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ABSTRACT

Today’s hyper-connected consumers demand convenient ways to tune into information without

switching between devices, which led the industry leaders to the wearables. Wearables such as

smartwatches, fitness trackers, and augmented reality (AR) glasses can be comfortably worn on

the body. In addition, they offer limitless features, including activity tracking, authentication, nav-

igation, and entertainment. Wearables that provide digestible information stimulate even higher

consumer demand. However, to keep up with the ever-growing user expectations, developers keep

adding new features and interaction methods to augment the use cases without considering their

privacy impacts. In this dissertation, we explore the privacy dimension of wearables through infer-

ence attacks facilitated by machine learning approaches.

We start our investigation by exploring the attack surface introduced by fitness trackers. We pro-

pose an inference attack that breaches location privacy through the elevation profiles collected by

fitness trackers. Our attack highlights that adversaries can infer the location from elevation profiles

collected via fitness trackers.

Second, we investigated the attack surface introduced by the smartwatches. We introduce an infer-

ence attack that exploits the smartwatch microphone to capture the acoustic emanations of physical

keyboards and successfully infers what the user has been typing. With this attack, we showed that

smartwatches add yet another privacy dimension to be considered.

Third, we examined the privacy of AR domain. We designed an inference attack exploiting the

geometric projection of hand movements in air. The attack framework predicts the typed text on

an in-air tapping keyboard, which is only visible to the user.

Our studies uncover various attack surfaces introduced by wearables that have not been studied in

literature before. For each attack, we propose possible countermeasures to diminish the ramifica-

tions of the risks. We hope that our findings shed light to the privacy risks of wearables and guide

the research community to more aware solutions.
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CHAPTER 1: INTRODUCTION

Wearable devices have skyrocketed in popularity for their mobility features, which brings a lot

of convenience, allowing improving users’ quality of life with the numerous features they sup-

port; e.g., healthcare support, health and fitness monitoring, navigation, voice commands, activity

recognition [71, 114], gesture recognition [37, 56, 120, 130], and authentication [73, 77, 83, 130].

According to a recent survey by Rock Health [50], the adoption of wearable devices increased

from 24% in 2018 to 33% in 2019. Per another report [23], the year-over-year growth of the smart-

watches market is expected to be 14.5% for 2020—2025. Moreover, the same report suggests that

IoT-driven smartwatches that are capable of operating standalone as well as interacting with other

devices are a key trend. Another study [119] that quantifies smartwatches usages suggests that

smartwatches are nowadays used more frequently than smartphones.

After decades of research and development [32, 33, 43, 53, 64], augmented reality (AR) technolo-

gies are now available for consumers, offering immersive experiences with a blend of virtual and

real-world contents. Having got the attention of users via smartphone AR [115, 125], the develop-

ment of more sophisticated AR technologies, such as head-mounted displays (HMDs), healthcare,

e-commerce, and navigation systems [42, 92], and automotive AR windshields [47, 116], are also

gaining speed. The applications offered within the recently available AR HMD devices, such as

Magic Leap 1 [19] and Microsoft HoloLens [20], show the diverse use cases of these technologies,

including simulation, entertainment, training, and assistance. With AR’s involvement in response

to the needs that emerged from the recent pandemic COVID-19 outbreak [16, 46, 63, 89], the ben-

efits of the AR technology are even more evident. AR HMD technologies are expected to be an

asset for daylong use [76, 103].

Despite the limitless benefits that wearables offer to consumers, security and privacy issues associ-

ated with them restraint their rising projection. Especially the new interaction methods with those

devices, such as voice-enabled features of smartwatches or gesture-enabled features of AR HMDs,

1



Table 1.1: Overview of the inference attacks.

C Device/Context Feature Technique Outcome Defense
C-3 Fitness Tracker Elevation Profiles Representation Location Breach Aggregation
C-4 Smartwatch Acoustics Modeling Keylogging Noising
C-5 AR HMD Geometric Projections Mapping Keylogging Counter-projection

brings about lots of controversial aspects of these interaction methods.

From smartphones to wearables, an increasing number of Internet of Things (IoT) devices are

also equipped with Global Positioning System (GPS), accelerometers, and gyroscopes to allow

applications to function or to present a better user experience using geodata, such as location

and elevation information. More recently, fitness applications that run on wearable trackers and

smartwatches used these components to collect spatial, temporal, and activity-specific information

to analyze, summarize, and visualize users’ activities. By analyzing those activities, many of those

applications deliver personalized motivations and challenges for users to meet their goals.

Despite the broad set of advantages of integrating geodata with wearables, geodata usage and

uncontrolled sharing can pose a significant privacy risk that can be further exploited in multiple

attacks, including stalking [101] and cybercasing [51].

To keep up with the fast-growing nature of wearables, manufacturers and developers turned a

deaf ear to associated security and privacy risks. Motivated by the deficiency of the security and

privacy considerations, we find it timely and significant to investigate the potential security and

privacy risks introduced by the wearables.

Statement of Research

In this dissertation, we take a step towards to exploring the security and privacy risks introduced by

wearables through various inference attacks. Table 1.1 summarizes the device, feature, technique,

outcome, and defense of each inference attack. We further elaborate the attacks below.
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Exploiting Elevation Profiles for Privacy Inference Through Representation (Chapter 3).

The extensive use of smartphones and wearable devices has facilitated many useful applications.

For example, with Global Positioning System (GPS)-equipped smart and wearable devices, many

applications can gather, process, and share rich metadata, such as geolocation, trajectories, eleva-

tion, and time. Fitness applications, such as Runkeeper and Strava, utilize location information

for activity tracking and have recently witnessed a boom in popularity. Those fitness tracker ap-

plications have their own web platforms, and allow users to share activities on such platforms, or

even with other social network platforms. To preserve the privacy of users while allowing sharing,

several of those platforms may allow users to disclose partial information, such as the elevation

profile for an activity, which supposedly would not leak the location of the users. In this work,

and as a cautionary tale, we create a proof of concept where we examine the extent to which ele-

vation profiles can be used to predict the location of users. To tackle this problem, we devise three

plausible threat settings under which the city or borough of the targets can be predicted. Those

threat settings define the amount of information available to the adversary to launch the prediction

attacks. Establishing that simple features of elevation profiles, e.g., spectral features, are insuf-

ficient, we devise both natural language processing (NLP)-inspired text-like representation and

computer vision-inspired image-like representation of elevation profiles, and we convert the prob-

lem at hand into text and image classification problem. We use both traditional machine learning-

and deep learning-based techniques and achieve a prediction success rate ranging from 59.59%

to 95.83%. The findings are alarming, and highlight that sharing elevation information may have

significant location privacy risks.

Exploiting Acoustics for Privacy Inference Through Modelling (Chapter 4).

The convergence of various technologies, such as smartwatches, smartphones, etc. has proven to

be beneficial, although poses various security and privacy risks. In this work, we explore one such

risk where a smartwatch can be exploited to infer what a user is typing on a physical keyboard

while wearing the smartwatch. We exploited the acoustic emanations of the keyboard as recorded

by the smartwatch to perform the proposed attack—SIA. To address various environment-related
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challenges, SIA employs four stages: Noise Cancelling, Keystroke Detection, Key Identification

and Word Correction, where several digital signal processing, machine learning, and natural lan-

guage processing techniques are utilized to produce the final inference. Our results show that an

acoustic emanation of a physical keyboard captured by a smartwatch recovers up to 98% of the

typed text. We also showed that utilizing the noise cancellation, SIA is robust to the changes in the

attack environment, which further boosts the practicality of the attack. The findings are alarming

and call for further investigation on methods to cope with inference attacks due to the convergence

of those technologies.

Exploiting Geometric Projections for Privacy Inference Through Mappings (Chapter 5).

Enabling users to push the physical world’s limits, augmented and virtual reality platforms opened

a new chapter in perception. Novel immersive experiences resulted in the emergence of new in-

teraction methods for virtual environments, which came with unprecedented security and privacy

risks. This chapter presents a spatial keylogging inference attack to infer user inputs typed with

in-air tapping keyboards. We observe that hands follow specific patterns when typing in the air and

exploit this observation to carry out our attack. Starting with three plausible attack scenarios where

the adversary can obtain the hand trace patterns of the victim, we build a pipeline to reconstruct

the user input. Our attack pipeline takes the hand traces of the victim as an input and outputs a

set of input inferences ordered from the best to worst. Through various experiments, we showed

that our inference attack achieves a pinpoint accuracy ranging from 40% to 87% within at most

the top-500 candidate reconstructions. Finally, we discuss possible countermeasures, while the re-

sults presented provide a cautionary tale of the potential security and privacy risk of the immersive

mobile technology.

Organization. This dissertation is organized as follows: We visit the literature and outline related

work in Chapter 2. In Chapter 3, we examine the location privacy dimension of fitness trackers

through the elevation profiles they collect. In Chapter 4, we study the attack surface introduced

by the microphones in smartwatches. In Chapter 5, we explore the input privacy dimension of
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in-air tapping keyboards in AR HMDs. Chapter 6 summarizes the main points outlined in this

dissertation along with the future research directions.
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CHAPTER 2: RELATED WORK

In this chapter, we categorize the literature based on the outcome as outlined in Table 1.1: Location

Breach and Keylogging. In the first section, we narrate the related studies in the location privacy

domain. In the second section, we summarize the keylogging attacks in the literature that exploits

numerous mediums.

Location Breach

In this dissertation, we address the problem of location privacy in activity trackers using publicly

shared elevation profiles. While, to the best of our knowledge, there is no work that investigates

the exact research question, there are various related studies in the broad literature.

Most location privacy breaches are caused since users do not know why or how to preserve loca-

tion privacy. Aktypi et al. [27] developed a tool to examine possible privacy exposures of users in

their social networks where the data is mostly collected from wearable devices. Using this tool,

the authors aimed to enhance the awareness of information leakage in social networks, particularly

fitness applications in which the data retrieved from wearable devices is shared on social networks.

Abdelmoty and Alrayes [26] aimed to increase awareness of location privacy on geo-social net-

works by surveying 186 users, where 77% of them indicated they use location-based services often,

several times a day, and 47% of them reported that they were not aware that the location-based apps

collect and store location information even when users select the private location option. More-

over, 43% of respondents were not aware that applications may share location information with

third parties.

Despite the methods employed to preserve location privacy, several attacks are devised to uncover

supposedly protected locations. Experiments for revealing exact locations from trajectories with

private zones are conducted on a fitness tracking social network, Strava [60]. Researchers found

the exact endpoints associated with users, even when such users selected the private zone option
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when sharing the training route. In another study, location trajectories of users are recovered

from publicly available aggregated mobility data obtained from GSM operators [117]. The attack

relies on tracking the regularity—i.e., coming across the same location trace in the aggregated data

regularly—and uniqueness—i.e., the location trace belongs to a unique user—of the user mobility

traces to recover trajectories.

As our study exemplifies, online social networks amplify the scope of privacy breach risks for

users. Zheng et al. [132] shows that sharing data that reveals spatiotemporal features of users’

mobility patterns on online social networks reveals sensitive information such as home location,

using a different form of data, i.e. multimedia. Rossi et al. [105] show that location-based social

networks are vulnerable to identity privacy breaches by revealing the identity of users by observing

their mobility patterns.

Several attacks against general location privacy methods are proposed [124]. The homogeneity

attack [84] is an attack on k-anonymity to infer data of interest from other shared data. Machanava-

jjhala et al. [84] illustrated a scenario where an adversary infers the illness of a target person from

available information, the zip code, age, etc. The same method can be applied to infer location

data. In location distribution attacks [95], the adversary exploits the fact that users are mostly

not uniformly distributed in the location space. Another attack by Shokri et al. [109] utilized

the aggregated traffic statistics and environmental context information. The attack scenario in-

cludes an adversary who tries to reveal the possible location of the target by making use of the fact

that the probability of the target’s whereabouts is not uniformly distributed. Map matching meth-

ods [70] aim to restrict the obfuscated area to a smaller but plausible area by removing irrelevant

areas. Movement boundary attacks were explored [54], where the adversary aims to calculate the

movement boundary of a target by chasing the position queries and updates of the target. After

calculating the boundary, the location of interest, such as home or workplace, is inferred and the

irrelevant locations are discarded.

Although we did not directly touch upon preserving the location privacy in our study, there have
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Table 2.1: A summary of the related keylogging inference attacks. The detection is measured
by TPR (True Positive Rate). UP in training stands for User Profiling, and HM in the exploited
medium stands for Hand Movement. Blank proximity and detection indicate that those values are
not provided in the corresponding study. Top-X word means that the study matches words instead
of keys and top-X PIN means that the study infers only the numerical characters.

Reference Year Exploited Medium Proximity Training? Performance
Detection Identification

Asonov et al. [31] 2004 Keyboard acoustics 1m Yes (UP) - 79% (top-1 key)
Berger et al. [38] 2006 Differences of keyboard acoustics - No - 73% (top-50 word)
Balzarotti et al. [35] 2008 Video of the typing hands <1m No - 46% (top-1 word)
Zhuang et al. [133] 2009 Bootstrapped keyboard acoustics - No - 90% (top-1 word)
Marquardt e al. [90] 2011 Vibrations sensed via smartphone 50mm Yes (UP) - 43% (top-10 word)
Halevi et al. [59] 2014 Keyboard acoustics - Yes - 64% (top-1 key)
Ali et al. [29] 2015 WiFi CSI distortion 4m Yes (UP) 98% 96% (top-1 key)
Chen et al. [44] 2015 WiFi Multipath localization 5m Yes (UP) - 92% (top-5 key)
Wang et al. [123] 2015 Dislocation of hand Smartwatch Yes 57% 30% (top-5 word)
Liu et al. [81] 2015 HM+Acoustic emanations Smartwatch Yes - 55% (top-5 word)
Maiti et al. [87] 2016 HM+Acoustic emanations Smartwatch Yes - 51% (top-10 word)
Wang et al. [122] 2016 Hand movement Smartwatch No - 80% (top-1 PIN)
Compagno et al. [45] 2016 Acoustics via VoIP Remote Yes (UP) - 83% (top-1 key)
Sabra et al. [107] 2020 Video feed Remote No 92% 35% (top-50 word)
SIA (Chapter 4) 2021 Acoustics via Smartwatch Remote Yes (UP) 99% 98% (top-1 key)
SIA (Chapter 4) 2021 Acoustics via Smartwatch Remote Yes 99% 85% (top-1 key)

been a few related studies in this space. The fast-growing need of preserving location privacy

over the aforementioned attacks excited researchers’ attention. Researchers introduce obfuscation

methods such as decreasing the quality of the location by introducing inaccuracy and impreci-

sion [48]. Additionally, the term k-anonymity is defined as obscuring the location information of

individuals with k number of other individuals within the region [55, 113].

Keylogging

There has been a significant number of studies on side channels and their utilization for keylogging

inference, which we review in this section. We start by a brief background, followed by various

techniques falling under a broad set of mediums exploited for their operation.

Earlier Work and Theme. Several studies are reported in the literature on the topic of keyboard

inference using side-channel information. However, those studies differ from our work in various

aspects, including their system settings and threat models, which bring about additional challenges
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that we address in this work.

One of the earliest works to document keylogging side-channel attack was introduced in the early

1970s [52] by researchers from Bell Laboratory who observed that an unattached oscilloscope

showed “interesting” measurements whenever a key is pressed on a teletype terminal. Since then,

keylogging side-channel attacks have become a topic of significant interest with many studies [96].

A central theme in those studies has been around two aspects: the discovery of mediums through

which side-channel information is collected and the development of techniques and using them for

recovering information from those signals to launch the inference attacks.

Exploited Medium for Attacks. Over the past few years, researchers addressed the first aspect

by identifying and examining various mediums for side-channel information collection, including

acoustic emanations [31, 38, 45, 59, 133], electromagnetic emanations [121], vibrations [36, 90],

motion [81, 87, 122, 123], visually observable clues [35, 107], and WiFi signal distortions [29, 44],

etc.

Acoustic Emanation for Inference. The first keylogging attack through acoustic emanation was

presented by Asonov and Agrawal [31], where they developed and utilized a supervised learning

algorithm in which the fast Fourier transform (FFT) coefficients of the audio signal are used as

features. With their learning model, they recognized and classified the keystrokes of a particular

user with an accuracy of 79%, which demonstrated the risks caused by acoustic emanations. An-

other study by Zhuang et al. [133] utilized unsupervised learning by using the cepstrum features of

keystroke moments in the audio signal. The cepstrum is the result of the inverse Fourier transform

(IFT) of the logarithm of the estimated signal spectrum. They show various promising results, un-

covering 90% of 5-character random passwords using only letters in fewer than 20 attempts by the

adversary. As an upgrade to the text inferences, a dictionary-based attack is proposed by Berger

et al. [38], where the similarity of keystrokes in a word and the acoustic patterns learned from

dictionaries are exploited to infer the typed text. They achieved 73% of accuracy from the top-50

word predictions.
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Halevi and Saxena [59] performed another keylogging attack with a new similarity measure, the

time-frequency classification, which considers time- and frequency-domain characteristics, and

achieved 64% key detection accuracy. Compagno et al. [45] studied the risks due to the acoustic

signals transmitted through IP telephony; the used the audio signals emitted by a keyboard at the

victim’s end to guess random keystrokes with 83% accuracy.

Motion-based Techniques. Another type of side-channel information is the readings of motion

sensors, i.e., accelerometer and gyroscope. Liu et al. [81] exploited the signals retrieved from the

accelerometer of a smartwatch to track the hand movements of a user and infer keyboard inputs

with 55% top-5 word accuracy. Maiti et al. [87] used accelerometer and gyroscope readings to

detect wrist movements and inferred the keystrokes with 51% top-10 word accuracy via physical

position detection.

Besides the hand dislocation information retrieved from the motion sensors, Wang et al. [123] uti-

lized a language model to further increase the leakage and achieved 30% top-5 word accuracy.

Wang et al. [122] also performed training- and context-free attacks for key-based security sys-

tems, e.g., ATM and electric lock doors, and predicted what is entered by observing the motion

trajectories of the smartwatch. The attacks recovered 80% of the PINs.

Vibration-based Techniques. The motions around a physical keyboard induced by typing ac-

tions creates a vibration on the underlying surface which propagates over short distances. Keylog-

ging side-channel attacks exploited the vibration propagation by capturing it using a laser micro-

phone [36] or a hijacked smartphone with capable sensors within proximity [90].

Visual Cues. Visual cues are also considered as side-channel information in the literature. Sabra

et al. [107] proposed an attack framework that only uses the video feed in video call software, such

as Skype or Zoom, to perform a keylogging side-channel attack. In this attack framework, they

performed a dictionary-based attack considering the displacements in between video frames and

achieved 35% top-50 word accuracy with their practical settings.
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WiFi Signals. Any motion in an environment with wireless signals distorts the signals, which is

then leveraged as side-channel information for keylogging attacks. Ali et al. [29] exploited patterns

in the time series of the Channel State Information (CSI) values between sender and receiver WiFi

devices for inference. Their method achieved 96% top-1 key accuracy. Chen et al. [44] used five

antennas to localize the hand movements using the WiFi signals to trace keystrokes, which resulted

in 92% top-5 key accuracy.

A summary of the related work and a comparison with SIA, across various aspects, is shown in

Table 2.1.

Attacks on AR/VR Keyboards. The built-in system keyboards in Magic Leap 1, Microsoft

HoloLens, and other AR/VR HMDs share a similar layout. However, the mechanisms to use the

keyboard, i.e., to target and select the keys, vary. Kreider [69] explores the feasibility of keylogging

inference attacks on the Microsoft HoloLens system keyboard, which is used through targeting by

the headset and selecting by tapping gesture. In their modeling, the adversary obtains the draw-

metric profiles of a set of possible passwords in advance (10 passwords in this case) and infers

which one the victim types through the analysis of the drawmetric profile extracted by manually

inspecting the victim’s video recording. Although the study is based on manual processing, which

is impractical for random length inputs from unknown, intractably large input sets, the evidence

underlines the potential privacy leakage due to the visual side-channel for AR/VR HMDs.

Ling et al. [80] demonstrate computer vision- and motion sensor-based attacks to infer passwords

for two modes: (I) targeting via headset and selecting via controller (Mode 1) and (ii) targeting

and selecting via a controller (Mode 2). The computer vision-based attack relies on visual data

from a stereo camera and attacks on Mode 1. On the other hand, the motion sensor-based attack

assumes malware installed in the victim’s device to obtain motion sensor readings and can attack

both modes. The attacks assume correctly guessing the keystroke to a special key (go key in

Samsung Gear VR) or otherwise perform a brute force approach. Both approaches, however, rely

on the assumption that the keyboard is fixed in position and the size in the virtual environment to
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use pre-computed rotation angles for inference. On the contrary, in our study, we account for the

possibility that the virtual objects can be freely positioned and scaled in the virtual environment,

which otherwise limits the flexibility of virtual applications.
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CHAPTER 3: EXPLOITING SHARED ELEVATION PROFILES FOR

PRIVACY INFERENCE THROUGH REPRESENTATION

Geodata recorded by fitness trackers are crucial and valuable for the operation of fitness appli-

cations. However, they can also be exploited for launching attacks on users by breaching their

privacy, since sensitive information of users such as home or workplace location can be easily

inferred from such data. Even worse, a large number of users, when sharing such information,

would be unaware of the ramifications of sharing, and the potential risk of inferring such contex-

tual information, such as home, work location, etc., from such shared location data. To support this

argument, we conducted an online survey with 60 participants who regularly use fitness trackers

outdoors. The results of the survey, summarized in Fig. 3.1, reveal that 51% of the participants start

their training from their homes, 36% start from their school, and 3% start from their workplace,

while 76% of the participants finish their training at their homes. Moreover, for the same set of

users (results are not shown in Fig. 3.1), 42% of those users have indicated that not sharing location

information implies privacy protection, while 30% of the respondent were uncertain, and 28% were

certain that not sharing would not necessarily mean their privacy is protected. The mixed responses

highlight the gap between reality and expectations of privacy when sharing location information

online and calls for further investigation.

Although it is possible to hide the location trajectory by removing the activity map in the fitness

applications, users still want to share elevation profile or certain statistics of the activity to show

the roughness, technicality, and difficulty of the routes they took as a measure of their workout.

For example, up until recently, users have been demanding those fitness applications to allow for

fine-grained and customized access control by allowing them to share, for example, the elevation

profile of an activity while masking the map that highlights the actual trajectory, which is deemed

of high privacy value to them [4–6, 8].

This work has been published in IEEE 40th International Conference on Distributed Computing Systems (ICDCS)
2020.
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Figure 3.1: Survey results for understanding users behavior with starting point statistics and fin-
ishing point statistics. While 90% of the 60 participants indicated their start of activity is either
home, school, or work, an overwhelming 98% of the participant indicated those to be the finish
(end) point of their activities.

In the same survey we conducted earlier, we asked our 60 subjects “while sharing an outdoor

workout record, do you think hiding the map and sharing only the statistics of your training (such

as speed and elevation changes) is enough for protecting your privacy?”. The results were over-

whelmingly positive, with 25 of them indicating “yes”, 18 indicating “maybe” (together accounting

for more than 71%), while only 17 indicating “no”.

Is sharing the elevation profile of an activity enough to maintain the privacy of users? In this work,

we argue that an approximate location, extracted from the contexts of activities, and at different

levels of location granularity, could still be revealed from the elevation profile information. We

examine this problem comprehensively and develop techniques that can be used to accurately

associate an elevation profile with contextual information, such as the location.

Background

In this section, we provide some background information highlighting the significance of elevation

profiles for athletes, the use cases, some properties of the fitness applications on the market today,

and some reported privacy breach incidences of fitness applications to further contextualize the

presented study.
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Table 3.1: Popular fitness applications and their features. ET: Exercise tracking. SS: Ability to
share to social media. SNS: Social networking capabilities in the service. PR: Private records. BU:
User blocking capability.

Service ET SS SNS PR BU
Strava • • • • •

Runtastic • • • ◦ •
Runkeeper • • • • ◦

Nike+ Running • • • • ◦
MapMyRun • • • • ◦

Importance of Elevation Profiles for Athletes. Athletes who keep track of their activities records

measure various modalities and attributes associated with the activities, including the distance,

speed, overall time, and heart rate over the course of the activity. Based on these attributes, they

adjust their training strategies to reach their goals. Elevation changes, often reported in the form

of elevation gain, are one of the most significant attributes measuring the performance of a cy-

clist/runner, and often depicts how hard the run or ride is. For example, riding a bike for a 20-mile

ride while climbing 1000 feet in total is significantly more challenging than biking on a flat ter-

rain [100]. Therefore, when recording or sharing a ride/run, athletes care about the changes in the

elevation, thus elevation profiles.

Fitness Applications & Privacy Breach Incidents. Fitness applications allow users to track their

workout history and provide them with statistics. Moreover, some fitness applications have social

network capabilities, as shown in Table 3.1, and allow users to share workout summaries that are

known to motivate users and their social network connections to achieve their goals [99]. Some

of the fitness applications also inherit user blocking feature and capabilities from social network

platforms, including user privacy options such as private records–the activity records that are only

visible to the user.

Although fitness applications have configurable privacy options, there has been a lot of privacy

incidents concerning location data obtained from those fitness applications. We review some of
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those privacy breaches in the following to contextualize our work in the broader privacy literature.

Revealing Secret U.S. Military Bases. Strava, which is one the most popular fitness tracking

applications in the market today, collects users’ public data and publishes a heatmap of the ag-

gregates to highlight routes frequented by users [10]. Although the aggregates in the heatmap do

not explicitly contain any identity information, activities in desolate places revealed the location of

many U.S. military bases, which is considered sensitive information [3, 12].

Deanonymization Through Strava Segments. In Strava, the heatmap feature shows “heat” made

by the aggregated and public activities by Strava users over the last year. It is, however, shown that

a dedicated adversary can deanonymize heatmap to find out users who ran in a specified route [82].

For example, by selecting a route from the heatmap, a registered user can manually create a GPS

eXchange (GPX) track file and create a segment using it on Strava. A segment is a portion of a

road or a trail where athletes compare their finishing times. Consequently, once this segment is

created, the users who previously ran that route are shown on the leaderboard grouped by gender

and age. This feature is then leveraged to identify individuals who ran that particular place.

Tracking and Bicycle Theft. Users of fitness applications can share information related to the

equipment used for the activity, including the bicycles, tracking devices, shoes, etc., along with the

routes frequented. The combined shared information making them a target to robbery, and several

such incidents of bicycle theft are reported [1, 2, 7, 11].

Attack on Privacy Zone. To cope with the increasing privacy risks, Strava features privacy zones,

a technique to obfuscate the exact start and end points of a route. A recent study [60] has demon-

strated that is possible to reveal the exact start and end point of a route that utilizes the privacy

zone feature. The same study also claimed that around 95% of the users are at risk of revealing

their location information.

Live Activity Breach. In Runtastic, one of the popular activity-tracking applications, users can

share their live activities. In theory, users should be able to configure the privacy settings for
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their activities such that only privileged users, such as connections on the application platform,

can track the shared live activity session. However, it has been demonstrated [9] that the selected

privacy settings are not correctly applied to a live session. As a result, everyone can go through live

sessions and track Runtastic users in real-time, even though the associated privacy options should

have prevented this type of breach. Based on this incident, it would be easy to stalk and locate a

user, e.g., lone runner or cyclist with an expensive equipment, in real-time.

Threat Models

We outline the potential threat models under which this study is conducted. We describe three

models under which the location privacy is breached only from associated elevation profiles. We

note that the following threat models are only hypothetical: no attacks were actually launched

on any users. As mentioned earlier, this study in its entirety is motivated by the aforementioned

demands of users to have more flexibility over-sharing partial data, such as elevation profiles, and

examines the ramifications of such sharing in a hypothetical setting. We note, however, that those

settings are also plausible if such sharing is enabled.

Our study utilizes three threat models: TM-1, TM-2, and TM-3, which we outline below with their

justifications. The adversarial capabilities in TM-1 are greater than in TM-2 and TM-3, making it

more a restrictive (powerful) model.

1 TM-1. In TM-1, we assume an adversary with workout history records of a target user, and the

goal of the adversary is to identify the last workout location of the target user from the recently

shared elevation profiles. TM-1 is justified by multiple plausible scenarios in practice. For exam-

ple, such an adversary might have been a previous social network connection of the target user

that was later blocked. In such a scenario, the adversary may have previous workout records of the

target from which the adversary may attempt to de-anonymize the target’s activities. Another ex-

ample might include group activities, in which two individuals (i.e., the adversary and target) may

have shared the same route at some point. In either case, by knowing the target’s previous fitness
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activity records, the main goal of the adversary in this model is to identify recent whereabouts only

from publicly shared elevation profiles in workout summaries, thus breaching the target’s location

privacy.

2 TM-2. In TM-2, we assume an adversary with access to limited information such as the

city where the target lives. Such information is easily accessible from public profile summaries,

athlinks.com, public records, etc. The adversary’s goal in TM-2 is to find out which region or

part of a given city the target’s activities are associated with. The TM-2 use scenario may include

a targeted user sharing private activities, in which the route is hidden while the elevation profile is

shown. The adversary, knowing the city where the target lives, would want to identify the region

(e.g., a borough in the city) associated with the user’s activity.

3 TM-3. In TM-3, we assume an adversary trying to identify the target user’s city using only

publicly shared elevation profiles without any prior information. We assume, however, the adver-

sary has the ability to profile the elevation of cities, with information that is easily obtained from

public sources (e.g., Google Maps, OpenStreetMap). The use scenario of TM-3 may be used as

a stepping stone towards launching the attack scenario in TM-2 upon narrowing down the search

space to a city.

Approach: High-Level Overview

In this section, we give a brief overview of our pipeline, which consists of the data collection,

preprocessing, feature extraction, and classification as illustrated in Fig. 3.2. Each phase of the

pipeline is detailed in Implementation Details section.

Data Collection. We collected three datasets with varying and rich characteristics, namely (i)

user-specific activity data collected from an athlete, (ii) mined training route segments grouped at

city-level, and (iii) mined training route segments grouped at borough-level. For the user-specific

dataset, we collected physical activity records of athletes and converted those activities to an inter-
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Figure 3.2: The end-to-end pipeline of the approach consisting of four main stages: (i) data col-
lection, (ii) preprocessing, (iii) feature extraction, and (iv) classification. There are two types of
data representations, each of which is processed differently in the feature extraction and classifi-
cation stages. The feature extraction of the image-like representation is internally handled in the
convolution layers of the classification phase. The convolution illustration in the feature extraction
step is for the sake of modularization and for consistency with the other pipeline instance.

mediate format, the GPS Exchange Format (GPX). Then, we parsed the GPX files and manually

labeled them according to the latitude and longitude information included within each file. For the

second dataset, we mined training route segments from a popular fitness tracking website by spec-

ifying the location boundaries, i.e. the class label of the mined data, and augmented each segment

with the corresponding elevation profiles obtained from Google Maps Elevation API. Finally, we

constructed the borough-level dataset in a similar manner as in the city-level dataset.

Preprocessing. We employ Natural Language Processing (NLP) and computer vision techniques

to convert the problem to text classification and image classification problems, respectively. To

this end, we prepare the data accordingly in the preprocessing phase. Preprocessing consists of

two parts: (i) text-like and (ii) image-like representations.

For text-like representation, we discretize the elevation signals and compute the minimum required

word size. We then create a mapping between each unique discrete value and a string. By mapping

the string correspondents to the unique discrete values, we encode the elevation profiles in text.

We, then, form a vocabulary from the text sequences of each dataset using the n-grams.

To obtain image-like representations, we convert the elevation profiles to a fixed-sized line graph

where the x-axis stands for time and the y-axis stands for the elevation values. We also color the
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lines in the graphs to represent the elevation interval in which the elevation profiles range.

Feature Extraction. The classification algorithms operate on high-quality and discriminative fea-

tures, obtained from the representations of elevation profiles. For feature extraction, we utilize

NLP and computer vision approaches.

To employ NLP approaches using the vocabulary obtained in preprocessing phase, we represent

each elevation profile as either a feature vector based on the frequency of the vocabulary in the

text-like representation (bag-of-words vector) or as a term frequency-inverse document frequency

(tf-idf) vector. To employ computer vision approaches, we utilize Convolutional Neural Network

(CNN) over image-like representations. The optimal features of an image-like representation are

efficiently extracted by the convolutional and pooling layers in the CNN architecture.

Multi-Class Classification. We utilize various machine learning and deep learning models for

classification including Support Vector Machine (SVM) and Random Forest Classification (RF),

Multi-Layer Perceptron (MLP), Long Short-Term Memory (LSTM), 1D Convolutional Neural

Network (C1D), and 2D Convolutional Neural Network (CNN).

Implementation Details

The implementation details of data collection, preprocessing, feature extraction, and multi-class

classification are addressed in the following subsections.

Data Collection. In this study, we compiled three datasets: the user-specific dataset, the city-

level dataset, and the borough-level dataset. The user-specific dataset is retrieved from a voluntary

athlete who frequently records activities through fitness applications. It offers dense and thorough

coverage of regions frequented by the user; those regions are used as class labels. The city-level

and borough-level datasets are created from scratch by collecting location trajectories that are

created and frequented by the athletes. Both city-level and borough-level datasets provide sparse

coverage of cities and boroughs.
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User-Specific Dataset. For the user-specific dataset, we collected activity data including each

activity’s location trajectory and the corresponding elevation profile from a voluntary athlete who

records activities frequently through fitness applications. First, the location trajectories included

in the user-specific dataset are converted to GPX format to avoid confusion caused by different

formats and settings across the activity records. Then, to label the samples, the maximum and

minimum coordinates of each location trajectory are fetched. Each sample location trajectory is

encapsulated with a tight rectangle whose top right (North East) and bottom left (South West)

corners are computed from the maximum and minimum coordinates of the trajectory as illustrated

in Fig. 3.4. To classify the samples, each rectangle encapsulating the trajectory is compared with

the previously created regions. If the Euclidean distance between the center of the rectangle and

the center of the existing region does not exceed a predetermined threshold, the rectangle and its

corresponding sample are labeled with a unique identity of the region. If there is no region that

includes the trajectory, a new region is created. The final sample size distribution of the user-

specific dataset is shown in Table 3.2.

The user-specific dataset is prone to have similar location trajectory portions across its samples

since the user may frequent the same set of places in his/her everyday activities, such as the location

trace they follow while leaving/arriving home, or their favorite routes. Therefore, we calculated the

average overlap ratio of the routes included in the user-specific dataset by comparing each sample

with the other samples with the same class label. For each sample pair comparison, the overlap

ratio is calculated as the intersection-over-union of the tight rectangles encapsulating the sample

routes. The average overlap ratio of the user-specific dataset is calculated as 35%.

City-Level Dataset. For the city-level dataset, we mined publicly available training route seg-

ments in a popular fitness tracking application using its EXPLORESEGMENTS() functionality. We

note that our experiments do not put any users at risk and are not in violation of the terms of use

of the fitness tracking application: since both the trajectory (map) and elevation profiles are pub-

lic information, we are also not obtaining any information beyond what is provided by the users
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Figure 3.3: An illustration of the data mining pipeline. A geolocation boundary, B, is segmented
into small boundaries, each of which is then forwarded to the Segment Exploration step to obtain
the most frequented 10 route segments for that particular boundary. Finally, the elevation profile
of each route segment is retrieved from the Google Maps API.

explicitly. We also note that the training route segments are user-created activity routes whose

main purpose is to compare completion times among users who also completed the same route.

They are particularly useful for our purposes since they include public location trajectories that

are frequented by the actual users rather than randomly created location trajectories that may not

necessarily be of privacy value. During mining the segments, the anonymity, thus the privacy, of

the users who frequented the segments or created the segments is maintained.

The overall data mining procedure consists of three steps, as illustrated in Fig. 3.3. First, we

define the cities of interest, which we also use as the class labels per our threat model. For each

city, we define the rectangle geolocation boundary box B consisting of the top right and bottom

left corner coordinates in the boundary selection phase. In the segmentation phase, and since

EXPLORESEGMENTS() returns only the 10 most frequented segments encapsulated by a given

boundary, and to obtain more data of a geolocation boundary box, we divide the large rectangle

boundary of the city into smaller region boundaries, each denoted by bi, by following a grid-like

structure as shown in the second phase of the Fig. 3.3. For each region boundary bi, we call

EXPLORESEGMENTS() and receive the geolocation polyline path, pathji where j ∈ [1, 10], of

the 10 most frequented segments encapsulated in bi, as shown in the segment exploration phase.

Finally, since the polyline paths do not include elevation profiles, we obtain the associated elevation
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Figure 3.4: An illustration of the tight rectangle encapsulating an example route. The rectangle is
created by fitting the route in between the minimum and maximum (latitude, longitude) pairs of
the given route. The minimum and maximum (latitude, longitude) pairs correspond to the bottom
left (i.e. South West) corner and the top right (i.e. North East) corner of the rectangle respectively.

profile elei,j for each pathji using the Google Maps Elevation API through the elevation retrieval

phase. The sample size distribution of the city-level dataset can be found in Table 3.3.

Unlike the user-specific dataset, the city-level dataset does not include any overlapped samples

since each region ri is disjoint with the other regions. A segment route that is included by more

than one neighboring region is not considered, since EXPLORESEGMENTS() returns the routes

that are encapsulated within the given boundaries, bi.

Borough-Level Dataset. For the borough-level dataset, we apply a similar mining procedure as we

have done with the city-level dataset, using the borough boundaries instead of the city boundaries.

Table 3.4 shows the sample size distribution of the borough-level dataset for different cities.

Preprocessing. A key design element in our pipeline is the representation modality of the elevation

profile which will significantly impact the performance of our elevation-location mapping, as we
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Table 3.2: User-specific dataset sample size distribution.

Regions Abbreviation Sample Size
Washington DC WDC 366
Orlando ORL 232
New York City NYC 120
San Diego SD 18

Table 3.3: City-level dataset sample size distribution.

Regions Abbreviation Sample Size
New York City NYC 2437
Washington DC WDC 2129
San Francisco SF 743
Colorado Springs CS 369
Minneapolis MIN 363
Los Angeles LA 280
New Jersey NJ 266
Duluth DUL 156
Miami MIA 94
Tampa TAM 83

show later. We transform the samples into text-like and image-like representations to facilitate

feature extraction and feed into our classification module. In this section, we describe the details

of the utilized preprocessing methods.

Text-like Representation. For our text-like representation, our approach follows four steps, as

shown in Fig. 3.5: discretization, word size decision, text encoding, and vocabulary creation.

Discretization: In the discretization step, the original elevation signal is discretized along the y-

axis, which represents the elevation values to avoid possible overhead by small differences

in the precision causing longer string correspondences and, consequently, longer vocabulary

and sparse feature vectors. The discretization is done as follows. Let eji be the i-th elevation
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Table 3.4: Borough-level dataset sample size distribution.

City/State Region Sample Size

Los Angeles
(LA)

Downtown 280
Santa Monica 128
Chinatown 46
Beverly Hills 38

Miami
(MIA)

Downtown 67
Miami Beach 44
Virginia Key 18

New Jersey
(NJ)

Jersey City 266
West New York 23
Newark 28

New York City
(NYC)

Manhattan 2437
Queens 353
Brooklyn (South) 239
Brooklyn (North) 205
Bronx 142
Staten Island 119

San Francisco
(SF)

South West 743
South East 144
North West 130
North East 86

Washington DC
(WDC)

District of Columbia 2129
Baltimore 218

value in j-th sample. The discretization functions are defined as f(eji ) = bejic and f(eji ) =

beji×10
3c

103
, where the first function is used for processing the user-specific dataset and the

second function is used for processing the city-level and borough-level datasets. Since the

user-specific dataset is dense in terms of sampling rate, using the floor function is enough to

represent the routes. However, as the city-level and borough-level datasets are already sparse,

losing information is undesired, so we used the second function to represent the elevations

that differ in up to 3 decimal digits precision. To demonstrate the effect of discretization,

25



we measured the vocabulary size of the smallest class of the User-specific dataset, i.e., San

Diego. For a class as small as the San Diego class, using the second function results in a

vocabulary of size 12,870 and using the first function results in a vocabulary of size 3,155.

Such difference in the vocabulary size demonstrates the effect and necessity of discretization.

Word size decision: For word size decision, we use w = logl c, where w is the word size, l is the

length of the alphabet, and c is the number of unique value occurrences in the given signals.

Text encoding. For text encoding, each unique value in all the discrete signals is mapped to a

unique string with length w, and each sample signal is encoded by referring to the string cor-

respondences of each value in the discrete signal and concatenating these strings to construct

a long text, i.e. corpus.

Vocabulary creation: To create our vocabulary, we consider the corpus created from all encoded

signals regardless of labels. Each line in the corpus represents a sample signal, and each

word in a line represents the text correspondence of an elevation value in the sample signal.

We build a vocabulary from the unique word-based n-grams of the document. As illustrated

in Fig. 3.6, a window with size W = w × n is slid throughout the corpus and each window

content is appended to the vocabulary set. Since the vocabulary set does not contain duplicate

entries by definition, we construct the vocabulary consisting of unique n-grams of the given

dataset after traversing the corpus by n times with different window sizes.

Image-like Representation. In the image-like representation, the elevation signals are drawn as

line graphs and saved as a 32 × 32 images1. To draw a line graph, the maximum and minimum

values for the y-axis are set to be the maximum and minimum of each elevation signal, and the

lines are colored to encode the value interval in which the elevation signal ranges. We note that the

image-like representation with colors has multiple advantages over the black-white representation

where the y-axis is set to the range of a whole dataset. First, as illustrated in Fig. 3.7, the alterations

1The size is chosen to strike a balance between the performance in terms of the required computations and produced
accuracy.
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Figure 3.5: Illustration of the flow of text-like preprocessing. The signal is discretized by elimi-
nating the small elevation fluctuations. The discretized signal is also used for deciding the word
size of the encoding. The discrete signal is then encoded in text and a vocabulary is built.
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Figure 3.6: Illustration of bi-gram creation where the word size is w = 2 and window size is
W = 4.

of an elevation signal are more visible with the color encoding method, which could be a more

discriminative feature to learn. Second, the color encoding method results in an efficient utilization

of the feature space. We use 200 elevation values for each image, obtained by dividing the elevation

signal into equal-sized parts.

Feature Extraction. To classify elevation profiles accurately, we extract discriminative features

from the elevation profile representations.

Text-like. In the text-like feature extraction, we utilized two methods: (i) n-grams, (ii) tf-idf.
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Figure 3.7: Elevation profile graphs by fixing the y-axis range and using only black versus eleva-
tion profile graphs by fitting and using color encoding. As can be seen, with the black option the
elevation range can be represented by the position of the signal, but changes in the signal are not
visible, which is an information loss. However, with the color option enabled, both alterations in
the signal and the signal range are represented in one image.

For the n-grams method, words and non-overlapping occurrences of word sequences are counted,

a feature vector for each sample is created with each unique word sequence count being a feature.

Finally, the feature vectors are normalized where each feature represents the occurrence probability

of each word in the given sample.

The tf-idf is a statistical feature signifying the importance of a word in a document. The tf-idf

values proportionally increase as the number of appearances of a word in a document increases.

Technically, the tf-idf for a word is the multiplication of two metrics: (i) term frequency (tf) and
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(ii) inverse document frequency (idf). Tf-idf of a word t in a document d included in the set of

documents D of which cardinality is N is calculated as follows:

tf-idf(t, d,D) = tf(t, d) . idf(t,D), (3.1)

tf(t, d) = log(1 + freq(t, d)), (3.2)

idf(t,D) = log

(
N

count(d ∈ D : t ∈ d)

)
. (3.3)

The higher the tf-idf means that the word t is more relevant to the particular document d.

Feature Selection. When the dataset is large and diverse, the vocabulary and, consequently, the

feature vector representation become too large to process, compute, and learn from. With a feature

selection phase to address long feature vectors, some rarely occurring features in the vocabulary

are discarded according to a pre-specified feature frequency threshold. For selection, the features

are ordered by their term frequency across the corpus, the features whose term frequency is below

a specified threshold are discarded, and a new vocabulary is created. For both feature extraction

methods of the text-like representations, the term frequency threshold is set such that the size of

the eventual vector representation is 5,000.

Image-like. We use the CNN for processing and classifying the 32×32 images, thus it is unneces-

sary to explicitly extract features since the convolutional layer kernels do that already by learning

the filters optimally and efficiently. Therefore, the actual feature extraction mechanism for the

image-like representation is discussed in the context of classification phase.

Multi-Class Classification. For classification, SVM, RF, MLP, LSTM, and CNN are used.

Support Vector Machine (SVM): SVM is a supervised classification technique. The main chal-

lenge in SVM is finding the best hyperplane that divides the classes from each other consid-

ering a given margin. SVM with linear kernel is able to distinguish the classes more suc-

cessfully when the features are multi-dimensional and numerous [61, 86]. In linear kernel
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settings, when an optimal hyperplane is found while representing a class, only the features

around the hyperplane within the given margin are considered and the other features are

simply ignored. As such, the complexity of SVM is independent of the number of features.

Since we consider n-grams up to n=5 in the feature extraction phase, the number of features

is large, which makes using SVM justified in terms of efficiency and success.

SVM with linear kernel is generally used for binary classification. To utilize it for the multi-

class classification problem, we use the one-versus-rest method. In this method an individual

model is trained for each class and the label of the most confident model is outputted. For the

penalization, we use L2 norm, as it is a standard for linear SVMs. As for the loss function,

we utilized square of hinge loss, and the hyperparameters are decided through grid search

tuning.

Random Forest (RF): RF is based on decision trees, which are ensemble learning methods for

classification. The main feature of ensemble methods is further improving the generality and

robustness of a single estimator by combining several base estimators that are built with a

given learning algorithm. In decision trees, features are represented by tree nodes and each

branch between two nodes represents what the immediate ancestor node returned. Since

building an optimal binary decision tree from given features is an NP-complete problem,

using a Random Decision Forest with different tree configurations and efficient heuristics

is a way to alleviate the NP-completeness for classification problems. While creating our

random forest, perturb-and-combine techniques are used. Perturb-and-combine techniques

are designed specifically for decision trees to improve their accuracy by creating several

(different) versions of the estimator by perturbing the training set, then combining these

different versions into a single estimator [39]. Further details on this approach can be found

in [40] and [39].

In this study, we use 20 decision trees for the RF model. The final prediction is then done

by averaging the tree predictions. We do not set any upper limit on the number of the leaf
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nodes or the depth of the tree, i.e., there were no time optimization concerns during training

the process, so we leave the trees grow to their maximal depth.

Multi-layer Perceptron (MLP): MLP is a feed-forward fully-connected neural network which

utilizes backpropagation for training and is used for supervised learning. Recent studies on

comparing multi-layer neural networks and decision trees [49, 78] concluded the following:

• Multi-layer neural networks allow incremental learning, in which the model’s knowl-

edge is continuously extended, more easily than the decision trees.

• The training time of the multi-layer neural networks is much longer than decision trees.

• The multi-layer neural networks predictions are generally as good as the predictions

produced by the decision trees, although they can perform better in certain cases.

Given the aforementioned potential for MLP performing better than RF, we used MLP with

20 hidden layers in our experiments. We used Adam solver [65] for weight optimization,

since it is shown to perform well in terms of both training time and validation score for

large feature spaces. We also utilize ReLU as the activation function, 0.001 as the learning

rate, and 200 as the epoch size. For regularization, we use L2 norm with 0.0001 penalty

parameter. The hyperparameters are decided through grid search tuning.

Long Short-Term Memory (LSTM): LSTM is a recurrent neural network architecture. Unlike

the standard neural networks, LSTMs are capable of keeping track of long-term dependen-

cies in the input sequences using feedback connections. Such long dependencies are handled

through feature extraction in n-grams and tf-idf vectors for standard neural networks. LSTM,

on the other hand, handles dependencies internally, without requiring an explicit feature ex-

traction. LSTM is also particularly useful for capturing the order dependence in sequence

prediction problems. For LSTM, the input sequence can be a time series, a sentence from a

given language, or a text-like representation as in our application case. Fig. 3.8 depicts the

LSTM architecture employed in this work, where the input is directly passed through the
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LSTM layer with four hidden layers, and two fully-connected layers following the LSTM

layer. Each input sample (vector representation of an elevation profile for n-grams and tf-idf,

or individual values for the raw data) is passed through the LSTM unit. When all sample

vectors (or elevation values) are passed through the LSTM units, the final hidden state vector

is passed to the subsequent fully-connected layer. In the LSTM unit, hyperbolic tangent and

sigmoid (depicted as T and S, respectively, in Fig. 3.8) are used as the activation function.

For the fully-connected layers, ReLU and softmax activation functions are used, respectively.

Convolutional Neural Network (CNN): CNN is similar to neural networks in mechanism. Both

of them consist of neurons with learned parameters, weights, and biases. The improvement

of CNN, however, is in the form of convolution layers, which apply forward passes that de-

crease the amount of parameters of the neural network considerably. Convolution layers also

facilitate processing high-dimensional data, such as images. They prepare high-dimensional

data for fully-connected layer, which cannot process high-dimensional data efficiently, by

highlighting the important spatial features along the way.

In this study, we utilize two CNN architectures, differing in the convolution layers dimen-

sions. Fig. 3.9 illustrates the employed CNN architectures.

In the first architecture, we use two consecutive 2D convolution layers (CONV2D) along

with the ReLU activation function and MAX pooling layers (MAXPOOL) before a fully

connected layer (FCON). For both of the convolution layers, kernel, stride, and padding

sizes are determined as 5, 1, and 2, respectively, based on the performance. The distinctive

features are selected at the max-pooling layers with a kernel and a stride size of 2, which

reduce the dimensions from (32× 32) to (8× 8) at two passes.

In the second architecture, we used two consecutive 1D convolution layers (CONV1D) along

with the ReLU activation function. A dropout (DROP) layer is added to alleviate the overfit-

ting problem. Then, a max-pooling layer (MAXPOOL) and a fully connected layer (FCON)

are added.
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Figure 3.8: The architecture of the LSTM network consisting of an LSTM unit with four hidden
layers and two fully-connected layers. The input samples are passed through the LSTM unit in-
dividually and the last hidden state of the LSTM unit is forwarded to the fully-connected neural
network. The fully-connected neural network utilizes softmax activation at the output layer which
outputs the class probabilities.

For both architectures, the softmax function is used as an activation function at the output

layer and the Categorical Cross Entropy is used as a loss function. For parameters optimiza-

tion, we used the Adam optimizer.

Evaluation, Results, and Discussion

We performed experiments for each dataset, data representations, and threat models. We categorize

the evaluations into three: Raw, Text-like, and Image-like.

Raw. First, we performed evaluations on the raw data as a baseline. As the multi-class classifi-

cation models require fixed input shape, we divided the elevation profiles into equal-length (32)

chunks and use the raw data to train and test the models. For all datasets and threat models, we

used a slightly modified version of the soft voting ensemble method while testing with raw data.

Instead of passing a single input to different models, we passed the equal length chunks of a single
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Figure 3.9: The CNN architectures used for classification. A 1-D CNN is used for the one-
dimensional data representations, i.e., n-grams, tf-idf, and raw data. A 2-D CNN is used for the
image-like representation. The numbers in the figures depict the dimensions of the input through-
out the learning/prediction process.

elevation profile individually to a single model and decided the final prediction through soft voting.

Soft voting sums the predicted probabilities for each class label and returns the class label with the

highest probability as a final prediction.

Text-like. Second, we performed evaluations with text-like features: n-gram, and tf-idf. With

n-gram features, we performed experiments using 10-fold cross-validation and by fixing the di-

mension of n-grams to 5 for all datasets and associated threat models. With tf-idf features, we

performed 10-fold cross-validation and fixed the dimension of n-grams to 5 for all datasets and

threat models.

The user-specific dataset contains overlapped and repetitive portions by nature. In the Simula-

tions subsection, we simulated the same behavior on the mined datasets and performed the same
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Table 3.5: The overall evaluation results for TM-1. Accuracy (%) with different data represen-
tations and classification models. In this table, the following abbreviations are used: SVM: Sup-
port Vector Machine; RF: Random Forest; MLP: Multi-Layer Perceptron; C1D: 1D Convolution;
LSTM: Long Short-Term Memory. C column indicates the number of classes in the classification
problem. The following settings are used: 4-class = [WDC, ORL, NYC, SD], 3-class = [WDC,
ORL, NYC], 2-class = [WDC, ORL].

C raw data n-grams tf-idf
SVM RF MLP C1D LSTM SVM RF MLP C1D LSTM SVM RF MLP C1D LSTM

2 95.29 98.43 96.60 97.45 96.61 97.35 98.22 99.11 99.74 49.67 98.89 97.56 98.89 99.94 51.11
3 77.56 98.64 95.88 96.20 96.46 96.79 97.53 97.93 99.23 45.83 98.86 97.91 98.48 99.00 42.60
4 70.39 96.51 71.87 74.17 75.78 93.33 87.99 95.66 99.80 38.67 92.33 90.66 92.33 99.54 33.33

evaluations for comparison.

Image-like. For the experiments on the image-like representations, we employed three methods

in CNN: unweighted loss function, weighted loss function, and fine-tuning. In the unweighted and

weighted loss function evaluations, we split the test data from the dataset by considering the sample

size of the classes; we assigned probabilities for each class considering the inverse proportion

to its size and then randomly selected test data with the associated probabilities. In fine-tuning

evaluations, we performed 10-fold cross-validation at the last round where all the classes have the

same sample size.

Raw and Text-like Data Evaluation.

1 Evaluating TM-1. We trained and tested models with the user-specific dataset. As shown in

Table 3.2, the user-specific dataset has an unbalanced sample size across classes. To mitigate bias,

we use the same sample size for each class and change the number of classes at each step. The

evaluation results are shown in Table 3.5. Due to the limited number of samples, the accuracy

decreases as the number of classes increases. The only exception is C1D with n-grams and tf-idf.

One dimensional convolutions were able to capture the characteristics of elevation profiles even

with a limited number of samples. The results show 99.80% accuracy with C1D, n-grams and

4-class classification. With tf-idf and C1D, we obtained 99.00% and 99.94% accuracy with 3-class

and 2-class classification, respectively.
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Table 3.6: The overall evaluation results for TM-2. Accuracy (%) with different data representa-
tions and classification models. In the table, we use the following abbreviations: LA: Los Angeles;
MIA: Miami; NJ: New Jersey; NYC: New York City; SF: San Francisco; WDC: Washington, D.C.

raw data n-grams tf-idf
Cities SVM RF MLP C1D LSTM SVM RF MLP C1D LSTM SVM RF MLP C1D LSTM

LA 67.18 77.41 63.43 32.50 36.88 78.02 74.33 77.27 55.29 28.25 76.27 76.02 75.33 58.49 23.00
MIA 69.57 80.85 67.17 80.55 54.10 75.55 77.55 75.77 77.33 40.33 83.77 82.44 72.00 99.54 25.33
NJ 65.56 82.56 78.31 83.32 74.18 74.76 66.19 82.39 71.19 39.05 77.93 82.69 65.71 92.42 32.14

NYC 73.63 84.26 73.44 37.33 25.57 82.25 80.71 79.78 73.02 20.72 81.50 82.96 82.63 76.60 17.94
SF 65.92 74.66 65.89 42.21 32.53 74.71 76.15 80.25 54.08 25.88 76.13 75.71 74.71 58.07 27.92

WDC 53.08 77.30 60.44 64.01 56.05 76.13 70.63 67.20 89.61 58.74 75.44 74.34 55.50 85.24 51.62

LSTM gives better accuracy with raw data compared to the other text-like representations. LSTM

performs better on the data where the ordering is decisive. With the text-like representations,

the original ordering of the values is encoded disparately, thus LSTM could not extract much

information through the ordering.

For TM-1, RF also performs better with raw data. Since extracting features from the range and

the ordering of the values are less demanding for decision trees, it is reasonable to observe such

pattern.

Other classification methods, i.e., SVM, MLP and C1D, benefit more from the n-grams and tf-idf

features.

Since the user-specific dataset is compiled from actual users, exhibiting mobility patterns, about

35% of the routes are overlapped. In a repetitive and overlapped setting, both training and testing

splits may contain similar patterns leading to the high accuracy scores. The results prove that a

targeted attack on a person whose activity history is known will be successful with accuracy as

high as 99.80%.

2 Evaluating TM-2. While evaluating TM-2, the borough-level dataset is used. Individual models

are created for each of the cities, by labeling the data as the name of the corresponding borough and

evaluated separately. Similar to user-specific dataset, borough-level dataset also has unbalanced

sample size across the classes. To avoid biased results, we fix the sample size to that of smallest
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class for all classes. At each fold, we randomly select train and test data for the classes with more

sample. Table 3.6 shows the accuracy results of each model.

Los Angeles model reaches up to 78.02% accuracy with n-grams and SVM. Similar results are

obtained with other classification method and data representation pairs, such as raw and RF, n-

grams and MLP, tf-idf and SVM. For Los Angeles, C1D could not become prominent; less complex

models perform better on this dataset.

With Miami, we reach up to 99.54% accuracy with tf-idf and C1D. Overall, tf-idf is shown to be a

better representation for this particular dataset. Combining a complex model with a representative

feature, we achieved high accuracy.

For New Jersey, we achieve 92.43% accuracy with tf-idf and C1D. According to the results, tf-idf

features better represents the New Jersey dataset.

In New York City, we reach up to 84.26% accuracy with raw data and RF. When we examine

the dataset, we observed that the elevations fluctuate mostly between 13 ft and 95 ft. When such

small range is considered, the decimal digit precision plays an important role. Since we do not

discard any precision in the raw dataset, it is reasonable to have better accuracy with raw data.

Although the highest accuracy is obtained with raw data and RF, tf-idf is a better choice for other

classification methods.

In San Francisco, we achieve 80.25% accuracy with n-grams and MLP. Both text-like representa-

tions present similar accuracy patterns.

For Washington DC, we obtain 89.61% accuracy with n-grams and C1D. For both text-like rep-

resentations, C1D shows better performance than other methods.

Overall, we can clearly observe the difference between TM-1 results and TM-2 results. The two

main reasons for this performance gap are that (i) there is no overlapped or repetitive routes among

the mined segments in the borough-level dataset, and (ii) the elevation differences and elevation

sequences are not distinctive enough within a city to decide in which borough is the given test data
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Table 3.7: The overall evaluation results for TM-3. Accuracy (%) with different data representa-
tions and classification models.

C raw data n-grams tf-idf
SVM RF MLP C1D LSTM SVM RF MLP C1D LSTM SVM RF MLP C1D LSTM

3 61.53 88.99 64.29 82.53 56.15 76.70 78.04 77.20 65.23 33.92 85.22 81.33 81.81 65.99 33.20
5 73.14 93.00 73.53 65.65 70.11 80.33 78.67 79.53 53.92 20.28 86.18 82.78 84.11 52.38 20.11
7 77.58 94.94 80.60 52.58 64.98 85.22 84.73 84.82 43.50 13.86 88.59 88.01 87.27 48.14 14.23
8 80.60 95.98 80.50 44.57 67.55 84.77 84.85 85.12 43.79 14.03 87.19 86.24 86.55 50.28 12.50

10 83.72 95.36 84.11 40.81 59.20 87.46 87.78 87.12 31.22 16.95 89.48 87.99 88.41 43.86 12.56

is. The results of the simulated behavior will be discussed in the simulations subsection.

3 Evaluating TM-3. In TM-3 evaluations, due to sample size differences across the labels in the

city-level dataset, we follow the same procedure in TM-1 evaluations. Fixed number of samples

are randomly selected from each class for training and testing. Table 3.7 shows the results of the

evaluation. Per the reported results, we are able to predict the city of an elevation profile among

10 cities with an accuracy of 95.36%, among 8 cities with an accuracy of 95.98%, among 7 cities

with an accuracy of 94.94%, among 5 cities with an accuracy of 93.00%, and among 3 cities

with an accuracy of 88.99%. For TM-3, for all number of classes, we find the best performing

configuration as raw data and RF. When we look into the reason for the fact that raw data with RF

outperforms every other configuration, we observe that the elevation range of the different classes

in this dataset plays an important role, similar to TM-2: NYC. Decision trees in RF are able to

capture the features from the first hand, without any representation needed in the middle.

When we consider the text-like representations, we observe that tf-idf features better represent the

dataset. The success of the city-level estimations, when compared to the borough-level estimations

(TM-2), is due to the elevation range and sequence differences across cities, which is reasonable,

even though the dataset is mined in a similar fashion as in the borough-level dataset. This mining

indicates that the city-level dataset also does not contain comprehensive, repetitive, and overlapped

samples. The results of the simulated evaluation will be discussed in the following.

Simulation: Raw and Text-like Data Evaluation. The mined datasets do not contain overlapped
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Figure 3.10: Some selected simulation results of TM-2 and TM-3. The maximum achieved accu-
racy results are compared.

or duplicate samples as in the user-specific dataset. In this set of evaluations, we simulate over-

lapped mined datasets and perform evaluations under the same threat models.

Simulation of TM-2. For the city-level estimation evaluations, we rebuild a simulation dataset

with a 30 − 34% overlap ratio for each region within the cities. The same evaluation procedures

are then followed as the original mined dataset, which is 10-fold cross-validation with a fixed n-

grams size of 5. Figure 3.10(a) and Figure 3.10(b) show the comparison between the best achieved

result in original evaluation and the best achieved result in the simulations. The increase in the

accuracy confirms our previous hypothesis that having overlapped route samples would increase

the accuracy. Since the mined dataset is not specific to any target user’s mobility pattern, it is

anticipated to result in less accuracy than the TM-1 evaluation accuracy scores.

Simulation of TM-3. For TM-3’s simulated evaluations, we rebuild a simulation dataset with a

35% overlap ratio for each city and performed the same evaluation with 10-fold cross-validation

and 5-grams. Figure 3.10(c) shows the comparison of the best achieved accuracy results in original

evaluations and simulations. As expected, the accuracy is increased in the simulations proving our

previous hypothesis that having similar patterns in a dataset affects the success of the attack.

Image-like Data Evaluations. In this set of evaluations, we perform experiments on the image-

like representations of the data. Since the original data is unbalanced, the dataset built with the
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image-like representation also inherits the problem. In this section, we explain the methods to

avoid bias due to unbalanced dataset and discuss the associated results.

Dealing with Unbalanced Dataset. There are various methods to deal with unbalanced dataset, in-

cluding downsampling, oversampling, and creating synthetic samples from existing ones. Among

these methods, downsampling and oversampling are the easiest ones to explore, although down-

sampling leads to losing a great amount of data, and oversampling raises the chances of getting

lower accuracy as the misclassified duplicated samples increase the false ratio. Therefore, we

explore other alternatives: (i) weighted loss function and (ii) fine-tuning with different samples.

Weighted Loss Function. For the unbalanced dataset, we utilize a weighted loss function while

training the CNN and use all the data in the dataset. By assigning a class weight that is inversely

proportional to the sample size of the class, we signify samples of small classes while calculating

the loss, thus their effect does not easily wear off.

Fine-Tuning with Different Samples. Fine-tuning is a common technique in deep learning and is

used for re-training a complex pretrained model with another dataset. To address the unbalanced

dataset, we take advantage of fine-tuning in a different manner. Namely, we introduce rounds

and create a set of small datasets from the unbalanced datasets for each round. As illustrated in

Fig. 3.11, several small and balanced datasets are created by randomly selecting samples. For

each consecutive round, samples of one or more classes are discarded, and the round dataset is

created from the remaining classes. After round dataset creation, the model is trained with the

round dataset that contains the least number of classes, i.e. the lattermost created round dataset.

At each step, the model is re-trained using the same or different hyperparameters until all the

rounds expire. The dataset ordering of the rounds is reversed since the impact of the smallest

dataset would wear off if the model is trained with the same order of round dataset creation, which

conflicts with the whole idea. As illustrated in Fig. 3.12, while re-training, the parameters of the

previous model are passed to the model of the next round. The hyperparameters of each round

can be tuned accordingly. For instance, for the last round, where we include all of the classes, the

40



𝒙𝟏 samples

𝐜𝟏

𝒙𝟐 samples

𝐜𝟐

𝒙𝟑 samples

𝐜𝟑
1st Round

𝟑 × 𝒙𝟑
samples

Unbalanced Dataset

2nd Round

𝟐 × 𝒙𝟐 − 𝒙𝟑
samples

3rd Round

𝒙𝟏 − 𝒙𝟐 − 𝒙𝟑
samples

(optional)

Round Creation
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Figure 3.12: An illustration of the fine-tuning pipeline for an unbalanced dataset of three classes.

learning rate is reduced to find the loss minima.

To evaluate our attacks on the image-like data, the elevation profiles are converted into a dataset

of images and rounds using the configurations and steps discussed above. Table 3.8 highlights the

maximum achieved prediction accuracy along with comparisons with other methods.

Weighted vs. Unweighted Loss Function. To observe the impact of the weighted loss function,

we conduct evaluations without giving any weight to the classes in the loss function while using

an unbalanced dataset. We note that the unweighted loss function evaluation results are biased

due to the unbalanced dataset. Table 3.8 shows the maximum achieved accuracy for each dataset

and method. Even though the weighted loss function evaluation results are biased, which seems

successful in outputting the largest class used during training and testing, the biased results remain

behind 4 evaluations out of 8. In TM-1 and TM-3, the accuracy scores of unweighted and weighted
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Table 3.8: Comparison of maximum achieved accuracy across different methods. The Unweighted
Loss (UWL) column is not considered while deciding the maximum accuracy, as the results are bi-
ased. The maximum accuracy of each evaluation is written bold, the results that are not considered
are written italic.

Raw Text-like Image-like

Methods
n-grams/

tf-idf
UWL

(biased) WL FT

TM-1 96.51 99.94 96.98 95.23 87.93
TM-2: LA 77.41 78.02 68.85 68.39 63.63
TM-2: MIA 80.85 99.54 88.96 86.80 62.50
TM-2: NJ 83.32 92.42 93.45 79.42 57.14
TM-2: NYC 84.26 82.96 74.20 79.37 72.79
TM-2: SF 74.66 80.25 67.20 78.70 65.38
TM-2: WDC 77.30 89.61 62.79 70.28 71.50
TM-3 95.36 89.48 92.51 92.82 89.00

Table 3.9: The fine-tuning results for TM-1 and TM-3 as the epoch size changes.

TM-1 TM-3
Epoch Size 500 1000 2000 500 1000 2000
Accuracy 79.31 87.96 82.73 86.04 89.00 87.85

Recall 55.87 67.54 63.12 29.76 45.34 38.91
Specificity 86.33 92.65 88.46 92.27 93.98 93.29
F1 Score 58.62 68.25 63.37 36.23 45.45 41.12

loss functions are considerably close. Thus, we conclude that the weighted loss function improved

the prediction performance primarily for TM-2.

Fine-tuning vs. Weighted Loss Function. For the fine-tuning evaluations, round datasets are

created from the original data. For TM-1, with 4 classes, 3 rounds are created. For TM-3, with

10 classes, 5 rounds were created by eliminating 1, 2, 1, and 2 classes at each round, respectively.

The dataset of TM-2 can be considered as a compilation of the dataset of 6 cities: Los Angeles (3

rounds), Miami (3 rounds), New Jersey (2 rounds), New York City (4 rounds), San Francisco (2
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Table 3.10: The fine-tuning results for TM-2 as the epoch size is 1000 and learning rate is 0.001
for all rounds.

LA MIA NJ NYC SF WDC
Accuracy 63.61 62.52 57.13 72.84 65.34 71.55

Recall 28.02 25.66 40.03 18.15 30.76 73.27
Specificity 75.84 75.97 66.75 83.43 76.35 73.22
F1 Score 28.83 28.64 37.55 18.46 31.47 73.44

rounds), and Washington DC (1 round). Even though the main idea is to use all the data we have,

we decided to downsample the classes with a large sample size. For instance, in the evaluation

of TM-2: New York City, the biggest class has 5,455 samples where the second biggest class has

960 samples. In such cases, we did not create an additional round for only one class as this round

would have a strong influence over the predictions, i.e. overfitting.

Table 3.8 shows the fine-tuning method outperformed the weighted loss function method only for

TM-2: WDC. The difference between the fine-tuning evaluation of Washington DC and others is

that we were able to create only one round from the data. Overall, according to the results shown

in Table 3.9 and Table 3.10, the fine-tuning evaluation is not as successful as the weighted loss

function evaluation, since we still lose some data while creating rounds.

Text-like vs. Image-like Evaluations. When we compare text-like and image-like representations,

we can conclude that text-like representation is a better choice for such attack. For all evaluations

except TM-3, text-like representation outperformed image-like representation. For TM-3 and TM-

2:NYC, the raw data and RF configuration is the best choice.

Countermeasures

Having proven that sharing the elevation profile introduces a threat for users’ location privacy, we

offer four techniques to bypass this risk while maintaining the key role of elevation profiles, which

is demonstrating the roughness, technicality, and difficulty of the routes as a measure of a workout.
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Obfuscation. Fitness applications can add an option to obfuscate the elevation profiles. This

obfuscation can (i) shift the elevation values up/down or (ii) rotate the signal left/right. For the

first option, as the relative elevations will remain the same, the changes will still demonstrate the

characteristics of the route. However, for the athletes caring about the oxygen levels associated

with the altitude, this solution might be applicable. The second option is most effective to the

routes that starts and ends at similar altitudes. When we consider a route that start at low altitude

and ends at high altitude rotating the signal right will change the technicality of the signal. The

elevation profile will show a strict incline, which is not the case.

Adding Dummy Events. Athletes that are mostly interested in showing the elevation gain rather

then the length of the route can insert dummy portions to the flat elevation profile segments to

confuse the prediction models. Fitness applications can automatize this process with offering

parameters such as, length of dummy events, altitude range of the dummy events etc.

Aggregation. For the athletes that wants to show the exact details of the route and maintain their

privacy, fitness applications can offer an option to aggregate the elevation profile. The aggregated

version can show the overall elevation range, the elevation gain, length of the route, duration,

velocity etc. Additionally, with the help of statistical measures, such as standard deviation, athletes

can show the technicality of the routes.

Summary of the Completed Work

In this work, we presented a new inference attack on location privacy using only elevation profiles

collected by wearable fitness trackers. The attacks are categorized into three types: predicting

location by knowing the activity history of the target, predicting the borough by knowing the city

of the target, and predicting the city of the target without any prior knowledge. The key contri-

butions of our work are proving the concept that hiding the route of a workout and sharing only

the elevation profile is not sufficient to preserve location privacy, defining a new attack surface

by creating scenarios for possible threat models, and providing a machine-learning approach to

44



realize such threat as attacks. To validate our attacks we created three datasets by collecting data

from athletes and mining data from a popular fitness tracking website and Google Elevation API.

We preprocessed the datasets by employing Natural Language Processing and Computer Vision

approaches and then employed classification techniques to predict the location from elevation pro-

files. En route, we defined three threat models and evaluated each of them individually on the

different datasets. As a result of the evaluations, we are able to identify the corresponding location

of an elevation profile with accuracy between 59.59% and 95.83%.
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CHAPTER 4: EXPLOITING ACOUSTICS FOR PRIVACY INFERENCE

THROUGH MODELLING

To keep up with the ever-growing user expectations, mass-market smartwatches are equipped with

different I/O mechanisms, e.g., motion sensors, touch screen, heart rate sensor, thermometer, mi-

crophone, speaker, etc. Such a range of input mechanisms brings about promising as well as

controversial aspects of smartwatches.

Despite the rise of smartwatches, personal computers (PC), including laptops, are still the most

essential electronic devices for many users. Per a survey by Statista (2017), 88% of respondents

(U.S.) stated they used a PC/laptop, either professionally or personally. The COVID-19 outbreak

pushed teleworking (i.e., “work from home”) and further boosted personal computers usage.

Both PCs and smartwatches are used for collecting and storing sensitive data of users [28, 34,

93, 98], and encryption is a commonly used for protecting such data on those devices. However,

I/O peripherals, such as keyboards, touch screens, and printers, which are used for the input and

output of unencrypted data, are a constant target of attacks. For example, various recent studies

have shown the privacy risk introduced by keyboard acoustic emanations and their use for inferring

sensitive data. While those attacks are alarming, several of them require a malicious microphone

to be planted by the adversary near the victim’s keyboard, limiting the practicality of those attacks.

Although using the victim smartphone’s microphones is ideal for capturing the acoustic emanations

and facilitating such attacks, the assumption is quite strong and often unrealistic, entailing that the

phone should be always in the same exact position or that the adversary must be able to position

or control the victim’s smartphone.

Motivated by those intricacies, this work explores the attack surface due to a victim’s smartwatch,

which addresses those shortcomings. Our contribution is SIA, an inference attack that is facilitated

This work has been published in Proceedings of the 20th Workshop on Workshop on Privacy in the Electronic
Society (WPES ’21) held in conjunction with The ACM Conference on Computer and Communications Security
(CCS) 2021.
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by keyboard acoustic emanations captured by a smartwatch microphone. The attack goal is to

recover characters typed by a victim using the keyboard acoustic emanations captured by the user’s

smartwatch. Obtaining the physical signals from the smartwatch microphones alleviates (or even

eliminates) the positioning problem introduced in the previous studies since the smartwatch is

typically near the physical keyboard, e.g., the user wears it while typing.

System and Threat Model

In this section, we review the details of the system model in which our attack is launched, and the

threat model, which characterizes the capabilities of the adversary under which the attack is viable.

System Model. In this paper, we assume a system that consists of a user typing on a keyboard

to input various texts, e.g., email addresses, passwords, etc., to a computer terminal. We also

assume that the user is equipped with a smartwatch that features a microphone. We note that the

overwhelming majority of smartwatches on the market today are equipped with microphones (e.g.,

Apple Watch, Fossil Gen 5 Carlyle, TechWatch Pro, Samsung Galaxy Watch, Huawei Watch 2,

etc.). We also assume that the user is equipped with a smartphone (although this assumption is

only necessary for rationalizing and demonstrating multiple attack avenues, it is not necessary for

the attack in the abstract).

Threat Model. In this paper, we assume an adversary that is consistent with assumptions made

in the literature concerning adversaries’ objectives and capabilities. Namely, the objective of the

adversary in our threat model is to infer what the targeted user in our system model is typing on

the keyboard by utilizing the acoustic signals associated with the keystrokes.

In our threat model setting, we assume that the targeted user types some passage, or username

password tuples while wearing the smartwatch. We consider two plausible scenarios for our threat

model, as shown in Figure 4.1: (i) the targeted user types a passage while wearing a smartwatch

that is infected by a malicious application with access to the microphone (Scenario 1), or (ii) the
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Scenario	1

Scenario	2

Figure 4.1: System and Threat Model Scenarios. Scenario 1 assumes an infected smartwatch for
data transmission, while scenario 2 exploits the acoustic emanations in a phone call.

targeted user is engaging with the adversary in a phone call while typing on the keyboard (Scenario

2). In both cases, we assume that the adversary and the targeted users are not in the same physical

space, which further emphasizes the power and versatility of the remote adversarial setting. In

Scenario 1, the smartwatch records the surrounding acoustic signals while the targeted user is

typing on the keyboard and uploads the recordings to a server maintained by the adversary. In

Scenario 2, the adversary and the targeted user are in a phone call where the targeted user talks

through the smartwatch and the adversary records the call.

Challenges. While our system and threat models are to a great extent consistent with the literature,

the fact that we use a physical keyboard and a smartwatch as the source and the recording devices,

respectively, bring about four challenges, as follows:

Challenge 1: The smartwatch mobility adds another layer of challenge, impacting the observed

signal quality and consistency.

Challenge 2: The difference in background noises creates an unknown factor that vastly affects

the prediction performance.
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Figure 4.2: SIA consists of four main stages: Noise Cancelling, Keystroke Detection, Key Identi-
fication, and Word Correction. Noise Cancelling takes the raw signal, cancels any ambient back-
ground noise or white noise (hiss) from the signal, and returns the clean signal. Keystroke Detec-
tion takes the clean signal and returns 200 ms windows encapsulating the keystroke events. Key
Identification takes the windows and predicts the associated characters. Word Correction takes the
predictions and corrects the misspelled words.

Challenge 3: Similar to Challenge 2, the changes in the environmental setting affects the acous-

tics scale, causing identification inaccuracies.

Challenge 4: The lower quality of the smartwatch microphones due to the space constraints en-

forced by the wearability influences the signal quality, which implicitly affects the predic-

tions.

In the Methodology section, we address those challenges.

Methodology

In this section, we introduce the methodology of SIA, followed for implementing the attack ob-

jectives in our threat model. Figure 4.2 demonstrates SIA’s pipeline. The attack takes a recording

denoted as raw signal as input, which is readily available to the attacker due to the above threat

scenarios and outputs a prediction of what is typed in the input recording by analyzing the sig-

nal. The attack pipeline consists of four main stages: Noise Cancelling, Keystroke Detection,

Key Identification, and Word Correction. We elaborate on each of those stages in the following

subsections.
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Noise Cancelling. Since the recording devices record every sound that exists in the environment,

they record the background noises, which affect the quality of the recordings. The type and struc-

ture of the noise depend on various external and internal factors, such as the ambient noises (ex-

ternal) and the quality of the recording equipment (internal). Especially the inferiority of a micro-

phone embedded in the smartwatch has the biggest influence on the background noises.

During our preliminary experiments, we observed that the alternations of the background noise

significantly affect the performance of the identification. Therefore, as a first step, we prepare the

data by cleaning any background noise. Two types of background noise exist, which we address in

the following: (i) the white noise (hiss) and (ii) other ambient noise in the environment, e.g., street

noises, computer fan noise, etc.

White Noise Cancelling. Our white noise cancelling algorithm utilizes the Fourier analysis where
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the fingerprint of the static background noise is structured using the spectrum of the pure tones in

the quiet parts of the recording.

First, the noise in the whole recording is filtered using the fingerprint of the background noise.

This fingerprinting is a crucial step, since cleaning the frequency bands of the white noise directly

from the recording also cleans the actual keystroke acoustics.

Figure 4.3 shows the spectrum of the white noise and the acoustics of a keystroke event. The

significant overlap in the frequency bands restrains us to directly crop the frequency components

structuring the white noise. Second, to facilitate processing, the recording is divided into segments

and the frequency spectrum of each segment is calculated. Third, the spectrum of each segment is

analyzed such that the volume of any pure tones that are no louder than the average levels obtained

in the fingerprint is reduced. This procedure is typically named as spectral noise gating.

More technically, in the first step of Noise Cancelling, the Fast Fourier Transform (FFT) using a

Hann window is calculated for each windowed segment of the recording. FFT requires data with

a certain length (2048). Therefore, the signal is divided into equal-length segments, which may

cause discontinuity around the edges. The Hann windowing corrects such discontinuities at the

edges of the segments before they are forwarded to the FFT. After having the spectrum (FFT of a

time-domain signal), statistics, including the mean power, are tabulated for each frequency band.

Those statistics and the sensitivity parameter determine a threshold for each frequency band. Gain

control for each frequency band is set such that if the sound exceeds the threshold, the gain is set

to 0dB, otherwise, the gain is set to the Noise Reduction parameter (e.g., -12dB), to suppress the

noise. Next, time smoothing is applied to obtain a smooth transaction over frequency bands. Then,

frequency smoothing is applied to avoid suppressing or boosting a single frequency in isolation.

Finally, the gain controls are applied to the FFT of the signal and the inverse FFT is applied,

followed by another Hann window. The output signal of each segment is combined to structure the

whole recording of which the noise is reduced.

Ambient Noise Cancelling. Due to the unpredictable nature of ambient noise, i.e., what quantity
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Figure 4.4: The maximum number of keystrokes, n, is computed considering the length of the
clean signal coming from Noise Cancelling stage. (a) A 10 ms window is slid over the clean
signal. (b) The spectrum energy, Ea, of each 10 ms windows wa is calculated. (c) The window-
energy tuples, (wa, Ea), are sorted in terms of the energy. (d) Starting from the most powerful 10
ms window, 200 ms windows, Wa, encapsulating keystroke events are created. Whenever a new
window is created, the subsequent 10 ms windows (wa+ε) , which are less powerful and overlaps
with it, are suppressed. (e) The n-most powerful 200 ms windows are fetched and sorted in time.
(f) Keystroke Detection returns a set of windows encapsulating the keystroke events.

of noise (what) and wherein the time domain it is injected (when), cancelling it is more challenging

than cancelling the white noise. In this part, we first manually locate the signal pieces where an

ambient noise profile is intertwined with keystrokes to answer the “when” question. For each piece,

the noise profile is structured as done with the white noise, which answers the “what” question.

The noise profile is then removed only from the corresponding signal piece. Hereafter, we refer to

the output of this stage by the “clean signal”.

Keystroke Detection. For Keystroke Detection, we locate the keystroke events in a clean signal, a

task that is possible using two observations: (i) a keystroke event yields two peaks, a hit peak and

a release peak, in the acoustic signal which lasts typically for 200 ms total together with the small

inactive portions at the start and the end [31,45,90,96,133], (ii) the acoustic signal emanated when

a key is pressed is more powerful than the one when the key is released.
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Based on these observations, we simplify the keystroke detection problem to finding the strong

peak observed in a keystroke event. Locating the strong peak suffices to locate a keystroke event

by encapsulating the hit peak with a 200 ms window. For the simplified version of the detection

problem, the solution is based on another observation: a typical hit peak lasts for only 10 ms.

Therefore, we slide a 10 ms window, w, over the clean signal and calculate the spectrum energy

E along the way, yielding a set of window-energy (wi, Ei) tuples (Part b in Figure 4.4). Then, the

maximum number of keystrokes, n, is calculated considering the typical duration of a keystroke

(200 ms), the typical pause duration (500 ms) between keystrokes, and the length of the recording.

Since the solution builds on the idea that the energy of a hit peak is greater than the other parts, it

is reasonable to assume that the windows with high energy are likely to contain the hit peak.

We capitalize on this observation by sorting the (wi, Ei) tuples in terms of the energy compo-

nent Ei (Part c in Figure 4.4). From this sorted list, energy_list, we start to form the ac-

tual 200 ms windows, Wi, encapsulating a whole keystroke event. However, we observe that the

energy_list may contain 10 ms windows that are encapsulated in a single 200 ms window. To

avoid creating multiple keystroke windows for a single keystroke, we use a suppression technique:

whenever a 200 ms window, Wi, is created, the suppression technique discards the 10 ms windows

that overlap with Wi from the energy_list (Part d in Figure 4.4). Once the number of 200 ms

windows, i.e., keystroke events, reaches n, the events are sorted in terms of the timestamps, and

the detection process is completed.

Key Identification. After locating the keystroke events, the next step is to find which signal be-

longs to which key. For that, we extract various discriminative features from the time-domain

signal and use a multi-class classifier to determine the key that is pressed as our outcome.

Feature Extraction. The most common feature candidates for audio are evaluated before deciding

which one is utilized. In the following, we consider the Fast Fourier Transform (FFT) coefficients,

Cepstrum coefficients, Mel-Frequency Cepstral Coefficients (MFCCs), and Chroma features.

FFT Coefficients: FFT is an optimized algorithm that computes the Discrete Fourier Transform
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(DFT) of a signal. DFT, implicitly an FFT, converts the input signals from their original

domain (typically time or space) to the frequency domain, where the FFT coefficients are the

coefficients of this frequency-domain representation. FFT coefficients signify the frequency

components, which is useful for associating similar signal structures.

Cepstrum: Cepstrum converts a signal in the time domain to a signal in the quefrency domain.

The quefrency domain is intuitively defined as the rate of change in the different spectrum

bands, and its formulation, for a signal f(x), is given as follows:

Cp = |FFT(log(|FFT(f(x))|2))|2. (4.1)

The inner FFT function in Equation 4.1 converts the signal to the frequency domain and the

outer FFT converts the frequency domain to the quefrency domain. The Cepstrum method

is effective for pitch detection in human speech. Since a keystroke event consists of peaks,

Cepstrum is a preferred candidate feature for our task.

MFCC: MFCCs are derived from the cepstral representation of a sound signal, i.e., Cepstrum.

MFCC differs from Cepstrum by the spacing of the frequency bands. In MFCC, the fre-

quency bands are spaced on the mel scale which approximates the human’s auditory percep-

tion. In Cepstrum, the frequency bands are linearly-spaced. In other words, with the mel

scale, the human perceptible portions of the audio are boosted and are made more distin-

guishable. MFCC is commonly used in speech recognition, music information retrieval, and

audio similarity measurements; its performance is proved to be successful on these tasks.

Since our classification is based on the similarity of the sounds, MFCC is an appropriate

feature candidate for our purpose.

Chroma: Chrome features, also known as the pitch class profiles, are most capable of providing

high-quality representation when pitches exist in the audio. Chrome features are particularly

powerful for music audio where the spectrum is projected onto 12 bins, i.e., 12 chromas.
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Table 4.1: A comparison of feature options for Key Identification in terms of True Positive Rate
(TPR). Mel-Frequency Cepstral Coefficients (MFCC) performed best for the task.

Feature FFT Cepstrum MFCC Chroma
TPR 0.07 0.70 0.85 0.37
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Figure 4.5: The Convolutional Neural Network (CNN) architecture employed during the classifier
selection. Three subsequent convolutional layers (CONV) with the depth of 16, 32, 64 are utilized.
Then, a MAXPOOL layer selects the maximum weights in the convolutions. Before the fully-
connected layer (FC), a dropout regularization is performed to avoid overfitting. The softmax at
the end of FC returns the class probabilities for the given input.

Chroma features are designed based on the observation that notes one octave apart are per-

ceived as similar. Therefore, knowing about Chroma even without the frequency information

can give us insights about the similarity. Although it is handy for music audio, it would still

give us some sense of similarity; thus, it is worth exploring as a feature for our purpose.

We conducted experiments on a small data sample and found out that MFCC stands out among the

other approaches discussed above (the results are shown in Table 4.1).

Multi-Class Classification. Once the features of the signal are obtained, the detection of the keys

associated with the signal is done by employing a machine learning algorithm in the multi-class

classification task. For our multi-class classifier, we considered multiple models, which ranged

from simple to more complex: logistic regression, support vector machine, multi-layer perceptron,

and convolutional neural network, which we review in the following.
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Logistic Regression (LR): LR explains the relationship between one dependent binary variable

and one or more independent variables. Although LR is a probabilistic model typically used

when the target (dependent variable) is binary, the idea behind it can be extended to the

multi-class classification using a one-vs-rest scheme, in which a classifier per class is trained

to return positive if the sample belongs to the class, and negative otherwise. LR assumes that

data from the different classes have no high correlation. In some cases where our data show

similar patterns, especially when the keys are in close proximity, LR is not an ideal choice

and comes second per our empirical results (Table 4.2).

Support Vector Machine (SVM:) SVM aims to find a set of hyperplanes that best separate classes

in the feature space by maximizing the margin from the hyperplane to the data points. SVM

is ideal for binary classification. Similar to LR, the one-vs-rest scheme is used to support

multi-class classification. We used the Radial Basis Function (RBF) kernel, and we set the

regularization parameter, which dictates the degree of importance given to misclassifications,

to 1.0. Since SVM outperformed the other classification methods, we employ SVM as the

multi-class classifier in our study.

Multi-layer Perceptron (MLP): MLP is the stepping stone to the deep learning area and is a

feedforward fully-connected neural network capable of solving complex problems. Using

non-linear activation functions, MLP can capture complex relations/patterns in data, which

is helpful considering our feature space. Although we used a quite deep architecture (100

hidden layers), MLP cannot provide an optimal recall for the task.

Convolutional Neural Network (CNN): CNN is one of the most advanced deep learning meth-

ods in the literature. With the help of convolutional layers, CNN can capture not only the

complex relations but also the temporal patterns in a given sample.

The CNN architecture used in this evaluation is demonstrated in Figure 4.5. First, the input

(MFCC features) is reshaped into a two-dimensional (2D) array. Three consecutive con-

volutional layers (CONV) are then applied to the input. Due to the enlarging depth in the
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Table 4.2: Comparison of different multi-class classifiers with MFCC features in terms of TPR.
Support Vector Machine (SVM) is the best classifier alternative.

Classifier LR SVM MLP CNN
TPR 0.83 0.85 0.73 0.73

convolutions, the architecture becomes more capable of capturing complex patterns in the

input. The kernel size of each convolutional filter is determined as (3 × 3) and the stride

is determined as (1 × 1). The following max pooling layer (MAXPOOL) then fetches the

most important portions of the features by selecting the maximum weights in (2× 2) kernel

with (1× 1) stride. Such a deep architecture has lots of weights/parameters which typically

lead to overfitting. To avoid overfitting, a dropout regularization [110] with 0.5 probability

is applied to the output of MAXPOOL. Next, the output of the dropout layer is flattened and

forwarded to the fully-connected layer (FC). Softmax at the end of FC computes the class

probabilities, and the most likely class is returned as the prediction. For all the applicable

layers, i.e., CONV and FC, the ReLU activation function is used. Adam [66] optimization

is utilized for training and the architecture is compiled with the Categorical Cross-Entropy

(CCE) loss function. CCE is the combination of a softmax (f(ŷ)) and cross-entropy loss:

f(ŷ)i =
eŷi∑C
j e

ŷj
CCE = −

C∑
i

yi log(f(ŷ)i), (4.2)

where y is the target vector, ŷ is the output of the model, C is the number of classes. CCE

loss is beneficial for multi-class classifications where the last layer is a softmax, and the

target vector can be represented as a one-hot vector.

Preliminary Results: We use those techniques for comparison, and our empirical results with

MFCC features (Table 4.2) showed that SVM performed better than any other algorithm for the

given classification task. Since MFCC features are frequency-domain features, the capability of

capturing temporal patterns could not give much of an advantage for our task. Therefore, CNN
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could not perform better when compared to others.

Word Correction. We observed that Key Identification stage may produce misspelled word pre-

dictions due to the signal similarities, especially between the keys are in close proximity. To further

improve the prediction accuracy, we added a Word Correction stage to the attack pipeline. We eval-

uated three methods for Word Correction: Simple Spell Checker, Machine Translation, and Next

Word Prediction. Each method is explained in the following.

Simple Spell Checker: In the simple spell checker (SSC) method, an algorithm based on the Lev-

enshtein distance is used to find permutations within an edit distance of 2 from the original

word [97]. Levenshtein distance (LD) [74] is a string metric that measures the difference

between two sequences. It counts the minimum number of single-character edits, such as

insertion, deletion, or substitution required to make two strings identical. After finding all

candidates within LD of 2, all permutations are compared to known words in a word fre-

quency list. Those words that are found more often in the frequency list are more likely the

correct results.

Machine Translation: In the machine translation (MT) method, we utilized one of the most ad-

vanced approaches in Natural Language Processing (NLP): Transformers. With the help of

transformers, the spell correction task is converted into a machine translation task, an NLP

task where two languages are automatically translated. For this, we used the xfspell [58]

tool. xfspell views the misspelled words and their correct versions as languages, and

trains the network accordingly. For training, the tool developer mined data from GitHub.

The commits correcting ‘typos’ are fetched and the so-called language datasets are built.

However, such training data yielded highly technical spell corrections. To avoid this bias,

the developer used the machine translation technique itself to enhance the datasets. By re-

versing the machine translation model, he provided correctly spelled English words and got

the misspelled version from the other end, and retrained the model.

Although this is in many ways a creative method for addressing this task, the misspelling
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errors we observed in the key identification predictions are unusual. For instance, the sample

‘CONCERNS’ can be predicted as ‘DLMCERNX’ where the mispredicted characters are

one-hop neighbors of the actual character. Such spelling errors may remain uncovered with

such a method. However, the idea is worth further exploration. To this end, we can slightly

modify the xfspell tool by providing different languages. The misspelled dataset can be

synthetically created by modifying the correct words. Then, the model can be retrained with

the correct and misspelled correspondences. We left this improvement as future work.

Next Word Prediction: The idea of using a next word (NW) prediction as a word correction

mechanism is based on the following observation: some word predictions are not misspelled,

but simply do not align with the context of the sentence. For example, the predicted sentence

“Thank toy for attending the call.” has no misspelled words. However, if the context is

considered, the word that does not align with the context can be predicted using the next

word prediction methods to convert the original sentence into “Thank you for attending

the call.” In this method, we utilized a state-of-the-art GPT-2 [102] language model as a

next word predictor. GPT-2 uses a unidirectional transformer model that is pretrained using

language modeling on a very large corpus of 40 GB of text data. We feed the predicted

words, wordi for all i, to the model sequentially and get the most likely next word wordni

from the model. If the likely next word produces a better score than the actual prediction,

we replace wordi with wordni . Otherwise, we keep wordi as it is. Although this method

corrects the out-of-context words, in some cases it can still decrease the overall accuracy of

the prediction. For example, for the predicted sentence “Please let me know if you have any

zlmcervx.”, this model outputs “Please let me know if you have any questions.”. For this

particular case, even though the new word completes the sentence by following the context,

it changes the word from “concerns” to “questions” which reduces the prediction accuracy.
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Evaluation

For our experiments, we collected three types of test data for two keyboards from two users, and

evaluated SIA pipeline, including Keystroke Detection, Key Identification, and Word Correction

stages. In the following, we elaborate on the data collection process and the experiments of the

pipeline stages.

Data Collection. We collected two sets of data: training data and test data, using various de-

vices, which we choose for their popularity. For both the training and test data collection, Sam-

sung Galaxy Watch Active 2, Apple Watch Series 6, and Samsung s10e Smartphone are used as

recording devices; a MacBook Air with Magic Keyboard (MBA) and a Bluetooth Magic Keyboard

(BMK) are used as the target keyboards. All used devices were among the best selling in 2021.

For data collection, we implemented a keylogger interface that logs the timestamp and key infor-

mation when a key is pressed. Using the timestamps, each keystroke event is encapsulated in a 200

ms window and the window is labeled with the key.

Two users are used to perform data collection, USER A and USER B, and they placed the key-

board in a convenient position. They wore the smartwatches on their left wrists and put the smart-

phone to the left side of the keyboards. There are no enforced constraints in terms of which side

they should wear/put the smartwatch/smartphone. The dataset and the keylogger can be found in

SIA Git Repository.

Training Data. In training data collection, for each keyboard-recording device combination, 45

pangrams are typed by a single user (USER A), acting as an adversary, and the acoustic emanations

are recorded. A pangram is a string that includes all alphanumeric characters (36 characters) in

the English language. The order of the characters is randomized in the pangrams. Therefore,

the transition movements from one key to another, which may affect the acoustic emanations, are

randomized implicitly. The training data is recorded in a quiet room, without any ambient noise.

The white noise is cancelled using the Noise Cancelling stage of the pipeline.
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Figure 4.6: The cumulative character-wise distribution of the test datasets. The colors on the keys
encodes the associated hand and finger.

Scaling is an important step for optimizing the learning process. The scale and distribution of the

data may be different for each sample. Differences in the scales across samples may complicate the

problem being modeled. For instance, large input values can result in large weights in the model.

Large weights make a model unstable - the model with large weights performs poorly during

learning and may have high sensitivity to the input values resulting in generalization errors. Thus,

before training, the training data is scaled using a MinMaxScaler and the scaler parameters are

saved for scaling the test data.

Test Data. Three types of test data for each target keyboard and each recording device are collected

from two users, USER A and USER B.

• E-mail: A randomly selected e-mail sample from Enron mail dataset [67]. The e-mail

consists of 213 letters and 42 words.

• Random Password: 32 randomly generated passwords of length 8. Hereafter, this data is

referred to as “Random”.

• Selected Password: 20 randomly selected passwords from the RockYou password dataset.

Hereafter, this type of data is referred to as “Selected”.

Figure 4.6 shows the character-wise distribution of the characters in the test dataset.
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Table 4.3: A comparison between different inference techniques (Clean Data + SVM / Noisy Data
+ LR) and evaluation methods (5-fold / Practical). In the practical evaluation, the test data recorded
in a different environment is used.

Reference Method 5-fold Practical
SIA Clean Data + SVM 0.99 0.85

Compagno et al. [45] Noisy Data + LR 0.94 0.53

The first user (USER A) participating in the test data collection is the same person collecting the

training data. Since the model in Key Identification is trained with the data collected from the same

user USER A, the experiments on the USER A’s test data are considered as user profiling. The

experiments on the USER B’s test data are considered as practical attack.

Unlike in the prior studies [45] where the evaluations are done with the k-fold cross-validation

techniques, we recorded our test data in a different room which demonstrates the practicality of the

attack. For example, Compagno et al. [45] collected a single dataset and directly evaluated the per-

formance using k-fold cross-validation without noise cancelling. For comparison, we implemented

their method and tested our data on it. Table 4.3 shows the empirical result of this comparison.

We observed that Compagno et al.’s method (Noisy Data + LR) does not work as well when the

test data is recorded in a different room (we label this recording as “Practical” in Table 4.3). Using

the k-fold cross-validation method is implicitly biased for such evaluation. Because the test split

contains very similar samples to the training split when the environmental acoustics are stable,

which is a very idealized environment setting/assumption and yields impractical experiments. Ta-

ble 4.3 also demonstrates that SIA outperforms Compagno et al. [45] (0.85 for SIA vs 0.53 for

their model). We emphasize that our better results in comparison with [45] are obtained in a more

practical system setting: Compagno et al. [45] has an advantage (strong assumption; weakness) in

the threat model, where they assume the recording device to be static and fixed in location (laptop

microphone). SIA, using the smartwatch, on the other hand, uses a moving recording device with

the user’s wrist, which affect the quality of the observed raw signals.
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Table 4.4: Keystroke detection results where the IoU threshold is 0.75. True Positive Rate (TPR),
False Negative Rate (FNR), and Precision (P) values for each test data (E-mail / Random / Se-
lected), recording device (Samsung Galaxy Watch Active 2 / Apple Watch Series 6 / Samsung
Galaxy s10e), and target keyboard (MBA / BMK) combinations.

Keyboard
(Recorder) Metric E-mail Random Selected

MBA
(Samsung Galaxy Watch Active 2)

TPR 0.994 0.996 0.994
FNR 0.006 0.004 0.006

P 0.900 0.988 0.900

MBA
(Apple Watch Series 6)

TPR 0.995 0.993 0.994
FNR 0.005 0.007 0.006

P 0.900 0.908 0.900

MBA
(Samsung Galaxy s10e)

TPR 0.994 0.988 0.988
FNR 0.006 0.012 0.012

P 0.855 0.941 0.895

BMK
(Samsung Galaxy Watch Active 2)

TPR 0.965 0.984 0.983
FNR 0.035 0.016 0.017

P 0.754 0.933 0.818

BMK
(Apple Watch Series 6)

TPR 0.985 0.974 0.980
FNR 0.015 0.026 0.020

P 0.754 0.943 0.907

BMK
(Samsung Galaxy s10e)

TPR 0.994 0.996 0.967
FNR 0.006 0.004 0.033

P 0.855 0.910 0.931

User Profiling. In this set of experiments, we trained the model in Key Identification with the

data recorded by USER A and used the USER A’s test data, i.e., USER A is the targeted user.

Such evaluation setting assumes an adversarial strength: the adversary has some knowledge about

the acoustic emanations of the targeted user’s unique typing style. In the following sections, we

elaborate on the evaluation of each stage of the pipeline.

Keystroke Detection. Keystroke Detection returns a set of windows, Wkeystrokes = {Wi}ni=1, and

those windows encapsulate the keystroke events. Given each ground truth keystroke event gtj in

GT = {gtj}Mj=1, and upon prediction, we associate each key tap segment Wi in Wkeystrokes with the

ground truth event gtj which is closest to Wi in time.
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For Keystroke Detection, as an evaluation metric, we used the intersection-over-union (IoU), which

is a common evaluation metric for temporal localization problems. IoU is a measure of the overlap

ratio between the detected and the ground truth keystroke events in time. For two keystroke events,

E1(t1, t2) and E2(t3, t4), where t1 and t3 are the start, t2 and t4 are the finish timestamps, and

t3 > t1, IoU between E1 and E2 is:

IoU(E1, E2) =
min(0, t2 − t3)

(t4 − t1)
∈ [0, 1]. (4.3)

When the events fully overlap, the IoU value is 1. This process produces a set of associations

(A) of keystroke events together with their IoU values. We then eliminate the associations with

IoU < 0.75 from A, where 0.75 is the IoU threshold that we set. (Typical IoU threshold is set as

0.5 in temporal localization problem—higher value means more overlap.) Following the common

evaluation methodology in temporal localization problems, we interpret the events in A as true

positives, Wkeystrokes \ A as false positives, and GT \ A as false negatives. Table 4.4 shows the

TPR, False Negative Rate (FNR), and Precision (P) of the Keystroke Detection on each dataset-

keyboard-recorder combinations.

Observations on Random Text: Users typically type relatively slower when typing random text,

since they have to keep track of the next character by looking at the display when knowledge of the

text is of very limited value. Therefore, the margin between the keystroke events is wider. When

two keystroke events are wide apart, the distinct gap in between two keystroke events facilitate the

keystroke detection. Therefore, the TPR in keystroke detection for the random dataset is generally

higher than the others. Overall, the low FNR, high precision, and TPR demonstrate the robustness

of the keystroke detection method.

Key Identification. In this section, we discuss our results for the Key Identification stage for all

devices and datasets. The Key Identification stage takes keystroke event windows W from the

Keystroke Detection stage and returns a string corresponding to the given keystroke events. Each

keystroke event window W is forwarded to the trained model and the most likely class is assigned
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to the window. For the Key Identification evaluations, we performed three sets of experiments: (i)

character-wise TPR for each keyboard and recording device, (ii) cross-entropy of the probability

distribution estimated by the model, and (iii) string-wise evaluations, where we calculated the TPR

and the Normalized Levenshtein Distance (NLD) for each recording device, keyboard, and test

dataset. Before discussing the results, we present the cross-entropy and NLD evaluation metrics.

Cross-entropy: The cross-entropy is a measure of the difference between two probability distribu-

tions for a given random variable. To evaluate the performance of our classifier, we used the

cross-entropy of the predicted probability distribution, f , relative to the actual distribution,

p. The cross-entropy formula is given as:

H(p, f) = −
∑
i

p(xi) log(f(xi) + ε) (4.4)

The ε value in (4.4) is used to avoid the undefined values yielded by log(0). For our evalua-

tions, we calculated (i) the cross-entropy between the probability distribution that our model

estimates and that of the actual distribution, H(p, fSVM), (ii) the cross-entropy between the

uniform distribution and the actual distribution,H(p, fu), and (iii) the cross-entropy between

the actual distribution and itself representing the ideal cross-entropy, H(p, p). H(p, p) is cal-

culated as a reference point for all other cross-entropy calculations.

Normalized Levenshtein Distance (NLD): As briefly mentioned above, LD is a string metric

that measures the difference between two strings. It measures the minimum number of edits

(insertion, deletion, or substitution) to make the strings identical. For our experiments, we

used its normalized variant as a string comparison metric. NLD is calculated by dividing the

LD between two strings (predicted and target) by the length of the target string.

Character-wise TPR: Figure 4.7 shows the character-wise TPR for each recording device and

keyboard. While computing the TPR for each character, the whole test data is concatenated into

65



1 2 3 4 5 6 7 8 9 0

Z X MNBVC

Q W POIUYTRE

A S LKJHGFD

1.00 0.890.92 0.85 1.00 1.00 0.89 1.00 1.00 1.00

0.86 1.001.00 0.86 0.96 1.00 0.95 0.86 0.91 0.92

0.98 1.000.85 0.75 1.00 0.82 1.00 0.94 0.97

1.00 0.751.00 1.00 1.00 0.88 0.94

(a) Samsung Galaxy Watch Active 2 — MBA

1 2 3 4 5 6 7 8 9 0

Z X MNBVC

Q W POIUYTRE

A S LKJHGFD

0.89 1.000.62 0.69 1.00 0.80 1.00 0.79 0.93 0.67

1.00 0.720.85 0.62 0.78 0.79 0.95 0.73 0.55 0.92

0.60 0.810.77 0.81 1.00 0.81 1.00 0.75 0.79

0.67 0.561.00 0.70 0.67 0.91 0.61

(b) Samsung Galaxy Watch Active 2 — BMK

1 2 3 4 5 6 7 8 9 0

Z X MNBVC

Q W POIUYTRE

A S LKJHGFD

1.00 0.560.69 0.92 1.00 0.70 0.78 0.79 0.86 0.67

0.86 0.760.85 0.86 0.78 0.58 0.65 0.82 0.91 0.83

0.86 0.530.92 0.88 0.80 0.86 0.80 0.81 0.69

1.00 0.810.88 0.90 0.56 0.84 1.00

(c) Apple Watch Series 6 — MBA

1 2 3 4 5 6 7 8 9 0

Z X MNBVC

Q W POIUYTRE

A S LKJHGFD

0.67 1.000.92 0.85 0.75 0.70 0.78 0.79 1.00 0.67

0.71 0.760.92 0.87 0.93 0.68 0.95 0.68 0.64 0.83

0.67 0.530.96 1.00 1.00 0.77 1.00 0.94 0.93

0.67 0.470.88 0.95 0.56 0.88 0.94

(d) Apple Watch Series 6 — BMK

1 2 3 4 5 6 7 8 9 0

Z X MNBVC

Q W POIUYTRE

A S LKJHGFD

0.89 1.000.62 0.69 1.00 0.80 1.00 0.79 0.93 0.67

1.00 0.720.85 0.62 0.78 0.79 0.95 0.73 0.55 0.92

0.60 0.810.77 0.81 1.00 0.81 1.00 0.75 0.79

0.67 0.561.00 0.70 0.67 0.91 0.61

(e) Samsung Galaxy s10e — MBA

1 2 3 4 5 6 7 8 9 0

Z X MNBVC

Q W POIUYTRE

A S LKJHGFD

0.44 0.670.85 0.77 0.75 0.90 0.67 0.79 0.86 0.50

1.00 0.830.62 0.78 0.56 0.58 0.85 0.64 0.50 1.00

0.63 0.690.77 0.69 0.90 0.76 1.00 0.56 0.55

0.83 0.620.88 0.60 0.56 0.84 0.72

(f) Samsung Galaxy s10e — BMK

Figure 4.7: Character-wise TPR obtained on the test data after Key Identification stage for every
keyboard model and recording device combinations. The colors encode the hand and finger used
for each key.

one big test dataset and forwarded to the model for prediction. Then, a 36 × 36 confusion matrix

is generated. From the confusion matrix, the TPR for each class, i.e., character, is computed.

Figure 4.7(a) shows the character-wise TPR for the MBA keyboard and Samsung Galaxy Watch

Active 2. The TPR values range from 0.75 to as high as 1.00, which demonstrates the success of

the attack on the MBA keyboard. Figure 4.7(a) also shows the location of each key and the colors

emphasize the finger that presses that key. The most successful predictions, with an average of

0.96, are done on the keys pressed with the left little finger, left index finger, right ring finger, and

right little finger. The least successful predictions are recorded with the left middle finger with an
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Table 4.5: Similarity measures for the keyboards. The average cross correlation of the key tuples
that are “most confused” and “never confused” by the keyboard models. BMK emanates more
similar acoustics than MBA.

MBA BMK
Most Confused 67895 104834

Never Confused 54219 80835

average of 0.86.

Figure 4.7(c) shows the character-wise TPR for the MBA keyboard and Apple Watch Series 6. The

TPR values range from 0.53 to as high as 1.00. The most successful predictions are done on the

keys pressed with the left little finger with an average of 0.93. The least successful predictions are

recorded with the right little finger with an average of 0.75.

Figure 4.7(b) shows the character-wise TPR for the BMK keyboard recorded by the smartwatch.

The results range from 0.55 to 1.00. The highest TPR, an average of 0.85, was observed with the

left index finger. The smallest TPR is observed with the right middle finger, with an average of

0.70.

The character-wise TPR for the BMK keyboard and Apple Watch Series 6 is shown in Fig-

ure 4.7(d). The TPR results range from 0.47 to 1.00. The highest TPR is observed with left

middle and ring finger with an average of 0.92.

When the used hands are considered, TPR for right hand (MBA→ 0.94, BMK→ 0.81) is slightly

higher than that of left hand (MBA → 0.93, BMK → 0.78). This is reasonable, because the

smartwatch is worn to the left wrist, and the location of the microphone does not change when the

right hand is in use.

MBA vs. BMK: When the character-wise TPR results are considered as a whole, we observed

that the attack performed better with the MBA keyboard than with the BMK keyboard. We claim

that such an outcome is expected when a keyboard emanates “similar” acoustic signal from the

different keys. To support this claim, we calculated the similarity between the keys using cross-
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Table 4.6: Cross entropy shows the difference between two probability distribution. Ideal column
is the cross entropy of the actual distribution (one-hot vector) with itself (ε = −1 × 10−9). Fre-
quency column is the cross entropy between the actual distribution and the frequency distribution
associated with each dataset (E-mail → English letter frequency, Random → Uniform distribu-
tion, Selected → Character distribution of RockYou leaked passwords) SIA column shows the
cross entropy between the actual distribution and the distribution estimated by our method.

Keyboard
(Recorder) Dataset Ideal Frequency SIA

MBA
(Samsung Galaxy Watch Active 2)

E-mail ε 39.77 0.66
Random ε 3.58 0.40
Selected ε 18.02 0.86

MBA
(Apple Watch Series 6)

E-mail ε 39.77 0.48
Random ε 3.58 0.98
Selected ε 18.02 0.92

MBA
(Samsung Galaxy s10e)

E-mail ε 39.77 0.65
Random ε 3.58 0.33
Selected ε 18.02 0.80

BMK
(Samsung Galaxy Watch Active 2)

E-mail ε 39.77 0.88
Random ε 3.58 1.20
Selected ε 18.02 0.96

BMK
(Apple Watch Series 6)

E-mail ε 39.77 0.73
Random ε 3.58 0.99
Selected ε 18.02 0.80

BMK
(Samsung Galaxy s10e)

E-mail ε 39.77 0.41
Random ε 3.58 1.79
Selected ε 18.02 1.10

correlation. To be able to compare the similarity, we calculated the similarity of (i) the key tuples

that are most confused by the models, and (ii) the average similarity between the key tuples that are

never confused by the model (Table 4.5). The similarity measurements on scaled data show that the

BMK keyboard (80835) emanates more similar acoustics when compared to the MBA keyboard

(54219). Our claim is further supported by the cross-correlation of the most confused keys. The

average similarity between the most confused keys is greater than that of the never confused keys.

Smartwatch vs. Smartphone: To compare the effect of the mobility introduced with the smart-
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watches, we performed the same evaluations with the data collected from the smartphone. In

principle, we notice that when the overall TPR averages are considered, the models performed

slightly better with the smartphone recordings than with the smartwatch. We note, however, that

two key reasons contributing to this performance improvement: (i) the smartphone is static in

position compared to the mobile smartwatch, (ii) the smartphone has a better recording quality,

as a result of a higher quality microphone compared to that of the smartwatch. In particular, the

smartphone is equipped with higher-grade microphones with a higher sampling rate (44.1 kHz)

than smartwatches (16 kHz). For a comparable setting and to mitigate the gap in the microphone

quality, we down-sampled the recordings from the smartphone and used them as our data source.

Moreover, we observed some differences in the background white noises between the recordings

coming from different devices. However, the Noise Cancelling stage of the pipeline is shown to

be useful in normalizing the signals by addressing the gap and reducing the differences. Since

we evaluated after eliminating the quality gap between recording using those steps, the increase in

TPR shows that the mobility of the recording device has a slight performance effect.

Cross-entropy: To observe how much the attack improves the entropy, we computed the cross-

entropy between the actual probability distribution, which is a one-hot vector (1 on the correct

class), and the probability distribution returned by the classifier (Table 4.6). The perfect match

with the actual distribution (“Ideal” column in Table 4.6) is a very small number ε. The Frequency

column in Table 4.6 shows different cross-entropy values for the different datasets considering the

character frequency for the corresponding domain. For the E-mail dataset, Uniform shows the

cross-entropy with the character probability distribution of the English language. For the “Se-

lected” dataset, it shows the cross-entropy with the character probability distribution against the

RockYou leaked password dataset. For the “Random” dataset, it shows the cross-entropy against

the uniform distribution. The entropy loss introduced with our method shows the severity of the

attack.

String-wise Evaluations: We also evaluated the predictions’ string-wise TPR against the ground

truth. Table 4.7 shows the TPR, TPR with one-hop, NLD, and NLD with one-hop for each dataset,
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Table 4.7: String-wise evaluation results of Key Identification for all device-keyboard-dataset
combinations. The predictions obtained from Key Identification stage are compared with the
ground truth strings.

Keyboard
(Recorder) Dataset TPR TPR

(1-hop) NLD NLD
(1-hop)

MBA
(Samsung Galaxy Watch Active 2)

E-mail 0.918 0.988 0.065 0.009
Random 0.972 0.992 0.025 0.007
Selected 0.878 0.939 0.110 0.055

MBA
(Apple Watch Series 6)

E-mail 0.750 0.889 0.201 0.089
Random 0.886 0.968 0.107 0.029
Selected 0.773 0.905 0.205 0.090

MBA
(Samsung Galaxy s10e)

E-mail 0.901 0.971 0.079 0.023
Random 0.980 1.000 0.018 0.000
Selected 0.933 0.966 0.060 0.030

BMK
(Samsung Galaxy Watch Active 2)

E-mail 0.796 0.918 0.164 0.065
Random 0.812 0.921 0.177 0.073
Selected 0.679 0.834 0.290 0.150

BMK
(Apple Watch Series 6)

E-mail 0.750 0.906 0.201 0.075
Random 0.878 0.965 0.114 0.033
Selected 0.817 0.928 0.165 0.065

BMK
(Samsung Galaxy s10e)

E-mail 0.901 0.976 0.798 0.018
Random 0.777 0.929 0.210 0.066
Selected 0.442 0.712 0.505 0.260

device, and keyboard model. The choice of one-hop is not arbitrary. During our experiments,

we observed that some of the mispredicted letters are within the one-hop distance with the actual

key (on the keyboard layout). This is reasonable since the acoustic emanations coming from keys

within close proximity are similar to one another. To understand to what extend the mispredictions

caused by the proximity affect the performance, we also computed the one-hop variations of the

string measures. We found that the average improvement in the TPR of MBA is 7.8%, where that

of the BMK is 20.1%. We can interpret these values as a measure of the confusion among the keys

nearby. The high TPR improvement for the BMK further supports our claim that BMK emanates

more similar acoustics.

Since the success of the keystroke detection propagates to the subsequent stages and keystroke

detection performs better on Random, the TPR of Random is generally higher than the others.
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Table 4.8: String-wise evaluation results of Word Correction on E-mail dataset for all device-
keyboard-method combinations. The output of Word Correction stage is compared with the ground
truth strings.

Keyboard
(Recorder) Method TPR TPR

(1-hop) NLD NLD
(1-hop)

MBA
(Samsung Galaxy Watch Active 2)

None 0.918 0.988 0.065 0.009
SSC 0.970 0.988 0.023 0.009
MT 0.953 0.994 0.037 0.004
NW 0.866 0.936 0.112 0.053

MBA
(Apple Watch Series 6)

None 0.750 0.889 0.201 0.089
SSC 0.936 0.982 0.051 0.014
MT 0.831 0.924 0.136 0.061
NW 0.924 0.971 0.061 0.023

MBA
(Samsung Galaxy s10e)

None 0.901 0.971 0.079 0.023
SSC 0.959 0.988 0.033 0.009
MT 0.970 0.994 0.023 0.004
NW 0.912 0.965 0.070 0.028

BMK
(Samsung Galaxy Watch Active 2)

None 0.796 0.918 0.164 0.065
SSC 0.877 0.930 0.023 0.009
MT 0.970 0.988 0.023 0.009
NW 0.872 0.953 0.103 0.037

BMK
(Apple Watch Series 6)

None 0.750 0.906 0.201 0.075
SSC 0.895 0.970 0.084 0.023
MT 0.936 0.976 0.084 0.023
NW 0.970 0.976 0.023 0.018

BMK
(Samsung Galaxy s10e)

None 0.901 0.976 0.798 0.018
SSC 0.965 0.971 0.028 0.023
MT 0.970 0.988 0.028 0.023
NW 0.918 0.982 0.065 0.014

Word Correction. We used the three methods for word correction. Word Correction stage is only

applicable for the E-mail dataset since other datasets do not include actual English words. Table 4.8

shows the performance improvements of the word correction methods. SSC and MT improved the

prediction’s TPR in all cases. However, NW is shown to decrease the TPR in some cases, for

the reasons highlighted earlier: since NW may replace the misspelled word (e.g., “nusiness” for

“business”) with another word (e.g., “work”) fitting in the sentence context, it may decrease the

TPR in some cases, leaving some room for improvements.
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1 2 3 4 5 6 7 8 9 0

Z X MNBVC

Q W POIUYTRE

A S LKJHGFD

0.89 0.560.85 0.69 1.00 0.64 0.67 1.00 0.50 0.82

0.86 0.900.92 0.78 0.85 0.80 0.75 0.77 0.77 0.83

0.77 0.930.38 0.62 0.70 0.81 1.00 0.94 0.97

0.92 0.690.50 0.80 0.70 0.41 0.94

(a) MBA — Samsung Galaxy Watch Active 2

1 2 3 4 5 6 7 8 9 0

Z X MNBVC

Q W POIUYTRE

A S LKJHGFD

1.00 0.890.85 0.77 0.88 0.90 1.00 0.86 1.00 0.33

0.86 0.830.62 0.65 0.67 0.89 0.95 0.86 0.50 0.67

0.70 0.870.58 0.75 0.80 0.90 0.40 0.94 0.62

0.75 0.881.00 0.50 0.33 0.75 0.78

(b) BMK — Samsung Galaxy Watch Active 2

1 2 3 4 5 6 7 8 9 0

Z X MNBVC

Q W POIUYTRE

A S LKJHGFD

0.67 0.780.62 0.85 0.88 0.80 0.89 0.71 0.86 0.83

0.43 0.550.46 0.65 0.67 0.63 0.70 0.59 0.36 0.75

0.68 0.940.41 0.38 0.60 0.76 0.60 0.88 0.83

0.58 0.810.75 0.60 0.44 0.66 0.50

(c) MBA — Apple Watch Series 6

1 2 3 4 5 6 7 8 9 0

Z X MNBVC

Q W POIUYTRE

A S LKJHGFD

0.56 0.440.92 0.46 0.38 0.60 0.78 0.71 0.93 0.50

0.57 0.760.92 0.68 0.67 0.68 0.60 0.68 0.68 0.92

0.77 0.530.44 0.76 0.50 0.71 1.00 0.75 1.00

0.58 0.940.75 0.70 0.78 0.97 0.78

(d) BMK — Apple Watch Series 6

Figure 4.8: The character-wise evaluation results for the practical attack.

Practical Attack. In this section, we introduce the results of a practical instance of SIA. The result

of the practical attack demonstrates the applicability and generalizability of the attack to arbitrary

individuals. For this attack, we trained the model using the training data recorded by USER A and

used the test data collected from USER B as the test data. In such setting, USER A acts as the

adversary targeting USER B.

First, we forwarded the test data through the attack pipeline. The background noises are can-

celled, and the keystroke events are detected. The MFCC features of each signal associated with a

keystroke event are then extracted. The MFCC features are then scaled using the MinMax scaler

parameters of the training data collected from USER A. Then, the features are forwarded to the

SVM model in the Key Identification stage that is previously trained with the data of USER A. The

predictions of the Selected and Random test data are obtained after the Key Identification. Finally,

E-mail test data is forwarded to the Word Correction stage and the last predictions are obtained.

The evaluations of each stage of the pipeline are elaborated on below. For this set of experiments,

the same evaluation metrics explained in User Profiling section are utilized.
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Table 4.9: The cross-entropy changes for the practical attack.

Keyboard
(Recorder) Dataset Ideal Frequency SIA

MBA
(Samsung Galaxy Watch Active 2)

E-mail ε 39.77 1.19
Random ε 3.58 1.29
Selected ε 18.02 1.09

MBA
(Apple Watch Series 6)

E-mail ε 39.77 2.15
Random ε 3.58 2.25
Selected ε 18.02 2.55

BMK
(Samsung Galaxy Watch Active 2)

E-mail ε 39.77 1.29
Random ε 3.58 1.12
Selected ε 18.02 1.18

BMK
(Apple Watch Series 6)

E-mail ε 39.77 1.91
Random ε 3.58 1.91
Selected ε 18.02 2.06

Keystroke Detection. The performance of the Keystroke Detection for the practical instance of

SIA was almost identical with the results provided earlier in Table 4.4— we achieved about 0.98

in terms of average TPR. Therefore, we did not include another table for the Keystroke Detection

evaluations.

Key Identification & Word Correction. Figure 4.8 demonstrates the character-wise TPR for the

practical attack. When we compare the results in Figure 4.7 and Figure 4.8, we observe a slight

decrease in the overall TPRs for the BMK (0.798→ 0.764) and a relatively large decrease for the

MBA (0.937→ 0.776). The difference between the unique typing styles of the subjects leads to a

decrease in the detection performance. Table 4.9 shows the cross-entropy decreases through the

practical attack. Although the decrease is not as much as in Table 4.6, we are able to significantly

reduce the difference against the actual probability distribution. The reduced difference can be

utilized to further reduce the search space.

Table 4.10 shows the string-wise evaluations for each dataset—after Key Identification. Table 4.11

shows the string-wise evaluation results for each word correction method on the E-mail dataset.
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Table 4.10: String-wise evaluation results of Key Identification for all keyboard-dataset combina-
tions. The predictions obtained from Key Identification stage of the practical attack are compared
with the ground truth strings.

Keyboard
(Recorder) Dataset TPR TPR

(1-hop) NLD NLD
(1-hop)

MBA
(Samsung Galaxy Watch Active 2)

E-mail 0.761 0.930 0.192 0.056
Random 0.769 0.921 0.217 0.073
Selected 0.762 0.933 0.215 0.060

MBA
(Apple Watch Series 6)

E-mail 0.686 0.767 0.253 0.187
Random 0.675 0.777 0.306 0.210
Selected 0.607 0.657 0.355 0.310

BMK
(Samsung Galaxy Watch Active 2)

E-mail 0.680 0.877 0.258 0.098
Random 0.792 0.949 0.195 0.047
Selected 0.758 0.912 0.210 0.070

BMK
(Apple Watch Series 6)

E-mail 0.697 0.831 0.244 0.136
Random 0.758 0.859 0.225 0.129
Selected 0.696 0.784 0.275 0.195

When comparing Table 4.10 and Table 4.11 with Table 4.7 and Table 4.8 respectively, we can ob-

serve a decrease in the TPR; i.e., as observed in the character-wise TPRs. However, the difference

between the tables is reduced when the one-hop variances are considered. This shows that, in the

practical attack, most of the mispredicted characters are within the one-hop distance of the cor-

rect character. This observation gives some hints about the mispredicted characters, which further

reduces the search space.

Countermeasures

Having shown that SIA can successfully infer what a victim user is typing on a physical keyboard,

we outline some possible countermeasures for the attack scenarios SIA covered.

Dynamic Access Control for Smartwatches. The main assumption for Scenario 1 is having an

infected smartwatch that records the acoustics. To prevent a malicious software in smartwatches
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Table 4.11: String-wise evaluation results of Word Correction on E-mail dataset for all keyboard-
method combinations for practical attack. The output of Word Correction stage is compared with
the ground truth strings.

Keyboard
(Recorder) Method TPR TPR

(1-hop) NLD NLD
(1-hop)

MBA
(Samsung Galaxy Watch Active 2)

None 0.761 0.930 0.192 0.056
SSC 0.848 0.959 0.122 0.032
MT 0.819 0.953 0.145 0.037
NW 0.837 0.947 0.131 0.042

MBA
(Apple Watch Series 6)

None 0.686 0.767 0.253 0.187
SSC 0.848 0.895 0.122 0.084
MT 0.901 0.930 0.079 0.056
NW 0.884 0.919 0.093 0.065

BMK
(Samsung Galaxy Watch Active 2)

None 0.680 0.877 0.258 0.098
SSC 0.790 0.918 0.169 0.066
MT 0.709 0.883 0.234 0.093
NW 0.734 0.878 0.214 0.098

BMK
(Apple Watch Series 6)

None 0.697 0.831 0.244 0.136
SSC 0.796 0.866 0.164 0.107
MT 0.784 0.854 0.173 0.117
NW 0.918 0.936 0.066 0.051

to constantly recording, smartwatches can support dynamic access control. Dynamic access con-

trol can check which application accesses which peripheral and notify the user for the suspicious

activities. Although this might not be applicable for current wearables due to battery constraints,

the decision mechanism can be offloaded to the smartphone that the smartwatch is connected.

Dynamic Internet Connection Control. Another assumption of Scenario 1 is that smartwatch

sends the recordings to the adversary via the Internet connection. The Internet connectivity of the

smartwatch applications can be monitored and in case of a suspicious activity, such as establishing

a connection with an uncertified server, the user can be notified.

Keys Emanating Homomorphic Acoustics. A more generic defense mechanism for the users

would be preferring keyboards emanating similar acoustics for each key. There has been some
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studies proposing such designs in the literature [31]. Having a uniform noise for all keys would

invalidate the inference attacks modelling the acoustic emanations.

Creating Synthetic Noise. Another way to prevent the keylogging attacks facilitated by acoustic

emanations is concealing the actual acoustic emanations. Abhishek et al. [30] proposed emitting

certain background sounds through a speaker. They showed that, these sounds mask the actual

keystroke emanations and reduces the effect of keylogging attacks. However, this method de-

creased the usability and probably would not be applicable for Scenario 2, as the victim user will

turn off the background noise during a phone call. Additionally, they considered white noise as a

candidate for background noise, but as we are eliminating white noise, it would not be a candidate

countermeasure for SIA.

Instead, we propose different kind of white noise that introduces some sense of randomization.

Such randomized nature of the background noise would strictly reduce the effectiveness of noise

cancelling and inherently affects the performance of the key identification.

Raising Awareness for the Users. Raising the awareness would be the most effective counter-

measure for such attacks. Smartwatches can detect the typing activity and send a notification that

warns the user to avoid phone calls engaged through smartwatch. Such notification can also list

the applications utilizing the microphones to further draw attention.

Summary of the Completed Work

In this work, we demonstrated a keylogging attack framework through the acoustic emanations

captured by a smartwatch—SIA. We proposed a system and threat model supported by two plau-

sible attack scenarios. The threat model leverages the smartwatch microphone as a recorder and

collects data of the acoustic emanations of a physical keyboard. By neutralizing the effect of back-

ground noises, which vary depending on the environmental settings, we lay a base for a robust

identification framework. We then utilize digital signal processing techniques to locate keystroke
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events in data and extracted the most descriptive feature among the alternatives; MFCC. MFCC

features are then scaled and forwarded to the best performing learning technique (SVM) for iden-

tification. Finally, we further increased our prediction accuracy using various state-of-the-art NLP

techniques. We performed two types of experiments: user profiling and practical attack. With user

profiling, we are able to recover up to 98% of the typed text. For the practical attack, we are able

to recover up to 85% of the typed text. We conducted our experiments on popular devices and

verified the potential privacy leakage. We believe the high accuracy and the practicality of such an

attack should be yet an alarming tale to smartwatch users regarding the privacy issues introduced

with the integration of new technologies into our daily lives.
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CHAPTER 5: EXPLOITING GEOMETRIC PROJECTIONS FOR

PRIVACY INFERENCE THROUGH MAPPINGS

Despite limitless benefits that AR/VR devices offer to consumers, new security and privacy risks

emerge from the fundamentally new interaction methods. As AR/VR devices get closer to end-

users, the community has put efforts into identifying and remedy potential risks. While HMD de-

vices are considered more secure because only the user can see the contents [79], recent work [69,

72, 80, 91, 106, 126] showed they bring risks in other respects.

The interaction methods with immersive platforms differ from the conventional methods on com-

puters and other smart devices by shifting towards more natural methods to offer a more convincing

perception [14, 57, 127–129, 131]. These methods include interaction through voice commands,

hand gestures, head movements, IMU rings, and remote controllers. For text entry, Microsoft

HoloLens uses head movements and hand gestures, Microsoft Hololens 2 uses air-tapping, and

Magic Leap 1 uses a remote controller to write on a virtual keyboard with a conventional layout

shown only to users.

Such novel input methods draw apart from their alternatives by not exposing the input flat. How-

ever, recent work [69, 80] shows that these methods are still vulnerable to inference attacks. Sun

et al. [112] present a method for recognizing in-air tapping on low latency AR/VR devices using

the on-device sensors. As a use case, they evaluated DolphinBoard, an in-air tapping text input

method, through a user study and found that the typing speed doubles when compared to the Mi-

crosoft HoloLens system keyboard, and the participants show a strongly positive attitude towards

DolphinBoard. Recently, after Microsoft released HoloLens 2, Microsoft started to support air-

typing through hand trackers embedded in the AR HMDs. Such developments in academia and

industry demonstrate that more natural interactions with the AR environment are up-and-coming.

This study presents and evaluates a keylogging inference attack on in-air tapping input entry meth-

This work has been published in IEEE Conference on Virtual Reality + 3D User Interfaces (IEEE VR) 2022.
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Figure 5.1: First person view of the AR keyboard and hand meshes operated by the user from the
Magic Leap 1.

ods by exploiting the geometric projections of the hands. Our attack leverages the observation that

hands follow specific patterns when tapping keys to achieve keystroke detection. By localizing the

keystrokes in time and space and interpreting the task as a temporal localization problem, we rig-

orously explore possible keyboard reconstructions from the key tap points and develop heuristics

to achieve best to worst ordering of the reconstructions. Our method avoids strong assumptions on

the positioning and size of the keyboard to account for AR/VR users’ freedom in configuring the

placement and the scale of virtual objects, which is an essential feature of AR/VR applications.

As we do not have direct access to in-air tapping keyboards in the wild, we developed our own

keyboard–AiRType for this work and performed the proposed inference attack on AiRType.

The research community envisions that the AR/VR technology will invade many new domains

and will be used by a large number of users ubiquitously, which makes understanding its potential

vulnerabilities both timely and critical.

System and Threat Models

System Model. “Virtual keyboard” is broadly used to cover different keyboard types, including
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on-screen keyboards driven with a mouse or by tapping on the touchscreen. Our study develops

a virtual keyboard for AR/VR HMDs and uses it by hand gestures, mimicking how keys on a

physical keyboard are tapped. We refer to our keyboard design as AR keyboard. Although the

keyboard design and our study also apply to VR, we mainly pursue AR environments, specifically

AR HMDs, which is essential in outlining our threat models while covering the VR context.

AiRType – AR Keyboard Design: In our keyboard design, the user attaches the AR keyboard to

some arbitrary location in the virtual environment, and the AR HMD tracks the user’s hands

by rendering models of the hands in the virtual environment. The AR HMD detects the

keystrokes by checking if a fingertip collides with a key in space. Figure 5.1 shows a first-

person view of AiRType and the right-hand mesh from Magic Leap 1. The keyboard size

is configured considering the visibility of all keys on the keyboard within the view range

of Magic Leap 1, and the size of hand meshes is set to match the user’s hand size. The

keyboard provides audio-visual feedback to compensate for the lack of tactile feedback in

the keyboard. When a key is tapped, a click sound is played, the key moves forward as if

pushed, the key color turns into green for a short period, then the key returns to its original

position gradually, imitating a conventional physical keyboard. The implementation and

design details of AiRType is elaborated in AiRType: AR Keyboard Design section.

Key Tap. A keystroke is defined as “a single depression of a key on a keyboard” [17], which

happens at a particular time instance. We define a key tap as a tapping gesture covering

the action of a fingertip reaching a key, pressing the key causing a keystroke, and springing

back to release the key. Unlike keystroke, a key tap takes time and can be defined using the

start and end times. Different from Leap Motion’s definition [18], which is similar to air tap

gesture on Microsoft HoloLens [15], the finger undertakes the selection and targeting. Thus,

we could label a key tap action with the start, keystroke moment, and finish. Two key taps

are temporally disjointed by design, and key tap actions are represented as non-overlapping

time windows.

80



(a) Scenario 1: The adversary
plants a hand tracker device and
records the victim’s hand move-
ments.

(b) Scenario 2: The adver-
sary sits near the victim and
records his hand movements us-
ing AR HMD.

(c) Scenario 3: The adversary
infects the victim’s AR HMD
and remotely obtains the track-
ing data.

Figure 5.2: Illustrations of the attack scenarios with varying adversarial capabilities.

Session. We define a session as the process of writing a text using the AR keyboard where it is

fixed in a user-selected position and scale. We assume the keyboard will have a fixed spatial

configuration during a session, although it may change between sessions.

Tracking. Hand tracking sensors provide spatial information (i.e., positions, angles) regarding

hands and fingers. For users to type on the AR keyboard and for the adversary to carry out

the attack, hand tracking data is essential. For users, hand tracking capabilities are built-in

in AR HMD, which is more practical in [14, 112]. For the adversary, the hand tracking data

comes from one of a few possible mediums. Each of those mediums provides the following

information: the tip positions of all fingers, the pointing directions of all fingertips, the

position of the palm center, and the palm normal. We refer to this information as the low-

level hand tracking data and simulate cases where such data is needed using the Leap

Motion Controller. We expect our approach to work with minor modifications even when

the low-level hand tracking data is not available precisely in the same format but with the

spatial information of the hands.

Threat Model. Our threat model considers a victim using the AR keyboard in AR HMD, where the

adversary’s goal is to infer what the victim types using the hand traces of the victim. To achieve

this goal, the adversary gains access to the victim’s hand traces through one of a few possible

mediums, each of which is covered in an attack scenario. Other than differences in the method
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used for collecting the hand tracking data, the three scenarios, depicted in Figure 5.2, share the

same procedure from the adversary’s perspective.

Scenario 1. In this scenario, the adversary plants a hand tracker device near a victim in a public

space, e.g., a coffee shop, and records his hand movements as he types in the AR key-

board. An example hand tracker device that the adversary might use is the Leap Motion

Controller [25], which is small (8x3x1.1cm) and can be easily hidden for a stealthy attack.

Although the off-the-shelf version of the controller needs to be tethered with a cable to a

PC, wireless tethering systems are available [13] and could be utilized to reduce the cable

connection burden the attack stealthier.

Scenario 2. In this scenario, the adversary wears an AR HMD device and sits near the victim,

possibly in a public space, to record the hand movements of the victim using the hand track-

ing feature of the adversary’s AR glasses. The attack assumes a ubiquitous use of AR HMD,

making it challenging to identify the adversary since no unusual hardware is used. For this

attack to succeed, the adversary needs to be close to the victim, where the attack is much

easier to carry out in context, e.g., two acquaintances in the same space, where one of them

might be curious what the other is typing.

Scenario 3. In this scenario, the adversary infects the AR glasses of the victim with malware, en-

abling the adversary to seamlessly read the data from the hand tracking sensor of the victim’s

AR glasses through the API of the AR glasses. One advantage of this scenario is that there is

no assumption of where the victim is located or the adversary’s proximity to the victim. As

such, the attack could be conducted remotely, at any time, from anywhere, without needing

to deploy any additional device near the victim. We should note that obtaining the sensor

readings is a more straightforward attack than reading the processed outputs of the keyboard

application. Malware can obtain the sensor readings using the device API stealthily; how-

ever, reading the keyboard’s processed output while running a separate task requires more

sophisticated malware. For example, assuming the gyroscope readings are available to the
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attacker does not mean that the attacker can directly read the keyboard’s output.

We should note that the adversary does not know the position of the AR keyboard in the victim’s

augmented reality environment since the users can change the position however they would like.

Therefore, for all adversarial scenarios, the sensor readings cannot enable the adversary to directly

reach the keyboard output by simply forwarding the sensor readings to the keyboard application. In

all scenarios, calibration between the coordinate system of the victim’s virtual environment and the

coordinate system of the virtual environment model of the adversary is needed. This requirement

is one of the main challenges we overcome in this study.

AiRType: AR Keyboard Design

AiRType is an in-air tapping keyboard that supports ten-finger typing experience. AiRType is

specifically designed for augmented and virtual reality HMDs, such as Magic Leap 1, Microsoft

Hololens, etc. AiRType renders the keyboard plane and two hand models as virtual objects in the

augmented environment. The targeting and selection of the keys in AiRType are done through the

hand models that mirror the user’s hands via hand tracking feature of AR HMDs.

In designing AiRType, we utilized the conventional US keyboard as our default layout. Fig-

ure 5.3(a) illustrates the default ratio of the keyboard size with the field-of-view of the AR HMD.

Although the position and the scale of the keyboard plane might change, we set the default depth

of the keyboard as one meter. In the default setup, we also set the size of the keyboard to 40 cm x

16.8 cm, and the size of the keys alphanumerical keys to 2.5 cm x 2.5 cm.

Augmented reality environments allow users to freely change the size of the virtual objects. As

such, we designed our keyboard to be mobile. Even though the actual size of the keyboard does not

change in this configuration, users can push the keyboard and hand models further to make them

smaller in the augmented environment. Figure 5.3(b) depicts an example of this use case. The user

here increases the keyboard depth with respect to the AR HMD to make it look smaller and pin it
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(a) Default Setup. Increasing the
field-of-view.

(b) Flexible Setup. Maximizing
the field-of-view.

(c) Overlapping Setup. More im-
mersive user experience.

Figure 5.3: Illustrations of possible positioning options of AiRType in the augmented reality en-
vironment.

to a position where it does not block any significant object in the real-world, e.g., the empty space

of the table.

Another configuration might be directly overlapping the hand models with the hands of the user

for more immersive experience. In this setting, the fingertips of the user directly touch the keys

in the augmented environment. However, as illustrated in Figure 5.3(c), this requires us to design

a large keyboard that occludes most of the real-world view. Irrespective of the decrease in the

field-of-view, our design does not restrict the user’s freedom of scaling, as users are free to scale

the AR objects in the virtual environment, and making the keyboard too small or too large has a

detrimental effect on the usability. A smaller keyboard makes it difficult to pick the correct key,

while a larger keyboard increases the distance the hands have to travel to touch the keys. Moreover,

with a too large keyboard, the keyboard may not fit into the AR HMD frame.

AiRType Implementation Details. To deploy AiRType for Magic Leap 1, we developed and built

a Unity3D application for Lumin OS, which is the custom operating system of Magic Leap 1. The

application consists of the keyboard, hand models, and an invisible controller.

Keyboard. The keyboard object consists of 42 cubes, each of which is an embedded collision

interface. The collision interface defines the actions triggered by the collision of fingertips with

the keys. To compensate for the lack of tactile feedback in the AR environment, AiRType provides

an audiovisual feedback. When a collision is detected on a cube, i.e., a user presses a key, the cube
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Figure 5.4: The position and orientation of coordinate systems of Magic Leap 1 (left) and Leap
Motion Controller (right) is different.

travels in, becomes green, play a “click” sound, put the associated character into the text box, and

returns back to its original position, sequentially.

Hand Models. Hand models are designed to be driven with the (x, y, z) coordinates or certain

points on hand, such as the fingertips, palm center, finger joints, etc., which come from the hand

tracking sensor. In the first version of the AiRType for Magic Leap 1, we utilized the hand tracking

information coming from the built-in hand tracker sensor. However, unlike Hololens 2, the current

hand tracking sensor of Magic Leap 1 does not provide a steady and sensitive hand tracking infor-

mation. To be able to successfully mirror the user hands in the AR environment, we needed more

robust hand tracking data. Therefore, and to facilitate a fair comparison and evaluation, instead of

using the data coming form the built-in hand trackers, we used the data obtained from the Leap

Motion Controller (LMC), a small sensor (7.6 cm x 3.0 cm x 1.2 cm) that is specially designed to

capture the hand features, i.e., positions of the fingertips, palm center, and joints with respect to its

own coordinate system.

Since the coordinate systems of Magic Leap 1 and LMC are out of sync (Figure 5.4), integrating

LMC required a calibration step. In this step, we obtained the transformation between the co-

ordinate systems using the reference points that are common in both spaces–fingertip positions.

Although Magic Leap 1 cannot provide a steady data stream, it can correctly detect the fingertip
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positions with respect to its own coordinate system. In the calibration step, we fetch the fingertip

positions from both devices and calculate a transformation matrix that transforms the LMC coor-

dinate system to the Magic Leap 1’s. To compute this transformation matrix, we feed the point

clouds we obtained from both spaces to an Iterative Closest Point (ICP) algorithm. After the cal-

ibration step is performed, the data stream coming from LMC is transformed to the Magic Leap

1’s coordinate system and the hand models are rendered on the transformed positions to mirror the

user hands in the AR environment.

Due to the calibration step, the placement of LMC is flexible, where users can attach it to the

glasses, put it on a table, or wear it on their body for a more convenient use. We note that it is

expected to have an upgrade on the hand tracking feature of Magic Leap 1, which will enable us

to remove the LMC from the setup altogether.

Controller. The controller object is invisible, and is responsible for setting the keyboard position

and scale. When users want to customize the keyboard appearance, they interact with the con-

troller object where the position of the keyboard is controlled by three sliders associated with the

three dimensions. Users arrange the sliders to put the keyboard to the desired position in the AR

environment.

Usability Study. To motivate that in-air tapping keyboards are likely to replace current system

keyboard designs in commercial AR HMDs, we performed a comparative usability analysis. In this

section, we review the procedures and the results of our comparative usability analysis. The goal

of this user-based evaluation is to measure the usability of AiRType and compare its performance

with the performance of the baseline keyboard. For this evaluation, we use the system keyboard of

Magic Leap 1 as the baseline keyboard. As illustrated in Figure 5.5, the system keyboard utilizes

the remote controller for the targeting and selection of the keys. Users move the cursor through

the ray coming out of the remote to target letters, then pull the trigger button to select the keys.

In the system keyboard design, the background becomes blurry when the keyboard opens, which

occludes the real-world environment.
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Trigger Button

Figure 5.5: The system keyboard of Magic Leap 1, i.e., baseline keyboard. The targeting is done
through moving the cursor via the ray coming out of the remote controller. The selection is done
by pulling the trigger button at the back of the remote.

Figure 5.10 shows the experimental setup for AiRType. The size of the keyboard is kept to the

default size and the Leap Motion Controller is placed on the table to capture the hand movements.

The computer screen mirrors the content of the AR environment rendered by the HMD for visual

evaluation purpose only.

We conduct the user study based on the standard ISO 9241-11 [62] model of usability (1998) which

is defined as “the extent to which a software can be used by specified users to achieve specified

goals with effectiveness, efficiency, and satisfaction in a specified context of use”. To comply with

ethical guidelines in conducting this work, the user study has been approved by our Institutional

Review Board.

Usability Test Setup. We carried out the experiments with two groups of 5 novice participants

(with a total of 10 participants). No participant had any experience with any AR HMD before their

engagement in this study, and not training was provided to any of the users they participate in the

experiments. To conduct this study, we formed the groups randomly and assigned the AiRType to

the first group and the baseline keyboard to the second group, respectively. Moreover, the groups
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are kept exclusive to avoid any bias through sample leakage. To measure the outcomes of our

experiment against the baseline, the users from both groups typed the same target word sequences

using different input entry methods. The Institutional Review Board (IRB) at our institution ap-

proved this user study.

ISO usability model metrics involves effectiveness, efficiency, and satisfaction. These metrics are

defined in the following:

Effectiveness: This metric measures the proportion of erroneous key taps. In our study, we

calculate the effectiveness by dividing the number of backspace presses by the target string

length, then scale up by 100. The unit of this metric is percentage (%).

Efficiency: This metric measures the task completion time by the user. In this study, we cal-

culate the efficiency by dividing the length of the target string by the time the user spends

to complete the task in seconds. The unit for this metric is denoted as character-per-second

(cps).

Satisfaction: This metric depicts the System Usability Scale (SUS) score of the design. We

measure the satisfaction aspects of the input entry methods by a standardized SUS question-

naire score [41]. The score range of 61-70 corresponds to an average score, whereas a score

of >80 is considered satisfactory [118].

Procedure. The following are the ordered steps of the procedure we followed in order to conduct

the usability test:

1. The investigator calibrates the keyboard for the experiment session; the calibration is redone

for each experiment session.

2. The investigator explains the research study, its steps, and ultimate outcomes to the participant.
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Table 5.1: The average ISO usability test results obtained from 5 participants per group, 10 par-
ticipants in total.

Effectiveness Efficiency Satisfaction
AiRType 5.833% 0.624 cps 81.5
Baseline 8.024% 0.604 cps 74.5

3. The investigator informs the participant about two objectives to be achieved: (1) typing a se-

quence of words using the assigned text entry method, and (2) filling the SUS questionnaire

regarding the usability of the assigned text entry method.

4. The investigator demonstrates to the participant how to wear the AR HMD and how to use the

assigned text entry method to achieve the first objective.

5. The participant wears the AR HMD and starts typing the target word sequences on the assigned

text entry method.

6. Upon completing the first objective, the participant fills the SUS questionnaire to achieve the

second objective of the study.

AiRType Usability Results and Discussion. Table 5.1 shows the usability measurement of both

keyboard designs using the effectiveness, efficiency, and satisfaction. For the effectiveness, we

observe that AiRType is more effective than the baseline, since it decreased the error rate by 27%.

Moreover, we observed that users tend to hit the trigger button by mistake while moving the remote

to target the actual key with the baseline keyboard. This led to more erroneous key selections, thus

increase in the error rate.

We observe that, however, the difference in the efficiency of the keyboards is negligible and con-

clude that users type with the same speed using both keyboards. However, we also observe that

since the participants were inexperienced with the AR environment (see the setup), they were mov-

ing their hands or the remote controller slowly to correctly target and select the keys. Therefore,
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Figure 5.6: The five-step pipeline for the attack, which takes hand tracking data as input and out-
puts inferences ordered from best to worst. The first two steps are for keystroke detection stage
while the subsequent three are for key identification stage. The attack starts with the pre-processing
of the data coming from the hand tracker device, and localization of the key tap windows into time
slices in the input signal at Deep Key Tap Localization. Then, the key taps are refined through a
set of processes done with the help of an estimation of the keyboard plane at Key Tap Localization
Refinement, outputting 2D key tap points. At the next step, Candidate Key Center Generation
deduces the set of candidate key centroids through clustering of the key tap points. Candidate
Keyboard Reconstruction composes a set of candidate keyboard reconstructions through comput-
ing reconstruction transformation using the candidate key centers. Finally, Best to Worst Ordering
evaluates, filters and orders the candidate keyboard reconstructions to build a best to worst ordering
of the reconstructions through a set of inference measurements.

we anticipate the cps measurements to improve significantly when the participants gain experience

with the AR environment and AR HMDs.

Finally, we observe 9.4% increase in the SUS score with AiRType keyboard. The score of the

baseline is slightly above the average satisfaction (> 70), while the score of the AiRType is satis-

factory (> 80). Considering the metrics in combination, we conclude that AiRType offers a more

usable option than the baseline for text entry in augmented reality.

Approach Overview

Having explained the details of AiRType design, in this section, we present the overview of the

attack pipeline. To maintain the generalizability of the attack on different AR keyboard designs,

we use the term ”AR keyboard” instead of ”AiRType”.

Our attack pipeline consists of five steps as illustrated in Figure 5.6 with the low-level hand tracking
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data as input and a list of text inferences ordered from best to worst as output.

In our pipeline, we localize the key tap windows in the time domain signal obtained from the

hand tracker in the deep key tap localization step. Then, we refine the key tap windows to get the

corresponding positions in 2D in the key tap localization refinement step. We then obtain a set

of positions to use as the key center candidates in the candidate key center generation step, derive

keyboard reconstructions from the candidate key centers in the candidate keyboards reconstruction

step. Finally, we obtain our final list of inferences ordered from best to worst through a set of

inference measurements in the best to worst ordering of keyboard reconstructions step.

In the literature, keylogging inference attacks are defined as a two-stage process: keystroke detec-

tion and key identification [96]. The first two steps of our pipeline are for keystroke detection; the

subsequent three steps are for key identification.

Deep Key Tap Localization. To initiate our attack, we start by detecting the key taps utilizing the

following.

Observation 1. The hands follow a certain pattern while writing on the AR keyboard, which makes

key tap gestures distinguishable from other hand gestures.

Based on Observation 1, we utilize a Convolutional Neural Network (CNN) to localize key taps in

specific time windows where key tap-specific patterns of hand features occur. We follow a similar

approach to those used for temporal localization problems in this context. In our modeling, the

information available to the adversary is the time-domain low-level hand tracking signal of a user

obtained from a hand tracker device, which changes as the sensor is placed differently. We pre-

process the low-level data to resolve this dependency and ensure the attack repeatability with the

same setup in different spatial configurations of the sensor.

After pre-processing, we utilize a multi-head CNN as a binary classifier to establish the presence

of keystrokes. We do an exhaustive search on the overall recording by inputting successive time

windows of the pre-processed data into the CNN. Through non-max suppression and energy thresh-
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olding, we obtain a set of windows classified to include the key tap actions. After localization, the

touchpoints to the keys, called as key tap points, can be estimated where the tip positions of the

finger at the middle of the key tap windows.

Key Tap Localization Refinement. Since we obtain the deep key tap localizations using estima-

tion methods, the key tap points are imprecise. We further refine the key tap localization based on

a geometric observation on the keyboard to improve the results. Due to the planar structure of the

keyboard, we observe the following:

Observation 2. The key tap points lay on a plane in 3D.

Based on Observation 2, we estimate a keyboard plane that minimizes the sum of the squared

distances to the key tap points and check each key tap window against the plane by whether the

fingertip crosses the plane or not. For a key tap point, we use it to improve the precision of

the estimated key tap if there is an intersection. Otherwise, we eliminate the key tap point to

suppress false positive samples. After refining the key tap points in 3D, we obtain 2D key tap points

through dimension reduction. This procedure is particularly essential in the candidate keyboard

reconstruction step as it decreases the number of correspondent points required to compute the

similarity transform. To achieve this, we transform the points into a space constructed using the

normal vector of the plane. Then, we omit the component with no change among all the key tap

points.

Candidate Key Center Generation. We deduce candidates for the key centers from the key tap

points since it is an essential input parameter for exploring the possible keyboard reconstructions.

We set forth the following observation concerning the relationship between the key centers in the

AR keyboard and the key tap points:

Observation 3. When each key center in the AR keyboard is treated as the cluster centroid of that

key, each key tap point belongs to the cluster of the tapped key.
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Observation 3 is only valid for alpha-numeric keys due to the special keys’ physical layouts. Based

on Observation 3, we hypothesize that proper clustering of the key tap points eventuates partition-

ing them into clusters of unique keys. For proper clustering, the number of clusters should be the

same as the number of unique keys used in the session. Since not all unique keys are necessarily

used during a session, the attacker is unaware of the number of clusters required, which is a key

challenge in this step. We apply a weighted agglomerative hierarchical clustering algorithm on

the key tap points and obtain a set of clusterings with a varying number of clusters to address this

problem.

Candidate Keyboard Reconstruction. In this step, we establish the possible keyboard recon-

structions with the help of our hypothesis built upon Observation 3 using the candidate key centers

from the previous step. To achieve this task, we account for the possibility where each candidate

key center corresponds to any key on the keyboard. We obtain countless inferences with different

center – key pair assignments as an output of this exhaustive process.

The coordinate systems of the hand tracker and the AR keyboard model change at each session

due to the hand tracker’s positioning and the positioning and scaling of the AR keyboard in the

virtual environment. Thus, there exists a similarity transform T (i.e., translation, rotation, uniform

scaling) between two coordinate systems, changing for each session. Once T is found, the key tap

points are projected onto the space of the keyboard model, i.e., the keyboard is reconstructed. As

a result, the key tap points can be mapped to their corresponding keys on the AR keyboard.

The computation of the 2D similarity transform T—needed to reconstruct the keyboard—requires

two corresponding points from each coordinate systems. For every possible tuple of center – key

assignments, we solve for T and acquire the inferences, forming the set of candidate keyboard

reconstructions.

Best to Worst Ordering of Keyboard Reconstructions. The previous step produces a set of

keyboard reconstructions in the order of hundreds of thousands, many of which are entirely inac-

curate due to incorrect center – key pairings or selection of centers. Although the search space
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is significantly reduced compared to having random guesses, it is still infeasible for the attacker

to consider all reconstructions. We observe that accurate reconstructions typically have specific

characteristics, which draw them apart from others. In this step, we benefit from such characteris-

tics to order the keyboard reconstructions from best to worst, drastically decreasing the number of

reconstructions to consider.

Technical Details and Methods

In this section, we elaborate our approach and technical contributions in each step of the pipeline.

Deep Key Tap Localization. We pre-process the low-level hand tracking data and localize the

presence of key taps into time windows using a multi-head CNN.

Pre-processing. With pre-processing, we obtain three features from the low-level hand tracking

data as follows: 1) the tip position of each finger w.r.t. the palm center of the hand (fp), 2) the

pointing direction of each finger w.r.t. to the normal vector of the palm (fd), and 3) the velocity of

each fingertip computed using fp (fv). We call them position, direction, and velocity sub-signals,

respectively.

We denote a time-domain hand features signal as X = {xt}Tt=1 where xt = [fp fd fv]
T is the

t-th frame in X . Each signal X is associated with a set of temporal key tap action annotations

Ψ = {ψm}Mm=1 where ψmis the time instance when the keystroke of m-th key tap occurred. A

segment s is a slice from the signal, denoted by its starting and ending time, s(tstart, tend) which

includes the consecutive frames between xstart and xend.

Network Architecture. As shown in Figure 5.7, the key tap localization network is a multi-head

CNN that operates on the pre-processed signal. The convolutional layers after each head capture

the spatial and temporal features of each finger. Two fully connected layers follow to extract high-

level spatio-temporal features of the hand from finger features through position, direction, and

velocity. Then, the output from each head is concatenated, which is forwarded to a final fully-
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Figure 5.7: The multi-head CNN architecture used for key tap localization. The input is a segment
from the pre-processed low-level hand tracking data, while the output is the confidence score for
the segment belonging to a key tap.

connected layer followed by a sigmoid activation function, which outputs the confidence score.

The confidence score is used to perform binary classification on the input segment to differentiate

key tap segments from the background.

We interpret each key tap as a 30-frame action, 375 ms, given that the data from the hand tracker

device is collected with a sampling rate of 80 fps. The number of frames is decided by the 5-fold

cross-validation in our evaluation. Each head of the CNN takes the corresponding sub-segment

with the shape of height (5), width (30), and depth (3), depicting five fingers, 30 frames, and three

spatial dimensions.

Prediction. For prediction, we slide a fixed-length (30) temporal window on the input to generate

candidate segments and input them to the CNN to obtain the corresponding confidence scores Pc.

Then, we remove redundant detections by applying non-max suppression to ensure that the predic-

tions are disjoint and only the most confident predictions are kept among temporally intersecting

ones. To obtain the final predictions, we eliminate the segments with a confidence score Pc less

95



than the classification threshold τc = 0.5 with the rationale explained in the evaluations. Finally,

each segment is associated with a key tap point by fetching the position of the index fingertip at

the midpoint of the window.

Key Tap Localization Refinement. After key tap localization, we estimate a keyboard plane then

refine the key tap points described in the following.

Keyboard plane estimation. A plane in 3D is defined by a normal vector v = [vx vy vz] per-

pendicular to the plane, a point p = (x, y, z) on the plane, and a scalar d. The plane equa-

tion can also be represented in scalar format as vxx + vyy + vzz + d = 0. To find a fitting

plane to the estimated 3D key tap points, we use a regression model that minimizes the linear

least square error between the points and the plane. For that, a linear algebra trick is used to

solve the equation of four unknowns, vx, vy, vz, and d, where the solution space is three dimen-

sional, i.e., a plane. The trick is by assigning −1 to vz and rearranging the equation such that

vxxi + vyyi + d = zi. The error function then becomes ((vxxi + vyyi + d)− zi)2 (ideally 0, where

the point (xi, yi, zi) lays on the plane). Thus, the problem is reduced to an optimization where the

error is calculated as E(vx, vy, d) =
∑m

i=0[(vxxi + vyyi + d) − zi]2, where the coefficients of the

best-fitted plane, namely vx, vy, and d, are found by solving the optimization problem defined as

arg min
vx,vy ,d

∑m
i=0[(vxxi + vyyi + d)− zi]2.

Reducing the False Positives. We follow the trace of the fingertip for each key tap window and

check if it crosses the estimated plane. Otherwise, we eliminate it since the finger does not touch

the keyboard plane, thus any key on the keyboard.

Refining the Key Tap Points. To increase the spatial precision of the key tap points, we use the

intersection point where the fingertip crosses the estimated keyboard plane instead of using the

midpoint of the key tap window as before as illustrated in Figure 5.8.

Dimension Reduction. Since all the key tap points lay on a plane in 3D, they can also be repre-

sented as 2D points without loss of information. To achieve this task, we first create an orthonormal
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true positive

false positive

estimated key tap point

refined key tap point

Figure 5.8: Refining through the estimated keyboard plane and the trace of the index fingertip.
The dots and the curve connecting the dots represents the trace of the index fingertip. The green
window is considered as true positive since the window encapsulates a trace crosses the estimated
plane. The associated key tap point is refined as the green circle instead of the red circle. The red
window is considered as false positive and eliminated since the encapsulated trace does not cross
the plane.

basis containing the normal vector of the keyboard plane using the Gram-Schmidt Orthogonaliza-

tion. Then, we change the basis for the key tap points to the newly found basis. Finally, we obtain

the corresponding 2D key tap points K by omitting the component that has no change among all

the key tap points, which corresponds to the component in the direction of the normal vector.

Candidate Key Center Generation. This section explains how the candidate key centers are de-

duced from the set of refined key tap points. Based on Observation 3, the key tap points play an

essential role in defining the key centers since each key tap point stands as a sample contained

in the cluster of the corresponding key in the AR keyboard. A reverse procedure to recover the

key centers from the key tap points is clustering, yet the uncertainty in the number of clusters

introduces a challenge. We generate cluster groups with a varying number of clusters through ag-

glomerative hierarchical clustering to account for the usage of a varying number of unique keys in

different sessions.

We denote a cluster group as C = {cm}Mm=1 where cm is the 2D vector representing the centroid of

them-th cluster in the groupC. The output is a set of cluster groups,G, each with a different cluster
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Algorithm 1: Construction of center groups
1: G: Cluster groups with varying number of clusters
2: C: Current set of weighted centroids
3: K: Key tap points
4: procedure BUILDCENTERGROUPS(K)
5: initialize:
6: G← ∅
7: C ← {(v, w) ∈ R2 × R | v ∈ K,w = 1}
8: while size(C) > 2
9: c1, c2 ← MINIMUMDISTANCEPAIR(C)

10: cmerged ← MERGECENTERS(c1, c2)
11: C ← (C ∪ {cmerged}) \ {c1, c2}
12: G← G ∪ {C}
13: return G
14: procedure MINIMUMDISTANCEPAIR(C)
15: return (c1, c2 | c1, c2 ∈ C, EUCDIST(c1, c2) is min)

16: procedure MERGECENTERS(c1, c2)
17: (v1, w1), (v2, w2)← c1, c2
18: vmerged ← WEIGHTEDVECTORAVG(c1, c2)
19: wmerged ← w1 + w2

20: return (vmerged, wmerged)

count. The set of cluster groups is denoted as G = {Cn}Nn=1, where Cn is the n-th clustering.

Algorithm 1 shows the procedure to compose the cluster groups G. Initially, all key tap points

are treated as singleton clusters with uniform weights as in line 1.7. Then, the cluster group C

is iteratively updated (line 1.11) by merging the closest clusters considering the weights. Each

update to the cluster group C results in adding a cluster group to G (line 1.12) with a different

cluster count. The Euclidean distance is used to find the closest cluster pair. Merging is done

through weighted vector average to ensure candidate clusters are created considering an equal

effect of each key tap point in the cluster.

The number of unique keys used in a session is upper-bounded by the number of keys in the AR

keyboard. Therefore, we eliminate the cluster groups containing more clusters than the number of

keys, which is 42 for the AR keyboard. This elimination implies that the number of reconstructions

to explore in the following steps is also upper-bounded. Thus, the search space is not affected if
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Algorithm 2: The algorithm to compute similarity transformation T using two pairs of corre-
sponding points in 2D. It can be used to map any point a in space A to its correspondent b in
space B.

1: procedure COMPUTETRANSFORMATION(a1, a2,b1,b2)
2: t← b1 − a1 . translation vector

3: s← |
−−→a1a2|
|
−−→
b1b2|

. uniform scaling scalar

4: α← cos−1
−−→a1a2 ·

−−→
b1b2

|−−→a1a2| · |
−−→
b1b2|

. rotation angle

5: return FORMMATRIXT(t, s, α) . see [108]

the number of key tap points recorded in a session grows above the keys.

Candidate Keyboard Reconstruction. We establish the candidate keyboard reconstructions us-

ing a set of candidate key centers. In this section, we first discuss the challenges of keyboard

reconstruction then outline our approach to address those challenges. We show how we take ad-

vantage of the candidate key centroids to obtain a broad set of keyboard reconstructions.

Due to the differences in origins and orientations of the coordinate systems of the hand tracker

and the AR keyboard model, the same geometric constructs (e.g., points, vectors) in a shared en-

vironment (i.e., real-world) are expressed differently by those two parties. Moreover, the user’s

flexibility on positioning and scaling the AR keyboard differently in the virtual environment intro-

duces yet another discrepancy with the addition of a difference in scale. Considering these series

of linear transformations between the coordinate systems, we can speak of a similarity transform

T : R2 → R2 which maps any given geometric construct in hand tracker’s coordinate system to

that of the AR keyboard model. Using two corresponding point pairs from each space, T could be

computed as shown in Algorithm 2. We refer to T( ) as the similarity transformation function that

applies T to its input. We denote the uniform scaling component of T as Ts.

Having T , the key tap points K could be transformed into the space of the AR keyboard model as

K ′ = T(K). Then, each key tap position k′ in K ′ could be associated with a key by checking

which key’s area k′ falls into. This results in recovering the keys tapped. However, the adversary
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lacks two correspondent points from both spaces, failing to directly obtain a single, accurate re-

construction. To address this challenge, we use the clues we have regarding the key centers from

the previous step. As there is no prior knowledge on which cluster corresponds to which key, we

account for the possibility of each cluster c belonging to any unique key j for each cluster group

C in G. We call a pairing of cluster center c with a key j as center – key pair, and denote it as

r = (c, j). Then, we obtain candidate keyboard reconstructions by computing T using every pos-

sible tuple of center – key pairs. We summarize the reconstruction of candidates in Algorithm 3.

Best to Worst Ordering of Reconstructions. The results from the previous step include recon-

structions with accurate results, only possible when the input cluster centroids accurately approx-

imate the key centroids and the center – key pairing is accurate. However, the reconstructions are

predominantly composed of inaccurate results due to contrary cases, as we show in our evaluation.

Although the search space is favorable, especially when compared to a random guess, this space is

still infeasible to explore by the attacker for most cases. We notice that the inaccurate reconstruc-

tions exhibit specific characteristics differing from the accurate ones. This section discusses how

we exploit such observations to eliminate invalid reconstructions and order the remaining from

best to worst. To achieve this task, we consider three inference metrics: scaling factor (IM1),

outlier ratio (IM2), and the difference between the number of clusters and unique keys (IM3) as

explained in the following.

IM1: Scaling Factor. In general, users have the flexibility of scaling the size of the AR objects in

the virtual environment, which is why we consider a variable scaling factor Ts. However, making

the keyboard too small or too large negatively affects usability. A smaller keyboard makes it

difficult to pick the correct key, resulting in unintentional taps on the neighbors of the target keys.

In comparison, a larger keyboard increases the distance the hands have to travel to the keys at the

sides of the keyboard, affecting usability. Moreover, with a too large keyboard, the keyboard may

not fit into the frame of the AR HMD. As such, we define upper and lower limits for the scaling

factor Ts to eliminate the reconstructions that result in estimations with keyboard sizes that are
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Algorithm 3: Reconstruction of candidate keyboards
1: G: Cluster groups with varying number of clusters
2: K: Key tap points
3: J : 2D centroids of the keys in the AR keyboard model
4: L: The candidate keyboard reconstructions

5: procedure COMPUTECANDIDRECONS(G)
6: initialize: L← ∅
7: for each C in G
8: for each permutations of centers c1, c2 from C
9: for each combinations of centroids j1, j2 from J

10: T ← COMPUTETRANSFORMATION(c1, c2, j1, j2)
11: K ′ ← T(K)
12: L← INFERKEYS(K ′) ∪ L
13: return L

unlikely to be used. Figure 5.9 shows keyboards configured with borderline sizes (0.5 and 2.0) as

visual reasoning for the chosen limits, which shows the infeasibility of such dimensions.

IM2: Outlier Ratio. All key tap points k′ in K ′ should optimally fall into the area of some key

in the AR keyboard. However, outlier key tap points are observed in improper reconstructions. To

measure the existence of such anomaly, we define the outlier ratio as IM2 and compute it as the

ratio of the number of outliers to all key tap points. Although the optimal value for IM2 is zero,

we expect a small number of outliers because of the false positive samples in the key tap points

detected at the outside of the AR keyboard.

IM3: Difference Between the Number of Clusters and Unique Keys. Our hypothesis built on

Observation 3 suggests that clustering key tap points with the proper cluster count choice divides

the key tap points into clusters of unique keys. For a reconstruction l in L built using the center –

key pairs from some cluster group C in G, we expect the number of clusters in C to be optimally

equal to the number of unique keys found in l. For contrary cases, we measure the anomaly using

IM3, which is computed as the difference between the number of clusters and unique keys. The

optimal value for IM3 is zero, yet the exceptional cases may result in values not equal but close

to zero for accurate inferences. These include cases where the number of key tap points is not
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𝑇𝑠 = 0.5𝑇𝑠 = 1.0𝑇𝑠 = 2.0

Figure 5.9: The demonstration of the maximum and the minimum scaling factors (IM1) used to
filter the candidate keyboard reconstructions. For concise visualization, the effect of the scaling
factor Ts is shown by inversely scaling the hand model rather than scaling the keyboard itself. In
the virtual environment, however, the keyboard model gets bigger as the scaling factor Ts grows
while the size of the hand model is fixed.

sufficient to approximate the centers of the keys well or when the key tap points for some keys

happen to accumulate around some point that is not close enough to the center of the key.

After obtaining IM1, IM2 and IM3 measurements, we first eliminate the invalid reconstructions

with respect to IM1 by enforcing a scaling factor limit. We continue processing the reconstructions

using IM2 and IM3. However, we do not directly enforce the optimal values for these parameters

due to the exceptional cases and accurate reconstructions, as we discussed earlier. To capture

and estimate the joint role of IM2 and IM3 on the reconstruction’s accuracy, we utilize a linear

regression model, with the values of IM2 and IM3 as an input, where the output is the expected

accuracy.

The accuracy is measured in terms of the normalized Levenshtein similarity between the esti-

mated and the ground truth strings, which helps measure the performance of both the keystroke

detection and key identification stages simultaneously [96]. To compute it, first, the Levenshtein

distance [75] between two strings is calculated as the minimum number of insertions, deletions,
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and substitutions required to transform one string into another. Then, the distance is normalized to

be in the range [0, 1] by dividing the distance by the length of the longest input string. Finally, the

normalized distance measurement is inverted to normalized Levenshtein similarity by subtracting

the resulting distance from 1.

Upon filtering using IM1, we feed the measurements of IM2 and IM3 for each remaining candi-

date reconstructions into the regression model. Then, we sort the reconstructions in a decreasing

order w.r.t. the predicted accuracy. These sorted reconstructions constitute the final output of our

pipeline, best to worst ordering of the keyboard reconstructions. Note that once the correct key-

board reconstruction is found, it is straightforward to trace any input on the keyboard, including

the special characters and keys.

Evaluation

To evaluate the performance of our approach, we conducted various experiments on the individual

steps of the pipeline and end-to-end. The experiments involved five participants, including one

female and four males with ages ranging from 23 to 37. The Institutional Review Board (IRB) at

our institution approved the data collection process.

We first describe our experimental setup. Then, assessing the performance of our approach in

keystroke detection, we continue with the evaluation of the key identification stage. Next, we eval-

uate the performance of the end-to-end pipeline. Finally, we discuss the possible countermeasures.

With the evaluations of the individual steps, we intend to: i) reason about the validity of our as-

sumptions which led to construct each step, ii) explore how each step contributes to the overall

pipeline through certain types of information gain, and iii) explore the limitations of each step and

discuss their effects on the overall approach.

Experimental Setup. Since all of our threat models utilize the same type of low-level hand track-

ing data, we simulated and evaluated all threat models with the same experimental setup irrespec-

tive of the data collection medium. For our experiments, Magic Leap 1 (ML1) is used as the
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Leap Motion Controller

Magic Leap 1

Central Computer

Figure 5.10: The setup used to carry out the experiments.

AR HMD, and Leap Motion Controller (LMC) is used for hand tracking shown in Figure 5.10.

LMC can track hands within 60 cm in a 120×150° field of view, and ML1 detects hands within 80

cm distance. Both devices are connected to a single computer used to drive the experiments. ML1

is run in Zero Iteration (ZI) mode [24] to ensure the data flow between two devices and control the

overall experiment on the computer. A single Unity3d application is run on the computer to handle

the required computations for the experiments. This application also composes and provides the

frames to ML1.

The position information of the index fingertips is essential to utilize the AR keyboard as it is used

to detect the keystrokes at the user side. The current state of ML1’s hand tracking is insufficient

to use the AR keyboard since the fingertip positions do not remain stable as the hands move.

Although the literature [112] shows that the required hand tracking can be achieved using the

available sensors, we instead use LMC to simplify the model. Given that these devices and their

software are rapidly evolving, we expect to see steady hand tracking functionality as default in

ML1.

A single LMC is used to provide data to both the user and the attacker side in our setup. Since

ML1 and LMC do not share a common coordinate system, we performed the following procedure
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at the beginning of each session. First, we obtained a set of corresponding points (the fingertip

positions) by holding the hands still in a position where both devices can stably detect the fingertip

positions. Then, we estimated the transformation through a Singular Value Decomposition (SVD)-

based estimation algorithm [21, 22]. Finally, we applied the computed transformation to all data

coming from LMC to be used at ML1.

We measure the accuracy of a text inference in terms of the normalized Levenshtein similarity. We

use the pinpoint accuracy, h-hop, and top-k accuracy [111]. For h-hop accuracy, h-hop neighbors,

which are the keys that can be reached by taking h hops from the source key, are considered. It is

computed as the normalized Levenshtein similarity where two keys k1 and k2 are said to match if

k1 is in the h-hop neighborhood of k2, or vice versa. The pinpoint accuracy is a special case of h-

hop accuracy, where h is zero. The accuracy in top-k results corresponds to the maximum accuracy

achieved within the first k results populated in the output inferences list. The h-hop metric helps

show how some portion of the inferences we obtain still causes serious privacy leaks even though

they do not yield high pinpoint accuracy. Top-k is essential to evaluate our method since we output

a list of inferences instead of one.

Keystroke Detection. In this section, we evaluate the first two steps of the pipeline: deep key tap

localization and key tap localization refinement. First, we collected data from two distinct users

while writing 54 random pangrams (108 pangrams in total; hereafter, the dataset is called P108),

mainly used throughout the paper to simulate the data recorded by the adversary for training. The

data is then split into train-validation (96 pangrams) and test (12 pangrams) splits.

Deep Key Tap Localization. We train the CNN as a binary classifier to differentiate a key tap

action from the background. We denote the training data as Strain = {(sn, ln)}Nn=1, where label

ln ∈ {0, 1}. The positive (1) and negative (0) labels correspond to key tap action and background.

We construct Strain by splitting the data into a set of disjoint segments of key tap or background

data. For that, we sample the key tap segments from the input data and assign a positive label to

each of them. Similarly, we sample disjoint background segments from the remaining background
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data and assign a negative label to each of them.

In our experimental evaluation, we use Adam optimizer [66] with a learning rate of 0.001, L2

regularization with a penalty of 0.001, and the binary cross-entropy loss function, which is deter-

mined by 5-fold cross-validation on the training-validation split. Since the data is imbalanced with

a larger number of background segments, we apply a manual re-scaling to the loss of each element

with a weight inversely proportional to its class frequency.

After training, we perform predictions on the test split. The prediction procedure takes the set of

input segments Stest = {sn}Nn=1 as input and outputs the key tap segments with their confidence

scores: P = {(sm, αm)}Mm=1.

Given each ground truth key tap segment gtl in GT = {gtl}Ll=1, and upon prediction, we associate

each key tap segment sm in P with the ground truth segment gtl which is closest to sm in time.

Also, we keep track of the intersection-over-union (IoU) of each segment association as a measure

of the overlap ratio between the predicted and the ground truth key tap segments in time. For

two segments, A(t1, t2) and B(t3, t4), where t1 and t3 are the start time, t2 and t4 are finish time,

and t3 > t1, IoU between A and B is defined as min(0, t2 − t3)/(t4 − t1), which takes values

in [0, 1]. IoU values are maximal when the segments entirely overlap. As a result, we obtain a

set of associations of segments and their IoU values: A = {(sm, gtl, IoU)}. We then eliminate the

associations with IoU < τIoU from A, where τIoU is the IoU threshold. This elimination helps to

evaluate the model over different IoU thresholds by changing τIoU to reason about the precision of

the model in temporal localization. Following the standard evaluation methodology in temporal

localization problems, we interpret the segments in A as true positives, P \ A as false positives,

GT \ A as false negatives, and the remaining segments in Stest as true negatives.

We perform prediction on the test split with different τIoU values for performance evaluation. The

Precision-Recall (PR) curves for left and right hand and varying τIoU values are shown in Fig-

ure 5.11.

To obtain the final predictions used in the subsequent steps, we establish a classification threshold
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Figure 5.11: The precision-recall curve of the multi-head CNN in Deep Key Tap Localization.
Different networks are trained for each hand, and both of them perform similarly well.

of τc = 0.5. For the true positive vs. true negative trade-off controlled by τc , the chosen τc value

is inclined to favor a greater number of true positive samples while keeping the false positives

less than the true positives. The former fact comes in handy in avoiding false negatives. The

latter ensures that the following step of the pipeline, Key Tap Localization Refinement, can assume

that the predictions are dominantly composed of true positives. Eventually, in the next step, we

eliminate a significant number of false positives and obtain an overall keystroke detection result

that is not possible just by tweaking τc .

Key Tap Localization Refinement. To assess the performance of this step, we performed Key

Tap Localization Refinement on the output obtained from the previous step. As shown in Fig-

ure 5.12, the refining procedure significantly decreased the number of false positives (by 64.1%

and 86.2%, respectively) while slightly affecting the true positives (decreased by 3.4% and 13.1%,

respectively). Thus, the results showed that utilizing the implications of Observation 2 improved

the performance of keystroke detection.
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Figure 5.12: The effect of the Key Tap Localization Refinement on the number of true positive
(TP), false positive (FP), and false negative (FN) samples for different users.

The slight decrease in true positive segments can be negligible while performing the inference

attack on a long text with a context, since the missing letters are deductible while there is a con-

text. However, the refining of the points may not be as beneficial for random sequences such as

passwords, since true positives are vital to define search space for password cracking.

Key Identification. This section evaluates the last three steps of the pipeline constituting the key

identification stage. To this end, we collected data from three users (other than P108’s users) while

they were writing a random e-mail selected from the Enron e-mail dataset [68]. For length uni-

formity, we use the first 250 characters for each recording. We denote this data as E-mail data.

Additionally, we collected three sets, R5, R10, and R15, while the users were writing random

character sequences with varying lengths of 5, 10, and 15. We generate the sequences by consid-

ering the letter frequencies in the English language, and we collected 15 different sequences for

each length. The reported results are the average of the 15 sequences. We aim to simulate the

long-text scenarios, e.g., writing an e-mail, with the E-mail dataset while using R5, R10, and R15

for simulating the entry of short-text scenarios, e.g., writing login credentials. In this section, we

use User-1’s data and directly use the ground truth key tap points. We report the evaluation of the
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Figure 5.13: The accuracy distribution of the E-mail keyboard reconstructions before and after
best to worst ordering. “All” corresponds to reconstructions after IM1 filtering. Top-15 ordering
and all reconstructions after IM1 filtering categorized by their h0, h1, and h2 accuracy quarters.

end-to-end pipeline with the data from all users under End-to-End Pipeline below.

We first perform Candidate Key Center Generation, then Candidate Keyboard Reconstructions.

This results in 889200 keyboard reconstructions for the e-mail data, 9750, 52000, and 126750

keyboard reconstructions for each sequence in R5, R10, and R15, respectively. The difference in

the number of keyboard reconstructions is due to the number of key taps, and it is upper-bounded

by 889200 reconstructions due to the upper bound on the number of centers. Among those, we are

able to achieve a maximum pinpoint (h0) accuracy of 97% for E-mail, 99%, 100%, and 99% for

R5, R10, and R15 sets, respectively, and all reach 100% of h1 and h2 accuracy. Although not all

reconstructions have the same accuracy, the results show that the key identification successfully

includes accurate reconstructions. The evaluation results of R5, R10, and R15 also demonstrate

that our method works with a limited number of samples, as low as 5, to create the correct keyboard

reconstruction.

Upon obtaining the reconstructions, we continue with the best-to-worst ordering by first filtering

the reconstructions based on the minimum and the maximum scaling factors (IM1) and consider
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Figure 5.14: The top-k h0, h1, and h2 accuracy for varying k considerations for each data set
obtained by utilizing the key identification steps on the ground truth key tap points.

the pinpoint (h0) accuracy in evaluating its effect. The filter extracts over 40% of the reconstruc-

tions with accuracy ranging between 0% - 25% and keeps all reconstructions with accuracy higher

than 50%. We then continue with the ordering through IM2 and IM3. We fit a linear regression

model using the P108 data, and obtain the best-to-worst ordering for the reconstructions belonging

to E-mail, R5, R10, and R15. Figure 5.13 shows the distribution of all (after IM1 filtering) and

the top-15 reconstructions for E-mail data on different accuracy quarters.

The results highlight that ordering the reconstructions indeed uplifts the better reconstructions to

the top of the list and significantly increases the probability of finding an accurate reconstruction

even when randomly chosen from the first 15 elements of the list. Figure 5.14 demonstrates the top-
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Table 5.2: The maximum h0, h1, and h2 accuracy achieved for each data set across varying top-k
orderings and brute-force attack.

Top-1 Top-3 Top-15 Top-50 Top-100 Top-500 Random
User h0 h1 h2 h0 h1 h2 h0 h1 h2 h0 h1 h2 h0 h1 h2 h0 h1 h2 h0 h1 h2

E
-m

ai
l 1 0.15 0.38 0.53 0.19 0.42 0.54 0.61 0.65 0.66 0.61 0.65 0.66 0.62 0.65 0.66 0.63 0.65 0.66 0.06 0.16 0.30

2 0.15 0.40 0.66 0.17 0.40 0.66 0.65 0.73 0.77 0.66 0.74 0.78 0.67 0.74 0.78 0.68 0.74 0.78 0.06 0.18 0.34
3 0.12 0.40 0.51 0.17 0.40 0.56 0.21 0.49 0.58 0.40 0.55 0.59 0.40 0.55 0.59 0.40 0.55 0.59 0.10 0.17 0.33

R
5

1 0.04 0.31 0.56 0.09 0.43 0.66 0.29 0.71 0.82 0.49 0.80 0.84 0.65 0.84 0.84 0.76 0.84 0.84 0.06 0.20 0.46
2 0.08 0.19 0.35 0.17 0.37 0.53 0.23 0.46 0.54 0.31 0.50 0.54 0.38 0.53 0.54 0.50 0.53 0.54 0.08 0.21 0.46
3 0.03 0.26 0.44 0.13 0.38 0.50 0.25 0.50 0.63 0.30 0.52 0.64 0.41 0.55 0.64 0.46 0.60 0.65 0.11 0.24 0.46

R
10

1 0.10 0.39 0.60 0.23 0.67 0.81 0.46 0.85 0.89 0.59 0.89 0.89 0.71 0.89 0.89 0.87 0.89 0.89 0.09 0.23 0.45
2 0.06 0.27 0.46 0.14 0.47 0.63 0.29 0.61 0.71 0.37 0.68 0.73 0.44 0.69 0.73 0.53 0.72 0.73 0.06 0.23 0.45
3 0.07 0.27 0.44 0.11 0.40 0.54 0.24 0.52 0.62 0.31 0.57 0.64 0.37 0.60 0.64 0.43 0.61 0.65 0.07 0.23 0.46

R
15

1 0.06 0.31 0.51 0.13 0.47 0.64 0.25 0.58 0.71 0.40 0.69 0.73 0.46 0.70 0.73 0.55 0.70 0.74 0.05 0.16 0.34
2 0.09 0.34 0.54 0.17 0.44 0.63 0.26 0.60 0.67 0.39 0.66 0.67 0.44 0.66 0.67 0.54 0.67 0.67 0.07 0.19 0.35
3 0.07 0.38 0.57 0.20 0.56 0.73 0.33 0.67 0.78 0.45 0.75 0.80 0.54 0.76 0.80 0.62 0.76 0.81 0.07 0.18 0.35

k accuracy for varying k using h0, h1, and h2 metrics. Over 95% h2 accurate reconstructions are

listed within top-15 of the ordered list. The reconstructions with over 92% h0 accuracy are listed

within the top-500. As the number of key tap points scattered over the AR keyboard increases,

the shifted reconstructions are more easily detected with a higher IM2. For example, two centers

representing the keys A and D are matched with the AR keyboard model’s keys Q and E, causing

the keys to be recovered as the keys above them, causing a shift. Hence, a higher h0 accuracy is

reached in the earlier top-k considerations when the number of key tap points is larger. Yet, having

h0 inaccurate results does not necessarily amount to entirely irrelevant results. Obtaining much

higher h1 and h2 for such low h0 values shows that the low pinpoint accuracy is compensated with

higher h1 and h2 accuracy due to the existence of shifted reconstructions.

End-to-End Pipeline. In this section, we report the performance of the end-to-end pipeline for

E-mail, R5, R10, and R15 data sets. Using the P108 data, we first train the two models; the CNN

model for deep key tap localization and the linear regression for best-to-worst ordering. Next,

we feed the E-mail, R5, R10, and R15 data sets to the end-to-end pipeline, and obtain a set of

reconstructions for each data set, ordered from best to worst.At all steps, we use the same hyper-

parameters determined in the evaluation of the individual steps.

Table 5.2 shows the h0, h1, and h2 accuracy obtained for each data set and each user considering

the top-k with select values of k and the average accuracy obtained by randomly guessing each
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Algorithm 4: The Monte Carlo experiment.
1: gt: Ground truth data
2: procedure MONTECARLOEXPERIMENT(gt, length)
3: initialize:
4: random ps← {A,B,C, ..., Y, Z}length
5: accs← [ ]
6: hop← 0, 1, 2
7: for each s in random ps
8: accs.append( hhop accuracy(gt, s, hop) )

return average(accs)

character, i.e., brute-force attack.

Since the search space is vast for the brute-force attack and the accuracy is measured in a composite

manner—using string difference, h-hop, and top-k—we obtain an approximation of the accuracy

for brute-force attacks using a Monte-Carlo method [94]. We achieve this by generating 100000

random string samples for each text and averaging the accuracy to obtain the approximation. The

sample size is chosen by monitoring the average, which converged at our choice point. The proce-

dure for this computation can be found in Algorithm 4.

Overall, the results show that our model can successfully infer the text with a high accuracy. For

edge cases where the pinpoint (h0) accuracy is close to that of a random guess, the h1 and h2

accuracy shows that the inaccurate key estimations of our method appear close to the actual key,

decreasing the search space for the adversary. For example, even though the pinpoint (h0) accuracy

of the first guess (Top-1) of our model for R15 data of User-3 is the same as that of random guess,

i.e., 0.07, our method performs much better in terms of h1 (our method: 0.38 vs. random guess:

0.18) and h2 (our method: 0.57 vs. random guess: 0.35) accuracy.

The maximum pinpoint (h0) accuracy achieved over all reconstructions for E-mail, R5, R10, and

R15 is 68%, 76%, 87%, and 62%, respectively. As Table 5.2 shows, these reconstructions are also

populated within the top-500 results. Comparing the results with those obtained using ground truth

key tap points, we find clear evidence of the propagation of errors in keystroke detection to the end

results, preventing it from achieving 100% accuracy.
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W•AT WAS THAT SUO◄PPOSED TO ME•M

H                            AN

Typed:        WHAT WAS THAT SUO◄PPOSED TO MEAN

Inferred:     WAT WAS THAT SUO◄PPOSED TO MEM

Difference:

I WILL 0ET YO• K•O• ••EM IS A GOOD •AY

U  N W WH             DL               N           

Typed:        I WILL LET YOU KNOW WHEN IS A GOOD DAY

Inferred:     I WILL 0ET YO KO EM IS A GOOD AY

Difference:

I WOULD LIKE TTO GO TO L•JCH •S  •EL•

U    A   W  L• N

Typed:        I WOULD LIKE TO GO TO LUNCH AS WELL

Inferred:     I WOULD LIKE TTO GO TO LJCH S EL

Difference:

Figure 5.15: The inference found in the ordered list which is obtained utilizing the end-to-end
pipeline on the E-mail. The end-to-end pipeline inference results on the first three sentences of the
E-mail, which is found at the 11th place in the ordered list, which were obtained by utilizing the
end-to-end pipeline. The spaces are inserted for clearer visualization. Although the experiment did
not include the usage of space key, spaces are inserted in the figure for clearer visualization of the
difference.

An example random password of length 5 (alphabets) has 23.5 bits of entropy. We calculate the

average entropy of the inferences on R5 dataset considering correct inferences, considering the

weighted probability distribution around the key corresponding to the character. The weights are

assigned to the keys with respect to their physical proximity to the actual key. The entropy of the

wrong characters is calculated by considering a uniform probability distribution. With our attack,

we can reduce the entropy of the passwords by 10.77 bits, showing the impact of the attack.

Figure 5.15 shows the first three sentences of User-1’s e-mail data and the inference of those

sentences found at 11th place in the ordered reconstructions list. In these inferred sentences, there

are 12 missing, 1 extra, and 3 incorrectly identified letters. The missing letters are due to the false

negatives in keystroke detection and require spotting and guessing for correction. The extra letter

is due to the false positives in keystroke detection and needs to be spotted to fix. We can easily
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correct the incorrectly identified letters by replacing them with the close neighbor keys.

Countermeasures

This study demonstrates the privacy risks to be of high significance, where the adversary only

needs to observe a user’s hands, which suffices to carry out the attack and recover a substantial

amount of text input. In this section, we explore the defense mechanisms to counteract this attack.

One simple but highly effective defense would be randomizing the keys at each keyboard usage

or after every key tap [88]. However, this defense would affect usability, specifically for long text

inputs [85]. Also, if a random layout is fixed throughout a session, useful information, including

the number of unique keys, their frequency, and the length of the text, could still be recovered.

Dynamic Positioning. Another defense is invalidating the adversary’s assumption that the key-

board position remains fixed throughout a session. An instance of such a defense is by altering the

position of the keyboard after each keystroke, i.e., dynamic positioning. We describe the imple-

mentation and conduct a security analysis to demonstrate the efficacy of this defense.

First, we fix the keyboard position and its depth since it is only effective when the change is

significant, which causes unusable settings. On the two other dimensions, the translation vector ~t

is represented with two scalar parameters: its direction angle α and length d. After each keystroke,

we form and use a translation vector ~t by choosing α and d randomly from the ranges [0, 2π]

and [r, 2r], respectively, where r is the diagonal length of an alphanumerical key. The motivation

for upper-bounding d by 2r is to ensure that the usability is not reduced by much. The user

would quickly locate the key position by taking the former keyboard position as a reference. With

the lower bound of r, we guarantee that the keys will always change position by at least one

hop between two keystrokes. Finally, randomly choosing d within [r, 2r] range, the adversary is

substantially challenged by the fact that any key’s position on the keyboard may correspond to any

key within the 2-hop neighborhood of that key in the next displacement.
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0.40
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0.35
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Figure 5.16: With the dynamically positioned keyboard defense, the probability for each key that
the adversary’s guess on the key is a true positive. Outward keys have more chance to be correctly
guessed since they have fewer target positions after displacement that conflict with the other keys.

Analysis. For the security analysis, we consider a few assumptions to make the analysis tractable.

Namely, we assume that: 1) the adversary achieves keystroke detection with 100% accuracy with

perfect spatial localization, 2) the user always taps a key from the key’s center point, 3) for each

displacement, the translation vector ~t is chosen to displace the keyboard such that the centers of

the alphanumerical keys are moved to exactly one of the keys’ centers within their 2-hop neighbor-

hood. These assumptions are non-realistic and only put the adversary in a more favorable position

while enabling us to sketch a lower bound on the security analysis. We emphasize that what we

do next is a lower bound security analysis, and the exact security of this defense is more robust in

reality, where the assumptions are relaxed.

When the initial position of the keyboard is known, to guess the key for the next keystroke, the

adversary can exploit the fact that it can only be to one of the keys within the 2-hop neighborhood of

the key formerly present at that location. Therefore, for each key k, the probability of successfully

recovering k after a displacement is equal to the ratio of the number of positions k can appear to

the number of distinct keys that can appear at these positions. We show the probabilities for each

key in Figure 5.16, from which we derive the average probability as Pnext = 0.25.

Since the adversary does not know the initial keyboard position, we consider the probability of

successfully identifying the first key as Pfirst = 1
36

= 0.028, where 36 are the alphanumerical
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keys. Using this analysis, the adversary’s success probability to guess a text of length l is Pl =

Pfirst× (Pnext)
l−1 = 0.028× (0.25)l−1. For example, for texts of length 4 and 8, Pl=4 = 4.4× 10−4

and Pl=8 = 1.7 × 10−6, which are low, showing the security of the countermeasure for practical

scenarios such as inputting passwords.

Assuming a 100% keystroke detection accuracy, our method reaches at least 97% top-500 key

identification accuracy. With this mechanism, we defend against the most decisive steps of our

pipeline (i.e., key identification), which invalidates our attack scenario. However, similar to the

randomized keyboard, we still note that the defense degrades the usability, making the attack a

significant threat for users reluctant to use the defense mechanism.

We expect the dynamically-positioned keyboard to be more usable, especially compared to the

randomized keyboard, since it preserves the keyboard layout and only changes the position of

the keyboard one to two keys away. Moreover, this defense mechanism can easily generalize to

any input method where 1) the adversary assumes a fixed keyboard position in a session, 2) a

soft displaceable keyboard is used. Due to their prevalence and the many attacks targeting soft

keyboards used in tablets [111], we envision them as a viable candidate for our defense. In our

future work, we aim to study the usability aspects of the dynamically-positioned keyboard on

AR/VR and tablet devices to validate this intuition. Moreover, we aim to study a dynamically-

positioned keyboard implementation where the keyboard is randomly positioned within a frame

after each keystroke, possibly providing more security by invalidating the 2-hop neighborhood

clue.

Another defense is replacing the AR keyboard with other means of input or using it minimally

in specific applications. For instance, Roesner et al. [104] suggest using a password manager to

prevent the adversary from capturing login credentials while enabling the user to achieve authenti-

cation through simple inputs.
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Summary of the Completed Work

In this work, we presented a keylogging inference attack targeting in air tapping keyboards for

AR/VR HMDs by exploiting the observation that hands follow specific patterns while users are

typing in the air. Substantiated by three different attack scenarios and threat models with reason-

able capabilities, our attack provides up to 87% accuracy in inferring a random text of any length

without requiring any special user profiling. We discuss various countermeasures to the attack, and

show that they are a nontrivial task as they often conflict with usability.
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CHAPTER 6: CONCLUSION AND FUTURE WORK

The rapid advancements in wearable technologies, such as fitness trackers, smartwatches, and

AR/VR head mounted displays, brings lots of security and privacy concerns. In this dissertation,

we explored in-depth the privacy dimensions of various wearable technologies through machine

learning-enabled inference attacks and associated defenses. We namely examined three types of

wearables through different features and techniques that allow for breaching the privacy of appli-

cation semantics and contexts.

First, we examined wearable fitness trackers in Chapter 3. We performed a machine learning-

enabled inference on the elevation profiles collected by wearable fitness trackers and showed that

location privacy can be breached from the elevation profiles. Second, we examined the privacy of

smartwatches in Chapter 4. We carried out a keylogging inference attack exploiting the acoustic

emanations of the keyboards, which are captured by the microphone embedded in smartwatches.

We showed that it is possible to recover the text typed on a keyboard through the smartwatches.

Third, we examined the privacy of augmented reality head mounted displays in Chapter 5. We

performed a keylogging inference attack facilitated by machine learning to recover the text typed

on in-air tapping keyboards. Through the observations on geometric projections of the hand move-

ments in air, we showed that the typed text on in-air tapping keyboards can be recovered.

The privacy examinations covered in this dissertation open up future research directions, including

the following:

• In the third chapter, we recovered the location up to borough-level granularity. However, a

borough can also be divided into smaller regions and those regions can be modelled through

machine learning to increase the precision of the recovered location. In the future, it would

be worthwhile to consider more advanced adversaries with extended mapping capabilities

and how such adversaries would be capable of targeting victims to the exact location.

• In the fourth chapter, as in all keylogging attacks leveraging acoustic emanations, the as-
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sumption is that the same keyboard models emanate the same acoustics. However, the effect

of the production is never discussed. Therefore, another research question is naturally intro-

duced: Do all keyboard models emanate the same acoustics? Do the changes in production

date (keyboard generation) or material also change the acoustics they emanate? Exploring

the impact of such manufacturing differences is an open direction that is worth exploring.

• In Chapter 4, we selected our equipment among the most popular smartwatches and key-

boards on the market. However, to have a complete privacy examination, the study can be

extended to cover more equipment. In this study, we also show that some keyboard models

have more deterministic acoustic emanation. To this end, another research direction would

be examining various keyboard characteristics such as material, surface dimension, etc. and

the effects of these characteristics on the emanated acoustics.

• In the fifth chapter, we focused on a keyboard design that lays on a single plane and the

position of the keyboard in the virtual environment is fixed. However, there are different

AR keyboard designs, such as curved keyboard. It can be examined whether it is possible

to perform the same kind of attack against such keyboards. Moreover, a word correction

mechanism similar to the one in Chapter 4 can be added to this inference attack to obtain

more accurate inferences.
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