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ABSTRACT
Deep learning frameworks based on the neural network model have

attracted a lot of attention recently for their potential in various

applications. Accordingly, recent developments in the fields of deep

learning configuration platforms have led to renewed interests in

neural network unified format (NNUF) for standardized deep learn-

ing computation. The attempt of making NNUF becomes quite chal-

lenging because primarily used platforms change over time and the

structures of deep learning computation models are continuously

evolving. This paper presents the design and implementation of a

parser of NNUF for standardized deep learning computation. We

call the platform implemented with the neural network exchange

framework (NNEF) standard as the NNUF. This framework provides

platform-independent processes for configuring and training deep

learning neural networks, where the independence is offered by

the NNUF model. This model allows us to configure all compo-

nents of neural network graphs. Our framework also allows the

resulting graph to be easily shared with other platform-dependent

descriptions which configure various neural network architectures

in their own ways. This paper presents the details of the parser

design, JavaCC-based implementation, and initial results.
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and tools;
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1 INTRODUCTION
Theories, techniques, and applications of deep learning have re-

cently witnessed an outburst, resulting in a large number of inves-

tigations that looked into the effect of deep learning methods on

various learning tasks and domains. Organizations are increasingly

interested in the potential of deep learning techniques’ research and

development, and many have started adopting those techniques to

obtain more accurate machine learning results using data-driven

supervised approaches in multiple domains and fields [2]. The large

number activities surrounding deep learning research [12] and

development of this research have resulted in a large number of

platforms, which help programmers to simply configure and train

neural network architectures. As more platforms are developed ev-

ery day, more platform-specific workloads to utilize those platforms

are required. To alleviate this issue, the standardization of neural

network descriptions would be necessary to make use of advances

in deep learning approaches. Particularly, it becomes important to

shift the focus from the development of new frameworks into a

standardized formats that allow defined neural networks to simply

transform to platform-dependent descriptions.

From an application viewpoint, neural networks can be utilized

in (i) systems for solving pattern recognition tasks, (ii) models for

understanding biological neural systems, (iii) systems to character-

ize parallel computing architectures, and (iv) models that capture

behaviors in physical systems [10], among others. However dif-

ferent they are, those applications can be abstracted to a standard

format, and treated with the same approach. To this end, in this

paper, we focused on one such an approach: neural network that

conduct predictions and classifications, especially convolutional

neural network. Neural network models are defined by various

pieces of information, such as input variables, output variables, and

network graph. It is important to note that the neural model con-

sists of information other than the neural network itself [10]. This

paper further introduces neural network unified format ideas and

proposes to standardized deep learning computation frameworks.

https://doi.org/10.1145/3212725.3212727
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// Tensorflow
x=tf.placeholder(tf.float32)
y=tf.placeholder(tf.float32)
z=tf.placeholder(tf.float32)
a=x * y
b=a + z
c=tf.reduce_sum(b)
with tf.Session as sess:
values = {

x:np.random.randn(3, 4),
y:np.random.randn(3, 4),
z:np.random.randn(3, 4),

}

// Pytorch
x=Variable(tourch.randn(3,

4).cuda(),
requires_grad=True)

y=Variable(tourch.randn(3,
4).cuda(),
requires_grad=True)

z=Variable(tourch.randn(3,
4).cuda(),
requires_grad=True)

a=x * y
b=a + z
c=torch.sum(b)

Figure 1: Difference of structures at each platform.

Reference Model. In the literature, several neural network def-

inition models have been created, including models using XML

type language. Among XML type languages is the neural network

markup language (NNML), which aims to develop and provide re-

configuration of neural networks. As shown in [8], neural network

can not be entirely reconfigured without information about the en-

vironment in which it was created (i.e., application). In other words

description of neural network must contain information about the

structure of data dictionary, preprocessing methods, postprocessing

methods, and additional information about the use model [8, 10].

In this model, it is necessary to assign (trained) values of variables

at the time of defining the neural network model through NNML.

NNML can lead to compact code that represents neural networks.

Contributions. The contributions of this work are as follows. First,
we introduce the design of a parser of NNUF for standardized deep

learning computation, called the standard NNEF, which provides

platform-independent processes for configuring and training deep

learning neural networks. Second, through implementation and

demonstration on a Raspberry Pi, we show that our proposed design

allows the resulting learning graph to be easily shared with other

platform-dependent descriptions.

Organization. The organization of the rest of this paper is as fol-

lows. In section 2, we introduce an overview of the standard NNUF.

In section 3 we review the standard framework, including design

rationale. In section 4 we review the implementation of our stan-

dard NNUF. In section 5, we draw concluding remarks and outline

our future work.

2 NNUF: AN OVERVIEW
As mentioned earlier, neural networks are adopted as a tool to

obtain best-results from data in broad fields [2, 11, 12]. Given the

unprecedented volumes of application-specific data delivered daily,

it is ideal to use machine learning in many of those applications.

However, using advances in developed machine learning tools in

those fields is nontrivial. For example, neural networks built on

Python-based artificial neural network platforms cannot be imple-

mented without the platform-dependent features.

As shown in Fig. 1, we observe that the same neural network is

implemented very differently based on the framework. The more

complex the neural network operations being used, the greater is

this difference. As a result, when a programmer implements the

same model to take advantage of each framework, it becomes neces-

sary to understand the framework from scratch as a baseline [5, 12].

Input

Convolution
Pool

Output

……

Figure 2: NNUF neural networkmodel representation exam-
ple, convolutional neural network (CNN).

The neural network model description in NNUF focuses on this

problem. In the implementation of the model description using

NNUF, we first have to create a model and add values separately.

The input of the data is delegated to the framework in which the

model is used, so that the model is not dependent on the input data.

This method is similar to the model implementation in TensorFlow.

We call the platform implemented according to the neural network

exchange framework (NNEF) the standard NNUF [6].

In previous neural network XML-based unified model, the focus

has been on correct reconstruction of computational models of the

neural network [10]. However, for correct reconfiguration, informa-

tion that is not actually required in the processing platform must be

filled in the model description. If the data pre-/post-processing and

training are delegated to other frameworks, it may become more

appropriate to introduce methods to reconstruct the artificial neural

networks to work with implementation of those frameworks.

The strength of standardization can exert its power at the con-

struction phase of a neural network. Through standardization,

NNUF builds an artificial neural network in a form that is inde-

pendent of the used frameworks, such as Tensorflow and Pytorch,

stores the network in a protocol buffer format, and transfers it to

various frameworks. With standardization, we do not need to be

aware of the specific methods of the frameworks when deploying

artificial neural networks in multiple environments. Furthermore,

with such a standardization, it is easy to implement operations

commonly used in neural networks (such as relu, tanh, etc.), as well

as new operations based on the functional format of NNUF.

The neural network model in Fig. 2 shows the neural network

unified format grammar. The structure is based on a neural network

called the convolutional neural network (CNN), an artificial neural

network with multiple hidden layers; the multi-layer nonlinear

structure provides it with a powerful feature expression ability. The

CNN contains three kinds of basic structures, the convolutional

layer, the pooling layer, and the fully-connected layer [3, 7]. Note

that the NNUF was intended to construct the CNN.

3 STANDARDIZED FRAMEWORK
In this section, we show the design rationale of NNUF software,

which is based on the concept of “Define and Run”. We discuss the

base model of the NNUF, which uses an XML-like format.

3.1 Design Rationale
The main purpose of the unit description rule in NNUF is to sim-

plify the representation of the underlying mathematical procedures.
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// Neural network definition
graph CustomNet(inputVar) -> (output Var) {

// Variables definition
Input = reshape(inputVar , [-1, 28, 28, 1] );
Kernel = variable(shape=[3, 3, 1, 64],

label="conv1/kernel");
Bias1 = variable(shape =[64], label="conv1/bias");
// Operations definition
conv1 = conv(input , filter=kernel1 , strides =[1, 1,

1, 1], padding="SAME");
add1 = add(conv1 , bias1);
outputVar = relu(add1);

}

Figure 3: NNUF description of neural network model.

NNUF Parser

TensorFlow

Protocol Buffer (.pb)

Graph (defined by NNUF)

Save Model

Figure 4: Neural network exchange framework.

Since there is a lack of unified standard terminologies for neural net-

works implementations, we have decided not to use existing terms.

Therefore, terms are defined and used in a form that is intuitive

and understandable by humans; e.g., “add” and “sub”.
The declaration of variables and computations of the neural

network model are represented as functions. The input and out-

put values of the neural network are specified in the form of the

parameter of graph function, and define these declarations in an

internal implementation. There are no special order constraints

on the structure of these declarations in graph function, therefore

the network structure is explicitly determined as a combination of

declarations. This procedure is illustrated in Fig. 4.

In this work, we designed and implemented a framework that

configures and trains various types of models using NNUF. Fur-

thermore, we design a parser with JavaCC for understanding codes

based on NNUF; used as the core structure of neural network ex-

change framework. When switching to TensorFlow code through

the NNUF parser, the training done by the appropriate data set is

fed into the model; then, the trained model is stored according to

the protocol buffer structure through the framework. When the

neural network defined by NNUF is fed into the framework, the

framework generates files as parsing results as follows:

• Full TensorFlow Code: A code that can perform framework

exchange based on the model defined by NNUF is generated.

It is fully converted to the code of the neural network, which

is implemented by TensorFlow. In this code, pre-processing

of data and training options can be filled through TensorFlow

format. Then, the training can be performed in a wat similar

to writing codes within the pure TensorFlow framework.

SKIP: { "" | "\r" | "\t" | "\n" }
TOKEN:{

<IDENTIFIER: (["a"-"z", "A"-"Z"])
+ (["a"-"z", "A"-"Z", "0"-"9", "_"])*>

|<METHOD: (<IDENTIFIER > ("." <IDENTIFIER > ("("
")"|"["(["0"-"9"])* "]")*)+) >

|<NUMERIC_LITERAL: (["+", "-"])? (["0"-"9"])+("."
(["0"-"9"])+)?(["E", "e"] (["+", "-"])?
(["0"-"9"])+)? >

|<STRING_LITERAL: ("'" | "\"") (["a"-"z", "A"-"Z",
"/", "_", "0"-"9"])* ("'" | "\"")>
...

|<SEMI_COLON: ";">
|<QUESTION: "?">
|<ARROW: "->">

}

Figure 5: Lexical analysis (.jj file format).

String argument ():
{String arg , exp , name , res; Token id;}
{

(
((id=<IDENTIFIER >)<ASSIGN >(exp=expression ())){

name = id.toString ();
switch(name) {

case "label": res="name";arg+=res+"="+exp; break;
case "filter": arg+=exp; break;
case "size": res="shape="+exp; arg+=res; break;
case "type": res="dtype=tf."+exp;arg+=res; break;
default: arg+=name+"="+exp; break;

}
} | (exp = expression ()){ arg += exp; }

) {return arg;}
}

Figure 6: Syntax analysis (.jj file format).

• Trained Model Data: The training is performed with the con-

verted model, where the input data and pre-processing pro-

cesses are provided. The trained model is then stored in the

form of a protocol buffer in TensorFlow.

3.2 Parser Implementation with JavaCC
The neural network defined byNNUF is required to analyzewhether

the given input is grammatically and semantically correct or not.

For this analysis, we implemented a parser that analyzes the graph

description defined by the grammar of NNUF. This NNUF parser is

implemented using JavaCC [1], which is one of well-known lexical

analysis and parsing (syntax analysis) tools based on Java program-

ming language. JavaCC is fundamentally based on the concept of

top-down parsing. The parser generation using JavaCC is done with

pure Java and Java Virtual Machine (JVM) code. Therefore, Jython

2.7 is used for integrating Python and Java codes, and the overall

framework structure is implemented with python syntax using the

Jython. The major components of the compiler generation using

JavaCC is .jj file, which is based on language formal specification

and JavaCC grammar [1, 11, 14]. In the NNUF parser implemented

with JavaCC, the .jj file have the following items:

• Lexical Analysis Rules: This information can be abbreviated.

If it exists, it can be one or some of SKIP, TOKEN, SPECIAL
TOKEN, and MORE. The meaning of them is available in JavaCC

syntax description [1, 14]. In Fig. 5, an example lexical anal-

ysis code implemented using JavaCC is provided.
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Figure 7: A snapshot of the graphical user interface (GUI) of, capturing the NNUF graph and TensorFlow graph definitions.

• Syntax Analysis Rules with Enhanced Backus Naur Form (EBNF):
Each syntax grammar in NNUF specification can be imple-

mentedwith EBNF as presented in Fig. 6 (file name: nnuf.jj).

As shown in Fig. 6, the NNUF parser takes the results of the

grammar and the token (generated by lexical analysis). According

to the results, the NNUF parser matches the code to be converted

one and returns it. The input NNUF graph is transformed into the

TensorFlow code according to the above procedure. Finally, our

standardized deep learning computation framework gets the input

as NNUF-based file and returns the code which can be executed by

TensorFlow computation engine.

4 IMPLEMENTATION
In this section, we outline our NNUF parser implementation in

embedded open-source platforms. The implementation of one of

the most popular image classification CNN models, the AlexNet, is

introduced in Section 4.1, and the demonstration of the implemen-

tation on an embedded Raspberry Pi is presented in Section 4.2.

4.1 AlexNet/CNN Implementation
The neural network model, e.g., example model in Fig. 2, for the

definition of neural network unified the format grammar. The struc-

ture of our example model is based on AlexNet [7], based on CNN.

The AlexNet is a popular neural networks that is specialized in

image classification. AlexNet consists of eight layers and perfect

connection layers. The output of the last fully connected layer in

AlexNet is the probability distribution for 1000 image classes [7].

Based on the NNUF-based standardized parsing, AlexNet, which

is one of well-known deep convolutional neural network models, is

implemented [7]. The AlexNet is specialized in image classification

where it consists of eight layers and fully-connected layers. Based

on the NNUF-based AlexNet implementation, MNIST dataset based

executions are performed. As an input MNIST datset, we used 28-by-

28 pixels as shown in Fig. 8(a). After successful computation with

our NNUF-based standardized parser, the activation map for the

given MNIST dataset input are successfully obtained as illustrated

in Fig. 8(b).

(a) MNIST dataset initial input

(b) Activation map for the MNIST dataset input

Figure 8: TheMNIST dataset inputs (Fig. 8(a)) and the compu-
tation result as an activation map via NNUF-based AlexNet
(Fig. 8(b)).

4.2 Demonstration in Linux/Raspberry Pi
Embedded Platforms

The prototype of NNUF is implemented using Jython and Tensor-

Flow in Ubuntu/Raspberry Pi embedded platforms, as shown in

Fig. 9. Our standardized deep neural network learning computation

framework dedicates the pre-processing, post-processing, and train-

ing to TensorFlow. For our demonstration, we employ AlexNet with

the MNIST fine-grained sample image data sets. The description
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Figure 9: A snapshot of the demonstration setup of our im-
plementation of NNUF in Raspberry Pi.

of the data processing and training methods are converted to the

TensorFlow format, which is entered in advance.

Our demo evaluates the following scenarios: (i) AlexNet, which

is constructed with NNUF, is fed into the parser, and (ii) the parser

transforms the NNUF code to TensorFlow code. After the procedure,

the framework automatically trains the model and stores the results

in the form of a protocol buffer (.bp) format. Therefore, a trained

model can be easily obtained by constructing only the CNN model

according to the NNUF grammar. The process of operation can be

checked in our pre-recorded demo in [13].

5 CONCLUSIONS AND FUTUREWORK
In this demo we discussed the characteristic of previous unified

format and introduced a standardization format for the description

of neural network models. The proposed format is constructed in

accordance with neural network exchange format standard [6], al-

lowing us to describe neural network model completely, including

details of the structure and parameters of neural network. The pro-

posed framework for configuration of model allows us to easily

implement a wide range of operations used in neural network with-

out depending on a specific platform. In addition, compared to the

conventional unified languages based on XML [4, 10], the proposed

NNUF framework is scalable. It is possible to use artificial neural

network reconstruction method of the processing framework. The

proposed framework stores the final trained artificial neural net-

work in the form of protocol buffer, which can be easily extended

to languages such as C++, Java, Python, Object C, JavaScript and

Ruby. Hence, the user only needs to think about how to implement

artificial neural networks in a standardized way without having to

worry about how to store and easily restore the trained parameters

correctly. As a result, scalability can be achieved beyond imple-

mentation constraints. As machine learning becomes increasingly

important, many users will be exposed to a number of frameworks

to implement and utilize artificial neural networks, and the need

for standardization will increase accordingly. NNUF described in

this paper is the start of a framework. In the future, we will look

into augmenting NNUF with the refinement of the NNUF grammar

and its adaptation to customized neural networks. NNUF must be

more scalable and accommodate new innovations from the machine

learning research. The lack of standardization has resulted in too

many rules, and the efficiency has also dropped in many areas [9].

We believe that NNUF provides a basis for building an artificial

neural network framework that provides standardization in various

environments.

As a future research direction, various deep learning and neural

network training models can be implemented using our NNUF

parser. In addition, various deep learning software libraries, besides

TensorFlow, can be considered as our next target computation

engines, including PyTorch, Caffe, and Keras.
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