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Abstract

Phishing attacks continue to pose a significant threat to the Ethereum ecosystem, account-

ing for a major share of Ethereum-related cybercrimes. To enhance the detection of such

fraudulent transactions, this dissertation develops a comprehensive framework for machine

learning-based phishing detection in Ethereum transactions. The framework addresses criti-

cal aspects such as feature selection, class imbalance, model robustness, and the vulnerability

of detection models to adversarial attacks. By systematically evaluating these key practices,

this work contributes to the development of more effective detection methods.

The first part of the dissertation assesses the current state of phishing detection methods,

identifying gaps in feature selection, dataset composition, and model optimization. We

propose a systematic framework that evaluates these factors, providing a foundation for

improving the overall performance and reliability of detection models.

The second part explores the vulnerability of machine learning models, including Ran-

dom Forest, Decision Tree, and K-Nearest Neighbors, to single-feature adversarial attacks.

Through extensive experimentation, we analyze the impact of various adversarial strategies

on model performance and uncover alarming weaknesses in existing models. However, the

varied effects of these attacks across different algorithms present opportunities for mitigation

through adversarial training and improved feature selection.

Finally, the dissertation investigates how phishing detection models generalize across

datasets, focusing on the role of preprocessing techniques such as feature engineering and

class balancing. Our findings show that optimizing these techniques enhances model accuracy

and robustness, making detection methods more adaptable to evolving threats.

Overall, this work presents a comprehensive framework that addresses the critical el-

ements of phishing detection in Ethereum transactions, offering valuable insights for the

development of more robust and generalizable machine learning-based security models. The

proposed framework has broad implications for improving blockchain security and advancing

the field of phishing detection.
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1 Introduction

1.1 Motivation

Ethereum, like other blockchain technologies, has transformed decentralized transactions by

providing a secure, transparent, and immutable ledger [45, 61, 77, 85]. However, this same

technology has also made Ethereum an attractive target for cybercriminals, with phishing

scams emerging as one of the most significant threats. Since 2017, phishing scams have

accounted for more than 50% of Ethereum-related cybercrimes, leading to substantial fi-

nancial losses. Incidents such as the Bee token Initial Coin Offering (ICO) scam of 2018,

which resulted in one million USD in losses within 25 hours, and the 2022 Uniswap Labs

attack, where attackers stole over eight million USD, demonstrate the severe impact of these

scams [33, 121, 9]. By 2024, more than two billion USD had been stolen from Ethereum

users through phishing-related activities [24, 64]. These cases illustrate the urgent need for

improved phishing detection mechanisms to protect user assets and bolster confidence in

Ethereum’s security [126, 7].

Phishing scams exploit the complexities of blockchain transactions, using sophisticated

methods to blur the line between legitimate and malicious activities [16, 89, 128]. Ad-

dressing these evolving threats requires innovative detection methods that incorporate both

traditional transaction analysis and advanced machine learning techniques [60, 108]. While

classification algorithms such as Random Forest (RF), Decision Tree (DT), and K-Nearest

Neighbors (KNN) have shown success in detecting phishing, concerns remain about their

robustness, especially against adversarial attacks [6]. These attacks, where small perturba-

tions are introduced into input data to deceive the models, significantly reduce the reliability

of these systems [42]. In particular, methods like the Fast Gradient Sign Method (FGSM)

have demonstrated how these models can be misled into incorrect classifications [101].

The vulnerability of widely used models such as KNN, RF, and DT to adversarial at-

tacks highlights the need for stronger defense mechanisms that ensure resilience against such

manipulations [75]. Developing robust detection systems capable of withstanding these ad-

versarial inputs is crucial for maintaining the integrity of Ethereum’s phishing detection

efforts [5].

Current approaches to phishing detection have primarily relied on explicit transactional

features, such as transaction value, gas usage, and timestamps. While these features are

useful, they fail to capture the broader relational dynamics in blockchain transactions. Re-

cent research has shown that graph-based models, which treat Ethereum transactions as

a network of interacting addresses, provide a more comprehensive approach to detecting

sophisticated phishing schemes [31, 116]. However, many existing studies overlook critical

7



Table 1: Overview of phishing detection approaches on Ethereum network. Metrics: Accu-
racy (A), Precision (P), Recall (R), and F1 Score (F1)

§ Task Target Technique Metric

§ 3 Evaluation of phishing detection models Robustness and effectiveness of models DT, KNN, RF A, P, R, F1
§ 4 Adversarial robustness Susceptibility to feature perturbation DT, KNN, RF A, P, R, F1
§ 5 Phishing detection Effectiveness of explicit and implicit features GCN A, P, R, F1

challenges such as class imbalance, where phishing transactions are vastly outnumbered by

benign ones. This imbalance limits the generalization ability of phishing detection mod-

els, making it crucial to develop more comprehensive solutions that integrate both explicit

features and graph-based models [40, 128].

1.2 Statement of Research and Contributions

In this dissertation, we propose three key tasks that tackle the challenges of phishing detec-

tion on the Ethereum network. Each task focuses on a different aspect, from systematically

evaluating machine learning-based phishing detection models to improving their robustness

and accuracy. Table 1 summarizes the tasks, target outputs, techniques, and evaluation

metrics for each. We will elaborate on each task in the following sections.

Evaluation the Learning-Based Ethereum Phishing Transactions Detection and

Pitfalls(§ 3). Ethereum’s rapid growth has introduced an increasing threat of phishing

scams that exploit the unique complexities of cryptocurrency transactions. Public efforts to

detect phishing have employed machine learning models, yet systematic evaluations of these

approaches remain scarce. In this work, we present a comprehensive evaluation framework

that assesses the robustness and effectiveness of phishing detection models. Our analysis

covers key elements such as feature selection, dataset composition, and model robustness

under real-world conditions.

We curate two well-known datasets, Eth-PSD and CTD, for Ethereum phishing detec-

tion and use decision tree and k-nearest neighbors (KNN) models to empirically validate

the results. Our evaluation reveals that many models exhibit overfitting due to artificial

dataset balancing and improper feature selection. We refine these models using recursive

feature elimination (RFE) and sequential forward selection (SFS), achieving significant im-

provements in their predictive power. Our experiments demonstrate that a leaner feature

set, focusing on key attributes such as transaction values, timestamps, and block height, can

enhance detection accuracy without sacrificing robustness. Evaluations using metrics such

as accuracy, precision, recall, and F1-score further verify the models’ improved sustainability

and performance across different phishing detection scenarios.
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Simple Perturbations Subvert Ethereum Phishing Transactions Detection: An

Empirical Analysis(§ 4). Machine learning models, especially in the context of phishing

detection, are often vulnerable to simple adversarial attacks that can significantly degrade

their performance. Ethereum’s rise as a platform for decentralized transactions has made

it a target for such attacks. In this work, we present an empirical evaluation of Random

Forest (RF), Decision Tree (DT), and K-Nearest Neighbors (KNN) models to understand

their susceptibility to adversarial manipulations. Through our experimentation, we introduce

perturbations to individual transaction features and measure their impact on classification

performance, particularly for phishing detection.

We curate two Ethereum-based datasets, focusing on binary classification for phishing and

multi-class classification for other cyber threats, including scams and fake ICOs. Our findings

reveal that even minor modifications to features such as timestamps and transaction values

cause significant drops in model accuracy. For instance, the RF model exhibited a decrease

in accuracy from 98% to 84% under timestamp perturbation Our work also highlights the

limitations of simple defenses like random perturbations, underscoring the need for more

advanced adversarial training methods. We evaluate these models using metrics such as

accuracy, precision, recall, and F1-score, demonstrating the inconsistency in model resilience

and the critical need for robust mitigation strategies.

Learning-Based Phishing Detection in Ethereum Transactions (§ 5). This study

employs a multi-stage pipeline to detect phishing scams on the Ethereum blockchain, focusing

on evaluating the effectiveness of two distinct types of features: explicit transactional features

and implicit graph-based features. Ethereum transaction data is collected from the Etherscan

API, where phishing and benign transactions are labeled to create the dataset.

The pipeline begins by separately evaluating explicit features, such as transaction value,

gas usage, and timestamps extracted from raw Ethereum transactions. Next, the study as-

sesses implicit graph-based features, which capture the broader relational dynamics between

Ethereum addresses in the transaction network. The Graph Convolutional Network (GCN)

model is used to detect phishing activities by leveraging the graph structure, where nodes

represent addresses and edges represent transaction relationships.

In the GCN model, the node feature matrix consists of either explicit transactional at-

tributes or implicit relational information. The GCN layers propagate information across

the graph, enabling the model to learn complex patterns in the Ethereum network relevant

to phishing detection. Preprocessing steps include normalization of features using Min-Max

scaling to ensure all features contribute equally during model training, and class imbalance

is addressed by employing a weighted loss function to emphasize phishing transactions.

This methodology allows for a comprehensive evaluation of phishing detection using both

explicit and implicit features, offering insights into how each type of feature contributes to

9



the effectiveness of the GCN model in identifying phishing transactions.
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2 Related Work

The security and privacy of blockchains in general and cryptocurrencies in particular have

been an active research area with many outstanding results highlighting the vulnerabilities

and defenses [15]. Phishing detection on the Ethereum network in particular has attracted

significant research interest due to the increasing vulnerability of blockchain platforms to cy-

ber threats. Researchers have explored various approaches, including transactional features,

adversarial robustness, and graph-based models, to detect and mitigate phishing scams. This

section reviews key contributions from these areas.

2.1 Transactional Features

A large body of research on phishing detection has relied on explicit transactional features,

such as transaction values, gas consumption, timestamps, and block numbers. These fea-

tures are directly extracted from blockchain transactions and provide early indicators of

phishing activities. However, while these approaches are effective for identifying straight-

forward scams, they often struggle to capture more sophisticated relational dynamics in

phishing attacks.

Kabla et al. [50] employed transactional features like blockHeight and timeStamp to

distinguish phishing accounts from legitimate ones, achieving high accuracy (F1 score of

0.98) through machine learning models such as KNN and decision trees. Wen et al. [113]

focused on temporal patterns within transactional data, using neural networks to identify

phishing behaviors based on subtle timing patterns. Similarly, Lin et al. [64]. refined phishing

detection by integrating features such as gas limits and transaction counts, although their

model struggled with more complex attack structures.

While these methods are highly effective for detecting simple phishing activities, their

primary limitation is their inability to detect complex, multi-node attacks that involve ad-

vanced techniques to obscure malicious behaviors. Consequently, research has shifted toward

more sophisticated approaches that address these shortcomings.

2.2 Adversarial Attacks and Model Robustness

In addition to transactional features, phishing detection models are vulnerable to adversarial

attacks, where small modifications to transaction data can cause machine learning models

to misclassify legitimate and phishing transactions. Recent research has demonstrated the

susceptibility of deep learning models to such adversarial perturbations, prompting a need

for more robust detection methods.
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Narodytska et al. [71] first demonstrated the vulnerability of deep learning models to

adversarial perturbations, showing how minor changes to input data could significantly im-

pact classification outcomes [71]. Building on this, Cartella et al. [28] adapted adversarial

attack techniques to fraud detection systems, achieving notable success in subverting models

trained on imbalanced datasets. Similarly, Bhagoji et al. [22] introduced black-box attacks

that exploited subtle modifications in transactional features like timestamps and transaction

values to evade detection by machine learning models.

Generative Adversarial Networks (GANs) have emerged as an effective tool for gener-

ating adversarial examples and handling data perturbations in cryptocurrency networks.

Fidalgo et al. [36] applied GANs to Bitcoin datasets to address class imbalance and improve

phishing detection accuracy by generating synthetic adversarial data. Agarwal et al. [10] uti-

lized Conditional GANs (CTGAN) to generate adversarial data for Ethereum transactions,

improving model robustness in detecting phishing activities. Rabieinejad et al. [80] combined

both CTGAN and Wasserstein GANs (WGAN) to augment Ethereum transaction datasets,

enhancing the detection capabilities of phishing models in imbalanced environments.

These studies highlight the need for improved defensive strategies to mitigate adversarial

attacks. The research into simple perturbations—such as manipulating timestamps and

transaction values—demonstrates the susceptibility of phishing detection models to even

minor alterations in input features. Addressing these vulnerabilities requires stronger feature

selection techniques, adversarial training, and robust data augmentation methods to ensure

that models remain resilient in adversarial environments.

2.3 Graph-Based Features

In contrast to transactional feature-based methods, graph-based approaches focus on captur-

ing the relational dynamics inherent in blockchain networks. These methods, often powered

by Graph Neural Networks (GNNs), analyze the network structure between blockchain ad-

dresses, enabling the detection of more sophisticated phishing schemes.

Zhou et al. [128] introduced the Edge-Featured Graph Attention Network (EGAT), which

uses both node and edge features (such as transaction values, gas usage, and timestamps)

to model the relationships between addresses and detect phishing activity. This approach

successfully identified hidden patterns in Ethereum’s transaction network that were missed

by transactional models. Li et al. [61] proposed the Transaction Graph Contrast Network

(TGC), which leverages contrastive learning to improve phishing detection by learning robust

representations of Ethereum addresses within transaction subgraphs. This method effectively

captures dynamic behaviors across large transaction networks.

Graph-based models offer distinct advantages over purely transactional methods by re-

vealing the complex interactions between blockchain addresses, especially in large, dynamic

12



networks. However, their reliance on implicit features may sometimes overlook key transac-

tional behaviors that are also indicative of phishing activity. This balance between transac-

tional and graph-based features remains a critical area of exploration in phishing detection.
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3 A Framework for Evaluating the ML-Based Ethereum

Phishing Transactions Detection

3.1 Summary of Completed Work

This study explores the challenges of phishing detection in the Ethereum, focusing on com-

mon practices in machine learning models used to identify phishing transactions. Phishing

has become a predominant security concern, significantly affecting the safety of trading

within Ethereum. This research systematically examines the data processing, feature selec-

tion, and algorithmic techniques employed across multiple studies on phishing detection.

The work categorizes and evaluates the diverse methods of feature selection, balancing

datasets, and robustness of features to adversarial manipulation. Key findings reveal several

issues, including overemphasis on large feature sets, manipulation vulnerabilities in com-

monly used transaction features (e.g., time, number of neighbors, transaction direction),

and the potential overfitting resulting from synthetic data generation in phishing-to-benign

balancing. Moreover, the study presents a comprehensive assessment of model optimization,

showing that streamlined models with fewer features could achieve comparable performance

to more complex ones.

By contrasting prior works, this study establishes a clearer understanding of how the

methods perform under various conditions, such as manipulated datasets or adversarial set-

tings, and suggests improvements in feature robustness, model simplification, and sustainable

detection methods for future studies.

3.2 Introduction

Machine learning has found many applications in the domain of computer and network

security, particularly related to the automation processes of understanding malicious soft-

ware [68, 14, 67, 94], network traces [106, 90, 30], and even behaviors [76, 107, 1]. Among

the many security concerns related to Ethereum [58, 46, 119, 32, 93, 97, 59, 109], phishing

scams stand out [64, 62, 61, 29, 103], constituting over 50% of Ethereum-related cybercrimes

since 2017 and emerging as a significant threat to the trading security of Ethereum [47] where

machine learning has a significant potential. The Bee token Initial Coin Offering (ICO) scam

of 2018 resulted in a loss of one million USD within 25 hours [33]. The phishing attack on

Uniswap Labs users in 2022 costed over eight million USD. Earlier in 2024, reports alleged

finding 91 wallets that amassed more than 2 billion USD from illicit activities, including

scams, on Ethereum [121]. All these incidents underscore the urgent need for enhanced

security measures to protect both assets and confidence in the cryptocurrency [98, 8].
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Phishing scams have evolved to exploit cryptocurrencies’ unique complexities, posing

significant security threats and challenging the foundation of trust and integrity that cryp-

tocurrencies seek to establish [126]. Financial losses from successful attacks also undermine

confidence in blockchain technology as a secure digital transaction platform. The persistent

threat of such sophisticated cybercrimes casts a shadow over the trust in digital curren-

cies [33, 50, 124]. This evolving threat has prompted a surge in research efforts to fortify

cryptocurrencies against these sophisticated cybercrimes.

Numerous research initiatives combine machine learning techniques with cryptocurrency

analyses to combat phishing attacks. Since transactions form a graph, many of these studies

detect phishing employing graph-based analysis [31, 61, 108]. Analyzing blockchain activity

alone aims to develop machine learning methods to identify malicious activities. For example,

one notable approach, by Chen et al.[31], employed convolutional networks and auto-encoders

alongside transaction graphs to identify phishing accounts. Another approach, by Lou et

al.[66], used a Convolutional Neural Network (CNN) to improve the precision and recall

of detection. Wu et al.[116] implemented a one-class learning for deciphering structural

relationships in Ethereum’s transaction network using Graph Convolutional Networks (GCN)

and autoencoders for high precision and recall for transaction classification.

Nevertheless, these works fail to systematically understand the circumstances under

which those approaches deliver outstanding results. In particular, proper implementation,

analysis, and understanding of those systems are lacking as they often make ad hoc assump-

tions about how phishing works in reality in a way that appeases the implementation of the

machine algorithms to deliver high effectiveness. Such assumptions may not be necessarily

grounded in the reality of the cryptocurrency.

This work investigates the common practices in machine learning-based phishing detec-

tion in Ethereum, focusing on its operation, data composition, feature selection, robustness

examination, and model optimization. This study is driven by the pressing need to bolster

phishing detection mechanisms [34, 21]. We categorize, map, and assess features, algorithms,

and techniques, evaluate their strengths and shortcomings, and highlight pitfalls in various

detection methods in following standard and sustainable practices.

We show the disarray in this research space. Feature selection is often ignored, and

dataset composition is often done for artificial reasons to balance label distribution and

achieve superior performance. Features are prone to manipulation, and robustness analysis

is often ignored, questioning the sustainability of the achieved performance. Models are

bloated without justification, and we show more streamlined models with fewer features

could achieve the same performance.

Contributions. In this paper, we make the following contributions. (1) We build a system-

atic evaluation framework that unveils the underlying practices in learning-based phishing
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detection in Ethereum, including the common practices with feature selection, dataset com-

position, feature robustness examination, and feature selection and model optimization. We

analyze and categorize a comprehensive list of recent studies in this space and highlight

where they fail to implement good and sustainable practices. (2) We empirically assess sev-

eral studies from the literature using our analytical framework, addressing various research

questions by quantifying concerns highlighted within the framework. Additionally, we ex-

amine practices surrounding these studies, highlighting the risks of overlooking fundamental

tests and assessments.

3.3 Research Questions and Methodology

Research Questions. This effort is built around five questions to understand the robust-

ness, generalization, reproducibility, and comparison of various works on Ethereum phishing

transaction detection. We highlight those questions and the need to address them.

RQ1. Are the prior works in the literature on phishing detection doing the proper

feature selection? This question stems from the observation that the features designed

for detection in the prior work [31, 112, 127, 33, 61, 60, 113, 38] lack thorough consideration

and justification. Frequently, these features are devised hastily and lack proper statistical

analysis. In other cases, those features result from a black-box learning module that is

difficult to comprehend.

RQ2. What is the impact of the representation of phishing as benign on the

performance of the phishing detection algorithms? This question stems from the ob-

servation that, in particular works, an arbitrary number of phishing transactions is assumed

in the datasets [33, 50, 33, 74, 60, 61, 64, 113]. To achieve a balanced ratio between benign

and phishing samples, these studies frequently introduce random phishing transactions into

their datasets without considering the impact on other features utilized in the classification

process, regardless of whether they are dependent or independent.

RQ3. How do different algorithms compare to one another? This question arises

from observing that various approaches [116, 64, 74, 113, 31, 112, 126, 33, 38] employing dis-

tinct features and feature groups, and different algorithms, are typically conducted indepen-

dently and not compared against each other in terms of their performance using comparable

evaluation metrics and consistent evaluation settings. An additional aspect of answering this

question involves determining the reproducibility of the findings from previous studies on

cryptocurrency phishing detection.

RQ4. What impact does dataset preprocessing have on the overall effectiveness

of the detection algorithm’s generalization? This question is driven by the observation

that many studies incorporate a preprocessing phase, e.g., reducing a larger network to a
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Figure 1: Detection pipeline in cryptocurrency transactions.

smaller one to make the analysis and detection algorithm implementation more feasible com-

putationally [61, 60, 116, 64, 31]. However, such preprocessing excludes certain underlying

transaction networks while possibly exaggerating others that may not be as prominent in

the original network. Therefore, comprehending the influence of preprocessing steps on the

outcome of the detection algorithm is essential for understanding its generalization.

RQ5. How do different features and feature groups compare for robustness to

manipulation? An effective detection and sustainable algorithm should depend on inherent

features and not be easily manipulated by adversaries to evade detection. However, it is

evident that the feature sets in these detection schemes (e.g., [116, 64, 127, 113, 74, 61]) are

non-uniform and differ in this aspect. Conducting a systematic and comprehensive analysis

of these features is crucial.

3.4 Methodology

Our methodology is built around the research questions highlighted in section 3.3. The high-

level depiction of the methodology is shown in the pipeline in Fig. 1. Our pipeline comprises

the following steps: data collection, data preprocessing, feature selection, and detection. We

will review our pipeline to address the research questions below. We limit ourselves in this

discussion to the high-level and general techniques description since the individual techniques

are studied in the subsequent sections when discussing specific works.

Data Source/Collection. Our pipeline begins by gathering data associated with the

transactions from a data source. Such data includes full transaction information confirmed

in blocks and cryptocurrency-specific application features and details. For instance, this

encompasses block numbers, time, sender and receiver addresses, transaction values, and gas

fees. This comprehensive dataset forms the foundation for our subsequent preprocessing and

analysis steps, facilitating a thorough examination of the transactional ecosystem to identify

and classify phishing attempts effectively.

Data Preprocessing. Different approaches utilize different preprocessing techniques, which

we will discuss further.
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Normalization. This step involves converting transactions into a usable format for clas-

sification, e.g., converting hexadecimal to integers and extracting transaction relationships.

For instance, in [31], a graph is derived where nodes are the addresses and the edges are the

transaction values and time.

Scaling. Scaling is a vital step in data preprocessing to adjust the range of data features to

a standard scale, ensuring that each feature contributes equally to the analysis [50]. Given

the significant variation in transaction data magnitude, this step is crucial to avoid potential

biases in the results. Commonly employed approaches include Min-Max scaling and Z-score

normalization. Min-Max scaling adjusts the data to fit within a specific range, e.g., 0 to 1 or

-1 to 1, proving beneficial when dealing with features to be bounded within a specific range.

Feature Selection. Identifying the most relevant features within a dataset is critical for

developing robust detection models [52]. This involves selecting features that significantly

affect the accuracy of phishing detection, which may include the amount and frequency of

transactions, distinct transaction patterns, and deviations in transactional behaviors [60,

113]. Considerations might include account age, network breadth, and other behavioral

indicators [31, 50].

General Selection. Feature selection includes a voting strategy and various ranking tech-

niques. Potential features are evaluated, followed by a voting system that selects features

based on a predetermined threshold.

Correlation-based Selection. This approach is used to identify the most relevant and im-

pactful features for inclusion in the model [50] based on their pair-wise correlations: features

with high correlation are excluded from the candidate features.

Engineered Featues. Another technique employs the graph-based method that analyzes the

transaction network through a graph perspective, denoted as G(V,E). This approach zeroes

in on a particular subgraph, Gs(Vs, Es), where the analysis includes node characteristics and

the adjacency matrix. Attention is paid to aspects such as transaction nodes’ in-degree and

out-degree and the patterns and frequencies of transactions [31, 64]. This method provides

detailed insight into the network structure, allowing a nuanced understanding of transaction

behaviors and potential links to phishing activities.

Detection Methods. The stage involves identifying phishing activities by employing sev-

eral machine-learning models to analyze and predict the likelihood of suspicious or fraudulent

transactions. By training on labeled data, these models are adept at discerning patterns,

enabling the distinction between normal and malicious activities.

Supervised Learning. Supervised learning approaches train algorithms on labeled data where

the outcome is known, allowing models to learn from past data and apply this learning to

new, unseen transactions. We deploy classifiers such as LightGBM, Decision Trees (DT),
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Table 2: The literature on phishing accounts detection using various features, features groups, and algo-
rithms across various evaluation metrics.

Work Group Features Algorithms
Performance
F1 AUC

Chen et al. [33] Transaction T, A LightGBM 0.80 0.81
Chen et al. [31] Transaction ID and OD, D, IS, OS, S, N LightGBM 0.16 0.56
Palaio. et al. [74] Transaction BN, GF, NT, ST SVM, CNN, XGBoost 0.85 –
Wen et al. [112] Transaction T, A, ID, OD, N, from, to SVM, KNN, AdaBoost 0.94 0.92
Kabla et al. [50] Transaction T, BN, from, input KNN, DT 0.97 0.97
Li et al. [60] Transaction ID, OD, D, A, T, NT LightGBM 0.81 0.92
Wu et al. [116] Transaction T, A SVM 0.90 –
Li et al. [61] Transaction ID, OD, D, A, T, NT XGBoost 0.92 –
Lin et al. [64] Transaction BN, A, GL, GF Neural network 0.82 –
Wen et al. [113] Transaction T, A, TD, GF, B, NT Neural Network 0.97 –
Zhou et al. [127] Transaction T, A, GF, ID, OD EGAT 0.97 –
Chen et al. [31] Behavioral ID, OD, D, IS, OS, S, N LightGBM 0.16 0.56
Li et al. [61] Behavioral ID, OD, D TGC 0.92 –
Li et al. [60] Behavioral ID, OD, D TTAGN 0.81 0.92
Wen et al. [112] Behavioral ID, OD, N SVM, KNN, AdaBoost 0.94 0.92
Zhou et al. [127] Behavioral ID, OD EGAT 0.97 –
Dong et al. [38] Content ID, OD, NT SVM, LR – 0.97
Wen et al. [113] Content T, A, TD, GF, B, NT CNN 0.97 –

(1) Features: Time (T), amount (A), in-degree (ID), out-degree (OD), degree (D), in-strength (IS), out-
strength (OS), strength (S), neighbors (N), block number (BN), gas fee (GF), number of transactions (NT),
successful transactions (ST), gas limit (GL), balance (B), transfer direction (TD). (2) Metrics: F1 score and
area under the curve (AUC).

and K-nearest neighbors (KNN). More details on these algorithms are in the appendix.

Evaluation and Validation. We use various metrics for evaluation: accuracy, precision,

recall, and F1 score. ① Accuracy. The accuracy denotes the ratio of correctly predicted

observations to the total observations, offering an insight into the model’s differentiation

between phishing and legitimate transactions. ② Precision. The precision is the ratio of cor-

rectly predicted positive observations to the total predicted positive observations. ③ Recall.

The recall, or sensitivity, quantifies the proportion of correct positives correctly identified. ④

F1 Score. The F1 score, also known as the harmonic mean of precision and recall, verifies the

model’s accuracy by factoring in the false positives and false negatives. ⑤ The Area Under

the Curve (AUC) AUC is indispensable, especially in situations characterized by class im-

balance, a frequent occurrence in phishing detection. The AUC metric assesses the model’s

ability to differentiate between phishing and legitimate transactions, with a perfect model

achieving an AUC of 1. An AUC of 0.5 suggests a performance no better than random

chance.
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3.5 Analytical Evaluation

To answer the research questions in section 3.3, we pursue two directions: a theoretical

analysis based on a deep understanding of the context in which the phishing detection

schemes are used and an experimental work based on the actual implementation of some of

those schemes to support our theoretical analysis. The theoretical analysis follows the same

order in section 3.3 to answer each research question.

3.5.1 Feature Selection Techniques

The prior works have employed various techniques to select features for building the learning

model. Those features are shown in Table 2 for the different techniques.

3.5.2 Feature Selection

Our primary questions are: (1) How are features selected? (2) Is there a standard for

their selection? (3) Does the technique for selecting those features directly address their

importance? (4) Are they all essential for the functioning of these schemes? To contextualize

our discussion, we present the different feature selection techniques in the works discussed

in Table 2. Then, based on the discussion, we answer the above questions.

Trans2vec. Introduced by Wu et al. [116], Trans2vec stands out as a specialized network

embedding technique designed for transaction networks like Ethereum. It is notable for its

feature extraction method, embedding transaction-specific attributes into node representa-

tions focusing on transaction amount and time. By constructing a multidimensional feature

space, Trans2vec represents each node within the transaction network, where transaction

amount and timestamp are not merely additional data points but are intricately incorpo-

rated into each node’s representation structure.

Cascading Method. Proposed by Chen et al. [33], the cascading method initially analyzes

individual accounts, focusing on transaction details such as frequency and amount as prelim-

inary features obtained from a graph structure of the Ethereum transactions and associated

accounts. It then gradually expands the features to consider the account’s direct connec-

tions (first-order connections), extending further to second-order connections and beyond.

This layered feature set reflects individual account behavior and broader interaction patterns

within the network, which is vital for detecting phishing activity.

Correlation Analysis. Employed by Palaiokrassas et al.[74], correlation analysis is a pivotal

technique for identifying linear relationships between features, thereby detecting redundancy

among variables. The high correlation between features may suggest interdependence, in-

dicating potential redundancy for machine learning models, which is crucial in optimizing
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model performance. Methods based on the correlation analysis omit features with high

correlation.

Feature Engineering. Wen et al.[112] takes a targeted approach to Ethereum transac-

tion analysis, distinguishing between Account Features (AFs) and Network Features (NFs).

To uncover unusual patterns, AFs focus on individual behaviors, such as account balance,

transaction types, and volumes. NFs map an account’s network interactions, examining its

connectivity and transaction flows with other entities. These features are selected manu-

ally without significance testing, pointing towards a tailored but less empirical approach to

feature engineering.

Sequential Forward Selection (SFS). SFS is characterized by its incremental selection of

features based on their contribution to predictive power. Initialized with no features, SFS

adds one feature at a time, selected according to a specific criterion to optimize model perfor-

mance [104]. This addition continues until further inclusion of features yields no significant

improvement.

Recursive Feature Elimination (RFE). RFE operates by iteratively removing the least im-

pactful features based on their contribution to the performance and evaluating the remaining

set [48]. This process helps understand which features are least helpful in predicting phishing

and optimizes the efficiency by focusing on a smaller, more impactful feature set [70].

Voting-Based. Introduced by Kabla et al.[50], the voting-based feature selection method

applies three distinct ranking algorithms to evaluate and select features. This method in-

corporates a holistic view by assessing each feature’s correlation with the outcome, its im-

portance within a specific classifier, and the collective effectiveness of feature sets through a

majority vote. Such an approach aims to refine the feature set for phishing scam detection

models, emphasizing consensus among different evaluative methods.

TTAGN. Li et al.[60] present Temporal Transaction Aggregation Graph Network (TTAGN),

a method leveraging Temporal Edge Representation to capture Ethereum transaction dy-

namics. Using Long Short-Term Memory (LSTM), it analyzes temporal interactions between

nodes, enhancing edge representations. An Edge2Node module aggregates these representa-

tions with attention mechanisms. Additionally, a Structural Enhancement Module equipped

with a GCN analyzes the graph topology, thereby enriching node profiles for more compre-

hensive feature representation.

TGC. Due to Li et al.[61], the Transaction Graph Contrast Network (TGC) constructs a

node’s ego network as a starting point for comparative pair creation and subgraph training.

Through Random Walk with Restart (RWR) sampling, diverse subgraphs are generated for

contrastive learning. The feature extraction process is split into node-level, distinguishing

a node against its neighbors, and context-level, differentiating the structural patterns of
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Table 3: A comparison of the feature selection algorithms.
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Chen et al. [33] Transaction ✓ Cascading Hybrid G# G# →
Chen et al. [31] Transaction – – – – – –
Palaio. et al. [74] Transaction ✓ Correlation Traditional  # ↓
Wen et al. [112] Transaction ✓ FE/RFE Traditional  # ↓
Kabla et al. [50] Transaction ✓ Voting Traditional  # ↓
Li et al. [60] Transaction ✓ TTAGN Learning #  ↑
Wu et al. [116] Transaction ✓ Trans2vec Learning #  ↑
Li et al. [61] Transaction ✓ TGC Learning #  ↑
Lin et al. [64] Transaction ✓ Phish2vec Learning #  ↑
Wen et al. [113] Transaction ✓ NN Learning #  ↑
Zhou et al. [127] Transaction – – – – – –
Chen et al. [31] Behavioral – – – – – –
Li et al. [61] Behavioral ✓ TGC Learning #  ↑
Li et al. [60] Behavioral ✓ TTAGN Learning #  ↑
Wen et al. [112] Behavioral ✓ FE Traditional  # ↓
Zhou et al. [127] Behavioral – – – – – –
Dong et al. [38] Content ✓ NN Learning #  ↑
Wen et al. [113] Content ✓ NN Learning #  ↑

(1) Abbreviations: Feature engineering (FE), neural networks (NN).
(2) Metrics: Interpretability, computation, and performance.
(3) Values: unsatisfied (#), satisfied ( ), partially satisfied (G#), better performance (↑), worse
performance (↓), average performance (→), and no basis (–).

phishing versus normal addresses. The contrastive approach leverages Graph Neural Network

(GNN) encoders to unveil distinct transactional and structural patterns.

Phish2vec. Due to Lin et al. [64], Phish2vec is a feature extraction technique that accounts

for temporal dynamics. The process starts with the Temporal-based Sequences Generator

(TSG), which utilizes a random walk technique that incorporates both amount- and time-

based factors to generate sequences that accurately portray the transactional values and

their temporal sequence within the network. Moreover, the Heterogeneous-based Sequences

Generator (HSG) is introduced to handle various account types, such as Contract Accounts

(CAs) and Externally Owned Accounts (EOAs), by generating sequences that capture the

interactions and operational patterns among these accounts. These sequences are subse-

quently analyzed using a word2vec model to extract low-dimensional vector representations

for each account, capturing the network’s contextual and structural nuances.

Neural Networks. Wen et al. [113] leverage a composite of neural networks for data rep-

resentation, anchoring on a Back Propagation (BP) neural network for processing transfer

and state features. This layer encodes relational patterns into vectors, which are further

scrutinized by Fully Convolutional Networks (FCN) and LSTM units to discern and prior-
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itize transaction features. Dong et al. [38] integrates GNNs, with a spotlight on node2vec,

alongside feature derivation methods for a nuanced extraction of blockchain transaction data

features. This approach, focusing on structural and transactional data, e.g., time and values,

aims to distill key indicators of transaction behaviors for enhanced feature selection.

3.5.3 Analysis and Results

The exploration of feature selection techniques reveals a lack of a uniform standard across

different studies. Each employs its unique method, often deviating from conventional ap-

proaches, making it challenging to compare these methods directly regarding their effec-

tiveness in feature selection. This diversity raises critical questions about whether observed

discrepancies in model accuracy stem from the learning techniques themselves or from the

specific features considered, which are often not transparently disclosed. Several feature rep-

resentation and selection techniques are utilized. Some indirectly limit their explainability

by trading the computational features for performance or vice versa, as shown in the last

three columns in Table 3.

Methods. The feature representation and selection methods can be categorized into three

groups, which we review below.

Learning-based Techniques. These techniques begin with a rudimentary representation

based on an initial concept of nodes and edges and gradually evolve into the final represen-

tation using a learning component, e.g., a neural network. Among the discussed methods

thus far, the category includes Trans2vec, TTAGN, TGC, Phish2vec, and GNN-based tech-

niques.

Traditional Techniques. These methods start with a fixed set of features from transaction,

network, or content-related data. They iteratively refine this selection by choosing fea-

tures that significantly impact the detection algorithm’s performance, as evaluated by their

contribution to the loss function. This category includes correlation, voting, and feature

engineering techniques among those reviewed.

Hybrid Techniques. These methods often demonstrate a blend of attributes from both

learning-based and traditional techniques. Among the techniques we have explored thus far,

the cascading method is the only one that fits this description.

Feature Selection Comparison. The learning-based techniques provide feature represen-

tations and automate feature selection, reducing the need for human intervention. However,

they often lack interpretability since feature selection is indirect. These methods typically

involve weighting features in an initial embedding and projecting them into different di-

mensions through multiple iterations determined by the neural network architecture. This

process depends on the specific network used. It may not generalize well to different datasets,
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leading to a computationally expensive feature extraction process that needs to be repeated

for each dataset or fold.

The traditional techniques differ from learning-based ones in ignoring certain features

entirely instead of optimizing them through weight adjustments based on the loss function.

While this approach generally performs less than automated learning techniques, it provides

more interpretable features. Knowing which features are most influential for detection helps

us analyze their manipulability and design defenses, which helps us in our experimental

evaluation in subsection 3.8. Traditional methods are typically computationally lightweight

but require human intervention to understand features, select ones that generalize, and

evaluate their suitability for different datasets.

The hybrid techniques, predominantly represented by the cascading method, incorporate

elements reminiscent of learning-based techniques. However, they refrain from fully learning

feature representations and instead cascade the representation by integrating it with adjacent

entity features (e.g., nodes and edges). Thus, these techniques can be automated relatively

easily while allowing for some interpretation.

Statistical Analysis. Certain studies [31, 127] involve statistical analysis on the detection

features, e.g., by calculating the min, max, means, etc., from the distributions. However,

such analyses often do not contribute to determining the importance of features, e.g., in

cases where the min, max, and mean values fall within a narrow range from each other.

Summary. Table 3 shows a summary of the feature selection algorithms utilized in the

various schemes of phishing detection, if any, categorized against their type, interpretability,

computational complexity, and performance. We note that 4 out of 18 detection schemes did

not use any form of feature selection. In contrast, 9 (50%) used learning-based techniques,

4 used traditional feature selection approaches, and only 1 used hybrid approaches. This

makes the learning-based techniques the most widely used category despite their clear dis-

advantages in the security domain in terms of their computational complexity and limited

interpretability.

Answering RQ1. Various techniques are utilized for feature selection in phishing transac-

tion detection. Five of the nine techniques examined employ learning-based methods, often

yielding uninterpretable features. In contrast, three techniques focus on feature selection,

and one adopts a hybrid approach. While there is no standard protocol for feature selection,

most works incorporate it to some extent. However, only a subset of techniques directly

addresses feature importance, with interpretations remaining unclear despite emphasizing

feature importance across all methods.
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Table 4: Overview of various studies categorized by work, year of publication, the number of
transaction, number of accounts, original data distribution, method of balancing, modified
data distribution, and the corresponding ratios before and after balancing.

Work Transactions Accounts
Original Data

Method
Modified Data Phishing-to-benign Ratio

Phishing Benign Phishing Benign Original Modified
Chen et al. [33] 7,795,044 534,820 1,683 7,793,359 Filter rules 323 534,497 0.0216% 0.0604%
Chen et al. [31] – 2,973,382 1,157 2,972,225 No balancing 1,157 2,972,225 0.0389% 0.0389%
Palaio. et al. [74] 54,000,000 550,000 10,000 540,000 SMOTE 81 10,000 1.818% 0.81%
Wen et al. [112] 20,667,671 52,380 3,135 49,245 Filter rules 992 4,066 6.366% 22.675%
Kabla et al. [50] – 84,664 5,448 79,216 Over-sampling 38,143 79,216 6.877% 48.15%
Li et al. [60] 208,847,461 6,844,050 4,932 6,839,118 Filter rules 4,932 – 0.072% –
Wu et al. [116] 3.8 billion 500 million 1,259 1,259 No balancing 1,259 1,259 100% 100%
Li et al. [61] 219,927,673 9,237,535 5,639 9,231,896 Upsampling 5,639 25,000 0.061% 22.556%
Lin et al. [64] 22,594,499 4,116,315 5,168 4,111,147 Sliding window 301 4,116,013 0.1257% 0.0073%
Wen et al. [113] 739,790 44,709 4,709 40,000 Sliding window 43,125 74,838 11.772% 57.624%
Zhou et al. [127] 332,670 3,359 1,659 1,700 No balancing 1,659 1,700 97.59% 97.59%
Dong et al. [38] 4,161,444 944,705 1,660 1,700 No balancing 1,660 1,700 97.64% 97.64%

3.6 Phishing-to-Benign Ratio

In phishing detection, distinguishing benign and malicious transactions is crucial, quantified

by the phishing-to-benign ratio (Table 4). Our investigation delves into key questions: (1)

Is the balance between phishing and benign transactions manipulated in machine learning-

based phishing detection? (2) What techniques are employed for balancing the distribution?

(3) How does the balancing affect the representation of benign relative to phishing transac-

tions? (4) How does this balancing impact the generalization?

3.6.1 Balancing Phishing Ratios

Phishing refers to malicious activities where attackers seek to deceive users into revealing

sensitive information, such as private keys or wallet passwords. In contrast, benign refers

to transactions or accounts that are not malicious. The phishing-to-benign ratio measures

the prevalence of phishing attempts against benign activities within datasets. Creating

balanced training sets for machine learning algorithms is sometimes necessitated by the

logic of the underlying machine learning algorithms to ensure high accuracy in phishing

detection systems [118].

In real-world applications, biased models can reduce accuracy if the classes are imbal-

anced, leading to a preference for the overrepresented class [100]. Achieving a balanced

ratio enhances the detection models’ adaptation to diverse scenarios, reducing overfitting

risks [81]. Consequently, maintaining a balanced representation in training datasets is criti-

cal for the accuracy and fairness of machine learning models in detecting phishing activities.

However, this artificial balancing may not reflect the real-world scenario where the imbalance

is intrinsic.

Next, we explore whether these assumptions are maintained in model training and their

impact on generalization.
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3.6.2 Dataset Balancing Techniques

The diverse approaches outlined in Table 4 use various techniques to balance the phishing

and benign ratio to optimize the dataset’s composition to meet the learning algorithm’s

requirements. As such, we delve into the employed balancing methods and pitfalls.

No Balancing. Several studies, such as those by Chen et al. [31], Zhou et al. [127], Dong et

al. [38], and Wu et al. [116] opted for unbalanced datasets. This choice poses significant

challenges for machine learning models in training to detect phishing in the minority class.

With phishing examples scarce, models may skew towards recognizing the majority of be-

nign, undermining their ability to identify phishing accurately. Such a scenario perfectly

balances preserving the dataset’s authenticity and enhancing the model’s detection capabil-

ities. Moreover, it represents the real-world setting where the machine learning models are

eventually supposed to operate.

Filtering Rules. Data cleaning techniques are applied to eliminate outliers or specific data

types, thus improving detection accuracy. Chen et al.[33] refined their dataset by filtering

out transactions and accounts with significant transaction volumes, substantially lowering

their count of phishing addresses. Similarly, Wen et al.[112] applied a similar strategy by

removing accounts with fewer than four incoming transactions or balances below 5 ether.

Li et al.[60], on the other hand, removed transactions before August 2, 2016, and those

from exceptionally active addresses. While aimed at pinpointing phishing activities with

greater precision, these strategies come with a notable drawback: the inadvertent removal

of legitimate transactions that fall outside standard patterns. This risk could diminish the

model’s capacity to detect a wider array of phishing behaviors, potentially weakening their

effectiveness.

SMOTE. The Synthetic Minority Over-sampling Technique (SMOTE) aims to achieve

dataset balance by creating synthetic examples of underrepresented classes, thereby im-

proving predictive model accuracy. Palaiokrassas et al.[74] used SMOTE to analyze over

54 million Ethereum transactions, identifying only 81 addresses associated with illicit DeFi

protocol activities. While balancing phishing and benign instances for model training, this

approach introduces the risk of artificial pattern creation. Such deviations could compromise

the model’s effectiveness on genuine data, impeding generalization.

Over-sampling. Over-sampling techniques, employed to balance datasets by increasing the

representation of underrepresented classes, were utilized with variations by researchers in

their studies. Kabla et al.[50] duplicated phishing records in datasets, aiming to achieve bal-

ance. Similarly, Li et al.[61] used upsampling to amplify the presence of phishing addresses

in their extensive dataset for a more equitable distribution. Despite effectively augmenting

phishing instances, this approach bears the risk of model bias towards these inflated exam-
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ples, potentially compromising the distinction between benign and phishing activities due to

the likelihood of overfitting.

Sliding Window. The sliding window technique analyzes subsets of data within a larger

dataset or stream. It involves moving a fixed-size window over the data and processing or

analyzing the data contained within that window at each step. Lin et al.[64] introduced a

Statistics-Based Sampling (SBS) approach, selecting transactions within specific blocks to

distribute phishing activities evenly. Alternatively, Wen et al.[113] utilized a sliding window

of size 16 to cover overlapping transaction segments, seeking to identify and balance phishing

and benign activities by acknowledging temporal patterns. However, this approach might

not encompass all phishing behaviors, potentially diminishing the model’s efficiency.

Summary. Altering the phishing-to-benign transaction ratio can significantly affect detec-

tion algorithms’ performance. Introducing synthetic or duplicated phishing transactions for

dataset balancing poses a risk of distorting the feature distribution learned by algorithms.

Consequently, models might excel with altered training data but struggle to apply their

insights to real, untouched data. A common risk is overfitting, where the model overly at-

tunes to the artificial noise from these manipulations rather than discerning genuine phishing

patterns. Therefore, while balancing may boost algorithm performance in training, it risks

undermining effectiveness with real-world data the algorithm ultimately faces.

Answering RQ2. With the diverse methods used to alter the phishing-to-benign ratio, it

is clear that manipulation can significantly compromise detection algorithms’ accuracy and

real-world applicability. The infusion of synthetic transactions for dataset balancing carries

notable repercussions for the algorithms’ ability to generalize. While these techniques aim

to enhance the representation of phishing transactions, they risk introducing biases and

promoting overfitting.

3.6.3 Balancing Analysis And Result

Dataset balancing, as highlighted in section 3.6.2, reveals a landscape marked by diversity.

Different studies introduce techniques shaped preset, although ad hoc, circumstances. This

variety complicates the task of directly comparing the efficacy of these approaches. It raises

a critical question: are the observed variances in model performance due to the balancing

methods or the complex nature of the data/algorithms? Our work sets the stage for a

detailed examination of how each category of balancing technique influences the phishing

detection models.

No Balancing. Four studies did not implement any balancing methods: Chen et al.[31],

Wu et al.[116], Zhou et al.[127], and Dong et al.[38]. Specifically, Chen et al..[31] exhibited

notably low phishing ratios at 0.039%, introducing challenges to machine learning models
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due to significant class imbalances. Conversely, Zhou et al.[127] and Dong et al.[38] presented

higher ratios, at 97.59% and 97.64%, respectively, indicating a different set of challenges for

accurate phishing detection, such as overfitting and a decreased ability to identify legitimate

communications effectively. These extremes in dataset composition underscore the pivotal

role of balanced data in training machine learning models for phishing detection.

Filter Rules. Applying filter rules, Chen et al.[33], Wen et al.[112], and Li et al.[60] achieved

varied outcomes. The strategy adopted by Chen et al.[33] led to a reduction in phishing

transactions to 323 and benign transactions to 534,497. This adjustment significantly al-

tered the phishing-to-benign transaction ratio, raising it from 0.0216% to 0.0604%. Wen et

al.[112] decreased the number of phishing transactions to 992 and benign transactions to

4,066, elevating the phishing-to-benign ratio from 6.366% to 22.675%. Such an increase, by

approximately 256.19%, underscores deviation from reality. Li et al. et al.[60] did not adjust

the phishing ratio, which remained consistent at around 0.072%. This steadiness suggests

that the filtering had negligible impact on the dataset or that any modifications were not

documented. In comparison, the methods employed by Chen et al.[33] and Wen et al.[112]

highlight the impact of filtering rules in enhancing detection.

SMOTE. Utilizing SMOTE, oversampling, and upsampling enables the inflation of minority

classes to adjust imbalances. Palaiokrassas et al.[74] applied SMOTE to refine the phishing

ratio to 0.81%, albeit at the risk of introducing synthetic biases. Conversely, Li et al.[61]

leveraged upsampling for 219.9 million transactions, elevating the phishing detection poten-

tial by increasing its ratio from 0.061% to 22% (more than 36 folds!). Similarly, Kabla et

al.[50] utilized oversampling to enhance the phishing class’s visibility, boosting the ratio from

6.877% to 48.15% (almost seven folds).

These strategies highlight the nuanced roles preprocessing plays in improving phishing

detection. Each alters the dataset in a way that optimizes for challenge resolution. Neverthe-

less, the risk of model overfitting and the ability to faithfully represent real-world scenarios

differ among the techniques. SMOTE offers a diverse yet synthetically augmented solution

compared to the direct increase by oversampling and upsampling.

Sliding Window. The sliding window technique involves analyzing a subset of data over a

fixed period, which shifts progressively over the entire dataset, to capture dynamic changes in

data characteristics. Using the sliding window technique, Wen et al.[113] and Lin et al.[64]

observed divergent outcomes in their ratios after implementing their balancing methods.

Wen et al.[113] witnessed their dataset’s phishing to benign ratio increase from 11.77% to

57.62%, equating to more than a 389% surge in phishing instances. Lin et al.[64] achieved

reduced the phishing to benign ratio from 0.126% to 0.0073%; i.e., more than 94% reduction.

Such outcomes emphasize the sliding window technique’s flexibility, which can significantly

diminish or considerably amplify the visibility of phishing.
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Summary. Our analysis examines preprocessing techniques across multiple studies, outlined

in Table 4. Notably, seven out of twelve studies showed significant alterations in phishing

ratios following the application of balancing methods, with increases reaching as high as

22 folds. These changes underscore the substantial modifications made to address dataset

imbalances, reflecting the adoption of various strategies. Nevertheless, among the studies we

surveyed, four studies chose not to alter the datasets, staying faithful to the dataset origin

in the real-world deployment scenario.

Answering RQ4. Preprocessing impacts the effectiveness of detection algorithms. Im-

balances in some studies resulted in very low phishing ratios, posing challenges in model

training. Employing filter rules and generating synthetic data enhances data, but overfitting

and non-authentic patterns diverge from real-world scenarios. These practices underscore the

importance of maintaining data authenticity and relevance, which is essential for detection

algorithms capable of reliably identifying phishing in diverse situations.

Table 5: An analytical evaluation of the robustness of phishing detection models, utilizing
an array of features.
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Chen et al. [33] # G# 1 1 0
Chen et al. [31] G# G# G# G# G# G# # 1 6 0
Palaio. et al. [74]  G# # # 2 1 1
Wen et al. [112] # G# G# G# # G# G# 2 5 0
Kabla et al. [50] # G#  G# G# G# 1 4 1
Li et al. [60] G# G# G# G# # 1 4 0
Wu et al. [116] # G# 1 1 0
Li et al. [61] # G# G# G# G# # 4 2 0
Lin et al. [64] G#  G# 0 2 1
Wen et al. [113] # G# G# # # G# 3 3 0
Zhou et al. [127] # G# G# G# G# 1 4 0
Dong et al. [38] G# G# G# # 1 3 0

(1) Features: The features and abbreviations are listed in Table 2.
(2) Metrics: prone (#), susceptible (G#), and resilient ( ) to manipulation.
The last three columns are the sum of these metrics for each studied
scheme.

3.7 Features Robustness

Delving into the insights gathered from various studies showcased in Table 5, we system-

atically classify features from prior research according to their susceptibility to adversarial

manipulation and the complexities involved in their detection [91]. Our analysis revolves

around how features fare when evaluated based on their robustness against manipulation.

We classify the features used in the literature into three categories: (1) prone to manipula-

tion, (2) resilient to manipulation, or (3) susceptible to manipulation. In the following, we
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identify those features, contrast the literature based on them, and answer some key research

questions along the way.

3.7.1 Features Prone to Manipulation

Adversaries can avoid detection by standard security models via transaction features manip-

ulating (e.g., adversarial learning). For instance, altering the timing and volume is simple,

but detecting these manipulations is challenging because they can seamlessly blend with

legitimate activity. Based on our evaluation, we identify the following features that are

prone to manipulation: time, neighbors, number of transactions, and transaction direction.

In the following, we make the case for why those features are prone to manipulation, thus

considered not robust.

Time. Time refers to the timestamp associated with each transaction, indicating when

it was confirmed on the Ethereum network. Despite the immutability of blockchain times-

tamps post-confirmation, attackers can subtly manipulate transaction timings to their ad-

vantage [111]. For instance, by strategically choosing when to broadcast transactions, they

can dodge detection during peak network activity or take advantage of specific market con-

ditions. Moreover, by adjusting transaction fees, attackers can influence the priority of their

transactions, either delaying them to decrease visibility to miners or hastening their confir-

mation through higher fees [111, 44].

Neighbors. This feature indicates the number of unique addresses a wallet transacts with

and is easily manipulated. For instance, an adversary can create fictitious addresses to

increase the neighbor count artificially, conduct transactions with reputable addresses to

merge illegitimate transactions with legitimate ones, and churn funds between controlled

accounts to obscure the origins of funds [55, 88].

Number of Transactions. This feature refers to the total transfers or trades linked to a

specific address or within the network over a period and is vital for gauging the activity level

and potential behavioral patterns of users [23]. Adversaries can deploy various methods to

affect detection, such as executing numerous microtransactions or spreading transactions

over several accounts [51, 79, 87]. These strategies aim to either obscure the movement

of illicit funds or simulate heightened activity, thus making it difficult for analytical tools

to differentiate between legitimate and suspicious activities. The strategic timing of these

transactions, intended to bypass surveillance, adds a further layer of complexity to their

detection [79].

Transaction Direction. This feature refers to whether a transaction for a particular wal-

let is incoming or outgoing. Understanding the flow of funds is key to identifying poten-

tial fraudulent patterns. Attackers may manipulate this feature by, for example, address
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hopping—moving funds through multiple controlled addresses to blur the distinction be-

tween incoming and outgoing transactions and transaction cycling [65], where funds are

circulated among attacker-controlled addresses in a closed loop. These techniques, aimed at

disguising fraudulent activity and efficiently partitioning cryptocurrency networks, challenge

detection systems [44, 89].

3.7.2 Features Resilient to Manipulation

Features associated with inherent blockchain characteristics or historical data are difficult to

alter without leaving a trace. Due to its decentralized and immutable nature, blockchain is

supposed to ensure these features are secure and formidable to attackers [84].

Successful Transactions. This feature refers to validated and confirmed transactions. The

decentralized and immutable characteristics of blockchains make manipulation a formidable

challenge. Given the distributed ledger’s nature, altering a transaction record would require

a consensus from most network participants, a near-impossible feat [123, 86]. Moreover, any

attempt to modify a transaction would necessitate recalculating the cryptographic hashes for

all subsequent blocks in the chain, which is infeasible [78]. The ledger’s transparency further

bolsters security by enabling independent verification of transactions, thereby enhancing

trust and integrity [122].

Block Number. This feature refers to the chronological order of blocks in the blockchain,

starting from the genesis block. The task of altering the block number is exceptionally chal-

lenging for attackers due to the blockchain’s immutability and the required consensus [123].

Moreover, the possibility of manipulating block height, such as through a 51% attack where

an entity gains control over the majority of the network’s hashing power [91], remains the-

oretically conceivable but is practically improbable [19, 83]. Thus, blockchain design serves

as a defense mechanism, preserving the integrity of block numbers.

3.7.3 Features Susceptible to Manipulation

While vulnerable to manipulation by determined adversaries, those features will likely be

identified as suspicious by detection systems that can flag manipulative behaviors in these

features through anomaly analysis for further investigation.

Amount. This feature is the transfer volume of a cryptocurrency. Attackers opt for round

numbers to mimic benign activity or stay below reporting thresholds. However, genuine

transactions typically involve fractional amounts due to natural trading fluctuations and

price changes [114]. Advanced techniques can identify these anomalies by contrasting them

with historical transaction patterns, seeking out regular transactions at specific intervals or

sudden spikes in activity that may indicate automation or scripting [12].
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From and To Addresses. The from address is a unique identifier for the sender’s wallet and is

debited the sent amount, including any fees. Similarly, the to address identifies the recipient’s

wallet, crediting it with the received amount. Although these addresses become immutable

once a transaction is confirmed, adversaries can manipulate them in several ways [115];

e.g., they can scatter or aggregate funds using multiple addresses [25]. Utilizing mixers to

combine transactions hides the funds’ source. Engaging in address hopping disrupts pattern

analysis [20]. Given their similarity, the from and to features are susceptible to similar

manipulations.

Account Balance. This feature is the net digital currency available in a wallet, calculated as

the total of all incoming minus outgoing transactions. Adversaries may manipulate account

balances by, for example, simulating legitimate activity [49]. This could involve dispersing

transactions across several accounts or using wash trading to obscure funds [18]. Moreover,

attackers might exploit vulnerabilities in smart contracts to divert funds or hijack accounts

for changing their balances, camouflaging fraudulent activities within normal patterns [92].

Strength. This feature, gauging both in-strength and out-strength (total funds enter-

ing/leaving a wallet), offers a view of a wallet’s transaction volume and direction. Attackers

can manipulate these features to conceal illicit actions within ordinary transaction flows [102].

Methods include altering transaction timing to align with typical user behavior, splitting or

merging transactions to mask transfer amounts, or executing circular transactions among

controlled accounts [26].

Gas Limit and Fee. On Ethereum, transactions require gas, with the gas limit and fee

determining the computational work a transaction can use and its processing speed, respec-

tively [73]. Adversaries may manipulate these features to cause issues like front-running or

network congestion.

Therefore, gas limits and fees share inherent characteristics; both are vulnerable to anal-

ogous manipulation tactics.

Degree. This feature represents the total transaction count associated with an address,

combining both in and out-degrees, where the in-degree counts incoming transactions and the

out-degree counts outgoing transactions [31]. Adversaries may alter these features, obscuring

transaction patterns to bypass detection systems. They might create fictitious transactions

to inflate the degree artificially, distribute funds across multiple addresses to elevate the

out-degree or employ these tactics in active and complex network engagement [125, 56].

Smart Contract Input. refers to the data fed into a contract when activated, including com-

mands and operational parameters. While typically secure, these inputs can be manipulated

due to vulnerabilities in smart contract programming. Adversaries might exploit weak vali-

dation to alter transaction data, such as through integer overflows [54], causing unintended
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behaviors. Contracts with poor input validation are particularly at risk, enabling attackers

to, for example, redirect funds or perform unauthorized actions. Effective detection relies

on robust contract design and stringent validation [39, 110].

Summary. This analysis, summarized in Table Table 5, unveils a dynamic interplay between

the vulnerability and security of blockchain transaction features. The table, which aligns

features and abbreviations, illustrates that while some features are highly susceptible to

manipulation, requiring sophisticated detection methods, others are fortified by the inherent

security properties of blockchain. This dichotomy highlights the critical need for judicious

feature selection and the continuous evolution of detection strategies to counter sophisticated

threats. The findings from our examination advocate for a nuanced and flexible approach

to feature selection, which is essential for the progressive enhancement of phishing detection

capabilities and the overall strengthening of blockchain security.

Answering RQ5. Features range from highly susceptible to resistant to manipulation.

Adversaries can mask fraudulent activities using transaction timing, volume, direction, and

number of neighbors, complicating detection. Conversely, successful transactions, block num-

bers, and block IDs benefit from blockchain’s inherent security.

3.8 Experimental Evaluation and Discussion

We now experimentally substantiate our findings and quantify the impacts of the raised

issues in subsection 3.5. Our experimental work extends to the logic behind feature selection

and modeling optimization (§3.9), the balance between phishing and benign transactions

(§3.10), the effect of preprocessing (§3.10.3), and feature robustness (§3.11).

Experimental Setup. We base our experimental evaluation on two datasets from Ethereum’s

transaction network curated for phishing studies, namely Eth-PSD [50] and CTD [31]. More-

over, we use two widely used algorithms in interpretable literature, DT and KNN, as de-

scribed in section 3.4. We chose those techniques over alternatives for three reasons: first,

they are the most performant according to Table 2; second, they are easy to interpret; and

third, they are widely used. For feature selection, we use SFS and RFE, two interpretable

techniques. We use the parameters from the original works where the datasets were intro-

duced for the initial feature sets and their size. We used the stratified 5-fold cross-validation

in all experiments to evaluate the model’s performance and report the average. In the fol-

lowing, we review the two datasets and their features.

Eth-PSD Dataset Overview. The Eth-PSD, due to Kabla et al.[50], is a comprehensive

data collection that provides insights into the mechanics of Ethereum transactions, facil-

itating the analysis and detection of phishing activities. Eth-PSD incorporates TxHash,

BlockHeight, TimeStamp, From, To, Value, Input, and a category label of the transaction as
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benign or phishing. Features like TxHash and TimeStamp allow for examining transactions

and timing, whereas From, To, and Value highlight the flow and magnitude of transferred

funds.

CTD Overview. CTD, due to Chen et al.[31], primarily focuses on transaction analysis

for detecting phishing. CTD’s features include transaction flow metrics and account balance

information, and it captures the nuanced dynamics of transactions susceptible to phishing

attacks. Transactional features, such as in-degree and out-degree, capture the transaction

counts, while aggregate transaction volumes are captured through degree and strength met-

rics: in-strength, out-strength, and total strength. The number of neighbors and the inverse

number of transactions further discern phishing activity.

3.9 Feature Selection and Model Optimization

3.9.1 Feature Selection

We experimentally assess the efficacy of feature selection over Eth-PSD [50] and CTD et

al. [31] to pinpoint key predictive features in both datasets. Eth-PSD Feature Selec-

tion. The SFS method, described in §3.5.2, was implemented to determine the optimal

number of features for a phishing detection model, and the results are shown in Figure 2.

The performance, evaluated by the negative mean squared error, plateaus after adding the

third feature, indicating that additional features do not significantly enhance the predictive

accuracy. This trend is consistently observed with stabilized performance from three to

seven features, highlighting the diminishing returns of additional features. Consequently, we

conclude that a leaner model with just three features is optimal, striking a balance between

simplicity and effectiveness without compromising the model’s performance.
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Figure 2: The performance of phishing detection, measured by the negative mean squared
error, as a function of the number of features assessed using SFS over the Eth-PSD dataset.

To signify important features for classification outcome, the Pearson correlation coeffi-
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Table 6: Visualization of the Pearson correlation.

Corr TxHash BlockHeight TimeStamp From To Value Input Class
TxHash 1 0.0056 0.0061 0.0018 0.0023 -0.0043 0.0012 0.0022

BlockHeight -0.0056 1 1 0.35 -0.28 0.0039 0.26 0.43
TimeStamp -0.0061 1 1 0.34 -0.27 0.0042 0.26 0.43

From -0.0018 0.35 0.34 1 -0.28 -0.008 0.26 0.36
To -0.0023 -0.28 -0.27 -0.28 1 0.0025 -0.28 -0.27

Value -0.0043 0.0039 0.0042 -0.008 0.0025 1 -0.016 -0.013
Input 0.0012 0.26 0.26 0.26 -0.28 -0.016 1 0.62
Class 0.0022 0.43 0.43 0.36 -0.27 -0.013 0.62 1

cients are calculated and visually shown in Table 6, highlighting that the input (0.62), block

height (0.43), and time (0.43) features are the top features due to their high correlations

with the target label.

CTD’s Feature Selection Process. All of CTD’s features were normalized to the same

scale. For feature selection, consistent with the original work, we use RFE, which provided

insights into the predictive dynamics underpinning Ethereum phishing detection. In all cases,

and as in the original work, the initial set of features was the following: in-degree, out-degree,

degree, in-strength, out-strength, strength, neighbors, and inverse number of transactions.

3.9.2 Feature Sets Evaluation

We analyze the sufficiency of feature sets and their combinations in previous work. This

analysis is grounded in empirical data from performance metrics across diverse feature com-

binations and uses the work of Kabla et al.[50] as an example. The evaluation focuses on the

implications of these features on model efficacy, as measured by accuracy, precision, recall,

and F1 scores. Table 7 compares multiple configurations, incorporating features such as

those top-ranked (from, block height, time, and input). These model performance results

reveal several insights.

❶ High Efficacy Combinations. Both DT and KNN models, employing features such

as from, block height, time, and input (F, B, T, I), demonstrate superior performance with

AUC scores reaching a peak of 0.98 and F1 scores ascending to 0.96. This blend epitomizes

a holistic strategy with multiple dimensions. However, the negligible performance disparity

with simpler models supports the need for feature selection.

❷ Impact of Simplified Sets. Simplifying the feature set by excluding input (I) still results

in high AUC (0.98) and F1 (0.96), challenging the indispensability of the input feature for

achieving elevated precision. This reduction implies that models can achieve similar efficacy

with fewer features, casting doubt on including features without justification.

❸ Minimal Pairs Analysis. Examining minimal feature pairs like block height and time

(B, T) results in an AUC of 0.97, which is only marginally less than those achieved by more

complex combinations. This finding shows the considerable scope for optimizing the feature
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Table 7: Performance of decision trees (DT) and k-nearest neighbor (KNN) models for
various feature combinations.

Combination
KNN DT

AUC A P R F1 AUC A P R F1
F, B, T, I 0.97 0.95 0.92 0.95 0.93 0.98 0.97 0.93 1.00 0.96
F, B, T 0.97 0.95 0.92 0.95 0.93 0.98 0.97 0.93 1.00 0.96
F, B 0.96 0.96 0.91 0.97 0.94 0.98 0.97 0.93 1.00 0.96
F, T 0.96 0.96 0.91 0.97 0.94 0.98 0.97 0.92 0.99 0.95
F, I 0.93 0.90 0.87 0.82 0.84 0.97 0.92 0.88 0.87 0.88
F, B, I 0.97 0.94 0.91 0.93 0.92 0.98 0.97 0.92 0.99 0.95
B, T 0.97 0.94 0.91 0.92 0.92 0.97 0.96 0.91 1.00 0.95
B, I 0.97 0.95 0.91 0.93 0.92 0.98 0.97 0.92 1.00 0.96
T, I 0.97 0.95 0.91 0.93 0.92 0.98 0.96 0.90 0.98 0.94
F, B, T, V 0.98 0.97 0.93 0.99 0.96 0.98 0.97 0.93 0.99 0.96
B, T, V 0.97 0.94 0.91 0.92 0.91 0.98 0.97 0.91 0.99 0.95
F, T, V 0.98 0.95 0.91 0.94 0.93 0.98 0.96 0.91 0.98 0.95
T, V 0.97 0.94 0.91 0.92 0.91 0.98 0.95 0.89 0.98 0.93

(1) Features: from (F), block height (B), timestamp (T), input (I),
value (V). (2) Metrics: area under the curve (AUC), accuracy (A),
precision (P), recall (R), and F1 score (F1).

selection processes.

3.9.3 Model Optimization

With a larger set of features, we examine the feature selection as a model optimization

problem on CTD et al. [31] under a fixed dataset size (40k transactions). Motivated by the

findings in the previous section, we look into how far one can push the model simplification

while maintaining the performance. For this experiment, we use LightGBM, which performs

well on complex networks, as shown in Table 2. We start with the comprehensive model

and then reduce the complexity by eliminating some features using the RFE and Pearson

correlation calculations. We make the following observations based on the results shown

in Table 8.

❶ Comprehensive Model. The comprehensive model (M1) encompassing all the features

has resulted in the highest AUC, at 0.88, with modest precision, recall, and F1 scores.

❷ Large is not Always Better. M2, a simpler model realized by dropping two features

from M1, is only 0.02 worse than the optimal in terms of AUC. This trend, however, does

not hold universally since M3 and M4, two models that are different in size, produced the

same performance in terms of AUC. Similarly, M5, M6, and M7, three models of the same

size, produced different performances in terms of AUC. Moreover, M6, a model that is only

half the size of M3 and smaller than M4, produced twice as much precision as the former

and outperformed the latter in terms of precision. These findings highlight the importance

of model optimization in striking a balance between model complexity and performance.
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Table 8: Model performance under a variable feature set with a fixed sample size of 40K
from CTD.

Model Feature Group AUC Precision Recall F1 Score
M1 ID, OD, D, IS,

OS, S, N, INT
0.88 0.27 0.09 0.14

M2 OD, IS, OS, S,
INT

0.86 0.11 0.03 0.04

M3 IS, OS, S, INT 0.85 0.09 0.03 0.05
M4 OD, D, IS 0.85 0.06 0.02 0.03
M5 D, IS 0.85 0.01 0.006 0.009
M6 S, INT 0.82 0.09 0.02 0.03
M7 IS, OS 0.81 0.01 0.006 0.008

(1) Features: in-degree (ID), out-degree (OD), degree (D), in-strength
(IS), out-strength (OS), strength (S), neighbors (N), inverse number of
transactions (INT).

Answering RQ1. Beyond the analytical results in subsection 3.5, we show that simplifying

the feature set does not affect the model accuracy detrimentally. The nuanced decrease

in performance metrics underscores the potential overemphasis on specific features without

substantial evidence of impact.

3.9.4 Comparison of Models

The algorithms, parameters, and the features they operate on define the models. To provide

some insight into the performance of the different models, and driven by the insights realized

on the importance of feature selection earlier, we evaluate DT and KNN across various

feature combinations, as shown in Table 7. In the following, we provide insights into the

performance.

Overall Efficacy. The DT and KNN models show robust performance across feature com-

binations. However, DT consistently outperforms KNN in most cases, although marginally.

Feature Combination Impact. The performance of both algorithms fluctuates with the

variation in feature sets. Moreover, the DT model consistently excels with specific sets (e.g.,

<from, block height>, <from, time stamp>, and <block height, time stamp>), maintaining

an AUC of 0.98 and high precision and recall. Although the KNN model shows high perfor-

mance, its precision and F1 score decreased with fewer features, hinting at its sensitivity to

the feature set composition.

Precision and Recall Balance. The DT model exhibits an exceptional balance between

precision and recall in configurations that include block height and time stamp, achieving

a perfect recall in several cases. This underscores the DT model’s adeptness at minimizing

false negatives.
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Table 9: Model performance for different sample sizes.

Size Benign Phishing AUC Precision Recall F1 Score
30K 29,896 103 0.88 0.20 0.09 0.12
40K 39,864 135 0.89 0.25 0.10 0.14
50K 49,838 161 0.90 0.20 0.09 0.13
100K 99,723 276 0.90 0.22 0.16 0.18
300K 299,440 559 0.82 0.11 0.15 0.12
500K 499,271 729 0.75 0.12 0.16 0.13

Answering RQ3. Our analysis highlights the differences in performance influenced by

model choice. The DT models generally offer a marginal advantage over the KNN and

stand out in precision, whereas KNN models have an edge concerning recall. The evaluation

highlights the importance of choosing the right features over the algorithm choice.

3.10 Phishing-to-Benign Ratios Under Sampling

We explore the influence of the phishing-to-benign ratios on model performance to unravel

how they affect performance and understand the impact of the balancing methods.

Sampling. In sampling transaction networks, we follow the random walk-based method to

extract nodes from the larger CTD dataset as done in [31]. This approach starts from an

initial seed node and conducts a walk over one of its neighbors with a probability proportional

to the degree. If the next node is not in the list of the visited nodes, it is added, and the

process is repeated until the total number of nodes (sample size) is exhausted. Once the

sample size is exhausted, the edges between those visited nodes are derived from the original

graph. The sample networks are shown in Table 9. For phishing detection, we use the DT

algorithm.

3.10.1 Node Size and Ratio Impact

While the absolute number of phishing nodes increases with the dataset size from 103 in

the 30K dataset to 729 in the 500K dataset, the proportion of phishing to benign instances

significantly drops. Specifically, in the 30K dataset, phishing nodes constituted approxi-

mately 0.34% of the data. In the 500K dataset, this proportion dropped to about 0.15%.

This proportional shift highlights the challenge of pinpointing an optimal dataset compo-

sition for phishing detection, stressing the need to carefully weigh the dataset size against

the representation of phishing instances. The decreasing proportion of phishing instances

as datasets grow complicates detecting phishing attempts due to a diluted signal-to-noise

ratio. This situation underscores the intricate balance required between dataset size and the

representativeness of phishing instances for effective phishing detection.
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3.10.2 Performance Evaluation

The phishing-to-benign ratio directly impacts the performance in all metrics. Regarding

AUC, the performance drops from 0.9 in datasets of 50K and 100K nodes to 0.75 in the

500K node dataset, indicating a diminishing ability of the model to differentiate between

phishing and non-phishing transactions. In terms of precision, a drop from 0.25 in the 40K

dataset to 0.12 in the 500K dataset indicates declining accuracy in identifying phishing as

dataset size increases. Concurrently, recall experiences a slight rise from 0.09 in the 30K

dataset to 0.16 in the 500K dataset, suggesting an improved model in identifying relevant

instances in larger datasets. However, its accuracy in correctly labeling these instances as

phishing decreases, highlighting a balancing act between recall and precision as dataset size

expands.

Taking the precision and recall together, the F1 scores across various datasets reveal

subtle shifts in performance, with 0.12 in the 30K dataset and 0.18 in the 100K dataset,

hinting at a temporary balance improvement. Yet, this improvement does not persist in

larger datasets, with F1 scores reverting to 0.12 and 0.13 for the 300K and 500K datasets,

respectively.

Takeaway. Modifying phishing-to-benign ratios significantly impacts algorithmic efficiency

up to an equilibrium, beyond which they cease to correlate with enhanced detection ca-

pabilities. These insights accentuate the criticality of dataset structuring that reflects the

real-world scenario and the imperative for a judicious balance to optimize phishing detection

mechanisms’ precision and recall metrics within practical contexts.

Answering RQ2. Manipulating the phishing-to-benign ratio, as shown in Table 4 and

section 3.6, is a common practice. We show empirically that shifts in the ratio significantly

influence the detection performance. Initial minor increases may improve metrics, yet sub-

stantial expansions result in performance declines, showing the critical role of maintaining a

balanced ratio to preserve accuracy and authenticity.

3.10.3 The Effect of Preprocessing

Preprocessing datasets enhances computational efficiency and initial model accuracy. This

process raises a crucial question: How does preprocessing influence the detection algorithm’s

generalization across diverse datasets? We investigate the impact of standard preprocessing

techniques like dataset reduction and feature selection on the generalization.

Eth-PSD Dataset Preprocessing. In Kabla et al.[50], the preprocessing incorporated

oversampling to amend class imbalance, resulting in considerable data duplication. Notably,

the Input feature displayed a significant overlap of 98,762 instances from a subset of 113,716,

contributing to overall data redundancy affecting 33,279 rows. Such a considerable extent of
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Table 10: The data overlap for the Input and From features, indicating the percentage of
matching entries within each category across the training, testing, and overall datasets.

Feature Training Testing Overall
From 86.47 88.37 86.85
Input 69.44 74.73 70.90

duplication significantly impairs the model’s discriminative aptitude, escalating the suscep-

tibility to overfitting and casting doubt on its capacity for generalization to novel samples.

Examining the From and BlockHeight attributes underscores the significant overlap and

redundancy, with the From attribute having an overlap of 3,464 unique values in 83,209

instances and the BlockHeight attribute having a unique overlap of 5,519 values. This pro-

nounced redundancy not only elucidates the impact of the oversampling technique in foster-

ing a more unbiased class distribution—approximately 67.5% to 32.5%, but also highlights

the profound trade-offs associated with such preprocessing interventions.

CTD Preprocessing. CTD’s preprocessing, as highlighted earlier, relies on random walks

for efficient subgraph sampling and meta-feature engineering to extract node features [31].

This approach, adaptive to dataset size, critically impacts algorithm performance. As high-

lighted earlier, while this approach does not introduce redundancies, it simply alters the

phishing-to-benign ratio, affecting the ability of the models to distinguish between phishing

and benign transactions as the sampled dataset complexity increases.

Answering RQ4. Preprocessing datasets impacts the generalization capabilities of detec-

tion algorithms. Simplifying datasets for computational efficiency risks losing crucial nuances

and patterns vital for identifying a broad spectrum of phishing activities. Moreover, while

preprocessing might enhance specific performance metrics, it does not consistently bolster

generalization across phishing scenarios.

3.11 Evaluating Features Robustness

To ensure a comprehensive discussion, we present some preliminary findings on how feature

manipulation affects the performance of phishing detection in transactions. Although a

thorough evaluation of machine learning algorithms’ robustness warrants a separate paper,

we examine the manipulation of key features such as time, address, input, amount, block

number, and successful transactions.

3.11.1 Time Manipulation

Timestamps are crucial for identifying patterns of potential illicit activities, although they

are prone to manipulations. In the following, we investigate the hypothesis that modifications

to transaction timestamps can obscure the patterns these models seek to identify, thereby
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Table 11: Performance comparison under manipulation.

Fea- KNN DT

ture AUC A P R F1 AUC A P R F1
T 0.78 0.78 0.76 0.50 0.60 0.95 0.95 0.91 0.95 0.93
F 0.97 0.94 0.91 0.92 0.91 0.93 0.92 0.88 0.91 0.89
I 0.83 0.94 0.62 0.32 0.42 0.84 0.92 0.94 0.60 0.58
V 0.83 0.94 0.62 0.32 0.42 0.84 0.92 0.94 0.60 0.58
M1 0.97 0.95 0.92 0.95 0.93 0.98 0.97 0.93 1.00 0.96
M2 0.98 0.97 0.93 0.99 0.96 0.98 0.97 0.93 0.99 0.96

(1) Features: Time (T), from (F), input (I), and value (V).
(2) Metrics: AUC, accuracy (A), precision (P), recall (R), and F1 score.
(3) Base models: M1 and M2 are the base models with clean features. For
evaluating the manipulation of T, F, and I, we use M1 (F, B, T, I; first
row in Table 7; best performance and includes all features). Similarly,
we use M2 as the model of F, B, T, V for V manipulation (tenth row) in
Table 7.

impeding the detection of suspicious behavior.

Manipulation Technique. We employed two manipulation techniques. ① Randomization.

The chronological order was disrupted by randomly shuffling timestamps across the dataset

to obfuscate the patterns associated with the timing of transactions. ② Uniform Distribution.

A uniform time distribution was applied over the specified period (2017–2018) to distribute

transactions and mitigate significant concentrations. Both strategies correspond to delaying

confirmation, e.g., manipulating fees. We limit our evaluation to modifying a single feature

at a time to simplify our discussion.

Findings. Table 11 (first row vs. M1) shows that the KNN model’s accuracy dropped

from 0.95 (M1) to 0.78, the precision dropped from 0.92 to 0.76, the recall from 0.95 to

0.50, resulting in a drop in F1 score from 0.93 to 0.60, compromising its ability to identify

phishing activities accurately.

3.11.2 Address Manipulation

For this feature, we simulated address hopping within an Ethereum transaction dataset to

emulate adversaries’ strategies to elude detection.

Manipulation Techniques. A custom hashing function was utilized, incorporating the

original From address, a unique salt string, and the transaction’s index to generate new,

distinct addresses that simulate address-hopping behavior used by adversaries to anonymize

their transactions and avoid detection.

Findings. Table 11 (second row vs. M1) shows the results. Noticeably, the manipulation

of this feature results in the mildest change in performance. Specifically, the performance of

DT models decreased from 0.97 to 0.92, the precision dropped from 0.93 to 0.88, and recall,
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which was 1.00, dropped to 0.91; similarly, F1 score decreased from 0.96 to 0.89.

3.11.3 Input Manipulation

Input is pivotal for the functionality of smart contracts [129]. Manipulation, however, is

possible due to exploitable defects in the contract’s validation protocols [53, 43, 82].

Manipulation Techniques. To manipulate the input, we generated synthetic adversarial

examples by extending the input data length, pattern injection, and input value randomiza-

tion. More details are in appendix ??

Findings. The results are in Table 11 (third row vs. M1). In KNN, the AUC dropped from

0.97 to 0.83, the accuracy from 0.95 to 0.94, the precision from 0.92 to 0.62, and the recall

dropped sharply from 0.95 to 0.32. Thus, the F1 score fell from 0.93 to 0.42. In contrast,

the DT deterioration was milder.

3.11.4 Amount Manipulation

Adversarial manipulation of value poses a significant threat, as attackers aim to obfuscate

fraudulent transactions by blending them with legitimate ones.

Manipulation Techniques. We follow two techniques. ① Refined amount smoothing. We

adjust the transaction amounts to incorporate randomly generated fractional components.

Such a technique is devised to seamlessly integrate suspicious transactions within the flow

of legitimate ones, eliminating any noticeable discrepancies. ② Distributive pattern emula-

tion. By analyzing the distribution patterns of legitimate transactions and replicating these

patterns in manipulated transactions. This strategy aims to create a mask of normalcy.

Findings. The results are in Table 11 (fourth row vs. M2). For KNN, the AUC decreased

from 0.98 to 0.83, accuracy from 0.97 to 0.94, precision from 0.93 to 0.62, and recall dropped

sharply from 0.99 to 0.32; thus, the F1 score fell from 0.96 to 0.42. In contrast, the DT

model’s deterioration was milder.

3.11.5 Block Numbers and Successful Transactions Manipulation

The design and security protocols inherent to blockchain technology render manipulating

the number of successful transactions or altering block numbers technically infeasible within

the blockchain ecosystem [123]. While it is possible to violate some of those properties using

partitioning attacks, those attacks tend to be very costly and are limited in practice.
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Answering RQ5. There is a varying susceptibility of features to adversarial manipulation.

Contrary to assumptions, features derived from primary transaction data are vulnerable to

manipulation, significantly impacting the detection models’ performance. These findings un-

derscore the need to reassess feature selection and model development, focusing on inherently

stable features to counter manipulation attacks.

3.12 Summary

This study has critically examined the state of machine learning-based phishing detection

in the Ethereum. By systematically evaluating prior work, it has highlighted both common

practices and key challenges in the current detection methods. Our analysis shows that the

frequent use of large feature sets, dataset balancing techniques, and feature vulnerability

to manipulation often undermines the performance of phishing detection models. A major

insight is that simpler models with optimized features can achieve comparable results to

more complex approaches, mitigating the risk of overfitting and improving computational

efficiency.

We also observed that the lack of standardized methods for feature selection and dataset

processing across the literature complicates comparisons and reproducibility. Moreover, ad-

versarial manipulation of key features like transaction time, neighbor counts, and transaction

direction remains a significant concern for maintaining the integrity of detection systems.

Our empirical results further reinforce the importance of careful feature selection, as some

features add minimal value or introduce vulnerabilities. In addition, adjusting phishing-to-

benign ratios through artificial balancing methods, such as oversampling or synthetic data

generation, can boost short-term model performance but risks hindering generalization to

real-world scenarios.
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4 ML-Based Ethereum Phishing Transactions Detec-

tion Robustness Under Simple Perturbations

4.1 Summary of Completed Work

This study evaluates the robustness of machine learning models in detecting fraudulent

Ethereum transactions, specifically focusing on phishing detection. Our approach applies

the Fast Gradient Sign Method (FGSM) to generate adversarial examples (AEs), targeting

Random Forest (RF), Decision Tree (DT), and K-Nearest Neighbors (KNN) classifiers. These

adversarial inputs manipulate key features of the transactions, such as timestamp, value, and

address fields, to test the resilience of the models under realistic attack scenarios.

We employed two datasets: a binary classification dataset distinguishing phishing from

benign transactions, and a multi-class dataset including phishing, scamming, fake ICOs, and

benign categories. The manipulated features were subjected to both targeted and untar-

geted adversarial attacks to assess the performance degradation of the models. Our results

demonstrate that RF outperforms both DT and KNN in maintaining classification accu-

racy under adversarial conditions, with a particular strength in resisting temporal and value

manipulations.

Additionally, we explored potential mitigation strategies, including feature selection opti-

mization, where temporal and address-based features showed greater resistance to adversarial

attacks. This work provides empirical evidence that models’ susceptibility varies based on

feature type and attack method, and highlights the importance of developing robust defense

mechanisms tailored to specific vulnerabilities.

Our findings contribute to the understanding of adversarial robustness in machine learn-

ing models for Ethereum transaction classification, offering insights into improving model

reliability in adversarial environments.

4.2 Introduction

The proliferation of machine learning models in various domains has brought significant ad-

vancements in decision-making processes. However, concerns regarding the robustness and

security of these models have also emerged alongside these advancements. Adversarial at-

tacks, wherein small, carefully crafted perturbations are introduced into the input data to

cause misclassification, seriously threaten the reliability of machine learning systems [17].

Understanding the susceptibility of these models to adversarial attacks is crucial for devel-

oping robust and trustworthy AI systems.

The increasing prevalence of machine learning in cybersecurity applications has signifi-
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cantly improved the detection and prevention of various cyber threats. Among these threats,

fraudulent activities such as phishing, scamming, and fake initial coin offerings (ICOs) pose

substantial financial and personal data security risks. Machine learning models, particularly

classification algorithms, have been deployed to identify and mitigate these threats with no-

table success. However, studies have raised concerns about the robustness and reliability of

these models [42, 6, 13, 4, 5, 3, 2]. The attacks presented in the literature (see section ??)

are effective yet sophisticated.

This study investigates the impact of extremely simple adversarial attacks on different

machine learning models used in fraudulent transaction detection, specifically focusing on

Random Forest (RF), Decision Tree (DT), and K-Nearest Neighbors (KNN) classifiers. By

employing the Fast Gradient Sign Method, a widely recognized adversarial attack technique,

we assess the performance degradation of these models when subjected to simple, realistic

adversarially crafted inputs [101]. The primary objective is to understand how these models

are susceptible to adversarial manipulation and explore potential mitigation strategies to

enhance their robustness.

Previous research has highlighted the vulnerability of ML models to adversarial attacks

[75]. This study contributes to the existing body of knowledge by providing a detailed

empirical analysis of the effects of simple adversarial attacks on fraud detection models and

proposing practical approaches to mitigate these effects. Our findings reveal inconsistency

across algorithms for their tolerance of simple manipulation, underscoring the importance

of selecting appropriate models and implementing robust defense mechanisms tailored to

specific applications.

Research Gap. Despite advancements in machine learning and blockchain technology,

critical gaps persist in effectively understanding mitigating adversarial attacks and emerging

security threats within cryptocurrency networks. AEs grounded in the context of application

are underexplored. AEs in the feature space that leverage targeted and untargeted attacks,

transaction fraud, smart contract exploits, etc., are lacking. This underscores the imperative

for further analysis. This study aims to bridge this gap by investigating the robustness of

machine learning-based phishing detection algorithms against simple manipulations, compar-

ing the effectiveness of various algorithms in resisting such attacks, and exploring mitigation

strategies to enhance their resilience. Our approach involves evaluating the algorithms’ sus-

ceptibility to subtle feature manipulations and conducting a comparative analysis to identify

the most robust models.
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4.3 Research Questions

This research explores the robustness, comparative performance, and mitigation strategies

of machine learning-based phishing detection algorithms for Ethereum transactions in ad-

versarial manipulations. The following questions highlight the core issues and the necessity

to address them in light of existing literature.

RQ1.Are machine learning-based phishing detection algorithms for Ethereum ro-

bust against simple manipulations of individual features? This question is motivated

by the vulnerability of machine learning (ML) models to adversarial attacks, as demonstrated

in several studies [71, 28, 22, 95, 105]. In these studies, slight modifications in input data

significantly altered the classification outcome, highlighting how even minor changes in key

features like transaction amounts or timestamps can lead to incorrect classifications. Such

manipulations can make it easier for adversaries to deceive models, underscoring the need to

evaluate the robustness of ML models used in Ethereum phishing detection to ensure they

remain effective and reliable despite such attacks.

RQ2.How do different machine learning algorithms compare robustness against

adversarial manipulations in Ethereum phishing detection? This question stems

from the observation that various machine learning algorithms, while effective in detecting

phishing activities, exhibit differing levels of resilience against adversarial attacks [96, 72,

36, 10, 80, 35]. The robustness of these algorithms can vary significantly under adversarial

conditions, which can be seen in studies where some algorithms perform better than others

when subjected to adversarial manipulations designed to evade detection [57, 37, 99]. A

comparative analysis of these algorithms is essential to identify those that provide the best

defense against such threats, ensuring the highest possible security in Ethereum transaction

classification.

RQ3. How can the impact of manipulations be mitigated in machine learning-

based Ethereum phishing detection? This question arises from the need to develop

robust defensive strategies against adversarial attacks, as highlighted in recent literature [120,

69, 27, 41, 117]. Effective mitigation strategies could include enhancing feature selection

processes, employing advanced data augmentation techniques, or implementing adversarial

training methods [63, 80, 130]. Understanding and developing these techniques are crucial for

improving the security and reliability of ML-based phishing detection systems in Ethereum

transactions, thereby reducing the risk posed by adversaries manipulating transaction data

and enhancing overall network security.

4.4 Methodology

Our pipeline is shown in Figure 3 and some of its key aspects are reviewed below.
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Figure 3: Pipeline in Ethereum transactions and adversarial testing.

4.4.1 Data Preparation

4.4.2 Dataset Description

For our analysis, we employed two datasets. The first dataset, as detailed by Kabla et al. [50],

focuses on binary classification, distinguishing between phishing and benign transactions.

This dataset encompasses features such as TxHash, a unique identifier for each transaction;

BlockHeight, which specifies the height of the block in which the transaction was recorded;

and TimeStamp, indicating the exact time the transaction was confirmed and added to the

blockchain. It also includes the From and To addresses, representing the Ethereum addresses

of the sender and receiver, respectively. The Value feature denotes the amount of Ether

transferred in the transaction, while ContractAddress indicates the Ethereum address of

the smart contract involved, if applicable. Additionally, the Input field contains any extra

data provided with the transaction. The dataset labels transactions as either phishing (1) or

benign (0) under the Class feature. Dataset 1 includes 23,472 transactions, of which 15,989

are benign and 7,483 are phishing.

The second dataset, as described by Al-Emari et al. [11], is intended for multi-class

classification, categorizing transactions into Phishing, Scam, Fake ICO, or Benign. This

dataset features the hash, a unique identifier for each transaction, and nonce, a counter

ensuring each transaction is processed only once. The transaction index indicates the

transaction’s position within the block, while from address and to address denote the

blockchain addresses of the sender and receiver, respectively. The value field specifies

the amount of cryptocurrency transferred. The dataset also includes gas, representing

the gas limit provided for the transaction, and gas price, indicating the price per gas

unit. The input field contains additional data attached to the transaction. Moreover,

receipt cumulative gas used provides the total gas used by all transactions up to and

including the current one within the block, and receipt gas used specifies the gas con-

sumed by this particular transaction. The block timestamp and block number detail the

time and number of the block that includes the transaction, while block hash serves as

the block’s unique identifier. Lastly, the from scam and to scam fields indicate whether the

sender’s and receiver’s addresses are associated with scams (0 for no, 1 for yes). The dataset

also includes categorical data, from category and to category, which classify the nature
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of the participants, such as Phishing, Scamming, or Fake ICO. In this dataset, Benign

had 57,000 transactions (79.28%), Scamming had 11,143 transactions (15.51%), Phishing

had3,106 transactions (4.32%), and Fake ICO had only 1 transaction. Dataset 2 includes

71,250 transactions, with 80-20 training-testing splits.

4.4.3 Experimental Procedures

We utilized the two datasets outlined earlier to examine how simple AEs impact the classi-

fication accuracy of three classifiers: RF, DT, and KNN.

Minimal Manipulations. AEs were crafted by manipulating specific features. For the

first dataset, we manipulated for feature. ① Timestamp Manipulation (TimeStamp): We use

predefined intervals to simulate future occurrences, testing the models’ robustness to shifts

against hypothetical scenarios of temporal manipulation. ② Value Manipulation (Value):

Transaction values were altered using two strategies: uniformly by adding a fixed percentage

to each transaction’s value or proportionally by introducing a random percentage change

relative to each transaction’s original value. ③ Receiver Address Manipulation (To): The

receiver’s address was randomly changed to different addresses within the dataset to simulate

phishing transactions directed to alternative destinations. ④ Sender Address Manipulation

(From): The sender’s address was altered to different sender addresses to simulate phishing

transactions originating from various sources.

We implemented a two-pronged approach, including both targeted and untargeted ad-

versarial attacks on a second dataset [11]. AEs were generated by focusing on a broader

array of critical transaction features, allowing us to simulate realistic attack scenarios and

identify potential vulnerabilities more precisely.

Untargeted Attacks. The study of untargeted attacks involved generating AEs by ap-

plying broad, random perturbations across the entire feature space. Initially, AEs were

generated using all features to evaluate the model’s capacity to withstand attacks.

Individual features were then targeted to challenge the model more effectively. Modifying

the from address and to address fields introduced new, unseen addresses to assess the model’s

ability to handle transaction origin and destination changes. Altering value, gas and gas price

simulated economic fluctuations, providing insights into the model’s sensitivity to variations

in transaction costs. Manipulating block timestamp and block number mimicked transaction

timing and sequence changes to understand the model’s response to variations in transaction

order. Altering input, receipt cumulative gas used, and receipt gas used help explore the

impact of changes in content.

Targeted Attacks. We conducted targeted adversarial attacks focusing on three scenarios:

benign, phishing, and scamming. We employed two methods for generating these targeted
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attacks: rule-based and gradient-based (using the Fast Gradient Sign Method).

Rule-based Modifications This approach applies straightforward, rule-based modifications to

critical features like transaction value and timestamps, simulating realistic variations that

can alter the classification outcomes.

• Benign Targeted Attack: This scenario aimed to assess the model’s ability to main-

tain a benign classification despite manipulations, simulating tactics used to camouflage

malicious activities. We created artificial benign transactions by minorly adjusting fea-

tures such as transaction value and block timestamp.

• Phishing Targeted Attack: The focus was on modifying phishing-labeled trans-

actions to evade detection by misclassifying them as benign. This involved altering

attributes such as from address, to address, and value, simulating an adversary’s at-

tempt to bypass security measures.

• Scamming Targeted Attack: In this scenario, scam-labeled transactions were ma-

nipulated to explore whether they could be misclassified as benign or other types. Ad-

justments to features like gas and gas price were made to examine the model against

efforts to obscure scam activities through changes in transaction costs.

4.4.3.1 FGSM

FGSM applied small, strategically calculated changes to subtly influence the model’s pre-

dictions while maintaining realistic feature values. Unlike the rule-based method, FGSM

retained the existing distribution from the dataset, focusing on fine-tuning modifications

based on the gradients to maximize the attack’s effectiveness.

• FGSM Details: FGSM calculates perturbations that align with the gradient direction

of the loss function. The perturbations were applied using the formula:

x′ = x+ ϵ · sign(∇xJ(θ, x, y)),

where x is the original feature, x′ is the perturbed feature (AE), ϵ is a small scalar

controlling the perturbation’s magnitude, ∇x represents the gradient of the loss func-

tion J for x, and J(θ, x, y) is the loss function dependent on the model parameters θ,

input x, and true label y. The term sign(∇xJ(θ, x, y)) provides the direction in which

to perturb the feature vector to maximize the loss function.

• Features: FGSM perturbations were applied to transaction value, gas, gas price,

and block timestamp. These features are critical in determining the nature of the

transaction, and even small changes may affect the classification results.

49



4.5 Results and Analysis

4.5.1 Preliminary Results

We evaluate how different perturbations on the first dataset affect the accuracy and re-

silience of RF, DT, and KNN models. We examine how uniform and proportional value

manipulations and address change impact model performance.

Timestamp Manipulations. We evaluate the effects of various timestamp modifications

on classifier accuracy, including shifts of +24 hours, +1 hour, +30 minutes, +15 minutes,

and +5 minutes. The RF classifier showed the highest resilience with only minor reductions

in accuracy. For example, a one-day timestamp shift resulted in a decrease in accuracy

from 98.82% to 95%, while a one-hour change led to an accuracy of 97.31%. In contrast,

the DT model experienced a more pronounced decline, with accuracy dropping from 98.35%

to 94.46% with a one-day shift. The KNN classifier was most affected by these temporal

manipulations, with accuracy falling from 94.45% to 83.42% for a one-day change. These

findings highlight the superior robustness of the RF model in handling timestamp alterations,

positioning it as a preferable option for phishing detection in environments with variable

timestamps ( Table 12).

Value Manipulations. The uniform value manipulations caused significant declines. RF’s

accuracy dropped to 69%, and DT’s fell to 68%, with substantial reductions in precision and

recall for phishing transactions. Notably, the recall for phishing in DT decreased to 0.01%

under uniform manipulation. Proportional manipulations had minimal impact, with accu-

racy and other metrics remaining close to their original values. KNN maintained relatively

stable performance across both manipulation types, indicating robustness against such value

changes ( Table 13).

Address Manipulations. The robustness of the classifiers was tested against AEs of the

From and To address features, involving changes in 5,000, 10,000, and 23,472 instances.

For the RF model, accuracy decreased to 87% when the From address was manipulated

and to 84% for the To address. Precision and recall for phishing transactions also declined

significantly, with F1-scores dropping notably. The DT model showed a moderate reduction

in accuracy, dropping to 92% for From and 93% for To manipulations, and a noticeable

decrease in recall for phishing. KNN was the most sensitive to these manipulations, with

accuracy falling to 85% for From and 93% for To, and significant drops in precision and recall

for phishing transactions ( Table 14 and 15).

Next, our analysis will focus on the second dataset from Al-Emari et al. [11], which

provides a comprehensive and relevant context for multi-class classification tasks.
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Table 12: RF, DT, and KNN performance under timestamp manipulations. Accuracy, pre-
cision, recall, F1 score, and counts. B stands for benign and Ph. for phishing.

Increment Model Dataset Acc
Precision Recall F1 Count
B Ph B Ph B Ph #B #Ph

Original
RF Baseline 0.9882 1 0.96 0.98 1 0.99 0.98 15989 7483
DT Baseline 0.9835 1 0.95 0.98 1 0.99 0.97 15989 7483
KNN Baseline 0.9445 1 0.85 0.92 1 0.96 0.92 15989 7483

+24 hours
RF Adversarial 0.95 0.94 0.98 0.99 0.86 0.96 0.92 15498 7974
DT Adversarial 0.9446 0.95 0.94 0.97 0.88 0.96 0.91 15601 7871
KNN Adversarial 0.8342 0.84 0.82 0.94 0.62 0.88 0.7 14376 9096

+1 hour
RF Adversarial 0.9731 0.97 0.97 0.99 0.94 0.98 0.96 15498 7974
DT Adversarial 0.9626 0.97 0.95 0.98 0.94 0.97 0.94 15601 7871
KNN Adversarial 0.8997 0.93 0.84 0.93 0.84 0.93 0.84 14376 9096

+30 min
RF Adversarial 0.9776 0.98 0.97 0.99 0.96 0.98 0.96 15498 7974
DT Adversarial 0.9649 0.97 0.95 0.98 0.94 0.97 0.94 15601 7871
KNN Adversarial 0.916 0.95 0.85 0.92 0.9 0.94 0.87 14376 9096

+15 min
RF Adversarial 0.9817 0.99 0.97 0.99 0.97 0.99 0.97 15498 7974
DT Adversarial 0.9672 0.98 0.95 0.98 0.95 0.98 0.95 15601 7871
KNN Adversarial 0.9179 0.95 0.85 0.93 0.9 0.94 0.87 14376 9096

+5 min
RF Adversarial 0.9793 0.99 0.97 0.98 0.97 0.98 0.97 15498 7974
DT Adversarial 0.9734 0.98 0.95 0.98 0.97 0.98 0.96 15601 7871
KNN Adversarial 0.9344 0.98 0.85 0.92 0.96 0.95 0.9 14376 9096

Table 13: Performance evaluation of RF, DT, and KNN models subjected to 1% uniform
and proportional value manipulation strategies. Metrics are as in Table 12.

Model Strategy Acc
Precision Recall F1 Count

B Ph B Ph B Ph #B #Ph

RF

Original 0.99 0.98 1 1 0.99 0.99 0.99 15803 7669

Uniform 0.69 0.96 0.68 0.02 1 0.03 0.81 23353 119

Proportional 0.99 0.98 1 1 0.99 0.99 0.99 15813 7659

DT

Original 0.98 0.95 1 1 0.98 0.97 0.99 15601 7871

Uniform 0.69 0.75 0.68 0.02 1 0.03 0.81 23294 178

Proportional 0.98 0.95 1 1 0.98 0.97 0.99 15619 7853

KNN

Original 0.96 0.89 0.99 0.98 0.94 0.93 0.97 15192 8280

Uniform 0.96 0.89 0.99 0.98 0.94 0.93 0.97 15193 8279

Proportional 0.96 0.89 0.99 0.98 0.94 0.93 0.97 15192 8280

4.5.2 Results of Targeted Attacks

Rule-based Modifications. We initially focus on rule-based AEs for specific classes.

① Benign Class. The RF and DT models initially demonstrated near-perfect accuracy in

classifying benign transactions on the original test set. Under adversarial conditions, the

accuracies for benign classifications declined markedly, with RF and DT models dropping

to 84.39% and 84.65%. This represents a reduction exceeding 15%. In contrast, the KNN

model sustained a higher adversarial accuracy of 90.25%.

② Phishing Class. The initial phishing accuracies for RF and DT were 96.34% and 96.98%,
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Table 14: Performance evaluation of RF, DT, and KNN models under manipulations of the
From feature in Ethereum transaction datasets. Metrics are as in Table 12.

Model Strategy Acc
Precision Recall F1 Count
B Ph B Ph B Ph #B #Ph

RF

Original Strategy 0.99 1 0.96 0.98 1 0.99 0.98 15708 7764
5000 Changes 0.96 0.96 0.97 0.98 0.91 0.97 0.94 16386 7086
10000 Changes 0.94 0.93 0.97 0.99 0.83 0.96 0.89 17027 6445
23472 Changes 0.87 0.84 0.97 0.99 0.6 0.91 0.74 18877 4595

DT

Original Strategy 0.98 1 0.95 0.98 1 0.99 0.97 15601 7871
5000 Changes 0.97 0.98 0.95 0.98 0.96 0.98 0.96 15935 7537
10000 Changes 0.96 0.96 0.95 0.98 0.91 0.97 0.93 16272 7200
23472 Changes 0.92 0.91 0.94 0.98 0.79 0.94 0.86 17207 6265

KNN

Original Strategy 0.94 1 0.85 0.92 1 0.96 0.92 14706 8766
5000 Changes 0.93 0.97 0.85 0.92 0.93 0.94 0.89 15209 8263
10000 Changes 0.91 0.94 0.84 0.92 0.87 0.93 0.85 15767 7705
23472 Changes 0.85 0.86 0.81 0.93 0.67 0.89 0.74 17288 6184

Table 15: Performance evaluation of RF, DT, and KNN models under manipulations of the
To feature in Ethereum transaction datasets. Metrics are as in Table 12.

Model Strategy Acc
Precision Recall F1 Count
B Ph B Ph B Ph #B #Ph

RF

Original Strategy 0.99 1 0.96 0.98 1 0.99 0.98 15708 7764
5000 0.96 0.95 0.97 0.98 0.89 0.97 0.93 16558 6914
10000 0.92 0.91 0.97 0.99 0.79 0.95 0.87 17377 6095
23472 0.84 0.81 0.97 0.99 0.51 0.89 0.67 19537 3935

DT

Original Strategy 0.98 1 0.95 0.98 1 0.99 0.97 15601 7871
5000 0.97 0.98 0.95 0.98 0.96 0.98 0.96 15884 7588
10000 0.96 0.97 0.95 0.98 0.93 0.97 0.94 16142 7330
23472 0.93 0.92 0.94 0.98 0.83 0.95 0.88 16872 6600

KNN

Original Strategy 0.94 1 0.85 0.92 1 0.96 0.92 14706 8766
5000 0.94 0.99 0.85 0.92 0.98 0.95 0.91 14849 8623
10000 0.94 0.98 0.85 0.92 0.97 0.95 0.91 14988 8484
23472 0.93 0.96 0.85 0.93 0.93 0.94 0.89 15351 8121

respectively. However, these values plummeted to 1.31% and 1.18% under adversarial

conditions, reflecting a reduction of over 95%. The KNN model, which began with a lower

baseline accuracy of 41.49%, saw a decrease to 2.15%.

③ Scamming Class Initially, the RF and DT models exhibited high accuracies of 99.5% and

98.68%. Adversarial attacks reduced these accuracies to 14.27% and 14.16%, representing a

reduction of over 85%. The KNN model, with an initial accuracy of 67.06%, experienced a

drop to 7.6%.

4.5.3 Gradient-based Approach Using FGSM

① Benign Class The overall accuracy of the RF model decreased from 99.75% to 94.62%, with

a significant deterioration in phishing detection metrics. Despite hat, the model maintained

a high benign accuracy of 99.95%. Conversely, the DT model’s overall accuracy plummeted

from 99.64% to 9.54%, with benign recall dropping to 0.02, indicating extreme vulnerability.
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The KNN model preserved a perfect benign accuracy of 100% even under attack, but its

overall accuracy fell from 90.15% to 80.22%, reflecting a failure to detect phishing and

scamming categories effectively.

② Phishing Class The phishing detection accuracy of the RF model decreased from 96.34%

to 47.69%, with a significant drop in the F1-score. The DT model’s overall accuracy declined

to 10.22%, with phishing recall reducing to 0.75%, underscoring a pronounced susceptibility

to adversarial attacks. The KNN model’s phishing detection performance collapsed entirely,

with metrics falling to zero, indicating a complete failure to detect phishing transactions

under adversarial conditions.

③ Scamming Class The overall accuracy of the RF model dropped from 99.75% to 81.75%,

with scamming accuracy decreasing from 99.50% to 76.70%. The DT’s overall accuracy fell

to 9.71%, with scamming recall drastically reducing to 0.30. The KNN model’s scamming

detection metrics also dropped to zero.

4.5.4 Results of Untargeted Attacks

① All Features The RF model’s accuracy decreased to 95.81%, DT’s to 91.16%, with phishing

detection severely impaired, and KNN maintained its baseline accuracy.

② Address Features AEs focusing on the from address and to address features resulted in a

decline in overall accuracy to 80.22% for all models. None of the models detected phishing

or scamming, indicating a high sensitivity to address manipulations.

③ Financial Features AEs targeting financial features (value, gas, gas price) led to reduced

RF’s accuracy to 79.96%. The DT’s accuracy dropped to 79.42%. The KNN model’s accu-

racy slightly decreased to 90.02%.

④ Using Temporal Features Adversarial manipulations of temporal features (block timestamp,

block number) showed the RF model’s accuracy fell from 99.02% to 80.25%, with phishing

detection metrics nearly nullified. The DT’s accuracy similarly declined to 80.25%. The

KNN model’s accuracy also dropped to 80.26%.

Takeaway. These results underscore the need for robust defensive mechanisms against

AEs. The significant declines in performance metrics under simple conditions highlight the

necessity for a more reliable classification of transactions.

4.6 Discussion

Feature Selection for Optimal Classification. The analysis of transaction classification

in this study highlights the significant role of feature selection in the robustness and accuracy

of ML models. Among the features tested, timestamp and value emerged as critical

classifier performance determinants. Timestamp manipulations demonstrated substantial
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impacts across models, with RF showing notable resilience compared to DT and K-KNN.

The accuracy metrics indicate that temporal features, such as transaction time and date,

are crucial for distinguishing legitimate from fraudulent transactions due to their inherent

variability and relevance to transactional behaviors.

In contrast, value manipulations, including uniform and proportional changes, signif-

icantly affected model performance, particularly under uniform conditions. RF and DT

models experienced considerable accuracy drops with uniform value changes, while KNN

maintained relative stability. These findings suggest that while transaction value is a key

feature for classification, it is also highly susceptible to perturbations.

Most Resistant Features to Adversarial Attacks. The study’s results indicate that

address features, specifically the From and To addresses, exhibit higher resistance to ad-

versarial attacks compared to other feature types. Manipulations of these features resulted

in moderate accuracy reductions for DT and RF models but a more pronounced impact on

KNN. These features likely encode the relationship patterns between transaction entities,

making them inherently resistant to straightforward changes.

The analysis showed that despite their critical contribution to accuracy, temporal features

were also relatively resistant to manipulations. Timestamp shifts caused accuracy declines,

but the extent was less severe than value manipulations. This indicates that while temporal

features are crucial for classification, they are robust against adversarial attacks due to

timestamp data’s complexity and non-repetitive nature.

Best Combinations. For resilient classification, a combination of temporal and ad-

dress features has proven effective. The synergy between these features offers a dual layer

of robustness; temporal features provide a dynamic aspect that captures the temporal dis-

tribution and patterns of transactions, while address features contribute a stable relational

component less prone to adversarial interference.

Combining temporal features with financial features, such as transaction value and gas

price, also enhances robustness. The results show that despite the susceptibility of finan-

cial features to uniform manipulations, their combined use with temporal data provides a

broader context that improves model resilience. The temporal features help to contextualize

the financial data, mitigating the impact of adversarial value manipulations by providing a

temporal frame of reference.

The following recommendations can be drawn for the effective and robust classification

of digital transactions, especially in adversarial environments. ① Focus on Temporal

and Address Features: Incorporate timestamp and address data as primary features due

to their robustness against adversarial attacks and critical role in classification accuracy. ②

Integrate Financial Features with Temporal Data: Use financial transaction data with

temporal features to improve robustness and provide a comprehensive transactional context
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that helps counteract adversarial manipulations. ③ Adopt a Multi-Feature Approach:

Utilize a combination of diverse feature types to leverage their respective strengths and

ensure a balanced, resilient classification model capable of withstanding various adversarial

strategies.

4.7 Summary and Work to be Completed

This study investigates the vulnerability of machine learning models to adversarial attacks in

detecting fraudulent Ethereum transactions, particularly phishing attacks. The models ana-

lyzed include RF, DT, and KNN. We employed the FGSM to generate adversarial examples,

which involve carefully crafted manipulations of key transaction features such as timestamps,

value, and addresses. Our findings highlight significant differences in the resilience of these

models when exposed to adversarial manipulations.

The results show that RF demonstrated the highest robustness, especially when times-

tamps and transaction values were altered. In contrast, DT and KNN were more vulnerable,

with KNN experiencing the greatest performance degradation. We also explored mitigation

strategies like enhanced feature selection and adversarial training. Temporal and address-

based features provided better resistance to adversarial attacks, offering valuable insights

into improving phishing detection defenses.

To extend this work, we plan to broaden the adversarial training approach by generating

a wider variety of adversarial examples and implementing advanced attack techniques. We

will retrain the models using these new examples and compare their performance across

all classes. This will help evaluate how retraining enhances model robustness, particularly

addressing vulnerabilities in KNN. The results will offer deeper insights into the effectiveness

of adversarial training in strengthening phishing detection models.
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5 Improving ML-Based Phishing Detection in Ethereum

Transactions with Implicit Features

5.1 Introduction and Motivation

Phishing attacks on blockchain networks, particularly Ethereum, have become a growing

concern as the usage of decentralized platforms expands. Ethereum’s transparency and

secure transaction records have made it a target for cybercriminals, with phishing emerging

as one of the most prevalent attack vectors. These scams exploit the trust within blockchain

transactions to deceive users, often leading to significant financial losses. For instance, the

2022 phishing attack on Uniswap Labs resulted in the theft of over eight million USD,

highlighting the critical need for more robust and accurate phishing detection systems.

Detecting phishing on Ethereum presents several challenges due to the complex nature of

these attacks. Traditional approaches primarily rely on explicit transactional features, such

as gas usage, transaction values, and timestamps. While these features provide valuable

insights into transaction behavior, they often fail to capture the broader relational dynamics

that are crucial for identifying more sophisticated phishing activities. Addressing this limi-

tation requires exploring additional features, such as implicit patterns within the transaction

network, which can reveal interactions and transaction flows indicative of phishing.

The motivation for this work is to systematically evaluate the effectiveness of two distinct

feature sets in phishing detection on Ethereum: explicit transactional features and implicit

graph-based features. By first testing the model’s performance using explicit transactional

features, and then separately testing it using implicit features, we aim to understand the

strengths and limitations of each approach. This approach allows for a clear comparison

of how different feature types impact the accuracy and robustness of phishing detection,

ultimately contributing to the development of more resilient models.

5.1.1 Problem Statement

Phishing attacks on Ethereum pose a significant threat to users, leading to the loss of millions

of dollars each year. As phishing schemes grow in sophistication, traditional detection meth-

ods relying on explicit transactional features, such as gas usage, timestamps, and transaction

values, have proven to be insufficient in capturing the full complexity of phishing behavior.

These methods often fail to account for the relational and temporal dynamics inherent in

Ethereum’s transaction network, leaving room for malicious activities to go undetected.

The core challenge in phishing detection lies in identifying patterns that distinguish

phishing transactions from legitimate ones. Phishing transactions often blend seamlessly into
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Figure 4: An illustration of the proposed pipeline, integrating explicit and implicit features
from the Ethereum network.

the Ethereum network, making detection difficult when only explicit features are considered.

Additionally, the inherent imbalance between phishing and benign transactions in available

datasets further complicates efforts to build effective detection models, as phishing activities

are heavily underrepresented.

To address these challenges, it is necessary to systematically explore the effectiveness of

different feature sets in phishing detection. This work focuses on evaluating the performance

of models using two distinct sets of features: explicit transactional features and implicit

graph-based features. By testing the model performance separately for each feature set, this

study aims to provide insight into how these feature types impact the accuracy and reliability

of phishing detection in Ethereum transactions. The goal is to understand the limitations

of each feature set and identify potential improvements for more robust phishing detection

methods.

5.2 Model Workflow

Our model leverages transaction data from the Ethereum blockchain to detect phishing

activities with high accuracy. The workflow begins with the data collection process, where

we gather extensive transactional data, both phishing and benign, from trusted sources such

as Etherscan. Following this, we engage in feature extraction, focusing on both explicit and
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implicit attributes that define transactional behavior.As shown in Figure 4, this data is

then passed through a Graph Convolutional Network (GCN) architecture, where each node

represents a blockchain address and each edge a transaction. The model’s layers capture both

individual node attributes and network-wide interactions, enabling it to identify suspicious

activities more effectively. Finally, the model is trained using labeled phishing data, and its

performance is evaluated using standard classification metrics such as precision and recall.

5.3 Work to be Done

The primary focus of our upcoming work is to develop and evaluate a phishing detection

model for Ethereum transactions using both explicit and implicit features. We will be-

gin by collecting and curating transactional data from reliable sources such as Etherscan,

ensuring a balanced dataset of phishing and benign transactions. The next step involves

feature extraction, where we will focus on both explicit transactional details like gas usage,

value, and timestamps, and implicit graph-based features that capture interactions within

the transaction network.

5.3.1 Implementation

We plan to implement and experiment with GCN, to explore how each feature set affects

model performance. Additionally, we will address challenges like class imbalance by employ-

ing techniques such as weighted loss functions or data resampling.

The evaluation of our models will be based on standard classification metrics, including

accuracy, precision, recall, and F1-score, which will help us assess the effectiveness of each

approach. These metrics will provide insights into how well the model identifies phishing

activities, ensuring both robust performance and generalization in adversarial environments.

By conducting these experiments, we aim to compare the efficacy of different feature sets

and models, and refine our approach based on the outcomes.
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