2vmT1XA
https://ipinfo.io
https://nvd.nist.gov
https://bit.ly/2NTS7cP
https://rada.re/r/
https://www.shodan.io
https://bit.ly/2v2cLk4
https://bit.ly/2M0THci


[16] C. Aggarwal and K. Srivastava. Securing IoT devices using SDN and edge computing. In

Proceedings of the 2nd International Conference on Next Generation Computing Technolo-

gies (NGCT), pages 877–882, 2016.

[17] M. E. Ahmed and H. Kim. DDoS attack mitigation in Internet of Things using software

defined networking. In Proceedings of the IEEE Third International Conference on Big Data

Computing Service and Applications (BigDataService), pages 271–276. IEEE, 2017.

[18] H. Alasmary, A. Abusnaina, R. Jang, M. Abuhamad, A. Anwar, D. NYANG, and D. Mo-

haisen. Soteria: Detecting adversarial examples in control flow graph-based malware clas-

sifiers. In 40th IEEE International Conference on Distributed Computing Systems, ICDCS,

pages 1296–1305, 2020.

[19] H. Alasmary, A. Anwar, J. Park, J. Choi, D. Nyang, and A. Mohaisen. Graph-based com-

parison of iot and android malware. In International Conference on Computational Social

Networks, pages 259–272. Springer, 2018.

[20] H. Alasmary, A. Khormali, A. Anwar, J. Park, J. Choi, A. Abusnaina, A. Awad, D. H. Nyang,

and A. Mohaisen. Analyzing and Detecting Emerging Internet of Things Malware: A Graph-

based Approach. IEEE Internet of Things Journal, 2019.

[21] H. S. Anderson, J. Woodbridge, and B. Filar. DeepDGA: Adversarially-tuned domain gen-

eration and detection. In Proceedings of the 2016 ACM Workshop on Artificial Intelligence

and Security, AISec@CCS 2016, pages 13–21, 2016.

[22] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, Z. Durumeric,

J. A. Halderman, L. Invernizzi, M. Kallitsis, et al. Understanding the Mirai Botnet. In

Proceedings of 26th USENIX Security Symposium (USENIX Security 17), pages 1093–1110,

2017.

74



[23] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, S. Abu-Nimeh, W. Lee, and D. Dagon.

From throw-away traffic to bots: Detecting the rise of DGA-Based malware. In Proceedings

of the 21st USENIX Security Symposium, pages 491–506, 2012.

[24] J. M. Ceron, K. Steding-Jessen, C. Hoepers, L. Z. Granville, and C. B. Margi. Improving IoT

Botnet investigation using an adaptive network layer. Sensors, 19(3):727, 2019.

[25] J. Choi, A. Abusnaina, A. Anwar, A. Wang, S. Chen, D. Nyang, and A. Mohaisen. Honor

among thieves: Towards understanding the dynamics and interdependencies in iot botnets.

In 2019 IEEE Conference on Dependable and Secure Computing (DSC), pages 1–8. IEEE,

2019.

[26] J. Choi, A. Anwar, H. Alasmary, J. Spaulding, D. Nyang, and A. Mohaisen. Iot malware

ecosystem in the wild: A glimpse into analysis and exposures. In Proceedings of the 4th

ACM/IEEE Symposium on Edge Computing, pages 413–418, 2019.

[27] E. Cozzi, M. Graziano, Y. Fratantonio, and D. Balzarotti. Understanding Linux malware. In

IEEE Symposium on Security and Privacy, S&P, pages 161–175, 2018.

[28] C. Crane. 20 Essential Internet of Things Statistics to Keep You Up to Speed. https:

//bit.ly/2Lqfw6k, Sep 2019.

[29] CVE. https://bit.ly/1FxfOi2, 2018.

[30] M. De Donno, N. Dragoni, A. Giaretta, and A. Spognardi. Analysis of DDoS-Capable IoT

Malwares. In Proceedings of the Federated Conference on Computer Science and Informa-

tion Systems, FedCSIS., pages 807–816, 2017.

[31] M. De Donno, N. Dragoni, A. Giaretta, and A. Spognardi. DDoS-capable IoT malwares:

Comparative analysis and mirai investigation. Security and Communication Networks, 2018,

2018.

75

https://bit.ly/2Lqfw6k
https://bit.ly/2Lqfw6k
https://bit.ly/1FxfOi2


[32] Developers. CyberIOCs. Available at [Online]: https://freeiocs.cyberiocs.

pro/, 2019.

[33] Developers. The ultimate packer for executables. Available at [Online]: https://upx.

github.io/, 2019.

[34] Developers. VirusTotal. Available at [Online]: https://www.virustotal.com, 2019.

[35] Developers. How Does an IP Address Give Away Your Location? Available at [Online]:

https://whatismyipaddress.com/geolocation, 2020.

[36] S. Dharmaraj. IoT, digital transformation require Vietnam to focus on cybersecurity. https:

//bit.ly/3bSIYgj, Nov 2019.

[37] D.L. Mills. Network Time Protocol (NTP). RFC 958, Sep 1985.

[38] Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, and J. A. Halderman. A search engine backed

by Internet-wide scanning. In Proceedings of the 22nd ACM Conference on Computer and

Communications Security, CCS, pages 542–553, 2015.

[39] X. Feng, Q. Li, H. Wang, and L. Sun. Acquisitional rule-based engine for discovering

Internet-of-Things devices. In Proceedings of the 27th USENIX Security Symposium, pages

327–341, 2018.

[40] D. Formby, P. Srinivasan, A. Leonard, J. Rogers, and R. A. Beyah. Who’s in control of

your control system? device fingerprinting for Cyber-Physical Systems. In Network and

Distributed System Security Symposium, NDSS, 2016.

[41] B. Genge and C. Enachescu. Shovat: Shodan-based vulnerability assessment tool for Internet-

facing services. Security and Communication Networks, 9(15):2696–2714, 2016.

76

https://freeiocs.cyberiocs.pro/
https://freeiocs.cyberiocs.pro/
https://upx.github.io/
https://upx.github.io/
https://www.virustotal.com
https://whatismyipaddress.com/geolocation
https://bit.ly/3bSIYgj
https://bit.ly/3bSIYgj


[42] G. M. Graff. How a dorm room minecraft scam brought down the Internet. Available at

[Online]: https://bit.ly/2j2RTCO, 2017.

[43] J. Graham-Cumming. How to Launch and Defend Against DDoS. https://bit.ly/

2K4sOlP, Oct 2013.

[44] B. Herzberg, D. Bekerman, and I. Zeifman. Breaking down mirai: An IoT DDoS botnet

analysis. https://bit.ly/2dQbvYo, Oct 2016.

[45] T. Holz, M. Engelberth, and F. Freiling. Learning more about the underground economy: A

case-study of keyloggers and dropzones. In Proceedings of the 14th European Conference

on Research in Computer Security, ESORICS’09, pages 1–18, 2009.

[46] K. K. Ispoglou and M. Payer. malWASH: Washing malware to evade dynamic analysis. In

Proceedings of the 10th USENIX Workshop on Offensive Technologies (WOOT 16), 2016.

[47] J. Graham-Cumming. Understanding and Mitigating NTP-based DDoS Attacks. https:

//bit.ly/2ifu8pa, Jan 2014.

[48] J. A. Jerkins. Motivating a market or regulatory solution to IoT insecurity with the Mirai bot-

net code. In Proceedings of the IEEE 7th Annual Computing and Communication Workshop

and Conference (CCWC), pages 1–5. IEEE, 2017.

[49] K. Kendall and C. McMillan. Practical malware analysis. In Black Hat Conference, USA,

page 10, 2007.

[50] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas. DDoS in the IoT: Mirai and other

botnets. Computer, 50(7):80–84, 2017.

[51] B. Krebs. KrebsOnSecurity hit with record DDoS. Available at [Online]: https://bit.

ly/2dn9If6, 2016.

77

https://bit.ly/2j2RTCO
https://bit.ly/2K4sOlP
https://bit.ly/2K4sOlP
https://bit.ly/2dQbvYo
https://bit.ly/2ifu8pa
https://bit.ly/2ifu8pa
https://bit.ly/2dn9If6
https://bit.ly/2dn9If6


[52] E. Leloglu. A review of security concerns in Internet of Things. Journal of Computer and

Communications, 5(01):121, 2016.

[53] V. Mark, G. Byron, and R. Augusto. Bashlite IoT Malware updated with mining and backdoor

commands, targets WeMo devices. Available at [Online]: https://bit.ly/2OKfirI,

2019.

[54] A. Marzano, D. Alexander, O. Fonseca, E. Fazzion, C. Hoepers, K. Steding-Jessen, M. H.
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