
Collaboration in Social Network-based

Information Dissemination

Aziz Mohaisen∗ Tamer AbuHmed† Ting Zhu‡ Manar Mohaisen§

University of Minnesota - Twin Cities, MN, USA∗ Inha University, Republic of Korea†

Binghamton University, NY, USA‡ Korea University of Technology & Education, South Korea§

Abstract—Connectivity and trust within social networks have been
exploited to build applications on top of these networks, including
information dissemination, Sybil defenses, and anonymous com-
munication systems. In these networks, and for such applications,
connectivity ensures good performance of applications while trust is
assumed to always hold, so as collaboration and good behavior are
always guaranteed. In this paper, we study the impact of differential
behavior of users on performance in typical social network-based
information dissemination applications. We classify users into either
collaborative or rational (probabilistically collaborative) and study
the impact of this classification and the associated behavior of
users on the performance on such applications.By experimenting
with real-world social network traces, we make several interesting
observations. First, we show that some of the existing social graphs
have high routing costs, demonstrating poor structure that prevents
their use in such applications. Second, we study the factors that make
probabilistically collaborative nodes important for the performance
of the routing protocol within the entire network and demonstrate
that the importance of these nodes stems from their topological
features rather than their percentage of all the nodes within the
network.

keywords: Social networks, collaboration, routing, adversarial

behavior, performance.

I. INTRODUCTION

The popularity of social networks have motivated a wide

spectrum of new technologies: designs, protocols, and appli-

cations built based-on and atop these networks. These include

random-walk based routing [1], [4], [6], [15], [16], shortest-path

based routing [23], [10], Sybil defenses [28], [29], among other

technologies.

While these systems serve different purposes and follow dif-

ferent operational models, all of these schemes strike a balance

among their algorithmic properties, connectivity, trust, and col-

laboration within the underlying social networks, all of which

are utilized for bootstrapping such systems. Collaboration is an

essential feature of social networks; however, the assumptions

underlying collaboration are usually made to support end-results:

all nodes are assumed to be collaborative. To address this issue,

we study the impact of classifying users into collaborative and

rational on such algorithm of information dissemination on top

of social networks.

The primary contribution of this work is as follows. First, we

suggest a classification of users in social network-based systems

on collaborative and non-collaborative (rational) and suggest the

rationale of such classification. Second, we study the impact

of such classification on information dissemination on top of

social networks. We consider several routing algorithms, based

on random walks, shortest path, and breadth-first search (BFS).

By experimenting with real-world social network traces, our

study unveils interesting results. First, regardless of the level of

collaboration of the nodes, some social networks initially exhibit

poor performance—in the sense that the number of steps required

to reach a particular source in the social graph, at average,

is large. In our analysis, we study the factors that impact the

performance of the routing application on top of these networks

and demonstrate that such performance does not merely depend

on the percentage of rational nodes, but rather on the topological

properties of these rational nodes (high degree, betweenness, etc).

Unlike previous studies concluded, such topological factors of

these nodes and their implications are essential and critical to the

design and the performance.

The rest of this paper is organized as follows. Section II

introduces terminologies and preliminaries contained and refer-

enced throughout the paper. Section III introduces the model

for classifying users in the network based on their collaboration.

Section IV introduces our results for random walk-based routing

on real-world social network traces. Related work is discussed in

section V and section VI concludes the paper.

II. PRELIMINARIES

In this section we outline preliminaries, used as ingredients

in building the rest of this work. We outline the model of the

network, and routing algorithms experimented with in the paper.

A. Network model

We represent the social network as an undirected and un-

weighted graph G = (V,E), where V = {v1, . . . , vn} is the

set of vertices, representing the nodes within the social graph,

and E = {eij} (where 1 ≤ i ≤ n and 1 ≤ j ≤ n) is the set of

edges connecting those vertices. |V | = n denotes the size of G
and |E| = m denotes the number of edges in G. A = [aij ]n×n

represents the adjacency matrix of G, where aij = 1 iff vi ∼ vj
(adjacent) and 0 otherwise. In the rest of this paper, social network

and graph are used interchangeably to refer to both the physical

network and the underlying social graph.

B. Random walk-based routing

Random walk theory provides a straightforward framework

for routing implementation in many networks, including wireless

networks. In its simplest form, the random walk based routing

uses transition matrix P associated with the social graph to

randomly select forwarders at each node until the destination

is reached. Recall A defined above, then P = [pij ]
n×n, where

pij = 1/deg(vi) iff vi ∼ vj and 0 otherwise is defined for the

“simple random walk” which we use in this work.



Let vs be the source and vd be the destination to which

a packet is intended. vs uniformly at random selects one of

her neighbors—say vx in Figure 1(a), and forwards the packet

towards her. At each time slot, the intermediate node on the

random path between the source and the destination checks if

the destination is among its neighbors. If so, the intermediate

node directly forwards the packet to the destination. Otherwise,

the intermediate node performs the same procedure by uniformly

selecting one of her neighbors and forwarding the walk towards

that neighbor.

vs vx vi vj

1
deg (vs)

1
deg (vx)

1
deg (vi)

(a)

vs vx vi vj

1
deg (vs)

1−α

deg (vx)
1−α

deg (vi)

αj
αi

αx

(b)
Fig. 1: Characterization of random-walk based routing. (a)

Random-walk based routing on graph in normal fully-

collaborative settings. (b) Random-walk based routing on graph

in mixed settings, where users are classified into collaborative and

non-collaborative users.

C. Shortest path based routing

The shortest path based routing uses the shortest directed

distance between two nodes, the source and destination. Let

w : E → R be a weight function that assigns real-valued

weights to edges in G— in case of undirected unweighted graphs,

the weight will be equal to 1 across all edges. The weight

of path p = 〈v1, v2, . . . , vℓ〉 is w(p) =
∑ℓ

r=1
w(vr−1, vr).

The shortest path between nodes vi and vj is then defined as

δ(vi, vj) = min{w(p) : vi
p
 vj} if there is a path from vi to vj ,

or δ(vi, vj) = ∞ otherwise. Since it may not be unique, a shortest

path between vi and vj is any path with weight w(p) = δ(vi, vj).
Dijkstra’s algorithm is an example of the shortest path based

routing algorithm which is used in the Open Shortest Path First

(OSPF) routing protocol. Dijkstra’s algorithm mainly finds the

shortest-path between nodes vi and vj depending on non-negative

weights assigned to the edges of G, which is the case in our study.

In this context, and only for experiments, the weights of

the edges are calculated using the Jaccard similarity coefficient,

where the weight of the edge will be a reflection of the similarity

between its vertices. The main motivation of using such weights

is our interest in measuring how the topological structure of the

graph influences its behavior. Any other meaningful weights can

be used to replace the weights we used in our experiments, and to

bring similar insights. Examples could be interactions, reputation-

based, or cost-based weights.

D. Breadth-first search routing

Given a source and a destination pair of nodes vi and vj ∈ G,

the BFS algorithm starts discovering all the reachable vertices

from the root node vi till it reaches the destination node vj .

The algorithm discovers all the vertices at distance k from vi
before discovering any nodes at distance k + 1. Recalling the

definition of the aforementioned shortest path, BFS shortest path

δ(vi, vj) in the case of unweighted graph is equal to the path with

the smallest number of edges between vi and vj [3]. The BFS

procedure uses first-in first-out (FIFO) queue Q data structure to

manage the nodes to be traversed during the search process. This

data structure can be replaced by a stack data structure to turn this

algorithm into the depth-first search routing algorithm. Therefore,

given a source node vs and a destination node vd, our scenario is

to find the shortest needed path in order to deliver the transmitted

packet to the destination.

III. COLLABORATION IN SOCIAL NETWORKS

In this section, we classify users in the social graphs into

collaborative users and probabilistically collaborative users and

study the impact of this classification on the performance of

routing algorithms on top of social networks. Collaborative nodes

are denoted by Vc and the level of altruism is denoted by γ.

A. Probabilistically collaborative users

These users, who are otherwise referred to as rational users, act

less altruistically than collaborative users. In particular, while the

altruism (i.e. γ) of collaborative users is close to one, and hence

the selfishness characterized by α = 0, the altruism of rational

users is characterized by α where 0 < α < 1. Typically, a rational

node may participate in the routing protocol with probability

1 − α and deviate from it by dropping incoming packets or not

collaborating with probability α. Such nodes in G are denoted

by Vp whose size (as a fraction of the size of the network) is β.

Note that β + γ = 1. We note that each node in the graph can

only belong to one of the categories above—hence Vp and Vc are

exclusive subsets of V where V = Vp ∪ Vc. Second, we assume

that a node may not change its behavior over the run time of the

protocol, to simplify the analysis. Last, α may differ from a node

to another, as we will see later.

B. Collaboration Impacts Information Dissemination Behavior

The behavior—and its description—of the different nodes in

the graph is shown as a state diagram in Figure 1(b). The routing

protocol is then described as a biased random walk where the

event of not collaborating in the routing protocol is denoted by

a loop from each node to the originator of the algorithm. For

simplicity, in the figure, we remove collaborative nodes, which

can be seen as nodes across the route with α = 0.

As for the shortest-path and BFS-based routing, lack of collab-

oration results in shortest-path search failure. Accordingly, similar

to above, we consider the percent of shortest-path (and BFS-based

search) routing trials that fail among all possible trials in the graph

among possible source-destination pairs.

IV. RESULTS AND DISCUSSION

In this section, we introduce the results of this study and

elaborate on the findings. The social graphs used in this study are

shown in Table I. Some of these graphs are sampled from larger

graphs using the breadth-first search—details on these graphs

are in [22]. As an indicator of the topological structure of the

different graphs, we compute both the diameter and radius of

each graph. By defining the eccentricity as the set of maximal

shortest paths from each and every source to other destinations

in the graph, the diameter is defined as the maximal eccentricity



TABLE I: Social graphs with their size, diameter, and radius.

Physics 1, 2, 3 are relativity, high-energy, and high-energy theory

co-authorship respectively [12]. D stands for the diameter and R

stands for the radius of the graph.

Social network Nodes Edges D R

Physics 1 [12] 4,158 13,428 17 9
Physics 2 [12] 11,204 117,649 13 7
Physics 3 [12] 8,638 24,827 18 10
Wiki-vote [11] 7,066 100,736 7 4

Enron [12] 10,000 108,373 4 2
DBLP [13] 10,000 20,684 8 4

Facebook [26] 10,000 81,460 4 2
Youtube [17] 10,000 58,362 4 2

and the radius is defined as the minimal eccentricity. We observe

that these parameters differ greatly from a graph to another which

implies different graph structures.

Evaluation metric. The evaluation metric of the different

schemes used in this study is the normalized expected number

of transmissions per single message delivery operation between

a source and a destination. The definition slightly differs based

on the algorithm in use, and is formally defined as E[cost] =
1

S

∑S

i=1
costi, where S is the size of the sample for which the

cost is computed, and costi is the cost for a given pair of source

and destination indexed by i.

A. Performance in ideal settings

Here we study the performance of routing on social graphs in

ideal settings, without considering collaboration as a constraint.

1) Random walk-based routing on social graphs: Considering

the different graphs in Table I, we first measure the performance

of the simple random walk-based routing explained in section II.

We define the cost of routing over graphs as the normalized

expected number of transmissions, which is the average number

of times that a node in the graph transmits a packet for a single

routing session from a given source to a given destination. To

avoid the random behavior and bias in the measurements, we

consider the case of routing a single packet from a given source

(selected uniformly at random from the graph) to 1, 000 arbitrary

destinations, which are also selected uniformly at random from

the graph. To reduce the bias in the measurements, we perform

the same experiment, for the same source-destination pair, for

1, 000 times; totaling 1, 000, 000 routing trials per data set. In

addition, we take the average number of hops, which is then

normalized by the network size, to give the expected number

of transmissions. The results of these measurements are shown

in Figure 2. While they are close in size, we observe that the

cost of routing over the different graphs is basically different,

and this is related to the structure of the underlying graph. In

principle, the performance of the graphs can be classified into

two categories: well-performing graphs (Epinion, Youtube, Wiki-

vote, and Facebook) and poorly performing graphs (Physics-1

to 3 and DBLP). We observe that the poor-performing graphs

exhibit a strong community structure, as evidenced by their high

modularity—a measure of the community structure in social

networks. On the other hand, well-performing graphs have less

clear community structure evidenced by their small modularity.

Furthermore, the poor performance is associated with larger

radius and diameter of the graph contrary to well-performing ones
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Fig. 2: Random-walk based routing on graph in normal fully-

collaborative settings—all nodes act according to the protocol and

behave honestly. Different social graphs have different structures

and different qualities of the performance of the routing protocol.

(shown in Table I) which are associated with smaller radius and

diameter values.

2) Shortest path based routing on social graphs: Following

the evaluation scenario of the Random walk-based routing, we

evaluated the expected number of transmissions between two

randomly selected source and destination nodes in the case of BFS

and Dijkstra routing algorithms. In Figures 4 and 5, we show the

CDF of the number of transmissions per node in several social

graphs using BFS and Dijkstra routing. These graphs illustrate the

relation between the number of transmissions, the structure and

connectivity of the graph. These results coincide with our finding

regarding to the random walk-based routing in social graphs,

where the cost of routing over the different graphs is strongly

related to the structure and connectivity of the underlying graph

and loosely affected by the applied routing algorithm.

B. Collaboration in random walk-based routing

We measure the performance of the routing protocol, with

the same settings as above, when considering probabilistically

collaborative nodes in the graph. We uniformly at random sample

subsets of the nodes Vp ⊂ V as the set of probabilistically

collaborative users, with the remaining nodes in the graph as

totally collaborative (altruistic). As explained earlier, each prob-

abilistic node vi follows the protocol with probability αi, which

is uniformly selected in the range of 0.1 to 1, or drop the routing

request with probability (1−αi) (we trim the distribution from 0
to 0.1 for that the existence of very adversarial nodes may block

traffic entirely due to the lack of multi-path). The results of the

performance of the protocol on the different social graphs are

shown in Figure 3. By considering β as the percent of rational

users, we consider different values of β (i.e., from 0 to 0.8 with

0.2 steps) where β = 0 in each graph represents the performance

of the corresponding social graph in Figure 2. In brief, we make

the following observations on the different experiments.

While the performance of the different social graphs initially

differs greatly, as evidenced by the first experiment, the impact

of the increasing percent of rational nodes is not linear but rather

depends on the underlying social graph. For example, social

graphs with strong community structure have rather fairly regular

behavior (Figure 3(a) to Figure 3(d)). However, we observe that

even with these social graphs, relatively large β dramatically

increases the cost of routing. To understand this behavior, we list

the rational nodes, and map them to their degrees. We observe

that, while in the first case—where less impact is made on

the performance in random walk-based routing due to lack of

collaborative of some nodes—the degree is fairly distributed, in
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(a) Physics 1.
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(c) Physics 3.
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(d) DBLP.
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(e) Wiki-vote.
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Fig. 3: The normalized expected number of transmissions per node in each social graph when using random walk-based routing.

the second case—where higher impact is observed—some high

degree nodes, with small α blocks flows between communities,

and thus dramatically increases the cost of routing. In such graphs,

the cost is exponential in β.

On the other hand, the behavior of the initially well-performing

graphs is in part harder to anticipate. In general, the routing

protocol performs well, even when considering larger values

of β in these graphs, though, like the previous case of poorly

performing graphs it may have some odd behavior when high

degree, intra-communities nodes behave rationally, with small α.

The difference between the two sets is that while the well-

performing graphs are sensitive and any node can be of impor-

tance to the random routing on them, as evidenced by many high

degree nodes, yet, the performance on such graphs is reasonable,

and within the theoretically acceptable bounds.

C. Collaboration in shortest path-based routing

Considering the existence of probabilistically collaborative

nodes in the graphs, we measured the performance of the shortest

path based routing when a random sample subset of the nodes

Vp ⊂ V are probabilistically collaborative and the remaining are

collaborative. As in the case of random walk-based routing, the

results of the performance of the protocol with underlying shortest

path based routing algorithm on the different social graphs are

shown in Figures 6 and 7. However, due to the deterministic

nature of the shortest path based routing, we consider the delivery

failure rather than the cost of routing as the evaluation criterion,

for different β values. The results show that, in terms of packet

delivery rate, the well-performing graphs (Epinion, Youtube,

Wiki-vote, and Facebook) are less sensitive to the existence of the

rational users compared to the poorly performing graphs (Physics-

1 to 3 and DBLP), which are affected by the rational users.

One implication of these findings is that, since the collaboration

of high-degree nodes is more important to the overall performance

of the network, investigating providing incentives for such nodes

to be always collaborative to improve the performance is an

interesting issue. For example, in DTNs’ routing built on social

networks [14], [2], [4] it is assumed that all nodes are collab-

orative. Since it is not always the case, it will be interesting to
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Fig. 4: The CDF of the number of transmissions per node in

different social graph using BFS routing.
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deploy these observations and build incentives for collaboration,

especially for those critical nodes, in that context.

V. RELATED WORK

There has been a number of papers on the use of social net-

works for building communication and security systems, studying

the performance of such designs on top of social networks, and

analyzing the assumptions used in these designs as well. The most

close to this study is the work in [7], where nodes are basically

assumed to have some selfish behavior in each and every one

of them, which follows some distribution (e.g., uniform, normal,

or geometric). The major difference between our work and the

work in [7] is actually twofold. First, while [7] considers traces

of encounter-like wireless networks, we consider traces of static

social graphs. While in the general sense both types of traces,

static and encounter-based, could be of potential use to routing,

we believe that static traces are more favorable to the assumption

of trust which most routing protocols weigh a big value on to

demonstrate effectiveness [19]. Second, and more important, the

conclusions in this paper are at contradiction with the findings

in [7]—most likely due to the different types of graphs used.

In particular, whereas it is shown in [7] that selfishness does

not affect the behavior of the routing algorithm much due to the
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Fig. 6: BFS failure rate, expressed as the routing failure percent per β value (rational users) in each social graph.

 0

 0.2

 0.4

 0.6

 0.8

 1

0.0 0.2 0.4 0.6 0.8R
o

u
ti

n
g

 F
a
il
u

re
 P

e
re

c
e
n

t

Percent of rational nodes

DBLP
Physics1
Physics3

 0

 0.2

 0.4

 0.6

 0.8

 1

0.0 0.2 0.4 0.6 0.8R
o

u
ti

n
g

 F
a
il
u

re
 P

e
re

c
e
n

t

Percent of rational nodes

Physics2
Facebook
Epoinion

 0

 0.2

 0.4

 0.6

 0.8

 1

0.0 0.2 0.4 0.6 0.8R
o

u
ti

n
g

 F
a
il
u

re
 P

e
re

c
e
n

t

Percent of rational nodes

Wikiâ��vote
Youtube

Fig. 7: Dijkstra’s failure rate, expressed as the routing failure percent per β value (rational users) in each social graph.

multi-path characteristics of the underlying connections and links

among nodes in the graph, we show strong evidence that the lack

of collaboration by a few nodes with a particular characteristic

(e.g., degree distribution) in static social graphs could greatly

affect the effectiveness of the routing protocol built on top of

the social network (see details in section IV). In total, our work,

while brings conclusions contradicting with the prior work in [7],

can be considered an effort in the same direction to understanding

collaboration in settings where social networks are used for

improving routing in networked systems.

Other systems built on top of social networks include works on

Sybil defenses in [18], [5], [25] and understanding the assump-

tions used in these defenses in [27], [19], [22], [21]. Distributed

computing services on top of social networks have been recently

studied in [20], [24]. Routing on small world networks is initially

investigated in [9], and delay of routing on such networks is most

recently rigorously studied in [8].

VI. CONCLUSION AND FUTURE WORK

In this paper, by classifying nodes in social graphs into

collaborative and probabilistically collaborative, we studied the

impact of collaboration in social networks on the performance

of information dissemination techniques, including random walk

based routing, shortest-path based routings, all of which are built

on top of social networks. Even without the classification part,

we experimentally demonstrated that the cost of such protocols

on top of some of real-world graph is large while it is reasonable

on others. We further show that some networks are very well

performing and meet the potential of such applications, whereas

other networks are quite sensitive to the users’ behavior.

Exploring theoretical models to characterize the performance

of the routing algorithms under behavior of users expressed as

parameters would be the work to be considered in the near future.

This will benefit from recent works, e.g., [8].
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