
SSD-Insider: Internal Defense of Solid-State Drive
against Ransomware with Perfect Data Recovery

SungHa Baek
Inha University

Youngdon Jung
DGIST

Aziz Mohaisen
UCF

Sungjin Lee
DGIST

DaeHun Nyang
Inha University

Abstract—Ransomware is a malware that encrypts victim’s
data, where the decryption key is released after a ransom is paid
by the data owner to the attacker. Many ransomware attacks
were reported recently, making anti-ransomware a crucial need
in security operation, and an issue for the security community to
tackle. In this paper, we propose a new approach to defending
against ransomware inside NAND flash-based SSDs. To realize
the idea of defense-inside-SSDs, both a lightweight detection
technique and a perfect recovery algorithm to be used as a
part of SSDs firmware should be developed. To this end, we
propose a new set of lightweight behavioral features on ran-
somware’s overwriting pattern, which are invariant across various
ransomwares. Our features rely on observing the block I/O
request headers only, and not the payload. For perfect and instant
recovery, we also propose using the delayed deletion feature of
SSDs, which is intrinsic to NAND flash. To demonstrate their
feasibility, we implement our algorithms atop an open-channel
SSD as a working prototype called SSD-Insider. In experiments
using eight real-world and two in-house ransomwares with
various background applications running, SSD-Insider achieved
a detection accuracy 0% FRR/FAR in most scenarios, and only
5% FAR when heavy overwriting resembling ransomware’s data
wiping occurs. SSD-Insider detects ransomware activity within
10s, and recovers instantly an infected SSD within 1s with 0%
data loss. The additional software overheads incurred by the
SSD-Insider is just 147 ns and 254 ns for 4-KB reads and writes,
respectively, which is negligible considering NAND chip latency
(50-1000 µs).

I. INTRODUCTION

Ransomware, a type of malicious software (malware) that
holds a user’s data hostage to collect ransom, has been on
the rise. To extort ransom from data owners, ransomware
encrypts data using strong encryption algorithms, and the
decryption keys are released only after a ransom is paid by the
data owners. Ransomware tries to subvert standard malware
defenses by using complex command and control (C&C)
networks that utilize anonymous communication systems such
as Tor, and by collecting ransom using cryptocurrency, such
as Bitcoin, which is very difficult to track. The high potential
financial gains to attackers and the difficulty of defending
against ransomwares make them a “profitable business” to
cybercriminals. For example, the Nayana web hosting firm
in South Korea was attacked by a crypto ransomware called
Erebus in 2017, where more than 3,400 web sites were affected
according to the Korea Internet and Security Agency. As a
result Nayana paid 1.14 million USD to the attackers in three
installments to get the key, and even then could not totally
recover the data [1]. Similar attacks were reported in the US.
For example, in 2016, the Hollywood Presbyterian Medical
Center was infected by a crypto ransomware, and had to pay
40 bitcoins (about $17,000 at that time) to the attacker after 10

days of not being able to operate because it could not access
patients medical records [2].

Ransomwares are generally classified in two groups: locker
and crypto ransomwares [3]. Locker ransomware prevents
users from accessing an infected machine, while crypto ran-
somwares, such as WannaCry, CryptoWall, TeslaCrypt (a.k.a.
AlphaCrypt) and Locky, lock users’ data by encrypting the data
to prevent users’ data access. Most of the newly discovered
ransomwares were crypto ransomware, compared to 80% of
crypto ransomwares in 2015 [3]. As such, more attention
should be paid to crypto ransomwares and their defenses,
which is the case of this work.

In this work, we propose a new approach to ransomware
detection and recovery by introducing the concept of NAND
flash internal defense. Unlike the application layer detection
systems, our approach is universal to every platform (oper-
ating system, filesystem, hardware configuration, etc.), and
provides immunity for systems without requiring any vaccine
software. By introducing six invariant features of ransomware
for a machine learning algorithm and by taking advantage of
SSD’s unique nature, we develop a behavior-based detection
and recovery system that runs inside SSDs as a form of
storage firmware. With our ransomware detection and recovery
algorithms built in, SSDs can effectively detect ransomwares’
activity and perfectly recover user’s data, even when 1) a
user does not run any ransomware monitoring application,
2) the OS (or middleware) does not execute any ransomware
monitoring task, 3) it works for an unknown OS, an unknown
file system and unknown applications, and 4) it confronts
previously unknown ransomwares. We realize the ransomware
detection and recovery algorithms in a system, called SSD-
Insider, which works as a universal platform. To this end, in
this paper we deliver the following contributions:
• We design six invariant features to capture ran-

somwares’ behavioral characteristics. We use the
block address, size, and type of an IO request to an
SSD, and analyze their correlation with ransomware
activities using various real-world ransomwares.

• We build a machine learning technique for detecting
ransomware using a binary decision tree using ID3
(Iterative Dichotomiser 3) [4].

• We design a new Flash Translation Layer (FTL)
scheme that supports an instant recovery of infected
files by leveraging the intrinsic delayed deletion fea-
ture of NAND flash.

• To show the feasibility of our system inside an SSD,
we implement SSD-Insider using an open-channel
SSD platform as a working prototype.

• We evaluate SSD-Insider using eight real-world ran-
somwares and in-house ransomwares while various
background applications were running. Our implemen-
tation of SSD-Insider has 100% detection accuracy,
with less than 10 seconds of detection latency. SSD-
Insider also recovered encrypted files within 1 second,
and without any data loss after recovery.

II. MOTIVATION

A. Limitations of legacy approaches

It is necessary to define effective ransomware-specific
features so that a detector can recognize ransomware activity
immediately and accurately. However, it is difficult to de-
tect ransomware only by observing their signatures, because
their binaries change frequently. For example, an interesting
“ransomware-as-a-service” model called TOX was found in
2015, which helps inexperienced attackers to easily build a
variant ransomware [5]. Ransomware also can easily evade
anti-ransomware, firewall rule sets, and spam filters. The
mutable nature of ransomware makes it also harder to detect
only by signatures, and pushes the detection paradigm further
into the realm of behavior-based defenses.

File type-based or content-based detection and data loss.
The most recognizable change after/during a ransomware’s
activity is that a number of files are changed by their types or
by contents. Scaife et al. have observed important features
that could be strong indicators of ransomware [6]. Among
them, the most important indicators include the following. 1)
File type change which is necessarily followed by ransomware
activities. 2) The similarity measure between an original file
and its modified version is very low – since ransomware
normally encrypts the victim file. 3) High entropy is also a
strong evidence of encryption, but it is sometimes hard to
be distinguished from compression that also has very high
entropy. 4) A large number of file may be an indicator,
although a weak one given that the deletion of many files
happens usually regardless of ransomware action.

Since the content-based detection monitors a large volume
of data in real time, it inevitably results in high CPU and
memory overheads. Particularly, this approach involves tweaks
in OS, which requires privilege escalation for the monitoring
software. Considering that the detector can be infected as
well, this approach is not desirable. Also, while the accuracy
of content-based detection is very high owing to plenty of
context information, this approach has to back up contents
constantly for every writing requests to recover the already-
encrypted files. This constant back up process results in a
prohibitive overhead. As such, most works falling under this
approach have focused on how to detect ransomware as early
as possible to minimize the overhead for recovery. File type-
based detection involves smaller overhead than content-based
detection, but it can be easily evaded by ransomware to alter
forcibly file extensions or the magic numbers for a given file
type.

Application layer detection and its security. Most of the
solutions against ransomware run in the application layer, thus
they cannot secure the system in the worst case. First of all,
in these solutions, users should be aware of the danger of ran-
somware, and they should install the anti-ransomware software

(a) Ransomware action vs. overwrit-
ing frequency.

(b) Ransomware and normal app’s
cumulative overwriting frequencies

Fig. 1: Ransomware’s overwriting behavior (WannaCry, Jaff, Mole, and Cryp-
toShield ransomwares): (a) There is a strong correlation between active period
of ransomware and the number of overwritings per second (= OWIO), and
(b) Cumulative values of overwritings show that ransomware does overwriting
very frequently.

before being infected. However, a report in 2013 showed that
24% of personal computers (PCs) were unprotected by any
anti-virus software [7]. Furthermore, more than 90% of devices
that had anti-virus had not run a full system scan using their
anti-virus within the last seven days. Even worse, anti-virus
definitions were out of date in more than 15% of the PCs [8].
Also, cracked anti-virus software could get PC infected as well.
Finally, killing a ransomware detector process would not be an
issue to the creator of ransomware when characteristics of most
commercial detector software are well known in advance.

B. Our approach: SSD-installed ransomware detector

Our approach is not to detect ransomware in the application
layer or in the OS layer, but to put the detector inside an
SSD. By doing so, we can solve the most crucial problems
in ransomware detection: 1) Protection of users having no
anti-ransomware software installed, and 2) high overhead for
recovery of data loss caused by detection latency.

Challenges for detection and recovery. To realize our ap-
proach, we have to solve the following problems:

• SSD-Insider should work as a part of SSD firmware,
which means that it should detect ransomware only
with limited CPU power and memory. Monitoring
content alteration incurs too much overhead to an SSD
system as we discussed. Thus, SSD-Insider should be
able to extract ransomware’s behavioral characteristics
by seeing only IO request headers instead of seeing
the whole request data. The IO request header include
only a logical block address, read/write type, and
the size of data. This limited view of ransomware
activity makes detection more difficult, considering
that much more context and information are available
to application layer detectors including file names, file
sizes, file access time, process IDs, process names, and
the amount of memory the process is using, etc.

• Detection latency is inevitable by any means, so
some portion of disk blocks will have been already
encrypted. A method to provide perfect data recovery
even under detection latency should be provided.

2

Our approach to address the two challenging problems
above is to use overwriting patterns as ransomware features
for detection and to take advantage of SSD’s delayed deletion,
which is an intrinsic feature of NAND flash memory for
recovery.

Overwriting patterns as lightweight and invariant features.
To recognize ransomware activity by viewing only the dis-
tribution of IO request headers, we have paid attention to a
ransomware’s very unique behavior, overwriting. Overwriting
in SSD is defined as the event of updating the same logical
block address (LBA) to remove the data in the block after a
block read. Fig. 1(a) shows how long WannaCry and Mole
ransomwares were in action during 1-second time slices when
overwriting frequency varies; it shows that the more frequent
overwriting occurs, the longer WannaCry and Mole have
been running. Fig. 1(b) further shows the cumulative graph
of the number of overwriting requests for four ransomware
(WannaCry, Jaff, Mole, and CryptoShield) and four normal ap-
plications (data wiping, P2P download, cloud storage synchro-
nization, and compression). We notice that ransomwares have
a relatively high growth rate compared to normal applications.
While WannaCry and Mole stand out, Jaff and CryptoShield
have a relatively low growth rate, alluding to a difficulty in
distinguishing them from the normal applications. Even so, it
is clear that ransomwares cannot but permanently delete victim
files by overwriting them by either encrypted or other unrelated
data. Also, ransomwares should overwrite as soon as possible
to decrease the user’s chance of recovery.

Using SSD’s delayed deletion for perfect and instant
recovery. To deal with the inability to perform in-place updates
in NAND flash, the logical block address is separated from the
physical block address in SSDs. Therefore, a storage firmware
(called FTL) running inside SSDs maintains an address map-
ping table and remaps overwritten LBAs to free physical space.
With FTL’s address remapping, all the new data is appended to
storage media, which enables us to hide the out-of-place update
nature of NAND flash. However, since old versions of data
are left in the flash, which wastes storage space, FTL’s other
module, the garbage collector (GC), reclaims the free space
occupied by old versions. As observant readers might notice,
SSDs always keep old versions of data that were overwritten
by new data until they are permanently erased by GC. SSD-
Insider takes advantage of the built-in backup capability of
SSDs. SSD-Insider keeps track of old versions of data inside
SSDs and never removes them until the ransomware detection
algorithm confirms that the new versions are not affected by
ransomwares. If a ransomware attack is detected, SSD-Insider
can quickly recover the original data by rolling back a mapping
table so that it points to the old versions. Since only an update
of mapping table entries is required, the roll-back process can
be completed rapidly without having to copy data physically.

III. DESIGN OF SSD-INSIDER

A. Invariant features of ransomware

Based on how they overwrite encrypted files, ransomware
can be categorized into three classes: in-place overwriting
(Class A), out-of-place overwriting (Class B), and deleting
and overwriting the original file (Class C) [6]. Considering
that attacker’s chances to get ransom become higher when

the original files cannot be recovered, it is necessary to
“overwrite” the original files either by the encrypted contents
or by random contents. Indeed, all of the ransomware samples
we collected were found to conduct overwriting immediately
after reading and encrypting the victim’s files. We note that
the overwriting is technically equivalent to “unrecoverable
permanent erasure” conducted by a ransomware. To capture
ransomware’s behavioral traits, and to find features capable
of distinguishing ransomware from normal applications with
similar overwriting behavior, we conducted experiments that
run several ransomwares and applications (data wiping, DB
update, IO stress test, etc) in a sandbox and found the following
six features; four principal features and two secondary ones1:

• OW IO denotes the number of overwritings for a time
slice (e.g., 1 sec).

• OWST is the fraction of overwritten blocks over the
total number of write requests during a time window.

• PW IO is the number of overwritings for a time
window consisting of N time slices.

• AVGW IO is the average length of continuously over-
written blocks in a current time window.

• OWSLOPE is the fraction of the number of over-
writings during a current time slice over the average
number of overwritings over the previous time win-
dow.

• IO is the fraction of the number of overwritings
during a current time slice over the average number
of writings over the previous time slice

OWIO. OW IO is the most significant feature indicating the
property of reading, encrypting and overwriting the same
block of a file for a short period of time. Fig. 1(a) shows
how long WannaCry and Mole ransomwares were running
during 1-second windows when varying the value of OW IO.
It shows that the more frequent overwriting occurs, the longer
WannaCry and Mole have been in action. Also, the overwriting
frequency of normal applications, as can be seen in Fig. 1(b),
is not as high as that of ransomwares except for data wiping
applications (i.e., less than 100K). This supports our hypothesis
that heavy overwriting follows reading operation within a short
duration, when ransomwares are active. We utilize OW IO, the
overwriting frequency as one of indicators of ransomware. This
feature, however, can also be observed during normal program
execution such as DB update after email synchronization (e.g.,
outlook), cloud storage synchronization (e.g., dropbox), OS
update (MS Windows update), software installation, temporary
file creation for web browsing, and during the operation of anti-
virus software, data wiper, disk stress tools, etc. For example,
Fig. 1(b) shows cumulative values of OW IO for four ran-
somwares (e.g., WannaCry, Mole, CryptoShield, and Jaff) and
for four normal applications (e.g., data wiping, cloud storage,
compression, P2P download). The accumulated number of a
data wiping program is as high as that of ransomwares as
shown in Fig. 1(b), and that of CryptoShield is as low as that
of cloud storage update and P2P download. Therefore, more

1Throughout this paper, overwriting is limited to overwritten data blocks
that have been read within the last N seconds (time window), where N is a
parameter adjusted based on the desired detection speed and accuracy.

3

(a) Correlation between active period
of ransomware and OWST

(b) Cumulative values of OWST (c) Correlation between active period
of ransomware and PWIO

(d) Cumulative values of PWIO

(e) Correlation between active period
of ransomware and AVGWIO

(f) Cumulative values of AVGWIO (g) Correlation between active period
of ransomware and IO

(h) Correlation between active period
of ransomware and OWSLOPE

Fig. 2: Six ransomware features capture ransomware’s behavioral characteristics (See also Fig. 1 for OWIO).

features distinguishing ransomwares from these applications
are necessary to detection precisely.

OWST. One of the hard-to-distinguish applications is data wip-
ing as we have seen in Fig. 1(b). The noticeable feature is how
many overwritings there are among writing requests within
a time window, where duplicate overwritings over a single
block are counted only once. Typical data wiping applications
require multiple overwritings over a single block to securely
erase data, which incurs low OWST value compared to that of
a ransomware. For example, the DoD 5220.22-M [9] requires
7 overwritings per one read IO over the same block. Fig. 2(b)
confirms that OWST captures the high rate of overwriting in
write IOs that occur during ransomware operation, where the
strong correlation between OWST and the active period of
ransomware is clearly shown in Fig. 2(a).

PWIO. Sometimes, CPU-intensive or IO-intensive jobs might
be running while a ransomware is in operation. In this case,
the speed of ransomware slows down, thus the IO requests of
ransomware are dispersed over rather a long time span. For
example, the ransomware Jaff is too slow to be detected by
OW IO and OWST . However, PW IO, the accumulated number
of overwritings during a longer-term window (10s) instead of
a short-term slice (1s) of OW IO captures it very well as shown
in Fig. 2(d), whereas its correlation shown to be strong with
the ransomware activity period as shown in Fig. 2(c).

AVGWIO. AVGW IO captures the run-length characteristics
of ransomware’s attack target. Because the ransomware mainly
targets documents and images, it does not involve overwriting
operations over many continuous blocks, unlike data wiping,
defragmentation, and DB updates. Thus, the length of continu-
ously overwritten blocks is relatively shorter than that of those

applications, which is shown in Fig. 2(f), where its correlation
with the active period is shown in Fig. 2(e).

Secondary features. The four aforementioned features are the
principal features of SSD-Insider. The other auxiliary features
are IO and OWSLOPE , where OWSLOPE captures ran-
somware’s behavior of abrupt increase of overwriting volume.
Their correlations with ransomware’s active period are shown
in Fig. 2(g) and Fig. 2(h).

Owing to the resource limitation and the tight time-bound
characteristics of the SSD system, we utilized a binary deci-
sion tree, instead of using more powerful machine learning
algorithms, such as support vector machine or even deep
learning. For the training algorithm of the tree, we used the
ID3 algorithm [4].

B. Ransomware detecting algorithm

Data structure for detection. All I/O requests are monitored
for ransomware detection, and each request consists of four
items: Time, LBA, IOMode, and Length. Time denotes when
the request was generated in the system. LBA is the starting
address where the data is read or written, IOMode represents
the request type (R/W), and Length is the number of blocks
for the request. A request is denoted by IOReq, and Length is
assumed to be 1. A time window is defined over I/O requests
as a duration of monitoring to detects periodically suspicious
behavior of ransomware, and is used as 10s in our experiments.
It consists of N time slices, and it slides by a time slice
(e.g., 1s) at every check point. To evaluate values of the six
features, we build a counting table that basically stores IOReq’s
run-length of overwriting. During a time slice, SSD-Insider
counts IOReq, and updates the counting table according to

4

(a) Counting table holds the run-length of overwritings for each time
slice.

(b) Counting table update example using basic functions (NewEntry, UpdateEn-
tryR, SplitEntry, UpdateEntryW, and MergeEntry)

Fig. 3: Design of SSD-Insider: data structure and working examples

Algorithm 1 RansomwareDetection
Require: N
1: for all reqi do
2: if the time slice expires then
3: Calculate 6 attributes for N time slices
4: ransomt=DecisionTreeID3(6 attributes)
5: Score = Score + ransomt

6: Slide TimeWindow by one time slice
7: Score = Score − ransomt−10
8: end if
9: if reqi is write-req then

10: Count overwritten blocks if reqi is already in the table
11: Merge or split the runs of overwritten blocks
12: else
13: Make a new entry and adjust the runs of overwritten blocks
14: end if
15: end for

the counting value and LBA. The counting table consists of
entries that store each consecutive overwriting. An entry is
composed of Time, LBA, RL, and WL. Time denotes the time
slice number at which the entry is created or updated. LBA
is the starting address of a consecutive overwriting. RL is the
total length of Read IO that occurs consecutively from the
LBA. WL is the total length of write IO, i.e., consecutive
overwriting, occurring after a read IO has occurred. A hash
table consisting of LBAs for keys is defined for fast access of
the counting table. Since an entry in the counting table stores
a consecutive IOReq, multiple LBAs can be merged into an
entry. Using the counting and the hash tables, we can calculate
values of the six features. That is, IO is the sum of all read
(RIO) and write IOs (W IO) during the current time slice (1©
in Fig. 3(a)). OW IO is the sum of WLs for the current time
slice. PW IO is the sum of all WLs stored in the counting table
from t − 11 to t − 1 (assuming N = 10, as in our experiments),
when the current time is t. AVGW IO is the average WL of
all entries from t − 10 to t in the counting table as in 2© of
Fig. 3(a). OWST is the current time slice’s OW IO divided by
W IO. Finally, OWSLOPE is the value of OW IO divided by

Fig. 4: Sliding time window and detecting ransomware activity

PW IO as shown in 3© of Fig. 3(a).

SSD-Insider’s real-time detection. The detection algorithm is
described in Algorithm 1. Using an example, how to keep track
of run-length of overwriting during each time slice and window
is described in Fig. 3(b). IOReqs used in this example are
assumed to have (IOMode, LBA) and the Length is used as 1.
Roughly speaking, the algorithm updates the tables according
to the IO request type. When it is a write request, it checks
whether it is an overwriting command or not and counts (Line
10). Also, because it is collecting the run-length of overwritten
blocks, it manages the runs of overwritten blocks (Line 11).
For a read request, it makes a new entry in the table or just
update it to make a longer run (Line 13). When a time slice
expires, it drops the obsolete entries in the counting table by
sliding the window (Line 6), and adjust Score by subtracting
the dropped entry (Line 7). Six feature values are calculated
using the counting table (Line 3), and the values are fed
to the ID3 decision tree (DecisionTreeID3) to obtain 0 or 1
results (Line 4), where 1 means that the system at the current
checkpoint is highly likely to be under attack of a ransomware,
and 0 means otherwise. For a time window (10s), the outputs
of the decision tree are all added up to give a score ranging

5

from 0 to 10 as shown in Fig. 4 (Line 5). To determine whether
ransomware is active or not, we used a threshold value 3 in
our experiment (See section V-B).

C. Instant recovery algorithm

In order to support the recovery of damaged files, SSD-
Insider’s recovery algorithm should keep track of all the
changes made to files, maintaining original versions. It also
should retain data persistence/consistency and should not
compromise I/O performance. In addition, SSD-Insider must
be designed in a cost-effective manner so that it can be
implemented in SSD environments. The proposed recovery
algorithm is devised to satisfy all of the aforementioned
requirements. In the following subsections, we explain how the
SSD-Insider’s FTL handles I/O requests while leaving change
logs for recovery and detail its recovery process. We also
discuss issues related to GC.

Data recovery process. Once the data recovery process is
triggered by the detection algorithm, the SSD-Insider notifies
users of which suspicious behaviors are detected 2. If a user
responds that ransomware attack is suspected, SSD-Insider’s
FTL first makes an SSD read-only, ignoring all the writes
sent to it. As illustrated in Fig. 5, the SSD-Insider’s FTL then
scans backup entries in the queue from the back to the front,
replacing individual mapping entries with the corresponding
backup entries. Backup entries staying in the queue for longer
than 10 seconds are ignored during the recovery process. After
the recovery process finishes, the status of the mapping table is
rolled back to the time just before 10 seconds. This roll-back
process is accomplished within one second because it does
not involve any data copies, but just updating the mapping
table. After the storage is recovered, SSD-Insider asks users
to reboot the system and to get rid of ransomwares using
anti-virus programs. The recovery algorithm aims at restoring
the status of the SSD to 10 seconds earlier, but this process
is done without any awareness of data consistency between
files and their metadata (e.g., inodes). Thus, a recovered SSD
could have an inconsistent status, where on-disk file-system
structures and files are partially updated and thus inconsistent.
This consistency problem can be resolved by means of a file-
system check/recovery tool (e.g., fsck). fsck is designed to
restore a consistent file system after sudden power loss or a
system failure. The SSD status after SSD-Insider’s recovery
is similar to one after sudden power loss or system failures.
Only the differences are: 1) it is intentionally caused by SSD
firmware and 2) it looks like that a power failure happened 10
seconds before ransomware attacks. A series of experiments
on EXT4 show that file-system is successfully recovered to a
consistent state with fsck (see Section V-B).

Garbage collection. Garbage collection (GC) is the only way
of permanently erasing actual contents in flash. Old versions
of data stored in flash pages should not be erased by GC until

2This notification to end users can be made by using a customizable I/O
interface facility with an integrated user application. The modern storage
interface standards provide a way of adding user-defined commands so that
the host and the storage device exchanges maintenance information [10], [11].
In our case, a ‘ransomware attack alarm’ can be added as a new command.
Once the host receives an alarm from the SSD, it launches the application that
displays a warning message and gets a response from users to decide whether
a ransomware attack is suspected or not.

Time

② Scan the queue

Ransomware

detection

tt-10

9 13 117 8 10

Maybe UnsafeSafe

11
�

�

�

11 11
��� ��� NAND

Flash

Mapping Table

21 22 23 24 25 26 27 28 29 30PPA

11�22 13�21 9�20 ���Back Front

Recovery Queue

t t-10

③ Locate an infected

mapping entry

26 22

④ Recover

the old entry

Written LBA

①

Fig. 5: Data recovery process in SSD-Insider. After ransomware is detected
(1©) at time t, the SSD-Insider FTL scans the recovery queue (2©), examining
LBAs, old PBAs, and timestamps. For LBAs 9, 13, and 11 that were recently
overwritten (i.e., > t − 10), the SSD-Insider cannot guarantee their safety.
Therefore, SSD-Insider locates a mapping entry in the mapping table (3©)
and updates the entry so that it points to the physical location of the original
data (4©). In case of LBA 11, its mapping entry is reverted from PPA 26
to PPA 22 that contains old but safe data. For LBAs 7, 8, and 10 that were
written 10 seconds ago (i.e., ≤ t − 10), SSD-Insider guarantees that their data
are safe, and thus their mapping entries are not updated.

their new versions are confirmed safe. For this reason, the SSD-
Insider’s FTL has to copy even invalid pages during GC if it is
unsure if they are encrypted by ransomware or not. Compared
with typical FTLs, therefore, SSD-Insider would require more
page copies for GC. However, since only a limited number
of pages stay in the queue, extra page copies caused by
SSD-Insider are trivial. According to our experiments, SSD-
Insider exhibits almost 0% and 22% higher GC overheads than
existing FTLs under the average- and the worst-case scenarios,
respectively (see Section 5).

IV. IMPLEMENTATION OF SSD-INSIDER

We implemented SSD-Insider’s detection and recovery
algorithms in an in-house open-channel SSD3 prototype illus-
trated in Fig. 6. Our in-house SSD card was composed of 8
channels and 8 ways with a custom flash controller. It offered
a capacity of 512 GB with 700 MB/s write and 1.2 GB/s read
throughputs, which were comparable to commercial SSDs. To
evaluate SSD-Insider in terms of performance and overhead,
we used a x86 host with Intel’s Xeon CPU running at 3.0 GHz
and 4 GB DRAM. Our SSD card was connected to the x86
host through a PCIe interface. Ubuntu 16.04 with the Linux
kernel 4.10 was used as a host OS.

V. EXPERIMENTAL RESULTS

A. Ransomware data sets

For our evaluation, we collected various well-known ran-
somwares such as Locky.bdf, Locky.bbs, Zerber.ufb, Wan-
naCry, Jaff, Mole, GlobeImposter, and CryptoShield [12].

3Unlike off-the-shelf SSDs, the open-channel SSD platform enables us to
implement and test various FTL algorithms because all those algorithms are
run on the block device layer of the host system [11]. Even if the FTL
algorithms, along with the detection/recovery algorithms, are implemented in
the block layer, they could be directly adopted to the SSD firmware because
of no differences in the design principle.

6

NAND Flash Cards

(a) Open-channel SSD card (b) The SSD card attached to a x86 host via PCIe

HDD
(Linux OS Image)

Open Channel SSD

SATA PCIe

Linux 4.10

(Host OS)

Ransomware

Type A
Ransomware

Type A

Windows 10 (Guest OS)

Ransomware

Type A
Ransomware

Type A

Virtual Disk

FTL

SSD-Insider

Raw Block Dev

Block Dev

Driver

(Modified)

Block Dev

Driver

(Unmodified)

E
x
p

e
r
im

e
n

ta
l S

e
tu

p

(c) A diagram of our experimental setup
Fig. 6: SSD-Insider’s working prototype and experimental setup

TABLE I: Data set with various combinations of ransomwares and applications
for training and testing of SSD-Insider

Application Type Application Ransomware
For training

Ransom only none Locky.bbs
Heavy overwriting WPM (DataWiping) none
Heavy overwriting MySQL (Database) none
Heavy overwriting Dropbox (CloudStorage) none

IO-intensive DiskMark (IOStress) Zerber.ufb
IO-intensive IOMeter (IOStress) Zerber.ufb
IO-intensive hdtunepro (IOStress) Zerber.ufb
Normal App AutoCAD/VS (Install) Locky.bdf
Normal App Chrome (WebSurfing) Locky.bbs
Normal App OutlookSync Locky.bdf
Normal App WindowUpdate Locky.bdf
Normal App BitTorrent (P2PDown) none
Normal App Kakaotalk (SQLite) none

For testing
Ransom only none WannaCry

Heavy overwriting Dropbox (CloudStorage) In-house (outplace)
Heavy overwriting WPM (DataWiping) GlobeImposter
Heavy overwriting MySQL (Database) In-house (inplace)

IO-intensive IOMeter (IOStress) CryptoShield
CPU-intensive Bandizip (Compression) Mole
CPU-intensive PotEncoder (VideoEncode) Jaff
Normal App AutoCAD/VS(Install) GlobeImposter
Normal App PotPlayer (VideoDecode) WannaCry
Normal App OutlookSync Mole
Normal App BitTorrent (P2PDown) WannaCry
Normal App Chrome (WebSurfing) GlobeImposter

As well as those, we have implemented two new and in-
house ransomwares that are not reported to the public us-
ing open source ransomwares from github [13], [14] – one
of them has an ‘in-place update’ encryption attack while
the other is based on an ‘out-of-place update’. To evalu-
ate SSD-Insider’s performance, we set up the environment
where ransomware ran with typical background applications,
including three application types: applications with high rate
of overwriting, CPU-intensive, and IO-intensive applications.
While heavy overwriting applications confuse our detector,
CPU/IO-intensive applications disturb the detector by slowing
down ransomware’s activity. Even the normal application class
included applications with relatively high IO compared to
user’s casual usage pattern. The background applications were
divided into four types: 1) Heavy overwriting type includes
data wiping tool (WPM satisfying DoD 5220.22-M), cloud
storage synchronization (Dropbox), and heavy database update
(MySQL 5.5), 2) IO-intensive type includes IO stress tools
such as IOMeter, HDtunepro, DiskMark, 3) CPU-intensive

type includes compression (Bandizip), video encoding (Daum
pot encoder), 4) Normal app type includes video playback
(Daum pot player), email synchronization (Outlook), P2P
download (BitTorrent), web-browsing (Chrome), SQLite activ-
ities (Kakaotalk), and software installation such as VS (Viusal
Studio 2015) and AutoCAD 2016. Various combinations of
a ransomware and a background application were used for
learning decision trees with ID3, and also for performance
evaluation. The whole dataset and evaluation scenarios for
the experiment are summarized in Table I. For evaluation,
experiment with each combination was conducted 20 times,
and the average was taken. We also note that as shown in the
table no ransomware for training is included for testing to show
how accurately and promptly SSD-Insider detects unknown
ransomwares.

B. Performance evaluation

Ransomware detection accuracy. To evaluate the accuracy
of SSD-Insider detection algorithms, we measured FAR (false
acceptance rate) and FRR (false rejection rate) of the detection
algorithm varying the threshold of the score value (or the
frequency of which the decision tree reports ransomware
activity for a time window) to detect ransomware. Fig. 7
summarizes our experimental results on accuracy in terms of
FAR/FRR. Even though there is some variation, depending on
the scenario, with the threshold with 3 the detection algorithm
could detect ransomware’s activity accurately under all types of
background applications. We report that the worst background
noise in terms of FRR came from IO-intensive and CPU-
intensive jobs as shown in Fig. 7(b) and Fig. 7(c). That is,
they interfered with ransomware to slow down the speed of
overwriting by heavy usage of CPU and IO. In terms of
FAR, the worst scenario came mostly from heavy overwriting
type, such as DataWiping and Database applications as shown
in Fig. 7(b). This is because heavy overwriting applications
confused our detector by their similarity in behavior. However,
as can be seen in Fig. 7, even in such heavy CPU, IO usage
and heavy overwriting scenarios, SSD-Insider detected very
accurately ransomware activity with the threshold value 3.
FRRs in all scenarios were 0%, and FARs were close to 0%
with the threshold value 3, which means that SSD-Insider
did not miss any ransomware activity, but sometimes falsely
recognized normal application’s activity as that of ransomware.
Before recovery process starts, SSD-Insider prompts users to
confirm whether she will start the recovery process or not.
False alarm might interrupt users, but it would rarely happen

7

(a) Heavy overwriting (b) IO-intensive (c) CPU-intensive (d) Normal App
Fig. 7: SSD-Insider’s detection accuracy varying the score during a time window (10s) When the threshold score (or, the threshold frequency of the decision
tree’s reporting of ransomware activity for a time window) is set to 3, FRR is 0% and FAR is at most 5% only when heavy overwriting such as data wiping.

 0

 100

 200

 300

 400

 500

W
a

n
n

a
c
ry

C
lo

u
d

S
to

ra
g

e
D

a
ta

W
ip

in
g

D
a

ta
b

a
s
e

IO
S

tre
s
s

C
o

m
p

re
s
s
io

n
V

id
e

o
E

n
c
o

d
e

In
s
ta

ll
V

id
e

o
D

e
c
o

d
e

O
u

tlo
o

k
S

y
n

c
P

2
P

D
o

w
n

W
e

b
S

u
rfin

g

E
la

p
s
e

d
 t

im
e
 (

n
a

n
o

s
e

c
o

n
d

)

FTL code
SSD-Insider

(a) Read elapsed time

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

W
a
n
n
a
c
ry

C
lo

u
d
S

to
ra

g
e

D
a
ta

W
ip

in
g

D
a
ta

b
a
s
e

IO
S

tre
s
s

C
o
m

p
re

s
s
io

n
V

id
e
o
E

n
c
o
d
e

In
s
ta

ll
V

id
e
o
D

e
c
o
d
e

O
u
tlo

o
k
S

y
n
c

P
2
P

D
o
w

n
W

e
b
S

u
rfin

g

FTL code
SSD-Insider

(b) Write elapsed time
Fig. 8: Impact of SSD-Insider on I/O elapsed times for ransomware-infected
SSDs with various background applications running

only with heavy DB update, data wiping, and software install
even at most FAR 5% as shown in Fig. 7.

Data consistency. To evaluate data consistency, we intention-
ally exposed the host to ransomware attacks repeatedly 100
times using a custom ransomware we developed. It mimicked
the common behaviors of well-known ransomwares and in-
fected larger than 1 GB files at an arbitrary point of time.
Once SSD-Insider detected the activities of the ransomware,
it stopped servicing writes from the host, asked the user if it
would recover the files, recovered infected files if the answer
was yes, and asked users to reboot the host. After the reboot, a
fsck tool was triggered to find and resolve data inconsistency.
After fsck finished, we saw if the file system was still in the
consistent state. We also checked if all the infected files were
rolled back to unencrypted versions. Table II summarizes the
results, confirming that infected SSDs successfully returned to
a consistent status with no encrypted files left.

TABLE II: A summary of file-system consistency checks

Type of corruption # of Corruption Files left
occurrences not resolved encrypted

No corruption 0 - -
Wrong free-block count 100 × ×

Wrong inode-block count 100 × ×

Free-space bitmap 61 × ×

C. Overhead evaluation

I/O elapsed time. For the 12 testing traces in Table I, we
measured read/write elapsed times increased by SSD-Insider.
Fig. 8 shows the length of time spent by 1) the FTL codes and

 0

 2x10
7

 4x10
7

 6x10
7

 8x10
7

 1x10
8

 1.2x10
8

 1.4x10
8

 1.6x10
8

 1.8x10
8

 2x10
8

W
annacry

C
loudStorage

D
ataW

iping

D
atabase

IO
Stress

C
om

pression

VideoEncode

Install

VideoD
ecode

O
utlookSync

P2PD
ow

n

W
ebSurfing

#
 o

f
p

a
g

e
 c

o
p

ie
s

Conventional SSD
SSD-Insider

Fig. 9: A comparison of GC costs

by 2) the SSD-Insider detection/recovery algorithms, excluding
NAND device latency. To confirm the feasibility of SSD-
Insider on embedded processors, we intentionally slowed down
the host CPU clock from 3 GHz to 1.2 GHz on which
SSD-Insider runs. Compared with the conventional FTL, read
and write latencies with SSD-Insider increased by 23.5% and
15.6%, on average. More specifically, the elapsed times taken
for the FTL (without SSD-Insider) to handle 4-KB block reads
and writes were 477 ns and 1,372 ns, respectively. The extra
overheads added by the SSD-Insider detection/recovery algo-
rithms were just 147 ns and 254 ns, respectively. Considering
that NAND chip’s page-read and page-write latency is 50 µs
and 500 µs [15], these extra delays account for a negligible
portion of the total I/O latency – 0.3% for reads and 0.04% for
writes – and do not affect the user-perceived response times.

Garbage collection cost. SSD-Insider recovery algorithm has
to copy invalid pages to keep old versions of data during
GC for data recovery later. Moreover, since those old pages
occupy additional space, it would lead to more frequent GC
invocations, which negatively affects both I/O performance
and storage lifetime. In order to assess SSD-Insider under the
worst-case scenario where GC costs are high, we filled up 90%
of the SSD with user files and ran traces on it. As depicted in
Fig. 9, even under the worst-case scenario, the SSD-Insider’s
FTL required 22% more page copies, on average 4. For the
traces except for Compression, VideoEncode, and WannaCry,
only a few page copies were observed. This was because they

4The FTL algorithm used was based on page-level mapping with greedy
victim selection, which was almost the same as an open-source FTL imple-
mentation in the Linux kernel [11]. Even though detailed architectures of
commercial SSDs are unknown, literature reports that proprietary FTLs are
based on similar schemes [16]. Hence, it may be safe that our experimental
setup at least suffices to understand the impact of SSD-Insider GC costs.

8

TABLE III: DRAM requirements for SSD-Insider

Data structure Unit size # of entries DRAM size (MB)
Hash table 42 Bytes 250,000 10 MB

Counting table 12 Bytes 1,000 0.03MB
Recovery queue 12 Bytes 2,621,440 30 MB

did not require many page copies for cleaning. We also carried
out experiments with 70% SSD space utilization to understand
GC overheads under the average case, and found that extra
page copies caused by SSD-Insider were almost zero. This
indicates that the effect of SSD-Insider on the increase of GC
costs is negligible.

DRAM requirement. For the ransomware detection and re-
covery, SSD-Insider has to maintain additional data structures,
such as a hash table, a counting table, and a recovery queue.
TABLE III lists DRAM required by SSD-Insider. The total size
of DRAM needed to run SSD-Insider is 40.03 MB, which is
an affordable size for modern SSDs typically equipped with
more than 1 GB DRAM [17], [18], [19].

VI. RELATED WORK

For detection of ransomwares, signature matching is the
most popular tool used by many anti-virus software. However,
an attacker can easily create ransomware variants with different
signatures to evade detection. Instead of checking ransomware
signatures, a file integrity monitor can detect ransomware
activities. Tripwire is a system file monitoring tool, doing
hash comparison for checking illegal modification, but it is not
appropriate for user files which might change frequently [20].
Drastic changes of a user file’s content in a short time period
may be a strong indicator for ransomware activities. Also,
encrypted files have very high entropy, but ordinary files not.
CryptoDrop and Unveil monitors in real-time user’s data for
changes [6], [21]. They use file type changes, drastic changes
in file contents, and Shannon entropy as primary indicators to
distinguish ransomware’s activity. It also uses deletion and file
type funneling of a large number of files as secondary indi-
cators. CryptoDrop effectively detected ransomware’s activity,
but some of the encrypted files could not be recovered. To
detect early before a ransomware encrypts any files, Moore
proposed to use honeypot [22]. Orman described a monitoring
technique, which observes in real-time repetitive loops that
both symmetric and public key algorithms such as AES and
RSA should have necessarily [23]. However, it should be noted
that monitoring calls to encryption libraries is not enough,
because encryption can be easily implemented using prevailed
open source software. Canfora et al. developed detection
schemes of ransomware’s abnormal behavior using Hidden
Markov Model (HMM) and structural entropy [24]. Cabaj
et al. utilized Software-Defined Network (SDN) to detect
and mitigate ransomware [25]. Continella et al. proposed a
file-system level solution, called ShieldFS, for ransomware
detection and recovery [26]. To detect ransomware, ShiledFS
monitored various activities and information available at the
file system level.

Numerous techniques have been studied to defense hacker
attacks at the level of storage systems [27], [28], [29], [30].
Pennington et al. proposed a storage-based intrusion detec-
tion technique that monitored suspicious activities inside file

servers or block store and prevented malware programs (e.g.,
backdoors and Trojan horses) from being inserted by attack-
ers [30]. It used rule-based policies that triggered alarms when
suspicious I/O behaviors were detected. Paul et al. extended
an idea of the above work so that the behavior-based intrusion
detection was done inside storage device [27]. Our approach
was directly inspired by the ideas of the aforementioned works,
but we focused on detecting ransomware behaviors rather than
typical malware (e.g., virus programs). Moreover, we proposed
the overhead-free recovery scheme that took advantage of the
physical natures of NAND flash. Park et al. have presented a
brief concept of self-defensible SSDs, claiming that the backup
capability of SSDs would be effective to protect user data from
ransomware attacks [31]. The basic idea of self-defensible
SSDs is similar to that of SSD-Insider, but it presents only
idea-sketch but did not explore the ransomware features.
Huang et al. proposed FalshGuard that has a firmware-level
recovery system, but it focused only on recovery process but
not on detection algorithm [32]

VII. CONCLUSION

In this paper, we have proposed a new set of behavioral
features of ransomware, which is invariant across various
ransomwares and lightweight enough to be used in SSDs. By
presenting various experimental results, the discovered features
have been shown to be strong indicators of ransomware
activity. We also have developed a perfect recovery algorithm
of infected files using the delayed deletion feature of SSD. To
show the feasibility of our techniques, the detection/recovery
algorithms were implemented in an open-channel SSD as a
working prototype called SSD-Insider.Our evaluation results
showed that SSD-Insider was accurate and fast for detection,
and it could perfectly recover an infected SSD in a second
without any data loss. We believe that SSD-Insider opens a
new direction of anti-ransomware research – better defense
and recovery algorithms on other malicious software would
be developed based on the similar concept of SSD-Insider,
which are left for our future work.

Acknowledgement. This research was supported by Global
Research Lab. (GRL) Program of the National Research Foun-
dation (NRF) funded by Ministry of Science, ICT (Information
and Communication Technologies) and Future Planning(NRF-
2016K1A1A2912757). This work was supported in part
by the Basic Science Research Program through the Na-
tional Research Foundation of Korea funded by the Min-
istry of Education under Grant NRF-2016R1C1B2011415,
and in part by NRF grants NRF-2016K1A1A2912757, NRF-
2017R1E1A1A01077410, and NSF grant CNS-1809000. Dae-
Hun Nyang and Sungjin Lee are the corresponding authors.

REFERENCES

[1] “Korean web host hands over 1 billion won to ransomware
crooks,” 2017. [Online]. Available: http://www.zdnet.com/article/
korean-web-host-hands-over-1-billion-won-to-\\ransomware-crooks/

[2] C. Everette, “Ransomware: to pay or not to pay?” Computer Fraud &
Security, vol. 2016, no. 4, pp. 8–12, 2016.

[3] “An istr special report: Ransomware and businesses 2016,”
2016. [Online]. Available: https://www.symantec.com/content/
en/us/enterprise/media/security response/whitepapers/ISTR2016
Ransomware and Businesses.pdf

9

[4] J. R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, no. 1,
pp. 81–106, 1986.

[5] J. Walter, Meet tox: Ransomware for the rest of us. mcafee-labs/meet-
tox-ransomware-for-the-rest-of-us/, 2015. [Online]. Available: https:
//blogs.mcafee.com/

[6] N. Scaife, H. Carter, P. Traynor, and K. Butler, “Cryptolock (and
drop it): Stopping ransomware attacks on user data,” in Proceedings
of Distributed Computing Systems (ICDCS). 2016 IEEE International
Conference on, 2016, pp. 303–312.

[7] “Latest security intelligence report shows 24 percent of pcs are
unprotected,” 2013. [Online]. Available: https://blogs.microsoft.
com/blog/2013/04/17/latest-security-intelligence-report-shows-24-\
\percent-of-pcs-are-unprotected/

[8] “Opswat: Antivirus and compromised device report,”
2015. [Online]. Available: https://www.opswat.com/resources/reports/
antivirus-and-compromised-device-january-2015

[9] National Industrial Security Program Operating Manual (NISPOM),
Department of Defense, 2006.

[10] Seagate SMART Attribute Specification, Seagate, 2011.
[11] M. Bjørling, J. Gonzalez, and P. Bonnet, “Lightnvm: The linux open-

channel SSD subsystem,” in USENIX Conference on File and Storage
Technologies (FAST 17), 2017, pp. 359–374.

[12] “Virus total.” [Online]. Available: https://www.virustotal.com/
[13] “Virtual gangster.” [Online]. Available: https://github.com/roothaxor/

Ransom
[14] “A poc windows crypt.” [Online]. Available: https://github.com/

mauri870/ransomware
[15] MT29F8G08AAAWP NAND Flash Memory Specification, Micron Tech-

nology, Inc., 2012.
[16] F. Chen, D. A. Koufaty, and X. Zhang, “Understanding intrinsic

characteristics and system implications of flash memory based solid
state drives,” in Proceedings of the International Joint Conference on
Measurement and Modeling of Computer Systems, 2009, pp. 181–192.

[17] Hitachi accelerated flash, Hitachi, 2015.
[18] Samsung SSD 840 EVO data sheet, rev. 1.1, Samsung, 2013.
[19] PS3110 controller, PHISON, 2014.
[20] G. H. Kim and E. H. Spafford, “The design and implementation of

tripwire: A file system integrity checker,” in Proceedings of the ACM
Conference on Computer and Communications Security, 1994.

[21] A. Kharaz, S. Arshad, C. Mulliner, W. Robertson, and E. Kirda,
“Unveil: A large-scale, automated approach to detecting ransomware,”
in Proceedings of the 8th ACM International Conference on Embedded
Software, ser. USENIX Security ’16. USENIX, 2016, pp. 757–772.

[22] C. Moore, “Detecting ransomware with honeypot techniques,” in Pro-
ceedings of Cybersecurity and Cyberforensics Conference, 2016.

[23] H. Orman, “Evil offspring – ransomware and crypto technology,” IEEE
Internet Computing, vol. 20, no. 5, pp. 89–94, October 2016.

[24] G. Canfora, F. Mercaldo, and C. A. Visaggio, “An hmm and structural
entropy based detector for android malware: An empirical study,”
Computers & Security, vol. 61, pp. 1–18, 2016.

[25] K. Cabaj and W. Mazurczyk, “Using software-defined networking for
ransomware mitigation: The case of cryptowall,” IEEE Network, vol. 30,
no. 6, pp. 14–20, Dec 2016.

[26] A. Continella, A. Guagnelli, G. Zingaro, G. De Pasquale, A. Barenghi,
S. Zanero, and F. Maggi, “Shieldfs: A self-healing, ransomware-aware
filesystem,” in Proceedings of the Annual Conference on Computer
Security Applications, 2016, pp. 336–347.

[27] A. G. Pennington, J. D. Strunk, J. L. Griffin, C. A. N. Soules,
G. R. Goodson, and G. R. Ganger, “Storage-based intrusion detection:
Watching storage activity for suspicious behavior,” in Proceedings of
the Conference on USENIX Security Symposium, 2003, pp. 10–10.

[28] G. A. Gibson, D. F. Nagle, K. Amiri, F. W. Chang, E. Feinberg,
H. Gobioff, C. Lee, B. Ozceri, E. Riedel, and D. Rochberg, “A case for
network-attached secure disks,” 1996.

[29] K. R. Butler, S. McLaughlin, and P. D. McDaniel, “Rootkit-resistant
disks,” in Proceedings of the ACM Conference on Computer and
Communications Security, 2008, pp. 403–416.

[30] N. R. Paul, “Disk-level behavioral malware detection,” Ph.D. disserta-
tion, 2008.

[31] J.-Y. Paik, K. Shin, and E.-S. Cho, “Poster: Self-defensible storage
devices based on flash memory against ransomware,” in Proceedings
of IEEE Symposium on Security and Privacy, 2016.

[32] J. Huang, J. Xu, and X. Xing, “Flashguard: Leveraging intrinsic flash
properties to defend against encryption ransomware,” in Proceedings of
ACM Conference on Computer and Communications Security (CCS),
2017.

10

