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Abstract

The rapid evolution of Augmented Reality (AR) and Virtual Reality (VR) technologies on various
consumer platforms, including mobile devices, has significantly impacted the digital landscape.
This surge in AR/VR applications has not only expanded the boundaries of virtual experiences
but also intensified scrutiny of their security and privacy aspects. As these technologies become
deeply integrated into everyday activities, understanding their underlying security infrastructure
and privacy policies becomes crucial for safeguarding user data against evolving cyber threats.

In response to the burgeoning interest in AR/VR technologies and the accompanying security
concerns, our first study delves into the analysis of these applications from a security and perfor-
mance standpoint. Despite the increasing popularity of AR/VR applications, there is a notable
absence of benchmark datasets that facilitate comprehensive security research. To bridge this gap,
we have compiled a dataset comprising 408 diverse AR/VR applications from the Google Play
Store. This dataset is enriched with various data modalities such as control flow graphs, strings,
functions, permissions, API calls, hexdump, and metadata. This dataset is poised to support a
multitude of research endeavors, providing a foundational tool for enhancing application security
across platforms.

Building on the need for enhanced privacy measures within AR/VR environments, the second
study utilizes BERT, a leading-edge text classification model, to scrutinize AR/VR applications’
privacy policies. Our comparative analysis of free and premium content websites reveals that
AR/VR applications typically exhibit a higher percentage of clear and thorough privacy segments
than free content websites. However, they fall short of premium websites’ standards. The strategic
emphasis on critical privacy practices and key terms within these policies aims to bolster their
effectiveness. This offers insights into AR/VR privacy dynamics.

Finally, addressing the critical challenge of malware detection on digital platforms, our third
study introduces an advanced, scalable approach using machine learning models, specifically Ran-
dom Forest (RF) and Graph Neural Networks (GNN). This research utilizes two datasets, one
containing Android applications—including AR/VR applications—and the other comprising Exe-
cutable and Linkable Format (ELF) files, both featuring benign and malicious samples.
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1 Introduction

1.1 Motivation

Augmented Reality (AR) and Virtual Reality (VR) technologies have swiftly evolved from niche
innovations into essential tools that impact various sectors, including entertainment, education,
healthcare, and industry. While these technologies enhance interactivity and provide immersive
experiences, they also introduce significant challenges to security and privacy.

As AR/VR technologies become more accessible and integrate deeper into everyday applica-
tions, security vulnerabilities and privacy risks escalate. These platforms, due to their immersive
nature and extensive data collection capabilities, are particularly susceptible to malicious activi-
ties. The research focuses on the foundational aspects of AR/VR security, aiming to identify and
mitigate vulnerabilities inherent to these rapidly advancing technologies.

A critical area of vulnerability is the application frameworks and development platforms used
in AR/VR settings, which often lack sufficient security protocols. The investigation will assess
these frameworks to pinpoint common vulnerabilities and suggest strategies to secure them against
security breaches.

Moreover, privacy policies associated with AR/VR technologies often lack clear communi-
cation regarding the extent and use of data collection. This leads to user distrust and regulatory
issues. The analysis will compare AR/VR privacy policies against digital application norms and
propose frameworks for more transparent and user-focused privacy practices.

Additionally, the prevalence and mechanics of malware in AR/VR systems will be examined
to understand how these harmful programs exploit specific features of AR/VR technologies. By
studying malware distribution across various platforms and infrastructures, strategies will be de-
veloped to detect and neutralize these threats effectively.

Exploring network vulnerabilities within AR/VR systems is essential for developing robust
security measures. This research will analyze how infrastructural configurations within AR/VR
environments influence their vulnerability to attacks. It will also devise strategies that enhance
network resilience while minimizing disruptions. By addressing these key security and privacy
challenges, the research aims to contribute significant advancements to AR/VR, ensuring these
technologies can be utilized safely and effectively across diverse applications.

1.2 Statement of Research and Contributions

In the evolving landscape of digital technology, AR and VR technologies present both revolution-
ary opportunities and significant security challenges. As these technologies permeate more aspects
of everyday life, they become critical fronts in the battle for security and privacy. This research
aims to address multifaceted security and privacy issues emerging from AR/VR technologies adop-
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tion. By exploring diverse aspects ranging from application security and privacy policy analysis to
advanced malware detection, this work seeks to contribute significantly to the understanding and
enhancement of AR/VR security frameworks. Our comprehensive approach spans the creation
of benchmark datasets, evaluation of privacy practices, and the development of robust machine
learning models to detect and classify malware effectively.

AR/VR Application Dataset and Security Analysis (§ 3). The first facet of our research focuses
on the critical need for comprehensive benchmark datasets in AR/VR application security research.
Given the dearth of resources for robust security and performance analysis in this rapidly expand-
ing field, we have developed a dataset consisting of 408 AR/VR applications from Google Play
Store. This dataset, standardized across multiple data modalities (i.e., control flow graphs, strings,
functions, permissions, API calls, hexdump, and metadata) serves as a foundational tool for vari-
ous security-related research. This work fills a significant gap in current research resources. It also
sets the stage for future studies aimed at enhancing AR/VR applications’ security mechanisms.

Privacy Policy Evaluation in AR/VR Android Applications (§ 4). Building on the necessity for
rigorous privacy standards in AR/VR applications, the second part of our research evaluates the
clarity and thoroughness of privacy policies within this domain. Utilizing BERT, a cutting-edge
text classification model, we analyze and compare AR/VR privacy policies to those of both free
and premium content websites. Our findings reveal nuanced insights into privacy practices in the
AR/VR industry. They highlight areas where AR/VR applications lag behind premium services
but excel against free content offerings. This study underscores the strategic importance of clear
and effective privacy policies in enhancing user trust and compliance in AR/VR environments.

Malware Detection in AR/VR and General Android Applications (§ 5). The final component
of our research addresses the pressing challenge of malware detection within AR/VR and broader
Android platforms. Leveraging advanced machine learning techniques, including Random Forest
and Graph Neural Networks, this study utilizes two datasets—one comprising Android applica-
tions with AR/VR features and another featuring ELF binaries—to classify and analyze benign
versus malicious software samples. Our approach demonstrates GNNs’ superior capabilities over
traditional methods. This is particularly in their ability to discern complex patterns and relation-
ships within data, leading to markedly improved malware detection rates. This work not only
enhances our understanding of malware dynamics but also contributes to the development of more
secure digital environments on Android platforms.
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2 Related Work

In the dynamic field of augmented and virtual reality, the exploration of security, privacy, and
malware detection stands as a pivotal area of research. This body of work critically examines the
advancements and challenges within these domains, underscoring the necessity for rigorous analy-
sis and innovative methodologies. Previous studies have laid foundational work by addressing di-
verse aspects such as dataset creation, privacy policy evaluation, and malware detection techniques
across various platforms. However, there remains a significant gap in comprehensive, targeted re-
search specifically tailored to AR/VR applications. This section reviews the spectrum of existing
literature, ranging from the development of specialized AR/VR datasets to the application of ad-
vanced machine learning models like BERT and Graph Neural Networks in privacy and security
analysis. Each study contributes uniquely to the overarching goal of enhancing the robustness and
understanding of AR/VR technology’s security and privacy landscape.

2.1 Security and Datasets in AR/VR

AR/VR Datasets. Although limited in scope and purpose, several works exist on compiling
datasets for AR/VR software analysis. For instance, Rzig et al. [70] and Nusrat et al. [64] cu-
rated applications built using the unity framework—a widely-used game engine offering a robust
environment for developing both 2D and 3D games, interactive simulations, and other graphical
content [81]—for software analysis. However, the main purpose of the studies is not benchmark
dataset: while Rzig et al. [70] focused on understanding the prevalence, quality and effective-
ness of testing practices in 314 open-source VR apps, Nusrat et al. [64] focused on understanding
optimization practices, e.g., simplifying graphics, rendering, language, and APIs, using 100 VR
applications.

While essential prior work, those studies fall short in their diversity of the AR/VR applications,
the type of modalities they produce for each application, the environment in which those applica-
tions are developed, and the eventual research applications those datasets are suited for based on
the type of data modalities they produce.

Android Datasets. Android application datasets are assembled from the F-Droid repository, by
Krutz et al. [48] and Pecorelli et al. [66] and from the Google Play Store, by Chand et al. [25], for
various purposes, which we highlight.

Krutz et al. [48] collected metadata, version control information, source code, and the most
recent APK file for 4,416 versions of 1,179 open-source Android applications from the F-Droid
repository. Static analysis was conducted using three tools: Androrisk and Stowaway to analyze
the APK files and Sonar to examine the extracted source code. The results of their research pro-
vide easy access to data and analytical results for software engineering research and a benchmark
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dataset for comparison with other homemade static analysis research projects [48]. However, the
modalities extracted are not suitable for security applications.

Pecorelli et al. [66] collected 1,780 Android applications by mining F-Droid to assess whether
these apps are tested, how well they are designed, and how effective they are. A key finding of the
study was that developers of mobile apps still tend not to test them properly. They also found that
the test cases of the considered apps are of poor design quality, as measured by test code metrics
and test smells, and their effectiveness, as measured by code coverage and assertion density [66].
The work is limited to testing and includes no additional modalities for other analysis.

Chand et al. [25] used Parsehub to scrape 394 applications from the Google Play Store with
their metadata and a total of 8,423 user reviews to identify trends [25]. While valuable, the dataset
is limited to gaming APKs and does not consider the range of possible application genres that
could benefit from inclusion in a benchmark dataset. Moreover, the data does not include any data
modalities that could benefit software and security analysis tasks.

Android Security. We sample three studies highlighting security analysis of Android applications.
Two studies collected applications into datasets for Android security analysis [37, 77], and one
tested Android devices [79].

Sunet al. [77] proposed a semantic-aware approach to identify and classify Android malware
in large-scale datasets. Their system extracts API calls, permissions from APK files, and cate-
gories and descriptions from a mobile store. They applied Doc2Vec to represent these features
semantically. The results showed a high F-measure of 99.71% and a low False Positive Rate (FPR)
of 0.37% when identifying large-scale Android malware, and the highest F-measure of 97.5% in
Android malware family classification [77].

Sun et al. [77] had three datasets with varying sample sizes. They assigned the first dataset as
a baseline, the second as a large-scale Android malware identification, and the third as an Android
malware family classification. For the first dataset, they developed a crawler to download 87,182
APK files from the Opera Mobile Store, scanned them through VirusTotal, and analyzed only
61,730 APK files. In the second dataset, they used the same crawler to collect APK files from
the Google Play Store, scanned them through VirusTotal, and added 24,461 Android malware
files. The last dataset was the same malware files from dataset 2 plus 72,227 (i.e., divided into
three groups 24,389, 24,157, and 23,681) Android malware files [77]. Even though this study
administered a large-scale dataset and some applications were collected from the Google Play
store, the dataset was analyzed on one aspect of security analysis: Android malware detection
and classification. Felt et al. [37] developed Stowaway, which detects overprivilege in Android
apps. Despite being seminal, the work is limited in data modalities and their security and software
analysis applications.

A graph-based analysis of three datasets was performed by Alasmary et al. [13] to assess the
similarities between IoT and Android malware and benign software for detection. Their data set
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consisted of 2,874 IoT and 2,891 Android malware samples, delivering 97.9 accuracy in malware
detection, although the analysis modality contributed is only graph-based and the application is
only malware detection and code similarity analysis.

2.2 Privacy Policies in AR/VR

Privacy Policy Analysis. Privacy policies inform users about data collection, use, and protection
practices. Numerous studies have focused on analyzing these policies. For instance, Alabduljabbar
et al. [10] conducted a comprehensive analysis of privacy policies using a BERT-based technique,
categorizing segments into predefined categories and showing trends in the analyzed policies for
the presence or absence of various collection, use, and protection. Wilson et al. [85] and Andow et
al. [15] developed tools for extracting and analyzing privacy policies to identify potential misalign-
ment between the stated and the actual practices. These studies emphasize the need for advanced
NLP techniques to help better understand and classify privacy policies. However, this analysis is
done mostly for websites and does not consider privacy policies in AR/VR apps. Yu et al. [94]
introduced PPChecker, a system that uses NLP and program analysis to identify issues in privacy
policies: incompleteness, incorrectness, and inconsistency.

NLP Techniques in Privacy Analysis. NLP techniques, e.g., BERT, have advanced text classi-
fication and analysis. Devlin et al. [34] introduced BERT, a model that has revolutionized NLP
by providing a deep contextual understanding of text. This model has been utilized in various
domains, including privacy policy analysis, due to its ability to capture nuanced meanings and
relationships within text. Elluri et al. [36] demonstrated BERT’s effectiveness in enhancing text
analysis and classification and showed significant improvements in accuracy and robustness, mak-
ing BERT an ideal choice for analyzing complex privacy policy documents.

AR/VR Privacy Policies. Although studies by Harborth et al. [41] and Lim et al. [53] highlight the
critical importance of transparent and comprehensive privacy policies in this domain, quantifying
the gap in the practice from that of the expected privacy policy structure and compliance is still
lacking.

2.3 Malware Detection Techniques

Malware Detection Using API. The use of APIs in malware detection remains a fundamental
approach, especially in analyzing how malware interacts with system components. Xu et al. [86]
proposed a model leveraging the BERT transformer and knowledge distillation to capture API se-
quences for malware detection. This approach significantly reduced training time while maintain-
ing high detection accuracy, making it an efficient solution for dynamic environments. Tomiyama
et al. [80] also explored dynamic analysis by focusing on API call sequences combined with mem-

11



ory dump analysis, resulting in an accuracy of 82.7%, highlighting the importance of runtime
behavior in detecting advanced malware.

Moreover, RF models have consistently demonstrated their utility in malware detection, par-
ticularly for API-based analysis. Zhu et al. [99] employed RF combined with sensitive API moni-
toring, achieving an accuracy of 89.91%, showcasing the model’s robustness for Android malware
detection. Furthermore, recent developments have explored the potential of GNNs in API call
graph analysis, where GNNs model the complex relationships between API interactions, provid-
ing deeper insights into malicious behavior.

Android Malware Detection. Given the popularity and relative vulnerabilities of the Android
platform, a large body of research is presented in the literature focusing on Android malware de-
tection. For instance, Yang et al. [88] proposed an advanced approach combining API clustering
with NLP and machine learning techniques. Evaluated on a dataset of 42,450 malicious applica-
tions, their method achieved an F1 measure of 82.6%, demonstrating its effectiveness in detecting
Android malware [88]. Similarly, Zhu et al. [99] used RF with sensitive API monitoring to reach
an accuracy of 89.91%, emphasizing the effectiveness of API-based analysis.

Guyton et al. [40] presented a feature selection approach focusing on permissions, intents,
and APIs for Android malware detection. Their method applied to a dataset of 119,000 applica-
tions, showed that combining these features improved accuracy compared to using them individ-
ually [40]. Additionally, Hou et al. [45] enhanced RF techniques for detecting Android malware,
improving detection accuracy on a dataset of 1,536 applications. These studies underscore the role
of machine learning models, API analysis, and feature selection in enhancing Android malware
detection performance.

ELF and IoT Malware Detection. While much of the research focus remains on Android malware
detection, research on ELF and IoT malware detection is gaining traction due to the proliferation
of Linux-based systems and smart devices. Atitallah et al. [19] proposed an IoT malware detection
method using Convolutional Neural Networks (CNNs) combined with RF voting. They achieve an
impressive accuracy of 98.68% on the MaleVis dataset, which includes over 14,000 samples. This
highlights the increasing reliance on machine learning models in securing IoT.

Zhou et al. [98] introduced APInspector, a hybrid malware detection method for ELF sys-
tems. By analyzing API embeddings and parameter sequences using a combination of Hierarchi-
cal Attention Networks (HAN) and Multi-Layer Perceptrons (MLP), their method outperformed
traditional models in detecting malicious programs from a dataset of over 10,000 samples [98].
Sundarkumar et al. [78] presented a static analysis approach for IoT malware, providing critical
insights into malware characteristics and behavior. This work demonstrates the growing impor-
tance of API and system call analysis in malware detection across different platforms.

Anwar et al. [16] contributed to the IoT malware detection field by introducing a static analysis
method that relies on RF to characterize malware behavior, applying this approach to over 10,000
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IoT samples. Their results demonstrated that static analysis, combined with RF, can effectively
identify patterns in IoT malware [16]. These studies collectively illustrate the growing importance
of detecting malware across different platforms, including IoT and ELF, where dynamic analysis
and deep learning have proven highly effective.
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3 x-droid: A Benchmark Dataset for AR/VR and Security Ap-
plications

3.1 Summary of Completed Work

This study focused on addressing the gap in benchmark datasets for AR/VR applications on mobile
platforms. We successfully compiled a dataset of 408 AR/VR applications from the Google Play
Store. We standardized multiple data modalities including control flow graphs, strings, functions,
permissions, API calls, hexdump, and metadata. This dataset is poised to serve as a foundational
resource for researchers aiming to enhance AR/VR applications’ security and performance. Our
work highlights the diversity of AR/VR applications and sets a new standard for security analysis.
The dataset has been utilized to explore various research applications, demonstrating its utility and
relevance to current AR/VR technology research.

3.2 Introduction

Extended Reality (XR) encompasses various interactive forms between humans and machines in
real and virtual settings [17]. Extensive reality is defined by three forms: Augmented Reality
(AR) [93], Virtual Reality (VR) [24], and Mixed Reality (MR) [76]. VR can collect explicit
input and non-verbal data, including user gestures, physiological measurements, and how they use
technology through different sensors [38]. AR is a technology that overlays digital information,
such as images, videos, or 3D models, onto the real world [35]. MR is a technology that combines
both VR and AR, allowing for real-time interaction and coexistence between physical and digital
objects [32]. Using XR technology, a digital twin world simulates or mirrors the physical world,
allowing users to interact with the virtual world [76]. With the help of advances in software,
hardware, and algorithms, coupled with sensing in wearable devices, VR allows realistic physical
interactions through computer-generated simulations in 3D environments [38].

AR/VR applications are growing and widely used for platforms beyond gaming and entertain-
ment. This growth could be attributed to improving gadgets designed for AR/VR [18] and software
development. Software is the driving force behind the AR/VR hardware, and there is an interest
in understanding this software and its intentions, specifically from a security perspective. Despite
the existing work in the literature for understanding Android software, there is scarce research
addressing Android software targeting AR/VR deployment environments. Furthermore, given the
continuous and substantial expansion of these types of applications and their widespread preva-
lence, it is crucial to assess any potential privacy and security issues that may arise [38] in addition
to software analysis.

Limited datasets exist for applications that can be used as software and security analysis bench-
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marks. The existing datasets are all related to applications targeting a variety of fields and users,
none of which are solely relevant to AR/VR applications. For example, Nusrat et al. [64] men-
tioned a lack of studies and research on VR and VR software development in all platforms, includ-
ing Android. The lack of studies can also apply to AR and AR software development.

Android software targeting AR/VR environments differs from Android software targeting mo-
bile devices due to several distinct features, such as the AR/VR app’s immersive nature, hardware
requirements, performance demands, and unique interaction models. 1. A VR/AR app creates
a virtual environment or enhances a real-world environment to create an immersive user experi-
ence, and these apps require different design principles and user interaction models. This affects
the user interface design since AR/VR apps rely on immersive menus, spatial interface elements,
gaze-based interactions, and gesture recognition. 2. AR/VR apps require specialized hardware,
such as VR headsets with built-in displays and motion-tracking capabilities or AR glasses with
cameras and sensors. The tracking of user movements and interactions depends on these sensors
and different input methods in AR/VR apps. 3. AR/VR apps require considerable processing power
and graphics capabilities (e.g., CPU, GPU, and memory). To meet these demands, it is necessary to
create 3D environments, models, animations, recognize objects, map spatially, and handle occlu-
sions. Therefore, AR/VR app developers should optimize their applications to provide smooth and
responsive experiences. This is especially critical when considering the high frame rates required
for VR applications to prevent motion sickness. There is limited literature that explores AR/VR
Android dataset extraction, curation, and generation systematically that can be used for research
tasks, and we take on this particular task to create this dataset.

3.3 Data Curation

This section provides information about the data, the collection and preparation processes as shown
in Figure 1, and the tools used to acquire and analyze the dataset. As a starting point, a few
background details (e.g.,, the Google Play Store, APK, SerpApi, emulator, and VirusTotal) were
presented. Additionally, the process of collecting and preparing data was discussed. As a final
point, five tools have been described and highlighted.

3.3.1 Background

Google Play. As Google’s main store, it offers a range of contents, including applications, movies,
TV shows, e-books, etc. The Google Play store was created by merging the Android Market,
the Google e-book store, and the Google Music store. Users can access Android applications,
known as Android Package Kits (APKs), available for Android devices in this store. In addition to
Android, Google Play supports other operating systems (OS) that can access certain store features,
including Windows. Google Play supports multiple platforms, including Windows, smartphones,
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tablets, TVs, Chromebooks, and watches.
APKs and apps have webpages that provide information the apps, such as its name, devel-

oper, rating, download number, and thumbnail. Information on applications is categorized into
numerical and non-numerical categories. Among the numerical categories are ratings, downloads,
reviews, and dates. Nonnumerical categories include the name of the APK file, the developer, the
description, comments, data safety information, and compatible platforms.

Among the categories available on Google Play that are not numerical are age-based ratings.
Using this method, the minimum maturity level of the content is determined for each application.
Ratings are based on countries and regions and are divided into seven categories. Based on the
fact that the sample was collected in the United States and that the rating system was derived from
the Google Play store in the United States, we have chosen a rating system for North and South
America. According to the Entertainment Software Rating Board (ESRB), the age-based rating for
the North and South American regions consists of categories for everyone: everyone + 10, teens,
mature, and adults [1]. Without a rating for age, applications are considered to have highly mature
content for parental control.

APKs. For the Android OS, applications are contained in a file format called the APK. Because
APK files are limited to about 100 megabytes, some applications may have an Opaque Binary Blob
(OBB) expansion file. Android devices are the only platforms compatible with these APK files,
which cannot be used in other systems. Moreover, because the user will have access to the entire
file (APK or OBB), this paper considers every application to be a single APK file, irrespective of
the impact of OBB files.

Java is the most widely used programming language for developing Android applications. It
was the primary language used in the development and is still widely used. Android Studio, the
official integrated development environment (IDE) for Android development, supports Java.

Google SERP API. Developers can automatically extract information from Google search engine
results using the Search Engine Results Page (SERP) Application Programming Interface (API).
APIs such as SerpApi, SerpStack, or scrape-it work by sending a query to third-party endpoints.
One of these tools is utilized to extract data from the Google Play store to minimize Google Play’s
search history, device, location, and many other factors that could limit or hinder the results. Uti-
lizing a SERP API tool to scrape results pages will allow access to results without personalized
filters and prioritization. SerpApi was utilized to collect metadata for our dataset, which provides
all responses in JSON format and contains the relevant details, such as titles, link titles, descrip-
tions, product IDs, ratings, reviews, downloads, and any other relevant details. Many Google API
calls are supported by this search tool, including the Google Play store, Maps, Images, Shopping,
etc.

SerpApi supports Python, Java, PHP, Ruby, and Node.js, among others. As a result, developers
can seamlessly integrate SerpApi into their existing workflows and projects. Through SerpApi,
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Figure 1: Dataset Collection Pipeline

users can send requests to search engines such as Google in real-time, enabling them to receive
fast results. Additionally, structured search results are available in a programmable format, JSON.
It allows viewing of SERPs from designated locations through global proxy servers. It can by-
pass CAPTCHAs and retrieve structured data accurately and timely. In this tool, researchers can
specify search parameters and receive detailed information on search results; however, there are
some limitations associated with its implementation. There is a limited selection of output formats
supported by SerpApi; it cannot perform searches on specific devices, and on average, its search
speed is slower than other Google SERP API tools.

Emulator. Samples were collected directly from the Google Play store using an emulator and
transferred to a different OS to analyze the applications further. The Galaxy S20 Ultra phone, a
device suitable for acquiring and running these files, was emulated. Moreover, the Google Play
store allows developers to label their apps according to the platform for which they develop their
software (e.g., smartphone or tablet). The study platform was an Android phone, so most reviews
and ratings were based on the Google Play store for phones. Exceptions to this rule are applications
that do not have a label. Among the sampled applications are those designed for mobile phones
only, tablets only, smartphones and tablets, or unspecified.

VirusTotal. As an online malware detection platform, VirusTotal offers more than 60 detection
tools for single-file searches. Several methods are available for the platform to examine a file,
including uploading it or looking at the hash value associated with each file. It could take various
factors to determine the estimated turnaround time for the results, including file size, queue length,
and scanning method. However, if the hash value of the file had already been stored in the database,
it would take less time to scan the same file in the future. A hash value is used to identify the file
on the platform. The system provides detailed responses that include the date and time of the scan,
the scan result, and the analysis tools used to determine the final result.

3.3.2 Dataset Collection Pipeline

The samples were collected by searching for four terms within the Google Play platform using
SerpAPI: VR, virtual reality, AR, and augmented reality. More than 430 applications were found
in the search result, but only 408 were available to download and compatible with the emulator.

17



A few applications are unavailable for download because there is no software available on the
application website or because of compatibility issues with the platform. As described above, these
408 applications serve as the sample for the study that was administered to extract and collect all
of the dataset’s characteristics. These applications ranged from less than 100 KB to more than 1.5
GB.

TheBlueStacks software was used to emulate the phone and collect APK files within the An-
droid OS. To access these files through Linux and perform the analysis, the files were uploaded to
private Google Drive as APK files. Using an emulator ensures that the phone is the primary plat-
form for the application. Consequently, it would be possible to prevent encountering incompatible
applications with the primary platform. Using an emulator is also beneficial because it provides
direct access to the Google Play store. As such, there is no possibility of encountering third par-
ties that could significantly impact the dataset or the results. In addition, EX File Manager: File
Explorer was used to extract and upload APK files from the Android system to Google Drive for
further analysis. To analyze the dataset and extract the data characteristics presented in section 3.4,
we downloaded the APK files to the Linux OS.

Subsequently, VirusTotal examined it to detect malicious data within each app and assign la-
bels. The findings of the VirusTotal scan are discussed in more detail in section 3.4.

3.3.3 Analysis Tools

As illustrated in the data application section, five tools have been employed to examine the dataset
and extract additional data, see Figure 2 and Table 1. Each tool has been used with specific param-
eters and for particular tasks, ensuring a comprehensive understanding of the dataset components.
The details provided aim to assist researchers in replicating the study or applying the methodology
to new or private applications.

Listing 1: Radare2 aaa steps
[0x00000000]> aaa

[x] Analyze all flags starting with sym. and entry0 (aa)

[x] Analyze function calls (aac)

[x] Analyze len bytes of instructions for references (aar)

[x] Constructing a function name for fcn.* and sym.func.* functions (aan)

[x] Type matching analysis for all functions (afta)

[x] Use -AA or aaaa to perform additional experimental analysis.

Radare2. Radare2 is an open-source framework for reverse engineering and binary analysis. It is
extensively used by security experts and software engineers for disassembling code and debugging
programs. In our research, Radare2 was employed to analyze binary files from the APK datasets.

Usage Details. Radare2 is employed to disassemble and analyze binaries from the APK datasets.
Extracted modalities are functions, strings, API calls, and hexdumps, see Figure 2.
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Parameters and Time. We used the ‘aaa‘ command for extensive analysis, taking about 2 minutes
per APK, depending on complexity and size. Other commands may require more time depending
on the specific analysis performed.

Error Handling. No significant errors were encountered when using Radare2, ensuring a reliable
dataset for analysis.

APKtool. APKtool is utilized for decompiling and recompiling APK files, allowing for a deeper
inspection of Android applications. APKtool is pivotal in extracting the manifest files and other
resources from APKs, which are critical for understanding permissions and configurations.

Usage Details. APKtool is used for decompiling APK files to extract control flow graphs, as shown
in Figure 2, and other resources, critical for understanding configurations.

Parameters and Time. APKtool decomposes APK files to retrieve XML representations of re-
sources, typically taking about 1 minute per APK, depending on the file size.

Error Handling. APKtool consistently provides accurate decompilations without any major errors
to report.

Jadx. Jadx converts APK files into readable Java source code, assisting in the understanding of its
logic and functionality.

Usage Details. Jadx is used to convert APK files into readable Java source code, aiding in the
extraction of control flow graphs and the understanding of application logic as demonstrated in
Figure 2.

Parameters and Time. Jadx with default settings, including cross-referencing, took at least 3 min-
utes per application.

Error Handling. Jadx performed reliably without errors, contributing to effective source code
analysis.

Fernflower. Developed by JetBrains, Fernflower is used for decompiling Java bytecode into read-
able Java source code.

Usage Details. Fernflower is used for decompiling Java bytecode back into readable Java source
code, mainly for analyzing Java-based applications.

Parameters and Time. Standard decompilation process, taking about 2-3 minutes per Java class
file.

Error Handling. No significant issues were noted, ensuring the integrity of the decompiled code.

AAPT2. Android Asset Packaging Tool 2 (AAPT2) compiles and packages Android resources,
used in our study to analyze how resources are managed and optimized in APK files. The AAPT2
was implemented to extract permissions from the APK files.

Usage Details. As illustrated in Figure 2, AAPT2 compiles and packages Android resources and
is utilized to analyze API calls and how resources are managed within APK files.
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Figure 2: Dataset features.

Table 1: APK Features and Analysis Tools

Tasks File Type Analysis Tool Program Code
CFG dot APKtool& Jadx Python
Functions csv Radare2 Shell script
Strings csv Radare2 Python
Permissions csv AAPT2 Shell script
API calls csv Radare2 Shell script
hexdump txt Radare2 Shell script
Metadata csv Statistical Analysis None

Parameters and Time. AAPT2 handles resource compilation and linking, completing in under 30
seconds per APK.

Error Handling. AAPT2 provided consistent and error-free outputs during resource compilation.

3.4 Data Modalities and Applications

We highlight all results, graphs, and tables related to all features. In addition, each feature was
subdivided into subsections. Seven subsections have been discussed: control flow graphs, APK
functions, APK strings, APK permissions, APK API calls, APK hexdumps, and metadata. The
information in each subsection provides a concise introduction to each feature and comprehensive
information about the output files. To illustrate the practical application and relevance of these
modalities, we present a detailed case study on the security evaluation of selected AR/VR applica-
tions.
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3.4.1 Control Flow Graph (CFG)

CFGs represent control flow within a program [3], from one statement to another and are repre-
sented graphically in this graph. In various stages of software analysis, including compilers, code
analysis, and reverse engineering, CFGs are used [87, 92]. CFGs can provide valuable insight into
a program’s structure and performance, identify potential optimization opportunities, detect un-
reachable code, and perform various static analyses [5], such as data flow analysis and reaching
definitions analysis [62, 96]. Likewise, they are employed in reverse engineering to assist in vi-
sualizing compiled code’s control flow. As a result, binary programs may be understood without
access to their source code.

A CFG comprises key components: basic blocks, nodes, edges, and entry and exit nodes. In a
basic block, the control flow enters at the beginning and exits at the end of a series of consecutive
statements [11]. The flow is uninterrupted, with no stops or breaks except at the end. Therefore,
CFGs are made up of basic blocks. Each node in a CFG represents a basic block [3], and nodes rep-
resent specific points where control can be entered or exited. A CFG’s edges illustrate the control
flow between the basic blocks [92]. The edge between two nodes signifies a possible transfer of
control from one basic block to another. An entry node is the point at which the CFG begins [11].
In other words, it represents the start of the execution of a program. The exit nodes indicate that
the execution of a program has come to an end [92]. Return statements or exit functions can be
used to exit the control flow of a program at various points.

Research Usage. Studies have been conducted in the literature examining CFGs and their func-
tions for analyzing and comprehending AR/VR applications. In addition to providing researchers
with a dataset, we will allow them to analyze the following aspects related to AR/VR applications,
which will complement the findings of their studies.

① Malware detection and analysis. By analyzing the control flow of APK files, malware can be
detected [4], or harmful code patterns can be identified [96]. For example, when detecting malware,
nodes count, edges count, or other CFG features [13] could be considered. To detect anomalies or
suspicious patterns in a control flow, researchers can automate the generation of CFGs from APKs
using machine learning [11, 44] or pattern recognition algorithms [3, 12].

② Security analysis. CFG analysis can identify security vulnerabilities in apps [12], such as in-
secure data storage, incorrect input validation [87], and weak authentication. The control flow
can be analyzed to identify sensitive data paths or critical system resources and assess security
implications.

③ Software verification. CFGs is used to improve Android app testing techniques [87]. To achieve
better code coverage and detect defects or vulnerabilities more effectively, researchers can develop
automated testing tools that generate test cases based on the control flow structure of the APK.

④ Behavioral analysis. In addition to providing insight into Android apps’ runtime behavior [87],
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CFGs can also provide insight into their design. Analysis of the control flow can reveal perfor-
mance bottlenecks [44], identify resource usage patterns, or identify how different components
interact.

⑤ Code understanding and optimization. CFG analysis can help optimize the performance of the
Android app [3, 87] or understand its code structure. CFGs can be visualized, redundant code or
inefficient algorithms can be identified, and optimizations can be suggested to improve the overall
efficiency and maintainability of the code [87].

3.4.2 Functions

An Android application comprises multiple components and functions, each contributing to its
overall behavior and features. Each function file delivers detailed information about all the func-
tions included in the respective APK file. The output for each APK is a CSV file that lists the
name, length, and additional details about the functions.

Research Usage. In the literature, various studies have examined functions to understand and
analyze the behavior of the applications. Researchers can use our dataset to complement their
study of AR/VR applications by gaining a better understanding of the following aspects.

① Function Call Graph (FCG) analysis. FCGs are constructed by analyzing APK files to identify
the functions and methods present in the code and their relationships [75]. This graph represents
the control flows between functions and can be used for various purposes, such as understanding
the code structure, identifying dependencies, and detecting potential vulnerabilities [58].

② Code Smell Detection. Function-level code smells in Android applications can be analyzed [67,
97] to understand defects and maintenance difficulties that indicate poor design or implementation
processes [97]. Some of the insights that can be uncovered through function-level code smell
analysis include methods that are too long [67], excessive parameter lists, inconsistent naming
conventions, and potential remedies; e.g., refactoring [46, 97].

3.4.3 Strings

An APK string refers to a string used within an Android app and includes text from the user
interface, labels, and other textual elements. As part of the app’s resources, strings.xml contains
these strings. The strings.xml file can be found in the res/values directory of the Android app’s
project structure. The file contains string resources used throughout the application to display
text to the user. Strings defined in strings.xml are accessed from the Java or Kotlin code of the
application using the getString method [82], allowing to reference text resources dynamically and
flexibly.

Research Usage. The literature contains many studies that analyze string behavior to understand
and analyze applications’ behavior. Using our dataset, researchers can better understand the fol-
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lowing aspects of AR/VR applications.

① String Analysis for Localization. String analysis within APK files can be used to identify lan-
guage [63] and regional-specific text [29] that needs to be localized. In this process, strings are
extracted from the application’s resources and categorized according to their context, and recom-
mendations are given to translators for effective localization [29].

② Analysis for Semantic Understanding. APK files include strings describing the app’s function-
ality, user interface, and behavior [51, 82]. By analyzing and parsing strings [28, 33], researchers
can infer user intentions, identify key features of an application, or extract semantic meaning.

③ String Encryption and Obfuscation. Reverse engineering and tampering can occur with string
literals within APK files [33,63]. Using obfuscation or encryption within the application code [33,
63], researchers can protect sensitive information, such as API keys or cryptographic keys [63],
from attackers easily extracting it.

④ Malware Detection and Analysis. Strings in APK files can contain indicators of malicious be-
havior [30, 33, 63, 82]; e.g., hardcoded command-and-control server addresses [16], obfuscated
URLs associated with payloads [82], or suspicious API calls [63, 82]. With string analysis tech-
niques, Android applications can be analyzed to detect malware and potentially unwanted behav-
iors [29, 30].

⑤ Privacy Analysis. There is a potential for sensitive information to be inadvertently exposed
within APK files, e.g., personally identifiable information, authentication tokens, and identifiers [33].
Android developers can identify and remediate security and privacy vulnerabilities by developing
techniques to analyze strings and detect privacy violations.

3.4.4 Permissions

APKs in Android include a manifest file (AndroidManifest.xml) that contains essential information
about the app [21, 27]. Defining the permissions for an app is an important aspect of its manifest
file [61]. To access certain features or data on an Android device, applications require a variety of
permissions. These permissions are declared in the manifest [47] and must be granted by the user
when installing the app. When downloading an application from the Google Play Store, the user is
presented with the permissions it requests. The user can review the permissions displayed before
downloading the app, and they can decide whether to accept or deny the installation process. Fur-
thermore, users can revoke specific permissions for applications installed on their device through
the settings menu.

Permissions can fall into several categories, including normal permissions [27, 83], dangerous
permissions [57, 61, 69], and signature permissions [37, 52, 69]. Normal permissions are consid-
ered harmless [37] in terms of user privacy. Users are automatically granted [52] when they install
the app. Examples include accessing the Internet or accessing the network state. Dangerous per-
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missions are sensitive and can compromise user privacy or data security [61]. Examples include
accessing the device’s camera [21], contacts, location [69], or reading SMS messages [52]. For
dangerous permissions, the user must explicitly grant permission during run-time on Android de-
vices [61] running Android 6.0 (Marshmallow) or higher [83]. Applications targeting Android
5.1 (API level 22) or lower request dangerous permissions at the time of installation. Signature
permissions are granted only if the application requesting is signed with the same certificate as the
application that declared the permission [37]. This mechanism is used to communicate between
processes and share data between applications from the same developer.

Research Usage. There have been multiple studies in the literature that explore the use of mobile
application permissions to analyze and comprehend those applications and their functions. Our
dataset will allow researchers to complement their studies by understanding such aspects in the
context of AR/VR applications, including the following.

① Permission Analysis and Classification. Analyzing the permissions requested by Android apps
allows us to understand their purpose and potential risks [77]. Studying the relationship between
requested permissions and an application’s functionality involves categorizing permissions and
categorizing them according to their sensitivity (e.g.,, camera access, location access, contacts
access).

② Permission Misuse Detection. Detecting when permissions are misused or excessively misused
by Android apps can be done [69] by identifying unnecessary permission requests [37], patterns of
permission abuse [69], or discrepancies between declared and used permissions [83].

③ Privacy Risk Assessment. Android apps may be granted access to sensitive resources on a de-
vice through lax permissions, which this may pose a privacy risk [52, 57, 61, 83]. Using privacy
controls and consent mechanisms, researchers can assess how requested permissions impact pri-
vacy, identify sensitive data exposed to third-party applications, and assess the adequacy of privacy
controls.

④ Behavioral Analysis and Permission Usage. During the execution of Android applications,
researchers can analyze how permissions are used during the run-time process [61]. An example
would be to monitor permission usage patterns [21, 37, 69], following interactions with sensitive
data, and identify privacy violations that could result from improper permission handling [69, 83].

⑤ Users Perception and Trust. Researchers can investigate how Android users perceive and un-
derstand permission requests. It may also involve exploring strategies to improve transparency,
communication, and trustworthiness in permission requests by studying user attitudes about per-
mission requests and factors influencing users’ decisions.
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Table 2: Overview of metadata

Feature Description
Name The application official name
Link The application link
ID Unique identifier
Version The application version at collection
Developer Developer information; e.g., name
Extensions In-app purchases, ads, or both
Rating Five-star rating value
Reviews The reviews for the application
Age The age group per ESRB
Downloads The number of downloads
Category The application genre.
Updated The day, month, and year of app update
Platform Compatible Platforms
Safety Safety practices provided by the developer

3.4.5 API Calls

API calls are methods a software application provides for other programs. In Android apps, API
calls interact with the Android OS, hardware, or external services [88]. API calls to APK (Android
Package) files are typically related to the interaction between an Android application and external
services, libraries, or resources. API calls are crucial in enabling communication between different
components of an Android application and external entities [49]. Android provides a set of APIs
that developers can use to access various features and functionalities. This includes APIs for user
interface components, data storage, networking, and more. Developers can make API calls to take
advantage of these features and integrate them into their APK files.

Many apps make API calls to external servers to fetch and send data or perform network-
related tasks [37]. This is commonly done using libraries such as Retrofit or Volley. These calls
are crucial for applications that require real-time updates. Android apps must declare permissions
in their manifest file to access certain features or perform specific actions, such as accessing the
internet or using the device’s camera [77]. API calls that require these permissions must be handled
appropriately to ensure security and user privacy. Secure API calls are essential to protect user
data and ensure the app’s integrity. This involves using secure communication protocols (such as
HTTPS), properly handling authentication (e.g., OAuth tokens), and implementing secure coding
practices to prevent common vulnerabilities like SQL injection or Cross-Site Scripting (XSS).

Android developers often use third-party libraries and SDKs (Software Development Kits) to
simplify making API calls [84]. These libraries encapsulate the complexity of handling network
requests, parsing responses [37, 57], and managing asynchronous tasks. Proper testing and debug-
ging are crucial when working with API calls in Android applications. Developers use tools like
Android Studio’s built-in debugger and network inspection tools to identify and fix issues related
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to API communication [52, 57]. Thus, API calls for APK files in Android development are essen-
tial for enabling communication between the application and external services or resources. This
interaction is a key aspect in building feature-rich and dynamic Android applications.

Research Usage. API calls have been explored in the literature to understand application behavior.
In addition to understanding AR/VR applications, researchers can use our dataset to complement
their studies in the following areas.

① API Dependency. Code analysis involves detecting API calls to system APIs, third-party li-
braries, or cloud services and understanding their dependencies and patterns [84].

② API Misuse Detection. Techniques can be developed to detect misuse [20] and improper use
of APIs within Android apps [55, 84]. Identifying potential vulnerabilities, performance issues, or
compliance violations due to incorrect API usage may require analyzing API call sequences [37],
parameter values [88], or error handling mechanisms [95].

③ Security Analysis. There are several security risks pertaining to API calls within Android apps,
such as data leakage, bypassing authentication, or unauthorized access to sensitive data. Analysis
of the interaction between the app and external APIs can identify security vulnerabilities, assess
the potential impact of abused APIs, and develop mitigation techniques.

④ Privacy Assessment of API Usage. Applications use APIs to perform their functions, requiring
permissions or access to sensitive data and raising privacy concerns regarding how sensitive in-
formation is handled. Using API calls, researchers can analyze privacy implications [49], identify
potential data leakage risks, and assess the adequacy of the privacy controls and consent mecha-
nisms in place.

⑤ Behavioral Profiling and Anomaly Detection. Using API calls, it is possible to figure out the
running behavior of Android applications [73], including their communication patterns, resource
utilization, and external dependencies [59]. Analyzing API call traces can help researchers pro-
file applications’ behavior, detect anomalies or deviations from expected patterns, and identify
potential security and performance problems. To understand API adoption, popularity, and usage
patterns within Android applications, researchers can analyze API usage patterns [49, 88] within
the applications. Analyzing large datasets of APK files is one method to identify common API
usage patterns, understand how API usage evolves, and identify emerging development trends.

3.4.6 Hexdump

A hexdump is a hexadecimal representation of the binary data in a file or memory region [2]. It
is commonly used to debug, reverse engineer, and analyze binary files. In a hexdump, each byte
of the binary data is represented by two hexadecimal digits [101] (from 00 to FF), providing a
human-readable view of the data’s raw contents. In addition to the hexadecimal representation, a
hexdump often includes an ASCII representation of the data [2]. Non-printable characters (those

26



outside the ASCII printable range) are typically represented as dots or other placeholders.

Research Usage. Various studies have explored hexdump analysis to understand the internal struc-
ture, identify patterns, and detect anomalies in APK files. By gaining a deeper understanding of
these aspects, researchers can complement their study of AR/VR applications with our dataset.

① Binary analysis. Hexdump can be used to analyze the binary structure of APK files [31], in-
cluding headers, metadata, and executable code segments [101]. A hexadecimal representation of
a file can be used to identify the signature, extract metadata, such as package names and version
numbers [72], and reverse engineer the application’s binary code to determine how it behaves and
functions.

② File format analysis. Researchers can analyze hexdump files to understand the APK file format,
assets, and code compile structure. They can also analyze the relationships between components
of an app package by extracting embedded resources such as images, audio, or XML files and
analyzing the hexadecimal representation of individual APK files.

③ Malware detection and analysis. Using hexdump analysis, malware can be detected and an-
alyzed within APK files. Researchers can inspect hexadecimal representations of binary codes
to detect suspicious patterns [2]. For example, hidden commands, encrypted payloads [72], and
obfuscated code [2, 72] can be found. The detection and mitigation of malware threats targeting
Android applications can be improved by identifying anomalies or malicious signatures.

④ Security analysis. Security vulnerabilities in APK files can be identified by hexdump analysis,
including insecure file permissions, hard-coded credentials, and buffer overflows. Hexadecimal
representations of files are useful to researchers in identifying potential security risks and devel-
oping techniques to assess and mitigate those risks. This would improve the security posture of
Android applications.

⑤ Data privacy. Data leakage risks or privacy violations can be detected within APK files using
hexdump analysis. Researchers can identify sensitive data within apps by examining the hexadec-
imal representation of the files [22]. Protecting user privacy and preventing data breaches require
researchers to develop techniques for analyzing and sanitizing sensitive data.

3.4.7 Metadata

This subsection consists of findings derived from statistical analysis of data of various categories
extracted directly from the Google Play store pages of the application and the APK files based on
the information in Table 2. The findings were discussed in five main aspects or factors: Prevalence
of malware, safety, domain, audience, and platform. Average (i.e., mean, median, and mode) and
simple mathematical operations were performed to evaluate each aspect and provide the analysis.

Table 3 provides an overview of the dataset groups, including average values for ratings, down-
loads, and the most recent activity year. Each row represents a different group within the dataset:
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Table 3: Average values for separate groups

Group Rating Downloads Activity
Sample 3.48 ≤50k 2023
Malicious 3.22 ≤500k 2018 & 2021
Benign 3.5 ≤50k 2023
Everyone 3.5 ≤50k 2023
Everyone+10 3.77 ≤500k 2023
Teens 3.35 ≤500k 2022
Mature 3.38 ≤500k 2021

“Sample” refers to the overall dataset, while “Malicious” and “Benign” indicate sample subsets
categorized based on harmful content. The “Group” column categorizes the data into these sub-
sets, with ratings averaged across all apps within each group, download figures approximated to
the nearest significant count, and the activity indicating the most recent year in which the apps
were actively updated.

In Table 3, “Group” is used to distinguish between overall samples and specific subsets based
on security assessments (malicious or benign). It is important to note that the groups malicious
and benign are strictly exclusive subsets, with no overlap. Each application is categorized strictly
as either malicious or benign based on our security criteria, ensuring clear separation for analytical
purposes.

Table 4 categorizes the applications into different segments based on their primary function or
market, such as ’Education’, ’Games’, etc. This table uses the same column headings as Table 3 but
applies them to these functional categories instead of the type of content (malicious vs. benign).
Each ’Group’ in this table refers to a functional category, providing insights into each category’s
average ratings, download counts, and recent activity.

Prevalence of Malware. The first factor is the prevalence of malware in Android VR/AR apps,
which can be explored by examining the result of the VirusTotal scan. VirusTotal aggregates the
detection results from multiple antivirus scanners to assess whether an application is malicious.
For our dataset, an application is labeled as malicious if it meets the following criteria:

• Detection Threshold: An app is considered malicious if detected by at least one scanner.
This threshold can vary depending on the specific security requirements.

• Detection Range: The number of scanners detecting apps as malware ranges from 1 to 5 in
our study.

– Roller Coaster Sunset app was flagged as adware by 3 different scanners: Avira, Ikarus,
and Fortinet.

– VeeR app was flagged by 5 scanners, including ESET-NOD32 and Microsoft, indicating
a higher consensus among scanners about its threat.
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This information helps in understanding the variability and reliability of malware detection
across the dataset, providing insights into the security of the apps we analyzed.

Based on the scanned apps, 16 out of 408 were labeled malicious by VirusTotal, and three age
groups were the targets of those applications. 68.75% of the malicious applications were developed
for the Everyone age group. In contrast, 25% of the targeted population for the malicious apps
were teens, and only 6.25% were designed for the mature age group. Moreover, 11 out of 16 were
classified as games and entertainment, which explains why malicious AR/VR applications have
a higher average download group than the entire sample and benign, per Table 3. Furthermore,
more than half of the malicious AR/VR applications (i.e., 10 out of 16) were last updated +3 years
ago, which is approximately 62.5% of the malicious applications. Table 3 shows that malicious
application activity was both in 2018 and 2021, which implies that these malicious applications
are not periodically updated.

Safety Landscape. Based on the safety analysis of the sample data, confidentiality, availability,
and integrity have been the lenses used to address the second factor of the current safety landscape
for AR/VR apps. About 65% of the apps in the sample have stated their data safety in all three of
their categories (e.g.,, sharing, collection, and safety practices). The results showed major concerns
about data safety. Most of the data in the sample is not encrypted while transmitted, and only
39.46% of the data sample is encrypted.

Another issue is the availability and confidentiality of users’ data. A small number of apps
stated that they share their data with third parties, 67 out of 408, or 16.42%. Furthermore, very few
applications authorize the user to delete their data in the applications. In contrast, the remaining
applications do not authorize users for applications that state their data safety information or other
applications that do not specify whether the user is authorized to do that. Only 25.25% of the
sample size gave their users permission to control their information in the applications.

Application Domains. To address this factor, application categories and various groups have
been examined, such as the age group applications in Table 3 and different categories applications
as demonstrated in Table 4. The analysis of the application categories showed that education is
the highest, with 91 out of 408, followed by games and entertainment, respectively; see Table 4.
The increase in education is attributed to the increase in educational AR/VR applications in the
last two years, 2022 and 2023. Approximately 62.64% of the applications that were classified as
educational were created in 2022 and 2023, as shown in Figure 3.

Based on the analysis of the most recent and highest activity applications with those in 2023,
VR/AR applications are shown more geared toward education and entertainment. Moreover, three
categories that dominated applications in 2023 were education at 18.70%, entertainment at 15.45%,
and tools at 12.20%, as highlighted in Figure 3. However, the AR/VR games started declining in
the last two years, 2022 and 2023, and the line of decrease for games compared to education and
entertainment can be clearly shown in Figure 3.
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Table 4: Average values for AR/VR categories.

Group Apps # Rating Downloads Activity
Education 91 3.53 ≤50k 2022
Games 66 3.33 ≤500k 2021
Entertainment 57 3.38 ≤50k 2023
Simulation 39 3.60 ≤500k 2022
Tools 29 3.71 ≤50k 2023
Video Players 19 3.61 ≤500k 2022
Business 15 3.66 ≤500k 2023
Art & Photo. 15 3.76 ≤50k 2023
Casual 14 3.48 ≤50k 2022
Books & News 14 3.90 ≤50k 2022
Social & Comm. 11 3.40 ≤50k 2023
Lifestyle 10 2.50 ≤50k 2020
Productivity 8 3.67 ≤50k 2023
Sports 7 2.96 ≤50k 2020
Health 5 3.47 ≤50k 2022
Shopping 4 1.8 ≤50k 2019 & 2022
Travel & Maps 4 4.33 ≤100k 2023

Targeted Audience. As mentioned in the previous section, the app platform divided users into six
groups, and only four groups were targeted by the AR/VR apps: Everyone, Teens, Everyone +10,
and Mature. The Google Play Store categorizes applications using an age-based rating system to
help users identify appropriate content. The categories are defined as:

• Everyone: Suitable for all ages.

• Everyone +10: Suitable for children 10 and older. May contain more cartoon, fantasy or
mild violence, mild language, and minimal suggestive themes.

• Teen: Suitable for ages 13 and older. It may contain violence, suggestive themes, crude
humor, minimal blood, gambling, and infrequent use of strong language.

• Mature: Suitable for ages +17; includes intense violence, blood and gore, sexual content,
and strong language.

These categories are instrumental in segregating the apps for our study, where ratings influence the
grouping and analysis, e.g., Table 3. Furthermore, understanding the target audience of AR/VR
applications is crucial for several aspects of software development and research:

• App Design and Functionality: The target audience significantly influences the design and
functionality of applications. For example, apps designed for children might feature more
interactive and graphical interfaces with safeguards against inappropriate content.
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Figure 3: Education, Entertainment, and Game application numbers per year for the years 2019
through 2023.
Table 5: A summary of the modalities and use cases in x-droid, including Malware Detection
(MalD), Security Analysis (SA), Software Verification & Validation (SVV), Software Optimization
(SO), Behavior Profiling (BP), and Encryption & Obfuscation (EO), Localization (L), Semantic
Understanding (SU), Privacy Analysis (PA), Analysis & Classification (AC), Misuse Detection
(MisD), Users Perception (UP), Binary Analysis (BA), File Format Analysis (FFA), Anomaly
Detection (AD). The average # represents the number of graphs, functions, strings, permission
groups, API calls, and metadata groups on average per app. Hexdump is not reported as the
number depends on the representation (Byte or word).

Modality Average # MalD SA SVV SO BP EO L SU PA AC MisD UP BA FFA AD
CFG 82,854 ✓ ✓ ✓ ✓ ✓

Functions 5,741 ✓ ✓ ✓ ✓ ✓

Strings 934,601 ✓ ✓ ✓ ✓ ✓ ✓

Permissions 11 ✓ ✓ ✓ ✓ ✓

API calls 1,680 ✓ ✓ ✓ ✓ ✓ ✓

Hexdump * ✓ ✓ ✓ ✓ ✓ ✓

Metadata 5 ✓ ✓ ✓ ✓ ✓

• Security and Privacy: Different age groups necessitate varying levels of security and pri-
vacy protections. Knowing the target audience aids in tailoring security measures to protect
sensitive user data appropriately, especially in applications designed for minors.

• Regulatory Compliance: Apps intended for specific age groups must comply with different
regulations, such as those protecting children’s online privacy. Analyzing the target audience
and associated features helps ensure that apps meet these legal requirements.

In our dataset, apps that target teens often incorporate more social features and real-time com-
munication capabilities, which require robust data protection measures to ensure privacy and com-
pliance with youth protection laws. Thus, target audience analysis enhances our understanding of
the app’s design and security framework and provides a foundational element for comprehending
broader usage patterns and regulatory alignment in AR/VR applications.

Most of the samples (82.84%) were labeled as Everyone, followed by the Teen group (11.03%),
then Mature +17 and Everyone +10 at 3.19% and 2.94%, respectively.

Analyzing targeted audience applications, especially the Teens group, revealed that games and
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Table 6: Top 5 permissions requested in x-droid against per-age group permissions highlighting
trends and affinities.

# Sample Everyone Everyone 10+ Teen Mature
1 internet internet read external storage internet internet
2 access network state camera internet access network state provider insert badge
3 camera access network state billing camera write settings
4 read external storage write external storage custom 1 read external storage update shortcut
5 write external storage read external storage custom 2 wake lock broadcast badge

entertainment are the most dominant category for that group. Games and entertainment had the
highest percentage of categories, with 75.56% in VR/AR apps for teens. This also explains why
teenager applications have higher downloads than the entire sample, per Table 3. Only 1.1% of the
educational apps developed for teens (i.e., one educational application of the 91 apps for the entire
sample). An educational app for teens, developed in 2015, indicates a lack of educational apps
for teens, with the recent increase in the education category in the last two years. Furthermore,
most of the teens’ applications (i.e., 60%) contain advertisements or have in-app purchase options.
Therefore, the financial aspect is the driving force behind the creation of teen applications due to
the high number of games and entertainment apps and the lack of educational apps.

Cross-Platform. Several platforms are available for downloading applications, including the
phone and tablet. An examination of cross-platform capabilities prevalent in the most popular
AR/VR applications (i.e.,, applications that have been downloaded a million times or more) and
whether those applications are adopting this capability has been carried out. Furthermore, a prim-
itive sample analysis was performed to identify applications using multiple platforms.(wt)

Based on the analysis, most popular applications specify one or more platforms in their spec-
ifications. Approximately 33.33% of the 100M+ applications did not specify the platform, and
the percentage decreased for the remaining groups (50M +, 5M +, and 1M +) to approximately
30.70%. Cross-platform ability is available in more than half of the highest downloaded applica-
tions group at 54.55%.

Regarding the whole sample, more than half of the applications in the sample did not specify
any platform for their applications, 58.82%. Applications that choose the phone as their platform
regardless of the tablet are 132 applications in 32. 35% while applications that choose the tablet as
their platform regardless of the phone are 167 applications in 40. 93%. Most of the applications
in the sample do not support the cross-platform capability of the applications, where only 133
applications support this ability at 32.60%.

A summary of the applications across the different metadata modalities is shown in Table 5.
Based on the analysis of 408 APKs, different metrics are presented in Table 5. The average col-
umn represents the mean size per app for the given feature modality. For instance, for the CFG
modality, the table shows the average number of .dot files per application, where .dot files were
extracted from the dataset using Jadex analysis tool. These graphs are disconnected graphs that
have disconnected components. For functions and strings, the average refers to the average number
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of functions and strings per APK, respectively. For hexdump files, the size and representation can
vary significantly depending on the content of the APK files and how the hexdump is generated
and formatted. The raw hexdump is hexadecimal values capturing the size of the program, rang-
ing from 105,475 bytes to 1,541,415,915 bytes, and the eventual dimensionality depends on the
representation (hexadecimal, n-grams, etc.). API Calls average illustrates the average frequency
of external interactions. Lastly, the Metadata has 5 features: malware detection, safety landscape,
audience, platforms, and app domains. Each feature contains multiple values.

3.4.8 Case Study: AR/VR Permission Analysis

In the following, we highlight one case study of our dataset centered around app permission anal-
ysis to understand affinities and potential anomalies. In our study, We utilized AAPT2 to read
the APK files, extract the AndroidManifest.xml, parse the permissions, and save them into a CSV
file. This tool enabled us to systematically analyze and catalog the permissions requested by each
AR/VR application in our dataset. The CSV file will contain the APK names and the associated
extracted permissions.

To gain insights into the frequency and prevalence of specific permissions across different age
groups, a feature in our dataset, we performed a detailed analysis as follows:

• Loading Permissions: We extracted permissions for each APK and stored them in a struc-
tured format (CSV). This allowed for efficient querying and analysis.

• Frequency Analysis: We computed the frequency of each permission across the entire
dataset to identify the most commonly requested permissions essential for AR/VR appli-
cations operation.

• Prevalence by Age Group: We categorized the applications into different age groups (Ev-
eryone, Everyone +10, Teen, Mature) based on the age-based rating shown in Table 3 and
included the whole sample’s permissions frequency for comparison. We determined the top
5 most prevalent permissions for all five aspects. This analysis highlights how permissions
requirements vary with the intended audience and compares them with the permissions for
the dataset.

• Cleaning and Standardizing Permissions: To ensure consistency and clarity, we cleaned
and standardized the permissions, removing unnecessary text and focusing on the core per-
mission entity. However, during our analysis, we encountered permissions that did not follow
the standard Android permission format, such as com.resolutiongames.codenamelazarus and
com.arfps.android (custom 1 and custom 2 in Table 6). These unique or custom permissions
suggest specialized functionalities within those specific applications.

33



Customized permissions can potentially pose security threats due to their lack of transparency,
potential for privilege escalation, and reliance on secure implementation. To mitigate these risks,
developers could minimize custom permissions, provide clear documentation, and ensure secure
implementation. For users, such an analysis could inform them by highlighting irregularities and
deviations in permission requests from the larger app populations.

3.5 Limitation

Various limitations were encountered when collecting and analyzing the dataset. One of these lim-
itations is the limited size of the sample, which limits the generalization to all AR/VR applications.
This study’s sample size limitation is due to several restrictions, such as the platform, geographical
regions, and emulator compatibility.

Some applications undergo frequent updates, so the data presented on them may change over
time. Although each application was acquired with its version number, this does not guarantee
that the updated version will be available after it has been updated or removed. More sophisticated
analysis tools may be used to examine applications that provide additional data or present the
results differently.

This study analyzed free applications and excluded paid ones. As the dataset from this study is
provided, retroactively running the updated analysis tools should not require much effort. More-
over, AR/VR applications for mobile devices have become increasingly popular. As noted, more
applications have appeared in the Google Play store, and future research may be able to utilize a
larger sample size.

It is recommended that AR/VR applications across platforms be examined and analyzed to ob-
tain as much raw data as possible and for generalization. Researchers should continue investigating
the challenges encountered when creating and maintaining AR/VR applications, as some AR/VR
apps have not been updated in more than three years and remain available in the Google Play store.
Moreover, it is important to emphasize the direction and trend that AR/VR applications are follow-
ing to identify which aspects require improvement and which are currently gaining traction. For
example, the dataset indicates a significant trend in education and entertainment. A decrease in
games was also observed compared to education and entertainment during the same period.

3.6 Summary

In this study, we addressed the significant gap in the availability of comprehensive AR/VR ap-
plication datasets by developing a robust dataset from 408 diverse applications sourced from the
Google Play Store. Our work standardized multiple data modalities, including control flow graphs,
strings, functions, permissions, API calls, hexdump, and metadata, facilitating a broad spectrum
of security analyses. The results demonstrated the dataset’s utility in enhancing AR/VR security
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evaluation, providing researchers with a valuable tool for further studies.
Despite the extensive data collection, the study acknowledges limitations such as the repre-

sentation of applications exclusively on one platform. This may affect the generalizability of the
findings across other mobile ecosystems. Future research could expand this dataset by including
applications from various platforms and integrating additional data modalities. This would cover
more comprehensive aspects of security and performance evaluation.

There is also an opportunity to apply machine learning techniques to predict potential security
vulnerabilities based on the dataset. This could profoundly impact the development of more secure
AR/VR applications. While no further work is planned for this particular dataset, the research
community is encouraged to leverage this foundation for more detailed and expansive studies in
the AR/VR domain.
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4 x-scope: LLM-Based Analysis of AR/VR Android Applica-
tions Privacy Policies

4.1 Summary of Completed Work

In our research, we employed BERT, a state-of-the-art NLP model, to analyze AR/VR privacy poli-
cies. By comparing these policies with those of free and premium content websites, we identified
key differences in the clarity and thoroughness of the information provided. Our findings indicate
that AR/VR applications generally offer clearer privacy policies than free content websites, but
they still lag behind premium sites. This analysis has provided valuable insights into how privacy
policies can be structured to enhance user understanding and trust. This has contributed to the
ongoing discussion about privacy practices within the AR/VR industry.

4.2 Introduction

Privacy policies are critical documents that inform users about how their personal data is collected,
used, and shared by applications [6, 7, 100]. Despite their importance, privacy policies are often
long, complex, and difficult for users to understand [43, 50, 100]. This complexity can lead to
privacy policy violations where an application’s actual data practices do not align with its stated
policies [74]. Various tools and methods have been proposed to automatically analyze privacy
policies and detect potential violations [15, 26]. For example, PVDetector [74] maps descriptive
phrases in privacy policies to privacy-related API invocations in the corresponding app code. These
tools help in identifying misalignments that may have legal repercussions [8].

These policies are especially pertinent in the context of AR/VR applications, which often col-
lect a wide range of personal and sensitive data, including biometric information, user interactions,
and environmental details [53, 60]. As AR/VR technologies continue to grow in popularity and
usage, ensuring that privacy policies are clear, comprehensive, and transparent is essential to main-
taining user trust [41] and compliance with regulatory standards [42]. However, privacy policies
are often complex and confusing, making it difficult for users to fully understand the implications
of their data being collected and used [54]. Additionally, privacy policies can be excessively long
and overwhelming, further discouraging users from reading and comprehending them [53, 71].

AR/VR applications have an exceptional position in the technology landscape due to their
immersive nature and interaction level [53]. These applications are not only used for entertainment
and gaming but also in education, healthcare, retail, and industrial training. These applications
collect highly sensitive data, making it imperative for developers to implement robust privacy
practices. In addition, developers must communicate these practices effectively through well-
crafted privacy policies.
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Figure 4: Privacy Policy Pipeline

Despite the critical importance of privacy policies, limited research has focused on analyzing
AR/VR privacy practices [53]. This study aims to fill this gap by leveraging advanced text clas-
sification models like BERT. It assesses the transparency and thoroughness of privacy policies in
AR/VR applications. By comparing these policies with those of free and premium websites, a com-
prehensive understanding of privacy practices in the AR/VR industry is sought. This comparison
also is designed to identify areas for improvement.

4.3 Privacy Policy Analysis Pipeline

Our methodology systematically collects and processes privacy policies from AR/VR applications,
employing advanced NLP techniques. BERT was tuned using an annotated dataset containing
segments of privacy policies, which had been meticulously curated. This fine-tuning ensured that
the analysis maintained alignment with prior research and achieved a semantically robust mapping
of policies to high-level attributes.

This assessment within AR/VR applications was conducted by categorizing and evaluating
positive segments in which specific policy elements can be identified and highlighting segments
and key terms. Furthermore, this approach enabled us to assess the richness and expressiveness
of these privacy policies compared to those of other domains, such as website privacy policies.
x-droid analysis provides critical insights into the nuances of privacy policy articulation in AR/VR
applications. This contributes to the broader understanding of privacy practices in emerging tech-
nological contexts.

4.3.1 Dataset Scraping & Transformation

Each app’s privacy policy was extracted using advanced web scraping techniques. Initially, 408
URLs for 408 AR/VR apps from [14] were collected and subsequently filtered to ensure rele-
vance and accessibility. The automated approach minimized manual effort and enhanced accuracy,
allowing for the efficient compilation of a comprehensive list of privacy policy URLs.

The next phase involved retrieving the HTML content of the privacy policies using the provided
URLs. This process addressed various edge cases, such as non-English content and unavailable
pages. Privacy policies were sometimes only available as images, lacked accessible links or doc-
uments, or were not in English. Additionally, some applications were no longer available on the
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Table 7: Availability of privacy policies in x-droid.

Type Included? Applications
Image ✖ 1
No link or document ✖ 16
Not in English ✖ 47
Apps not available ✖ 42
Text ✔ 22
HTML ✔ 280

Google Play Store. These challenges required robust error handling and verification mechanisms
to ensure the integrity and completeness of the collected data.

After addressing these edge cases, 302 usable privacy policies were obtained. The process
involved reading URLs from structured data files and systematically retrieving HTML content for
each URL. This automated approach ensured a systematic collection and storage of all accessible
privacy policies for subsequent analysis. The statistics of the final privacy policies across types are
presented in Table 7, highlighting the inclusion of 302 text or HTML format policies.

For data pre-processing, advanced parsing techniques was employed to extract meaningful
content from HTML files. Using robust tools, each HTML file was parsed individually to extract
relevant text elements. These elements were then standardized and stored in a format suitable for
further analysis. This pre-processing step was crucial in preparing the data for in-depth examina-
tion, allowing us to focus on the substantive content of the privacy policies. The pre-processing
steps included the removal of extraneous elements to ensure clean and usable text data. This com-
prehensive extraction and transformation process is visualized in Figure 4.

4.3.2 Dataset Processing

The extracted text from privacy policies was tokenized into individual words, with non-alphabetic
tokens filtered out. Stopwords were removed to highlight meaningful words. Key privacy-related
terms such as information, personal, data, policy, service, and privacy were quantified. These
frequency offered a foundational understanding of the prevalence of critical privacy terms across
various policies. To ensure dataset quality, a filtering mechanism was implemented based on the
presence of essential privacy-related keywords. Text files lacking the term ‘privacy’ were deemed
irrelevant and excluded. Additionally, files with fewer than two instances of key terms such as
‘information,’ ‘personal,’ ‘data,’ and ‘policy’ were removed. This filtering process involved lever-
aging previously saved word count data to identify and eliminate non-relevant files, refining the
dataset to include only substantive policies.

Further refinement was achieved by excluding short, non-informative paragraphs (i.e., fewer
than five words). This process involved systematically iterating through each text file, identifying
and removing short segments to ensure the retention of more substantive content. The cleaned
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text was subsequently saved, focusing on enhancing data quality for robust analysis. To facilitate
comprehensive analysis, text files from each application were consolidated into a single document.
This step was necessary to efficiently manage large volumes of text data, providing a holistic view
of each privacy policy and enabling more effective content processing.

All paragraphs within the text files were annotated to enhance the analysis further. This in-
volved converting paragraphs to lowercase and storing them in a structured format, ensuring effi-
cient access and processing in subsequent research stages. The annotated paragraphs were crucial
for organizing and preparing the data for advanced analyses such as topic modeling and sentiment
analysis. The total number of paragraphs and words across all documents was aggregated and
analyzed, with average metrics per document calculated. This was done to understand the general
structure and verbosity of privacy policies. These aggregated statistics were preserved for detailed
dataset overview and analysis.

For comparative analysis, different groups (e.g., categories or types of applications) were ex-
amined. Furthermore, the number of paragraphs and words for each group was calculated, lever-
aging the annotated data to count and average these metrics. The results were saved in a structured
format, facilitating easy access and comparison across groups. This step enabled us to identify
trends and differences in privacy policy disclosures among various application types, enhancing
the understanding of privacy practices in different contexts.

4.3.3 Privacy Policy Categories

The methodology developed by [9,10] was applied to categorize privacy policy segments into nine
high-level categories: First Party Use, Third Party Sharing, User Choice, User Access, Data Re-
tention, Data Security, Policy Change, Do Not Track, and Specific Audiences [8]. This framework
was originally used to analyze the privacy policies of free content and premium websites. It is
highly relevant to the study of AR/VR apps’ privacy policies. By utilizing these categories, the
primary objective is to uncover the specific privacy practices and commitments of AR/VR apps,
providing a detailed comparison with the findings from [10].

First Party Use includes segments that describe how the app developer uses the collected data
[85] internally. This category is essential for understanding the primary purposes for which user
data is acquired and processed by the AR/VR app itself. Third Party Sharing comprises segments
outlining how the app shares user data with external entities [68]. This category helps to identify
potential privacy risks associated with data dissemination beyond the primary app developer. User
Choice encompasses segments that describe users’ options regarding their data [54]. This includes
opt-in and opt-out mechanisms, allowing users to control how their data is collected and used.

User Access includes segments that explain how users can access and manage their own
data [68]. This category is critical for assessing the privacy policy’s transparency and user em-
powerment aspects. Data retention includes segments that describe how long user data is retained
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by the app [56]. This category helps understand the data lifecycle and app data retention policies.
Data Security encompasses segments that describe the app’s measures to protect user data [85].
This category is crucial for evaluating the robustness of the app’s data protection practices.

Policy change includes segments that explain how users will be informed about privacy policy
changes [68]. This category is relevant for understanding the app’s commitment to transparency
and user notification. Do Not Track features segments that describe the app’s stance on tracking
signals and mechanisms to respect user preferences regarding tracking [54]. This category helps
assess the app’s adherence to user privacy preferences. Specific Audiences includes segments
that describe data handling practices targeted at specific user groups, such as children or other
vulnerable populations [85]. This category is significant for evaluating how the app addresses
privacy needs of different demographics.

4.3.4 BERT Analysis

BERT (Bidirectional Encoder Representations from Transformers) is a language representation
model developed by Google [34]. It excels in various NLP tasks due to its ability to consider
context from both directions in a sentence [7,36]. BERT’s bidirectional nature allows it to capture
nuanced meanings and relationships within text, making it highly effective for analyzing complex
privacy policies. BERT was selected for the analysis mainly due to its superior performance in
understanding and classifying text, particularly in tasks requiring deep contextual comprehension.
This is essential for accurately interpreting privacy policy documents.

The BERT model was fine-tuned using data from [10]. The training process was conducted
using the Ktrain library in Google Colab, facilitating efficient training and evaluation of the model
[23]. The necessary data, including pre-processed paragraphs, category labels, and document
lengths, was used to train the model. x-droid training input design mirrored that utilized by [10],
ensuring methodological consistency and enabling a meaningful comparison between x-droid re-
sults and those of [10]. The input values include: 1. Category Labels: Labels for each paragraph,
indicating each segment’s high-level category, as defined in the OPP-115 dataset used by [10].
2. Training Paragraphs: Text segments from the OPP-115 dataset include annotated segments
from privacy policies labeled according to the nine categories identified by [10]. 3. Length: The
number of text segments in each document used to maintain the context of the documents during
training.

The training process involved fine-tuning hyperparameters, including learning rate, batch size,
and epochs, to optimize model performance [34]. Data augmentation techniques were employed
to increase robustness and generalizability. Additional training data was generated by modifying
existing data, and cross-validation was utilized by validating the model with different subsets of
the training data [34]. A custom function was used to split the dataset into training and testing
sets [36] to ensure a balanced representation of categories. This approach enabled the BERT model
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to accurately classify privacy policy segments into the predefined categories set by [10], effectively
reflecting various privacy practices.

The training includes the following steps: 1. Loading Data: Data, including paragraphs, cat-
egory labels, and document lengths, was loaded into the training environment. 2. Data Splitting:
The dataset was divided into training and testing sets while maintaining a balanced distribution of
categories to ensure representativeness. 3. pre-processing: The training and testing data underwent
pre-processing using BERT-specific tokenization and formatting techniques. 4. Model Training:
The BERT model was trained on the training data, with hyperparameters fine-tuned to optimize
performance. 5. Model Evaluation: The trained model was evaluated on the testing data to assess
its accuracy and generalizability.

The BERT model was employed to classify and analyze segments. The model’s output included
classification labels for each segment, enabling the identification and categorization of various
privacy practices. This automated classification facilitated a detailed and systematic analysis of
the privacy policies, highlighting key practices and commitments.

Positive segments, as defined in x-droid study, are clear statements explaining data handling
practices. These segments were identified using BERT and are crucial for understanding the trans-
parency and comprehensiveness of the privacy policies. By focusing on positive segments, the
effectiveness of the policies in communicating sensitive privacy information to users was assessed.
The identification process involved calculating the percentage of positive segments within each
category. For each category, the number of paragraphs containing at least one positive statement
was determined and compared to the total number of paragraphs, providing a clear metric of trans-
parency and detail in the privacy policies. This analysis quantifies the extent to which privacy
policies explicitly communicate their data-handling practices to users.

Highlighted segments and specific words within the privacy policies were analyzed to identify
key privacy practices and commitments. Highlighted segments refer to specific parts of the text
emphasized either by the policy itself or through the analysis as particularly relevant. Analyz-
ing highlighted segments involved calculating the percentage of significant segments within each
category. The number of highlighted segments was calculated and compared to the total number
of paragraphs for each category. This provided a metric for the emphasis placed on key privacy
practices. This analysis helped pinpoint critical data collection, sharing, retention, and security
information. Highlighted segments facilitated the identification of the most significant aspects of
each privacy policy, ensuring essential information was not overlooked.

Highlighted words are key terms within the privacy policies critical for understanding the poli-
cies’ content regarding data collection, sharing, retention, and security. Analyzing highlighted
words involved calculating the percentage of significant words within each category. For each cat-
egory, the number of highlighted words was summed and compared to the total number of words
in that category. This analysis quantifies the emphasis placed on key terms within privacy policies.
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Table 8: The statistics of x-droid’s dataset.

Metric Count
Total Policies 240
Total Paragraphs 25,135
Avg. Paragraphs 104.73
Total Words 930,225
Avg. Words 3,875.94

These aspects were chosen based on the framework used by [10], as they represent fundamental
components of privacy practices that must be communicated effectively to users. This analysis
helped pinpoint critical data collection, sharing, retention, and security information. Highlighted
words facilitated the identification of the most relevant aspects of each privacy policy, ensuring
essential information was not overlooked. This step was essential for evaluating privacy policies’
effectiveness in conveying crucial information to users. It also identified any gaps or areas for
improvement.

4.4 Results & Discussion

In this section, the results of the analysis of AR/VR application privacy policies are presented,
leveraging BERT for classification and evaluation. Various aspects are examined, including word
and paragraph counts, BERT training accuracy, positive segments, highlighted segments, and high-
lighted words. By comparing these findings with the results from [10], insights into the trans-
parency and comprehensiveness of privacy policies in the AR/VR domain are provided. This
analysis highlights the current state of privacy practices in AR/VR applications and identifies areas
for improvement.

4.4.1 Words and Paragraphs Count

Overall. The analysis began with a comprehensive examination of the total word and paragraph
counts in AR/VR application privacy policies. A total of 240 policies were processed, resulting
in a dataset containing 25,135 paragraphs and 930,225 words. This yields an average of 104.73
paragraphs and 3,875.94 words per policy. These metrics indicate that privacy policies for AR/VR
applications tend to be relatively detailed. This is consistent with the need for thorough explana-
tions of data practices in technology-intensive domains.

Comparatively, the average length of AR/VR privacy policies, in terms of both paragraphs and
words, aligns more closely with the detailed policies of premium websites analyzed by [10], which
often feature comprehensive privacy disclosures. This suggests that AR/VR applications, similar
to premium websites, prioritize detailed privacy statements to address unique data practices.

Groups. To gain a deeper understanding of the variations in privacy policy content across different
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types of AR/VR applications, the policies were categorized into specific groups based on their
primary functions. These groups included education, games, entertainment, simulation, tools,
video players, business, art & photo, casual, books & news, social & communication, lifestyle,
productivity, sports, health, travel & maps, and shopping.

x-droid findings revealed significant variations among these groups. For instance, the Enter-
tainment group exhibited the highest average number of paragraphs per policy at 260.6, indicating
particularly detailed and extensive privacy policies. In contrast, the Travel & Maps group had the
lowest average at 25 paragraphs, suggesting shorter privacy policies. Similarly, in terms of word
counts, the Entertainment group had the highest total word count (297,159), reflecting its high av-
erage paragraph count, while Travel & Maps had the lowest word count (393), aligning with its
fewer paragraphs.

These disparities highlight how different AR/VR application categories prioritize privacy dis-
closures. Applications in categories such as entertainment and games, which may involve more
complex data interactions, tend to provide more detailed privacy policies. Conversely, categories
like travel and maps might have simpler data practices, resulting in shorter policies.

Table 9: Group-based statistics of x-droid’s dataset.

Group Policies Para. µ Para. Words µ Words
Education 48 3,172 66.08 122,376 2,549.50
Games 30 7,873 262.43 221,499 7,383.31
Entertainment 30 7,818 260.60 297,159 9,905.30
Simulation 28 1,441 51.46 56,676 2,024.86
Tools 21 1,755 83.57 68,557 3,264.62
Video Players 18 484 26.89 21,960 1,220.00
Business 18 163 9.06 7,406 411.44
Art & Photo 18 140 7.78 9,716 539.78
Casual 18 450 25.00 15,678 871.00
Books & News 18 488 27.11 18,536 1,029.78
Social & Comm. 16 359 22.44 14,527 908.94
Lifestyle 15 153 10.20 6,915 461.00
Productivity 15 422 28.13 15,774 1,051.60
Sports 10 175 17.50 7,455 745.50
Health 10 141 14.10 6,750 675.00
Travel & Maps 1 25 25.00 393 393.00
Shopping 5 76 15.20 3,417 683.40

4.4.2 BERT Training

Evaluation Metrics. The BERT model was evaluated using multiple metrics to ensure a compre-
hensive assessment of its performance. Accuracy was determined as the proportion of correctly
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classified segments out of the total number of segments. Precision and recall were calculated for
each category. Precision indicates the proportion of true positive predictions among all positive
predictions, and recall reflects the proportion of true positive predictions among all actual posi-
tives. The F1-score, which is the harmonic mean of precision and recall, was utilized to provide
a balanced measure of the model’s performance. The overall performance of the model was as-
sessed by averaging these metrics across all categories, offering a holistic view of its classification
capabilities.

Table 10: Comparison of the accuracy with different works.

Category x-droid TLDR [10] Wilson [85] Harkous [43] Liu [54]
1st Party 0.93 0.94 0.75 0.79 0.81
3rd Party 0.93 0.89 0.70 0.79 0.79
User Choice 0.96 0.85 0.61 0.74 0.70
User Access 0.98 0.91 0.61 0.80 0.82
Data Retention 0.99 0.87 0.16 0.71 0.43
Data Security 0.98 0.88 0.67 0.85 0.80
Policy Change 0.99 0.95 0.75 0.88 0.85
Do Not Track 1.00 1.00 1.00 0.95 1.00
Audiences 0.98 0.94 0.70 0.95 0.85
Overall 0.97 0.91 0.66 0.83 0.78

Training Process and Results. The BERT model was initialized by downloading the pretrained
BERT model (uncased L-12 H-768 A-12.zip) and extracting it for use. The training data was
preprocessed with a maximum sequence length of 512 tokens, and the model was fine-tuned using
the onecycle policy with a maximum learning rate of 2e-05.

During training, the model’s performance improved significantly over the epochs across all cat-
egories. For instance, in the 1st Party Use category, the model’s accuracy increased from 80.5% in
the first epoch to 99.68% in the final epoch. Similarly, the Do Not Track category demonstrated re-
markable performance with an accuracy of 100% achieved in several epochs. The detailed training
results for all categories are summarized below:

• 1st Party Use: Initial accuracy of 80.5% in epoch 1, improving to 99.68% in epoch 10.

• 3rd Party Sharing: Initial accuracy of 78.17% in epoch 1, improving to 99.84% in epoch
10.

• User Choice: Initial accuracy of 91.53% in epoch 1, improving to 99.87% in epoch 10.

• User Access: Initial accuracy of 96.79% in epoch 1, improving to 99.84% in epoch 10.

• Data Retention: Initial accuracy of 95.86% in epoch 1, improving to 99.91% in epoch 10.

• Data Security: Initial accuracy of 93.65% in epoch 1, improving to 99.90% in epoch 10.
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• Policy Change: Initial accuracy of 97.16% in epoch 1, improving to 99.87% in epoch 10.

• Do Not Track: Initial accuracy of 99.24% in epoch 1, achieving 100% accuracy in several
epochs.

• Specific Audiences: Initial accuracy of 95.26% in epoch 1, improving to 99.87% in epoch
10.

Reasons for Higher Results. Despite using the same input data and similar training code as [10],
x-droid BERT model achieved higher performance metrics. Several factors could contribute to this
difference, including the hyperparameter tuning, the data augmentation and preprocessing, model
initialization, training environment, and regularization technique.

4.4.3 Positive Segments

In this section, positive segments identified in AR/VR privacy policies are analyzed. Positive
segments are those paragraphs that clearly articulate privacy practices and policies in a positive
light, providing transparency and reassurance to users. The analysis results are compared with
those from [10], examining both overall trends and specific group differences.

Overall Comparison. Table 11 presents the overall percentage of positive segments across all
categories. The results indicate that AR/VR applications have a higher percentage of positive
segments than free content but a lower percentage than premium websites. This reflects a greater
emphasis on transparency and user trust in premium websites compared to AR/VR applications.

Table 11: Comparison of the distribution of the positive segments across various categories. ∆F

captures the difference between the distribution in x-droid and the other group.

Category x-droid Free ∆F Premium ∆P

1st Party Use 97.08 86.90 +10.18 95.73 +1.35
3rd Party Sharing 92.50 84.52 +7.98 89.69 +2.81
User Choice 57.92 52.38 +5.54 79.27 -21.35
User Access 39.58 50.00 -10.42 65.81 -26.23
Data Retention 42.08 30.95 +11.13 57.26 -15.18
Data Security 75.00 67.86 +7.14 75.00 0.00
Policy Change 83.33 71.43 +11.90 72.22 +11.11
Do Not Track 14.17 12.70 +1.47 21.58 -7.41
Specific Audiences 77.50 67.86 +9.64 74.15 +3.35
Average 64.35 58.29 +6.06 70.08 -5.73

The comparison shows that AR/VR applications have a higher percentage of positive segments
than free content but a lower percentage than premium websites. This suggests that while AR/VR
applications are more transparent and provide better privacy assurances than free content, they
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still lag behind premium websites regarding overall positive segments. Categories like 1st Party
Use, 3rd Party Sharing, Data Retention, and Policy Change exhibit significant positive differences
between AR/VR apps and both free and premium websites.

The average value presented in Table 11 is the mean value of all categories. It is calculated by
summing the percentages of all categories and dividing by the total number of categories. This av-
erage provides a general overview of how positive segments are distributed across different privacy
policy categories.

Groups Comparison. In addition to the overall comparison, the positive segments for different
groups of AR/VR applications were also analyzed. Table 12 shows the percentage of positive
segments for each group.

Table 12: Comparison of the mean distribution value (µ) of the positive segments in x-droid
groups and other groups.

Category µ x-droid µ Free µ Premium
1st Party Use 98.28 89.69 94.64
3rd Party Sharing 85.05 86.69 89.00
User Choice 64.86 59.06 79.71
User Access 38.82 44.33 67.20
Data Retention 38.73 34.92 59.61
Data Security 69.58 67.97 75.78
Policy Change 75.19 72.41 71.75
Do Not Track 8.82 12.25 22.87
Specific Audiences 63.72 68.97 75.68

The group comparison reveals that AR/VR applications generally perform better or on par with
free websites in terms of positive segments. However, there are some categories, such as Do Not
Track and Specific Audiences, where AR/VR apps have lower percentages than other domains.

Observations and Explanations. The high percentage of positive segments in AR/VR applica-
tions can be attributed to several factors: 1. Increased Focus on Transparency: AR/VR applications
often handle more sensitive data and have a higher level of user interaction, necessitating an in-
creased focus on transparency to build user trust. 2. Regulatory Compliance: Stricter privacy
regulations and guidelines for AR/VR technologies may encourage developers to provide more
comprehensive and clear privacy policies. 3. User Expectations: Users of AR/VR applications
may have higher expectations regarding privacy, prompting developers to be more transparent
about their data practices.

Overall, x-droid analysis indicates that AR/VR applications are making significant strides in
privacy transparency. This is evidenced by the higher percentage of positive segments than free
content and the targeted emphasis on critical privacy practices. However, they still have room to
improve compared to premium websites.
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4.4.4 Highlighted Segments

This section focuses on analyzing highlighted segments within privacy policies for AR/VR appli-
cations. Highlighted segments refer to those parts of the privacy policy that explicitly emphasize
key privacy practices. This is often through bold text, headings, or other visual markers. The re-
sults are compared with those from [10] to evaluate the prominence and clarity of privacy practices
in AR/VR applications.

Overall Comparison. Table 13 presents the overall percentage of highlighted segments across all
categories. The results suggest that AR/VR applications have a varied distribution of highlighted
segments compared to free and premium websites.

Table 13: Comparison of the distribution of the highlighted segments in x-droid and other groups.

Category x-droid Free ∆F Premium ∆P

1st Party Use 35.51 25.76 +9.75 32.91 +2.60
3rd Party Sharing 19.06 16.00 +3.06 15.77 +3.29
User Choice 4.60 5.70 -1.10 6.12 -1.52
User Access 1.45 3.23 -1.78 3.14 -1.69
Data Retention 2.12 2.43 -0.31 1.89 +0.23
Data Security 3.54 3.39 +0.15 2.62 +0.92
Policy Change 2.57 2.22 +0.35 2.65 -0.08
Do Not Track 0.21 0.45 -0.24 0.31 -0.10
Specific Audiences 4.08 7.34 -3.26 8.37 -4.29
Overall 62.29 58.96 +3.33 64.33 -2.04

The overall comparison reveals that AR/VR applications generally perform similarly to or
slightly better than free websites in terms of highlighted segments. However, they still lag be-
hind premium websites in some categories. Notable categories with higher percentages include 1st
Party Use and 3rd Party Sharing, indicating that these areas are more prominently emphasized in
AR/VR applications.

Groups Comparison. In addition to the overall comparison, the highlighted segments for different
groups of AR/VR applications were also examined. Table 14 shows the percentage of highlighted
segments for each group.

The group comparison indicates that AR/VR applications have varying levels of highlighted
segments across different categories. While categories like 1st Party Use and 3rd Party Sharing
show higher emphasis, User Choice and User Access reveal lower percentages than free and pre-
mium websites.

Observations and Explanations. The distribution of highlighted segments in AR/VR applica-
tions suggests a targeted approach to emphasizing specific privacy practices. Possible reasons
include: 1. Targeted Emphasis: Developers might prioritize highlighting critical privacy practices
relevant to AR/VR users. 2. Regulatory Focus: Emphasis on certain categories could be driven
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Table 14: Comparison of the mean distribution value (µ) of the highlighted segments in x-droid
groups, free websites groups, and premium websites groups privacy policies.

Category µ x-droid µ Free µ Premium
1st Party Use 98.28 89.69 94.64
3rd Party Sharing 85.05 86.69 89.00
User Choice 64.86 59.06 79.71
User Access 38.82 44.33 67.20
Data Retention 38.73 34.92 59.61
Data Security 69.58 67.97 75.78
Policy Change 75.19 72.41 71.75
Do Not Track 8.82 12.25 22.87
Specific Audiences 63.72 68.97 75.68

by regulatory requirements specific to AR/VR technologies. 3. User Experience: Enhanced user
experience in AR/VR applications may lead developers to emphasize key privacy segments for
better comprehension.

Overall, AR/VR applications exhibit a strategic approach to privacy segments, reflecting a
comprehensive understanding of user needs and regulatory demands.

4.4.5 Highlighted Words

Introduction. In this section, highlighted words in AR/VR privacy policies are evaluated. High-
lighted words are those that are frequently used and emphasized in the context of privacy, such as
‘data,’ ‘personal,’ and ‘information.’ The frequency and emphasis of these words are compared
with the results from [10] to assess privacy communications focus areas.

Overall Comparison. Table 15 presents the overall percentage of highlighted words across all cat-
egories. The results highlight the emphasis on certain key terms in AR/VR applications compared
to free and premium websites.

The comparison shows that AR/VR applications generally have a higher percentage of high-
lighted words in categories like 3rd Party Sharing, Data Security, and Policy Change than free and
premium websites. This reflects a focused effort to emphasize key privacy-related terms in these
areas.

Groups Comparison. In addition to the overall comparison, the highlighted words for different
groups of AR/VR applications were also evaluated. Table 16 shows the percentage of highlighted
words for each group.

The group comparison highlights that AR/VR applications emphasize certain privacy-related
terms more consistently across different groups. Categories like 3rd Party Sharing and Data Secu-
rity show higher percentages of highlighted words, indicating a strong emphasis on these aspects.

Observations and Explanations. The focus on highlighted words in AR/VR applications can
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Table 15: Comparison of the distribution of the highlighted words in x-droid and other groups. All
numbers are %.

Category x-droid Free ∆F Premium ∆P

1st Party Use 36.05 40.45 -4.40 31.41 +4.64
3rd Party Sharing 28.46 19.15 +9.31 21.04 +7.42
User Choice 6.04 6.29 -0.25 6.42 -0.38
User Access 1.86 3.56 -1.70 3.96 -2.10
Data Retention 1.97 2.39 -0.42 3.40 -1.43
Data Security 5.43 2.72 +2.71 4.29 +1.14
Policy Change 4.16 3.07 +1.09 2.84 +1.32
Do Not Track 0.24 0.27 -0.03 0.49 -0.25
Specific Audiences 5.47 8.44 -2.97 10.71 -5.24
Overall 75.58 69.37 +6.21 71.01 +4.57

Table 16: Comparison of the mean distribution value (µ) of the highlighted words in x-droid
groups, free websites groups, and premium websites groups privacy policies.

Category µ x-droid µ Free µ Premium
1st Party Use 98.28 89.69 94.64
3rd Party Sharing 85.05 86.69 89.00
User Choice 64.86 59.06 79.71
User Access 38.82 44.33 67.20
Data Retention 38.73 34.92 59.61
Data Security 69.58 67.97 75.78
Policy Change 75.19 72.41 71.75
Do Not Track 8.82 12.25 22.87
Specific Audiences 63.72 68.97 75.68

be attributed to several factors: 1. Key Term Emphasis: Highlighting specific terms helps clearly
communicate critical privacy practices to users. 2. Regulatory Requirements: Emphasizing certain
terms might be driven by regulatory guidelines that mandate clear communication of privacy prac-
tices. 3. User Trust: Using highlighted words to emphasize key privacy aspects can enhance user
trust and confidence in the application.

Overall, AR/VR applications demonstrate a deliberate effort to highlight key privacy terms,
enhancing their privacy policies’ clarity and effectiveness.

4.5 Key Findings, Limitations, and Future Work

4.5.1 Key Findings

The analysis revealed that AR/VR applications generally have a higher percentage of positive seg-
ments than free content but lower than premium websites. This suggests that AR/VR applications
place greater emphasis on transparency and user trust than free content, but there is still room
for improvement compared to premium websites. Categories such as 1st Party Use, 3rd Party
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Sharing, and Policy Change demonstrated substantial positive differences, highlighting AR/VR
applications’ proactive approach to user privacy concerns.

The analysis of highlighted segments showed that AR/VR applications strategically empha-
size critical privacy practices. Categories such as 1st Party Use and 3rd Party Sharing are more
prominently highlighted in AR/VR applications than in free websites, though less emphasized than
premium websites. This targeted emphasis likely enhances the visibility and clarity of privacy in-
formation.

Furthermore, AR/VR applications consistently use highlighted words to emphasize key privacy
terms like ‘data,’ ‘personal,’ and ‘information.’ This deliberate focus on highlighting crucial terms
aids in clearly communicating privacy practices, contributing to greater user trust and regulatory
compliance. Categories like 3rd Party Sharing and Data Security show higher percentages of
highlighted words, reflecting a strong emphasis on these aspects.

Overall, the analysis underscores the significant strides AR/VR applications are making in en-
hancing privacy transparency and user trust. The use of BERT for text classification has proven
highly effective, yielding accurate and insightful results. AR/VR applications demonstrate a strong
commitment to clear and comprehensive privacy practices. This is evidenced by the higher per-
centage of positive segments, targeted highlighted segments, and emphasized key terms.

These findings highlight the evolving landscape of privacy practices in AR/VR applications,
offering valuable insights for developers, regulators, and users. x-droid study provides a robust
framework for further research and development in privacy policy analysis, paving the way for
more transparent and user-friendly privacy practices in emerging technologies.

4.5.2 Limitations and Future Work

Despite the promising results obtained from x-droid analysis, several limitations must be addressed
in future research. One primary limitation is the dataset scope. x-droid study focused on a specific
set of AR/VR applications. Expanding the dataset to include a more diverse application, including
different regions, would provide a more comprehensive understanding of privacy practices across
the AR/VR industry.

Another limitation lies in automated tools for text classification and analysis. While BERT has
proven effective in x-droid study, the model’s performance could be further improved by incor-
porating more advanced techniques and fine-tuning with a larger and more diverse dataset [34].
Additionally, the reliance on predefined privacy categories might not capture the full spectrum of
privacy concerns users may have [23].

Future work should also consider the dynamic nature of privacy policies. Privacy practices and
regulations are continually evolving, and it is crucial to keep the analysis up-to-date with the latest
changes [41]. Developing automated systems that can regularly update and re-evaluate privacy
policies would ensure that the findings remain relevant and accurate over time.

50



Finally, user studies could be conducted to evaluate how well the highlighted segments and
words improve user understanding. A user’s perception and behavior regarding privacy policies
can provide valuable feedback for improving AR/VR privacy information presentation.

4.6 Summary and Work to be Completed

This research examined the clarity and thoroughness of privacy policies in AR/VR applications by
employing BERT, a state-of-the-art NLP model. The findings indicate that AR/VR applications
generally offer more detailed privacy policies than free content websites but do not meet premium
sites’ standards. This analysis highlights significant gaps in privacy policy practices within the
AR/VR industry, emphasizing the necessity for enhanced privacy disclosures.

This study focuses exclusively on Android platforms. This restricts the generalizability of the
results across different operating systems and application environments. Future research should
broaden the scope to include AR/VR applications on other platforms, such as iOS and Windows.
It should also consider AR/VR-specific privacy policies.

Work to be Completed. I will expand the scope of my research by collecting and analyzing
privacy policies from a broader array of AR/VR platforms. These platforms include iOS, Windows,
and AR/VR-specific websites. I plan to utilize the BERT model to evaluate this expanded dataset,
allowing for a direct comparison with initial findings from Android-based AR/VR applications.
My goal is to deliver a comprehensive overview of privacy practices across these varied platforms.
I also want to enhance privacy management understanding within diverse AR/VR environments.
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5 x-API: Unified API Call-based Detection of Android and IoT
Malware

5.1 Summary of Completed Work

Our third research presented an innovative approach using machine learning models, specifically
Random Forests and Graph Neural Networks. This was done to classify malware and benign
samples effectively in Android and ELF environments. Utilizing two distinct datasets, we demon-
strated that GNN models outperform traditional RF models in detecting complex malware patterns.
The study’s findings enhance our understanding of malware dynamics but also offer robust solu-
tions for improving detection accuracy in increasingly complex digital environments. Our work
has significant implications for the development of security measures for both AR/VR and the
broader Android platforms.

5.2 Introduction

As technological advancements accelerate and global interconnectivity increases, malware in mo-
bile devices and server-side applications has surged, posing significant challenges to cybersecurity.
Android, the most widely used mobile operating system, and ELF (Executable and Linkable For-
mat) binaries, common in Linux-based servers, are key targets for cyber attackers. Both platforms’
reliance on system-level API (Application Programming Interface) calls makes these interactions
critical for identifying benign or malicious applications. Recent studies emphasize the importance
of analyzing these API calls in combating cyber threats [88].

Android offer valuable insights into how applications behave, through the analysis of API
calls. Malicious applications, for instance, frequently rely on system libraries, request excessive
permissions, and use encrypted strings to conceal their operations, presenting a clear contrast to the
patterns typically observed in benign applications [88]. Similarly, ELF binaries exhibit distinctive
API call signatures that can be harnessed for malware detection [98].

However, the task of malware detection (and classification, in general) becomes more difficult
with the increasing sophistication of malware, which utilizes advanced techniques such as obfus-
cation, encryption, and other methods to evade detection mechanisms [89]. Traditional malware
detection methods have become inadequate at addressing current malware strategies, necessitating
more adaptive solutions. This research leverages deep learning models to analyze API interactions
comprehensively, aiming to develop scalable and precise malware detection systems. This ap-
proach spans Android and ELF platforms and provides a unified framework capable of addressing
the diverse malware landscape [91]. To address the shortcomings of the existing work that does
not consider evasion techniques in the machine learning-based techniques that utilize API calls, we
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have several additional features, including encrypted strings, reflection usage, methods overload,
static initializers, method count, large method count, and suspicious libraries usage. These features
are used with traditional API calls.

This paper proposes an advanced malware detection framework that utilizes API calls from
both Android and ELF binaries to train state-of-the-art machine learning models, such as GNNs
and transformer-based architectures. For Android, the incorporation of additional features like en-
crypted strings, suspicious libraries, and hash values significantly augments detection capabilities.
In contrast, for ELF binaries, the focus remains predominantly on API behavior [88,98]. These en-
hanced models capture malware’s nuanced behaviors, increasing resilience to evasion techniques.

5.3 Methodology

This section describes the methodology for processing and analyzing two datasets: Android apps
and ELF files. Both datasets are divided into benign and malicious samples, with API calls and ad-
ditional features extracted for malware detection. The steps involved in extracting and categorizing
the API calls and the additional features for Android are explained in detail as shown in Figure 5.

The malware detection pipeline depicted in Figure 5 encapsulates a comprehensive approach
to identifying malicious software within Android applications and ELF binaries. The process is
structured into five distinct stages, each contributing critically to the development and refinement of
machine learning models specifically tailored for security applications. The initial stage involves
the systematic collection of both benign and malicious software. For Android applications, this
encompasses gathering a dataset from diverse sources, ensuring a representative sample of the
current Android ecosystem. Similarly, ELF files, both benign and malicious, are compiled to
form a dataset reflective of potential security threats on various systems. This stage is crucial for
establishing a foundation upon which subsequent analytical processes are built.

With the datasets in place, the next phase is extracting key features necessary for effective
model training. For Android apps, APKtool is employed to decompile the files. This is followed
by using the grep command to search through the Smali code and extract pertinent information.
This process allows for a granular examination of the underlying code structure, which is essential
for identifying features indicative of malicious or benign intent. In contrast, Radare2 is used to
extract API calls. These calls are indicative of behavioral patterns linked to malicious intent.

Following extraction, the data undergoes rigorous cleaning and preparation processes. This
stage refines the data into a format optimally suited to processing by machine learning algorithms.
It involves removing redundancies, handling missing values, and encoding categorical data. This
ensures the quality and usability of the data for the next stages. The prepared data is then fed into
two types of machine learning models: RF and GNN. Each model is trained and tested using a split
of the processed data. This allows for the evaluation of each model’s efficacy in detecting malware
within the dataset. This stage is critical as it directly influences the effectiveness of the malware
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Figure 5: A visual representation of the malware detection pipeline, illustrating the integration
of API extraction tools, data processing stages, and machine learning model implementations for
detecting malicious software.

detection system. Performance metrics derived from this phase are used to gauge the training
process’s success. In the final stage, results from both the RF and GNN models are collected and
analyzed to assess their predictive accuracy. The outcomes determine the models’ capabilities to
classify Android applications and ELF files as benign or malicious. This stage is vital for providing
insights into the models’ operational effectiveness and guiding future improvements in malware
detection methodologies.

5.3.1 Dataset Overview

We worked with two primary datasets: Android Apps. This dataset consists of 799 benign and

371 malicious Android apps, including 406 AR/VR apps from [14], where 390 are benign apps
and 16 are malicious apps. ELF Files. This dataset includes 39,788 benign ELF files and 814

malicious ELF files from [65]. For both datasets, API calls were extracted using APKtool and
Radare2 and categorized. The details of these processes are provided below.

5.3.2 API Extraction and Grouping

For both the Android and ELF datasets, API calls were extracted and categorized into ten functional
groups. In the case of Android apps, the APK files were decompiled using APKtool, a tool that
converts APKs back into readable source code. After decompiling, grep, a command-line utility
for searching plain-text data, was used to extract the class definitions. These extracted classes were
filtered against the official Android Class API [39], which is a collection of predefined classes and
functions that developers use to interact with the Android operating system. Only classes listed on
the official site were retained for the study. For ELF files, Radare2 was utilized to extract the API
calls, which were then cleaned to remove irrelevant or redundant information. In both datasets, the
API calls were categorized into ten groups based on their functionality:
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✦Networking.: It is API calls related to advanced secure network communication, including es-
tablishing network sockets (endpoints for sending and receiving data) and handling various critical
network protocols such as HTTP, TCP/IP, and UDP.

✦File I/O.: File I/O is functions that handle input and output operations for files. These operations
include opening, reading from, writing to, and closing files. In addition, they perform essential file
management tasks like copying or deleting files.

✦Memory Management.: It includes API calls that are responsible for effectively managing a
program’s memory usage. Allocating and precisely managing memory during runtime are among
the most common functions called during this process, as well as optimizing memory usage to
prevent memory leaks.

✦Process Control.: It is related to functions that manage the execution of programs, including
creating new processes, controlling their execution, and terminating processes.

✦String Manipulation.: This group includes API calls involved in managing text data, including
functions that concatenate, format, parse, or transform strings (sequences of characters).

✦System Interaction.: It includes functions and operations that allow the application to interact
with the underlying operating system, such as accessing system resources, performing system calls,
or interacting with system hardware.

✦Standard Library.: It is a collection of common functions and operations provided by the pro-
gramming language or operating system, such as mathematical functions, input/output operations,
and utility functions for general-purpose programming.

✦Synchronization and Thread Management.: This group is related to API calls that manage
multi-threaded applications, including creating and managing threads (lightweight processes), and
ensuring synchronization to prevent data corruption when multiple threads access shared resources
simultaneously.

✦Signal Handling.: It is functions and operations that handle system signals, which are asyn-
chronous notifications sent to a process to indicate events such as interrupts, exceptions, or other
conditions that need immediate attention.

✦Miscellaneous.: It includes API calls that do not fit neatly into the above categories but are still
crucial for the application’s functionality, often serving specialized or uncommon purposes.

The number of API calls for each application (or ELF file) was averaged per sample to facilitate
the analysis. This approach provided a standardized method for comparing the usage of different
types of API calls across the datasets.
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5.3.3 Additional Features in Android Apps

In addition to extracting and categorizing API calls, several additional features were specifically
extracted from Android apps to improve the detection of malware. These features help identify
patterns and techniques commonly used by malicious applications to evade detection or execute
harmful actions:

✦ Encrypted Strings. The presence of strings that are encrypted or obfuscated. Malware often
encrypts strings to hide URLs, file paths, or other sensitive and crucial data, making it more difficult
for security tools to detect malicious behavior.

✦ Reflection Usage. Reflection refers to the ability of a program to inspect and modify its own
structure at runtime, including dynamically invoking classes, methods, or fields. In malware, re-
flection is often used to hide or delay the execution of malicious code by bypassing traditional
static analysis methods.

✦ Method Overloading. This involves having multiple methods with the same name but different
parameters. Method overloading can be used in malicious code to confuse detection tools, making
it harder to identify specific functions and their intended purposes.

✦ Static Initializers. Static initialization blocks are sections of code that are executed when a
class is first loaded. Malware can use these blocks to run harmful code during the app’s startup,
ensuring the execution of malicious activities as soon as the app is launched.

✦ Large Method Count. Many methods within an app may indicate the use of obfuscation
techniques, such as automatically-generated code or the inclusion of suspicious libraries. This
could be an attempt to overwhelm or confuse static analysis tools.

✦ Method Count. The count of methods in an app provides insights into its complexity. Malware
may have an unusually large number of methods to perform various malicious tasks or obscure its
true functionality through complex, obfuscated code.

✦ Suspicious Libraries. The use of third-party libraries known to be associated with malicious
activities or that are commonly used for obfuscation. These libraries may include code for hiding
malicious behavior, circumventing security checks, or gaining unauthorized access to sensitive
data.

These additional features serve as key indicators that, when combined with the analysis of API
calls, provide a more comprehensive approach to detecting malware in Android applications.

5.3.4 Separating Malware and Benign Samples

To identify the key distinguishing factors between benign and malicious samples, we analyzed
the features from the ten functional groups of API calls, as well as the additional features in the
Android dataset. From each dataset (Android and ELF), 200 samples were selected, comprising
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100 benign and 100 malicious. The features or groups that could most effectively differentiate
malicious from benign samples were used as inputs to the models.

The distribution of API calls within the ten functional groups was examined for both datasets.
Statistical methods, including t-tests, were used to assess whether differences in the frequency of
API calls between benign and malicious samples were significant to determine inclusion. The
groups with the most pronounced differences were identified as key distinguishing factors.

In the Android dataset, additional features (section 5.3.3), such as encrypted strings, reflection
usage, method overloading, etc, were analyzed. These features were compared in the benign sam-
ples to those in the malicious apps, and the ones that showed significant differences were selected
as important indicators of malware [90]. In using this test, we aim to systematically and rigorously
evaluate the most appropriate features for scalable malware detection.

By combining these distinguishing factors from both the API call groups and the additional
Android features, we constructed a feature set for input into the classification models. Not all
groups or features were used in the feature set, but only those that were demonstrated to be effective
at discriminating between groups.

5.3.5 Learning Algorithms

Two machine learning models were employed to classify the samples as benign or malicious: RF
and GNN. Both models were chosen for their distinct advantages in handling complex feature sets
and relationships in malware detection.

Random Forest. RF was selected for its robustness and ability to handle high-dimensional data
while mitigating overfitting through its ensemble of decision trees. Each tree in the forest is trained
on a subset of data and features, and the final classification is determined through majority voting
across the trees [99]. The selected API call groups and additional Android features (e.g., encrypted
strings and reflection usage) were used as input for the RF model. To ensure dimensionality reduc-
tion, only features with significant discriminatory power between benign and malicious samples
were included. The model was trained on 200 samples per dataset (100 benign and 100 malicious)
and evaluated using standard metrics, such as accuracy, precision, recall, and F1 score.

Graph Neural Networks. GNN were chosen for their ability to model relationships between API
call groups and additional Android features through graph structures. GNNs excel in capturing
dependencies between features, which is critical for identifying subtle interactions in malware
detection [98].

In this model, nodes represent API call groups and additional features, while edges represent
their interactions. For example, connecting networking API calls and encrypted string usage could
provide insight into malicious behavior. The GNN was trained using Graph Convolutional Net-
works, where information is propagated between nodes during training to capture local and global
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data patterns. The same 200 samples per dataset were used, with evaluation methods similar to
those of the RF model.

Model Comparison. RF provides a straightforward, interpretable approach due to its feature
importance ranking, while GNN captures more complex relationships between features. Although
both models achieved high performance, GNN was particularly effective in the Android dataset,
where interactions between additional features played a significant role in malware detection.

5.4 Summary and Work to be Completed

Advanced machine learning models, specifically RF and GNN, were developed to detect and clas-
sify malware in Android and ELF environments. The focus has been on utilizing API call se-
quences and other relevant data features to effectively train these models. This is to enhance
malware detection systems’ robustness.

Work to be Completed. The next critical steps involve conducting extensive testing phases for
both RF and GNN models using the collected datasets. I will evaluate the models’ performance in
realistic scenarios to identify necessary refinements that could optimize detection accuracy.

Following the testing, I will analyze the results, focusing on key metrics such as precision,
recall, F1 score, and overall accuracy. This comprehensive evaluation will assess the models’
effectiveness in accurately classifying malware and minimizing false positives. This will ensure
robustness across various operational conditions.

I expect this analysis to provide deep insights into how the models function under different
scenarios. It will form the basis for a detailed discussion of the outcomes. The culmination of
this study will involve drafting a comprehensive conclusion that integrates the results and explores
their implications. The conclusion highlights the contribution of the research and sets the stage for
future advances in malware detection.
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