
Private Over-threshold Aggregation Protocols

Myungsun Kim⋆1, Abedelaziz Mohaisen2, Jung Hee Cheon⋆3, and Yongdae Kim4

1 University of Suwon, Suwon, South Korea

msunkim@suwon.ac.kr
2 VeriSign Labs, VA, USA

amohaisen@verisign.com
3 Seoul National University, Seoul, South Korea

jhcheon@snu.ac.kr
4 Korea Advanced Institute of Science and Technology, Daejeon, South Korea

yongdaek@ee.kaist.ac.kr

Abstract. In this paper, we revisit the private κ+ data aggregation problem, and

formally define the problem’s security requirements as both data and user pri-

vacy goals. To achieve both goals, and to strike a balance between efficiency and

functionality, we devise a novel cryptographic construction that comes in two

schemes; a fully decentralized construction and its practical but semi-decentralized

variant. Both schemes are provably secure in the semi-honest model. We ana-

lyze the computational and communication complexities of our construction, and

show that it is much more efficient than the existing protocols in the literature.

Keywords: Privacy-preservation, over-threshold, data privacy, user privacy

1 Introduction

Of particular interest in many applications is the problem of computing the over-threshold

elements, elements whose count is greater than a given value, in a private manner. A

typical application that involves such primitive is network traffic distribution, where

n network sensors need to jointly analyze the security alert broadcasted by different

sources in order to find suspect sites. In such an application, and without losing general-

ity, each of such sensors has a set of suspects and would like to collaboratively compute

the most frequent on each of these sets (e.g., the count greater than κ, referred to as κ+)

without revealing the set of suspects to other sensors with whom she collaborates.

Problem definition: Let there be n users denoted by ui, 1 ≤ i ≤ n, and each of them

has a private (multi-)set Xi of cardinality k. For simplicity, assume that the cardinality

of each multiset is equal to each other. (We can efficiently handle the case where the

cardinality of all multisets are different from each other by adding random elements.)

There may exist one or more elements such that αi,j = αi,j′ for some j 6= j′.
PRIVATE κ+ AGGREGATION PROBLEM: By the multiplicity of an element of a multiset

we mean the number of times it appears in the multiset. Let κ ∈ N, and assume κ
has been implicitly predefined among all users. Then the problem at hand is defined

as follows: Given n multisets of cardinality k, find a set Z = {α1, . . . , ακ} ⊂ U =
⋃n

i=1 Xi such that (i) for all elements α ∈ U, if α has a multiplicity greater than or equal

to κ, then α ∈ Z, (ii) no polynomial-time algorithm can learn any element other than

⋆ This work was supported by the National Research Foundation of Korea (NRF) grant funded

by the Korea government (MEST) (No. 2012-0001243).

the output of a κ+ protocol, and (iii) no polynomial-time algorithm should know which

output of the execution belongs to which user [15].

One straightforward technique to solve the problem is to use a trusted third party

(TTP), where each user sends his private set to such TTP which performs the κ+ aggre-

gation task and reports the result back to each user. However, finding such TTP is not

always possible in many applications. Moreover, compromising the TTP could lead to

a complete privacy loss for all participating users.

Another approach is to use secure multiparty computation (SMC), which allows to

securely compute a function over private data where users only learn the result of the

function and nothing else. However, despite recent advances in their efficiency, SMC

methods still require substantial computation and communication costs, making them

impractical for real-world applications that mainly operate on large datasets.

A final approach is to use existing private set-operation protocols such as [14,21,13],

especially multiset union protocols. These protocols securely compute all elements ap-

pearing in the union of input multisets at least τ times. Here all of them demand a

priori-knowledge of the threshold value τ .

Remar 1. There have been many results [22,23,25,26] in the literature with titles con-

taining the term “top-κ”. We stress that these protocols produce the greatest κ elements

in the union of the given sets in a private manner, and thus are different in their end

results from our protocol. For example, there is a secure method for finding the κ-th

ranked element in multiple multisets by Aggarwal et al. [1]. Repeatedly applying this

protocol we can efficiently find the biggest κ elements in a distributed list.

Our approach—informal descriptions: The most non-trivial part of κ+ protocols is

that we should satisfy two privacy requirements, namely the data privacy and user-

privacy, at the same time. First let us take a closer look at e-voting protocols. In e-voting

protocols, each ballot is mixed with a shuffle scheme which plays a crucial role in re-

moving linkability between voters and ballots, which would hint user privacy. In fact,

in e-voting literature this notion is called unlinkability. In order to emphasize the dif-

ference with e-voting protocols, we use the term user privacy. Now assuming that each

element in multisets is encrypted and shuffled as in e-voting protocols, all encrypted

elements can be decrypted, especially in a threshold manner, while satisfying user pri-

vacy. However, all non-κ+ elements also are revealed, which violates data privacy in

our application. Thus we need a way to keep data privacy even when all encrypted

elements were decrypted. For this purpose we introduce an efficient function E that

commutes with an underlying public-key encryption. More specifically, let Enc be a

public-key encryption algorithm and Dec be the corresponding decryption algorithm.

We demand that: (i) for all s and for all pk, Es ◦ Encpk = Encpk ◦ Es, and (ii) for

all elements α, given Decsk(Encpk(Es(α))) no algorithm can efficiently find α with-

out s. We call this notion double encryption. In conclusion, our main technique is to

shuffle doubly encrypted elements by each user. We should notice that all shuffle algo-

rithms used in e-voting protocols rely on the re-randomizable property of underlying

homomorphic encryption (e.g. see [8,17,18,12,11]), but its re-randomization algorithm

does not change the plaintexts of input ciphertexts. However, in our protocol a double

encryption scheme will change the plaintexts of input ciphertexts, which is the main

difference from existing shuffle algorithms.

2

Summary of our results: In this paper, we present a formal definition of private κ+

protocol and its security. Our operation setting is fully decentralized among n users over

non-partitioned data. For the efficiency of our protocol, we refrain from using secure

multiparty computation and construct an efficient private κ+ protocol which is both

data-private and user-private. Our construction strikes a real balance in the consumed

resources and achieved security, and satisfies both privacy requirements. In particular, in

its efficiency, our construction is comparable to the work in [3], which achieves its effi-

ciency by giving up decentralized communication model, and in its security guarantees

it is comparable to the work [4], which is secure but resources exhaustive. Our protocol

on the other hand overcome the limitations and shortcomings of those protocols.

More specifically, our scheme does not requires a trusted party to set up the keys.

Note that using Paillier cryptosystem [20] in a threshold manner demands some trusted

setup. Moreover, our proposed protocol has several desirable features as follows: (1)

It has O(n2k) computational complexity where n is the number of users and k is the

cardinality of each user’s set, assuming κ ≤ k, (2) It has O(n2k) communication com-

plexity, and (3) It has a linear round complexity in the number of users.

In general, real-world applications has n much smaller than k, which further justi-

fies the efficiency of our protocol. This is, our protocol is beneficial in such real-world

applications where the number of participating users is small but the size of their mul-

tisets is large. It remains an important open problem to devise a protocol whose round

complexity does not depend on the number of users. Then we could make our protocol

have O(nk) computation and communication complexity.

Organization. The rest of this paper is organized as follows. In Section 2, we discuss

the related work with extensive analysis and comparison to our work. In Section 3,

we outline the preliminaries required for understanding the rest of the paper, including

double encryption, our formalism of κ+ protocol and its security, and cryptographic

primitives used in the context of computing the κ+. In Section 4, we introduce our

construction that comes into two forms with different requirements and guarantees and

meets data privacy and user privacy. In Sections 5 and 6 we analyze the security and

complexity of our work, by proving its security and showing its resources consumption

requirements. Finally, we draw concluding remarks and point future work in Section 7.

2 Related Work

There has been plenty of work in the literature to solve the problem of private data

aggregation. Such schemes can be classified under three schools of thoughts: fully cen-

tralized, fully decentralized, and semi-decentralized. While the centralized schemes as-

sume the existence of a trusted third party (TTP), which makes them of less interest

from the cryptographic and practical point of views, the fully decentralized schemes

utilize cryptographic primitives and protocols to replace the centralized TTP. Finally,

semi-decentralized schemes try to bridge the functional and security gap between other

directions. As they are of particular relevance to our work, we limited our discussion to

the decentralized and semi-decentralized protocols.

Decentralized solutions to the problem try to replace the centralized TTP with cryp-

tographic constructions, which comes in different forms leading to several directions of

research. One direction is based on SMC, as it is the case in [4]. However, at the core

of that protocol’s drawbacks is its inefficiency: since it uses Yao’s garbled circuits [24],

3

the computational resources required for ordinary data sizes is overwhelmingly high.

Furthermore, as the datasets become disjoint, the efficiency of such construction de-

creases sharply. In [4], Burkhart and Dimitropoulos—in what we consider to be the

most relevant work to ours—have devised a construction in which the round complexity

is linear to the number of bits in the data elements. However, due to using sketches to

improve the efficiency of subprotocols, the aggregate results are probabilistic. Further-

more, while the work in [4] is efficient in terms of its computational complexity, this

efficiency comes at the expense of high round complexity. Kissner and Song [14] de-

vised an over-threshold set union protocol—where a threshold value τ should be given

in advance—to find all elements appearing in the union of input multisets at least τ
times. The protocol requires a priori knowledge of the threshold, although operates in a

decentralized manner. We compare it to our work in Section 6.

Finally, semi-decentralized constructions, represented by the work of Applebaum et

al. in [3], aim to enhance the efficiency of fully-decentralized instantiations by adding

new entities: proxy and database (DB). However the proxy and the DB are assumed

to be semi-honest restricting the possibility of coalition between proxy and DB. This

allows to obtain a constant round protocol. While the authors claim that both proxy and

DB are expected to act as semi-honest, it might be a strong assumption both theoreti-

cally and practically. Furthermore, their scheme extensively relies on oblivious transfer

(OT) [16], which is a very expensive public-key primitive since it may require two

modular exponentiations per invocation, and run for each bit of the user’s data element.

To sum up, Table 1 summarizes properties and efficiency of existing solutions com-

pared with our proposed protocol. Computational complexity is expressed in terms of

the number of multiplications over modulo p. For simplicity, we assume that multisets

have values less than the prime p. Note that Applebaum et al.’s protocol requires both

ElGamal encryption [7] and Goldwasser-Micali encryption [10], but we assume that

both encryption systems use the same size modulus.

Table 1. Summary and Comparison

Comm. Model Round Cpx Comp. Cpx Comm. Cpx

Ours Fully decentralized O(n) O(n2k log p) O(n2k log p)

[4] Fully decentralized O(n(n+ k log k) log p) O(n2k) O(n2k log p)

[3] Semi-decentralized O(1) O(nk log2 p) O(nk log p)

3 Preliminaries

Notation. Let us denote F (α) for the multiplicity (also known as frequency) of an ele-

ment α in a multiset X and F (X) for the collection of multiplicities for all elements in

the multiset X—here the multiplicity F (α) of an element α refers to how many times

the element appears in X. For n ∈ N, [1, n] denotes the set {1, . . . , n}. If A is a prob-

abilistic polynomial-time (PPT) machine, we use a ← A to denote A which produces

output according to its internal randomness. In particular, if U is a set, then r
$
←− U is

used to denote sampling from the uniform distribution on U . A function g : N → R

is negligible if for every positive polynomial µ(·) there exists an integer L such that

g(η) < 1/µ(η) for all η > L.

4

3.1 Definitions
Informally, a double encryption is a pair of encryption schemes E = (KG,Enc,Dec)
and E = (G,E,D) such that Enc(E(a)) = E(Enc(a)). We demand that an encryption

scheme E be deterministic. The reason is that we need to know a complete distribution

of multisets while hiding their elements. See Appendix A for a formal definition of

public-key cryptosystem and its standard security definition.

Definition 1 (Double Encryption) Let E = (KG,Enc,Dec) be a public-key encryp-

tion scheme defined as in Definition 4 with a pair of keys (pk, sk) ← KG(1λ) and

a message space (resp., ciphertext space) Mpk (resp., Cpk). A pair (E ,E) is called

double encryption if there exists a triple of polynomial-time computable functions,

E = (G,E,D), that satisfies the following properties:

– A probabilistic function G(1λ) takes as input a parameter λ, and outputs (s, s′) s.t.

∀s, s′ and for any m ∈Mpk, m = Ds′(Es(m)), E and D are deterministic.
– Commutativity: For all pk, s and for all m ∈Mpk, Encpk(Es(m)) = Es(Encpk(m))

up to the randomness of Encpk(·).
– For all c← Enc(m), Es(m) = Decsk(Es(c)).

We give an instantiation of a double encryption scheme in the following example.

Example 1 Let p be a large prime of the form p = 2q + 1, where q is also prime. Let

Gq be a subgroup of Z×
p of order q with a generator g. Then a standard CPA-secure

ElGamal encryption E = (KG,Enc,Dec) is defined as follows: Selecting x
$
←− Zq ,

KG(1λ) outputs (pk, sk) where pk := (p, q, g, y = gx (mod p)) and sk := (p, q, g, x).
Given a message m ∈ Gq , the encryption algorithm Enc outputs c = (gr,m · yr) for a

randomness r
$
←− Zq . Given an ElGamal ciphertext c = (u, v), the decryption algorithm

Dec computes v ·u−x using the secret key x. Now E = (G,E,D) is defined as follows:

– A probabilistic function G(1λ) outputs (s, s′) ∈ (Zq)
2 such that ss′ = 1 (mod q).

– Given α ∈ Gq , E : Gq → Gq is given by α 7→ αs (mod p).
– A deterministic function Ds′(β) computes βs′ (mod p).

Then, (E ,E) is a double encryption:

– For all values m ∈ Gq , m = (ms)s
′

(mod p).

– For any message m ∈ Gq, there exists r′ = rs s.t.
(

gr
′

, (ms) · yr
′

)

= ((gr)s, (myr)s).

– For any ElGamal ciphertext c = (u, v) ∈ (Gq)
2, where u = gr and v = myr,

ms = vs · (us)−x (mod p).

We use a standard definition of shuffle given by Nguyen et al. [18]; see details of the

definition in [18, Def. 3 & Def. 4] and its extend version. As we mentioned before, our

shuffle algorithm takes as input a list of ciphertexts, and outputs a list of permuted and

doubly encrypted ciphertexts. Since a double encryption scheme leads to change the

plaintexts of input ciphertexts, we need to devise proving the correctness of the shuffle.

Now we define κ+ protocol and give its algorithmic description. Throughout the

paper, we use Σn to denote the set of all permutations on [1, n]. A private κ+ protocol

consists of five computable (in polynomial time) algorithms, (Setup, DEncrypt, Shuffle,

Aggregate, Reveal), over a double encryption (E ,E), which are explained as follows:

5

(pk, sk, s, s′)← Setup(1λ): The setup algorithm takes as an input the security param-

eter λ, and outputs the public and secret parameters for doubly encrypting input

ciphertexts, by invoking (pk, sk)← KG(1λ) and (s, s′)← G(1λ).

(Es(c1), . . . , Es(cn))← DEncrypt(pk, s, c1, . . . , cn): The algorithm DEncrypt takes

as input system parameters (pk, s) and a list of ciphertexts (c1, . . . , cn), and pro-

duces a list of doubly encrypted ciphertexts (Es(c1), . . . , Es(cn)).
(

Es(cπ(1)), . . . , Es(cπ(n))
)

← Shuffle(π,Es(c1), . . . , Es(cn)): The algorithm Shuffle

chooses a random permutation π ∈ Σn and shuffles the doubly encrypted cipher-

texts (Es(c1), . . . , Es(cn)), and then outputs the mixed list.

(Es(α1), . . . , Es(ακ))← Aggregate
(

pk, sk,Es

(

cπ(1)
)

, . . . , Es

(

cπ(n)
))

: The algo-

rithm Aggregate takes as input a pair of keys (pk, sk) and a list of permuted, dou-

bly encrypted ciphertexts, and for all i ∈ [1, n] computes Decsk
(

Es

(

cπ(i)
))

=

Es

(

απ(i)

)

. Finally it computes F
(

Es

(

απ(i)

))

, i ∈ [1, n] and outputs only the ele-

ments whose multiplicity is greater than or equal than κ. Here {Es(α1), . . . , Es(ακ)} =
{

Es

(

απ(i)

) ∣

∣F
(

Es

(

απ(i)

))

≥ κ
}

.

(α1, . . . , ακ)← Reveal (pk, s′, Es(α1), . . . , Es(ακ)): The algorithm Reveal outputs

the most frequent κ+ elements by computing Ds′ (Es(αj)) for all j ∈ [1, κ].
In the next section, we will define the meaning of secure κ+ protocol. Then we describe

cryptographic building blocks for constructing a secure κ+ protocol under proper cryp-

tographic assumptions.

3.2 Security Definition

Ideal Functionality. we define the ideal functionality Ftopk for the κ+ protocol

Definition 2 There are a set of n users, U = {ui}
n
i=1, a trusted party T , and an ideal

adversary S controlling a set of corrupted users Υt = {uij}
t
j=1 for some t ∈ [0, n−1].

Let Xi = {αi,j}
ki

j=1 be a multiset of user ui∈[1,n].

1. Each user ui sends Xi to T .

2. T computes the following functionality, and returns the output Zl to each ul∈[1,n]:

Zl =
{

αi,j ∈
⋃

i∈[1,n]Xi

∣

∣

∣
F (αi,j) ≥ κ

}

.

Data Privacy. Informally, data privacy requires that no user, or coalition of users,

should learn anything about honest users’ inputs except what can be trivially derived

from the output itself. We can easily derive the formal definition for data privacy in κ+

protocols following the standard privacy definition of existing protocols in the litera-

ture; an excellent reference on that is Goldreich’s textbook in [9]. More specifically, we

use Definition 7.5.1 (resp., Definition 7.5.3) in [9] for the semi-honest model (resp. the

malicious model). Roughly speaking, this is formalized by considering an ideal world

where T receives the inputs of the users and outputs the result of the defined function-

ality. We demand that in the real world application of the protocol–that is, one without

the T –no user should learn more information than in the ideal world.

User Privacy. The remaining part to conclude our definitions is user privacy. Let Z =
{α1, . . . , ακ} be an output of a κ+ protocol. Roughly speaking, no user or coalition of

6

users should gain a non-negligible advantage in distinguishing, for all α ∈ Z, an honest

user ui such that α ∈ Xi.

Definition 3 (User Privacy) Let Πκ,E,E be a κ+ protocol defined as in Section 3.1 over

a double encryption scheme (E ,E) and A = (A1,A2) be an adversary.

Experiment Expκ
+

A (Πκ,E,E, λ)
(pk, sk, s, s′)← Setup(λ);

(state, Υt,m1, . . . ,mn−t)← A1(pk, n, t) s.t. Υt is a set of corrupted t users;

σ
$
←− Σn and assign mσ(i) to each honest i-th user ui 6∈ Υt;

(α1, . . . , ακ)← Πκ,E,E, where A1 interacts with the n− t honest users;

(i, j)← A2(pk,m1, . . . ,mn−t, state);

We define the advantage of an adversary A, running in probabilistic polynomial time:

Advκ
+

A (Πκ,E,E, λ) =

∣

∣

∣

∣

Pr[σ(i) = j]−
1

n− t

∣

∣

∣

∣

.

A κ+ protocol is user-private if the advantage Advκ
+

A (Πκ,E,E, λ) is negligible in the

security parameter λ.

3.3 Cryptographic Assumptions and Tools

Next we outline the cryptographic tools and assumptions we use in our protocol. Let G
be a finite cyclic group of prime order q, and let g ∈ G be a generator. Given h ∈ G, the

discrete logarithm problem requires us to compute x ∈ Zq such that gx = h. We denote

this (unique) x by logg h. In particular groups G and for q large, it is assumed hard to

compute x, which is said to be the Discrete Logarithm (DL) assumption.

A stronger assumption is the Decisional Diffie-Hellman (DDH) assumption. Here,

given G, a generator g of G, and three elements a, b, c ∈ G, we are asked (informally) to

decide whether there exist x, y such that a = gx, b = gy , and c = gxy . More formally,

the DDH assumption states that the following two distributions are computationally

indistinguishable: {G, g, gx, gy, gxy} and {G, g, gx, gy, gz} where x, y, z
$
←− Zq .

We extensively use ElGamal encryption defined in Example 1. This scheme secure

against CPA attack in a DDH group G; see Appendix A for the CPA security. In ad-

dition, we need an efficient scheme which works as follows: When each user holds a

shared secret key si such that s =
∏n

i=1 si, the scheme allows each user to have a share

s′i satisfying s′ =
∏n

i=1 s
′
i and s′ = s−1 (mod q) for a public modulus q. Indeed, we

may realize the scheme by techniques studied by Algesheimer et al. [2, §5].

4 Our Construction

In this section, we describe our construction for computing the κ+ elements privately.

We begin by considering a basic setting of n users, denoted by u1, . . . , un. Let Xi =
{αi,1, . . . , αi,k} for all i ∈ [1, n]. Each user ui has its private multiset Xi, and the

users wish to jointly compute
{

α ∈
⋃n

i=1 Xi
∣

∣F (α) ≥ κ
}

. For simplicity, assume that

all elements are in the proper message domain Mpk of an ElGamal encryption scheme,

e.g., a finite cyclic subgroup Gq of Zp in which the DDH assumption holds. For a

multiset X = {α1, . . . , αk}, we denote Xs as {αs
1, . . . , α

s
k} for some s ∈ Zq . With such

notation in mind, we proceed to describe our construction.

7

4.1 Description

Let λ be a security parameter, p be a λ-bit prime such that for some prime q, p = 2q+1,

and Gq be a finite cyclic subgroup of Z×
p whose order is q, and g be a generator of Gq .

Setup(1λ) Each user agrees to a threshold ElGamal encryption E with a public/private

key pair (pk, sk), which are computed as follows. Define params := (p, q, g,Gq).

Each user selects a value xi
$
←− Zq, computes yi = gxi , and sets sk = (params, xi);

the public key is then given by pk :=
(

params, y =
∏n

i=1 yi = g
∑

i∈[1,n] xi (mod p)
)

.

In addition, all users are distributed a share (si, s
′
i) such that s =

∏n
i=1 si, s

′ =
∏n

i=1 s
′
i, and s · s′ = 1 (mod q). Notice that in threshold decryption schemes,

users generally produce shares of the decrypted element, and during the operation

of the schemes if one user sends a uniformly generated share instead of a valid one

the decrypted element is uniform. Also, if the decrypted element is uniform, the

resulting decryption reveals no information to the users.
DEncrypt Let I = {1, . . . , n} be a set of indices, and let the power function Esi(α) =

αsi (mod p) which is deterministic.

1. Every user ui encrypts his multiset Xi as follows:

Encpk(Xi) = {Encpk(αi,1), . . . ,Encpk(αi,k)}

where Encpk(αi,j) = (gri,j , αi,j · y
ri,j) for some randomizer ri,j ∈ Zq, and

sends Encpk(Xi) to u1.
2. User u1 computes {Es1(Encpk(X1)), . . . , Es1(Encpk(Xn))}, which is denoted

by Y0.
Shuffle & DEncrypt For i ∈ [1, n], ui receives vector Yi−1 and computes a per-

muted, doubly encrypted version Yi as follows:

1. ui6=1 computes

Esi(Yi−1) = {c1, . . . , cnk}

=
{

Esi

(

Esi−1

(

· · ·Es1

(

απi−1(1)

)

· · ·
))

, . . . , Esi

(

Esi−1

(

· · ·Es1

(

απi−1(nk)

)

· · ·
))}

.

More precisely, here απi−1(ℓ) = απi−1◦···◦π1(ℓ) for all ℓ ∈ [1, nk].
2. ui chooses a random permutation πi ∈ Σnk, and applies πi to the list of

cℓ∈[1,nk] computed above; denote the result by Yi.
3. ui sends Yi to ui+1; the last user un sends Yn to all users.

Aggregate Let U =
⋃n

i=1 Xi. Every user has Es(Encpk(U)).

1. Every user participates in a group decryption and obtains

Es(U) =
{

Es

(

απ(1)

)

, . . . , Es

(

απ(nk)

)}

where π = πn ◦ · · · ◦ π1.
2. Every user computes Z = {Es(α) ∈ Es(U)

∣

∣F (Es(α)) ≥ κ}.
Reveal

1. For every Es(α) ∈ Z, user ui sends its share of Ds′
i
(Es(α)) to ui′ .

2. After receiving all the shares, every user ui computes α = Ds′(Es(α)), thereby

recovering the κ+, {α ∈ U|F (α) ≥ κ}.

8

Efficiency. The advantage of the above protocol is multifold. First, compared to Kiss-

ner and Song’s protocol [14], our protocol provides the functionality of finding a thresh-

old value and computing the “over threshold” at the same computation and communi-

cation cost—whereas they incur different and higher costs in [14]. Second, compared

to the κ+ protocol described in [4], our protocol has a much better computational com-

plexity. See details in Section ??. In order to present a fair comparison between our

proposed protocol and Applebaum et al.’s protocol [3] we devise our protocol for a

semi-decentralized model in the next section. The other purpose of our modification is

to reduce the round complexity to a constant.

4.2 Semi-Decentralized Construction

The most crucial drawback of the previous protocol is its O(n) round complexity. To

avoid this problem, Applebaum et al. introduced two semi-honest users: a proxy which

shuffles a list of input ciphertexts, and a database which aggregates κ+ elements. Ap-

plying the same technique to our protocol, we obtain a constant-round κ+ protocol.

– Assume that there are n1 proxies and n2 databases described as in [3].

– Each database engages in setting up a threshold ElGamal encryption and publishes

a public key. Instead of users, all proxies are distributed secret shares (sl, s
′
l)l∈[1,n1].

– Each user computes a list of ElGamal ciphertexts and sends it to a proxy.

– Each proxy runs DEncrypt and Shuffle, and returns the result to all databases.

– Databases perform group decryption, and get the list of encrypted κ+ elements

– Finally, all proxies decrypt the encrypted κ+ list and return the κ+ to all users.

Compared to [3], our protocol does not require OT operations, nor an extra encryp-

tion scheme. Recall that Applebaum et al.’s protocol requires ElGamal encryption and

Goldwasser-Micali (GM) encryption: ElGamal encryption is used to encrypt elements

in multisets and GM encryption is used to encrypt their multiplicity.

5 Security Analysis

Theorem 1 (Correctness) In the private top-κ protocol in sec. 4.1, every honest user

learns the joint set distribution of all users’ private inputs, i.e., each element Es(α) such

that α ∈
⋃n

i=1 Xi and the number of times it appears, with overwhelming probability.

Proof. Each player learns a randomly permuted joint multiset Es(U) =
{

Es

(

απ(1)

)

, . . . , Es

(

απ(nk)

)}

.

We know that |Us| = nk. Since π is a permutation, for each Es

(

απ(ℓ)

)

and for all

ℓ ∈ [1, nk], there exist a pair of the unique index ℓ∗ such that

ℓ∗ = π−1(ℓ)

= π−1
n (ℓ) ◦ · · · ◦ π−1

1 (ℓ).

Namely, Es

(

απ(ℓ)

)

is a unique blinded version of αℓ∗ ∈
⋃n

i=1 Xi. Moreover, ∀ℓ, ℓ∗ ∈
[1, nk], αℓ = αℓ∗ if and only if Es (αℓ) = Es (αℓ∗) with overwhelming probability. �

Corollary 1 In the private top-κ protocol in Section 4.1, every honest user learns the

κ+ in the union of private multisets with overwhelming probability.

9

Now we show that our protocol satisfies the privacy requirements in the semi-honest

model. Let T be a trusted party in the ideal world which receives the private input

multiset Xi of size k from user ui for i ∈ [1, n], and then returns to every user the joint

multiset distribution {F (α)} for all α ∈
⋃n

i=1 Xi.
Theorem 2 (Data Privacy) Assume that the threshold ElGamal encryption E = (KG,Enc,Dec)
is secure against CPA. In the private top-κ protocol in Section 4.1, any coalition of less

than n semi-honest users learn no more information than would be given by using the

same private inputs in the ideal-world model with T .

Proof. We assume that the ElGamal encryption scheme is CPA-secure, and so each user

learns only

Encpk (X1) , . . . ,Encpk (Xn) ;

Es1(Encpk(X1)), . . . , Es1(Encpk(X1)), . . . , Esi−1
(Encpk(X1)), . . . , Esi−1

(Encpk(Xn));

...

Esi−1
(· · ·Es1(Encpk(X1)) · · ·), . . . , Esi−1

(· · ·Es1(Encpk(Xn)) · · ·)

during an execution. At the end of the protocol all users further know Es(Encpk(U))
where U =

⋃n
i=1 Xi, and for some γℓ∈[1,nk] ∈ Zq

Es(Encpk(U)) = {Es(Encpk(X1)), . . . , Es(Encpk(Xn))}

=
(

gγ1 ,
(

απ(1)

)s
· yγ1

)

, . . . ,
(

gγnk ,
(

απ(nk)

)s
· yγnk

)

.

Note that π is a composition of random permutations and is unknown to all users, as the

maximum coalition size is smaller than n. That is, if there exists at least an honest user,

then a composition of random permutations π = πn ◦ · · · ◦ π1 is a random permutation

because at least a permutation πi∈[1,n] is secure. What is more, note that s is uniformly

distributed and unknown to all users for the same reason. As s is uniformly distributed

for any user inputs and π is random, no user or coalition can learn more than a set of

re-randomized ElGamal encryptions. As s is uniformly distributed, a group decryption

of ElGamal encryptions reveals no more than

{Es(αℓ)}ℓ∈[1,nk] = Es

(

n
⋃

i=1

Xi

)

= Es(U).

We know the fact that F (α) = F (αs) for two multisets X and Es(X) ∈ (Gq)
k, for

all s ∈ Zq and for all α ∈ X. Hence we see that

F (Es(U)) = F

(

Es

(

n
⋃

i=1

Xi

))

= F

(

n
⋃

i=1

Xi

)

= F (U),

which can be derived from the output returned by T in the ideal-world model. �

Theorem 3 (User Privacy) Assume that the threshold ElGamal encryption Enc is CPA-

secure. The private top-κ protocol in Section 4.1 is user-private against any coalition

of less than n semi-honest users.

10

Proof. Assume that there is at least an honest user in the system, and that the threshold

ElGamal encryption E = (KG,Enc,Dec) is CPA-secure. After performing DEncrypt

and Shuffle algorithms, every user obtains a collection of ElGamal encryptions {c1, . . . , cnk}.
By the second assumption, the adversary cannot learn any further information except

that which encryptions have been sent from which users. Running these algorithms,

each user should raise the power of the received encryptions with his shared secret si.
Namely, each user holds the modified list of the encryptions,

{Esi(c1), Esi(c2), . . . , Esi(cnk)} .

Next the user should apply his private permutation πi to the list to transform it to

{

Esi

(

cπ(1)
)

, Esi

(

cπ(2)
)

, . . . , Esi

(

cπ(nk)
)}

.

At the end of running the algorithms, all users get a permuted and doubly encrypted list

{

Es

(

cπ(1)
)

, Es

(

cπ(2)
)

, . . . , Es

(

cπ(nk)
)}

where the permutation π = πn ◦ · · · ◦ π1 and s =
∏n

i=1 si. As there exists at least an

honest user, even when n− 1 users collude, s is uniformly distributed and unknown to

all users and π is a random permutation. This completes the proof of the claim. �

Theorem 4 Assuming that the threshold ElGamal encryption is CPA-secure and the

DL assumption holds, the proposed top-κ protocol is secure in the semi-honest model.

Proof. We complete the proof of security by Theorem 2 and Theorem 3. �

6 Efficiency Analysis

The private κ+ protocol has not yet been implemented, but we give a detailed analysis of

the running time and space requirements as follows. We base our protocol on ElGamal

encryption and the power function with primes |p| = 1024, |q| = 160. To measure

users’ overhead, we count the number of exponentiations using a 1024-bit modulus.

Table 2. Complexity Analysis

Comp. Cpx (expo.) Comm. Cpx (bits) Rounds Cpx

Setup n n log p 1

DEncrypt & Shuffle 4nk + 2n2k 2(n− 1)k log p+ 2n2k log p n

Aggregate n2k 2n2k log p 1

Reveal nκ nκ log p n− 1

In Table 2 we show a summary of the complexity result for our proposed protocol.

The total computational complexity is dominated by DEncrypt and Shuffle algorthms.

Putting the computational complexities together shows that total computation complex-

ity is O(n2k) in O(n) rounds. The proposed protocol has O(n2k log p) bits in total. It

is impossible to directly compare our protocol with Applebaum et al.’s protocol, since

it runs in the semi-decentralized model, we just present the computational complexity.

Comparison. We consider three protocols: Kissner and Song (KS) protocol [14], Burkhart

and Dimitropoulos (BD) protocol [4], and Applebaum et al. protocol.

11

Based on KS protocol We first compare our work with a KS-based κ+ protocol. As

mentioned earlier, since it does not provide a way for finding τ , we do not know

computational and communication complexity in computing τ . Assuming τ is given,

their protocol has O(n2k) computation complexity in O(n) rounds.
BD protocol In turn, we give a comparison with BD protocol. To our knowledge, it

is the only fully decentralized κ+ protocol that does not use Yao’s garbled circuit

evaluation. Their protocol utilizes two special-purpose sub-protocols–equality

and lessthan (see [6,19]), but in [5] as the authors pointed out, comparison of

two shared secrets is very expensive and computational intensive. Thus, they use a

computationally efficient version of the basic sub-protocols as follows: equality

requires log p rounds and lessthan requires (2 log p+ 10) rounds. Their protocol

consists of two key ingredients as follows:
– Finding the correct τ : takes (log k(2 log p+ 10) + log p+ 2 log p+ 10)nk rounds.
– Resolving collisions: Requires

n(n−1)
2 log p+2(n−1) log p+10(n−1) rounds.

Note that BD protocol also should know τ as in KS protocol. Hence, the total round

complexity is O(n(n+ k log k) log p) for hash tables of size log k and U of nk.

We find their protocol takes 4
(

n(n−1)
2 k + k(n− 1)

)

multiplications in Z
×
p .

Applebaum et al. protocol Let us useOp(·) to denote complexity using modulus prime

p and ON (·) complexity using modulus composite N . Assume all elements are in-

tegers less than p and the maximum multiplicity is less than log log p.
Their major computation-intensive parts are as follows:

– Interactive computation between Users and Proxy: First, users should run a

protocol for oblivious evaluation of pseudorandom function by communicating

with proxies, then encrypt the result with ElGamal encryption. This requires

n(k(2 log p + 2) + 2k) exponentiations over Z×
p . Also, users should encrypt

the multiplicity of each element with GM encryption, requiring nk log log p
multiplications over Z×

N . Finally each user doubly encrypts their elements us-

ing ElGamal encryption. This requires 2nk exponentiations over Z×
p .

– Aggregation by Database: The most computationally-intensive part is ElGa-

mal and GM decryption. Since database receives two types of ElGamal ci-

phertexts, it performs 2nk exponentiations over Z×
p . GM decryption requires

2nk log log p exponentiations over Z×
N .

Thus, the complexity is Op(nk log p) +ON (nk log log p) exponentiations.

7 Conclusion
In this paper we have looked at the problem of finding the κ+ element securely, and

formally defined what it means for a protocol to be a secure κ+ protocol. We developed

two protocols, with varying operation overhead, analyzed their security, and demon-

strated their practicality. In the near future, we will investigate two directions. First,

since our constructions’ security is proven in the semi-honest model—which is ratio-

nalized by the application domain, we will investigate constructions that are provably

secure in the malicious model, and their potential applications. Second, as the shuffling

algorithm in our current construction requires sending messages among players in a

relay manner, we will consider the practical and security aspects of a construction that

relies on sending such messages in a broadcast manner.

Acknowledgement—We thank Burt Kaliski for his feedback on an earlier version.

12

References

1. G. Aggarwal, N. Mishra, and B. Pinkas. Secure computation of the kth-ranked element. In

Eurocrypt, pages 40–55, 2004. 2

2. J. Algesheimer, J. Camenisch, and V. Shoup. Efficient computation modulo a shared secret

with application to the generation of shared safe-prime products. In Crypto, 2002. 7

3. B. Applebaum, H. Ringberg, M. Freedman, M. Caesar, and J. Rexford. Collaborative,

privacy-preserving sata aggregation at scale. In PETS, 2010. 3, 4, 9

4. M. Burkhart and X. Dimitropoulos. Fast privacy-preserving top-k queries using secret shar-

ing. In IEEE ICCCN, 2010. 3, 4, 9, 11

5. M. Burkhart, M. Strasser, D. Many, and X. Dimitropoulos. SEPIA: Privacy-preserving ag-

gregation of multi-domain network events and statistics. In USENIX Security, 2010. 12

6. I. Damgård, M. Fitzi, E. Kiltz, J. B. Nielsen, and T. Toft. Unconditionally secure constant-

rounds multi-party computation for equality, comparison, bits and exponentiation. In

S. Halevi and T. Rabin, editors, TCC, LNCS 3876, pages 285–304, 2006. 12

7. T. El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms.

In Advances in Cryptology-Crypto, 1984. 4

8. J. Furukawa and K. Sako. An efficient scheme for proving a shuffle. In Crypto, 2001. 2

9. O. Goldreich. The foundations of cryptography. Cambridge University Press, 2004. 6

10. S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Syst. Sci., 1984. 4, 14

11. J. Groth. A verifiable secret shuffle of homomorphic encryptions. J. of Cryptology, 2010. 2

12. J. Groth and S. Lu. Verifiable shuffle of large size ciphertexts. In T. Okamoto and X. Wang,

editors, Public Key Cryptography, LNCS 4450, pages 377–392, 2007. 2

13. J. Hong, J. W. Kim, J. Kim, K. Park, and J. H. Cheon. Constant-round privacy preserving

multiset union. In Cryptology ePrint Archive, 2011/138, 2011. 2

14. L. Kissner and D. Song. Privacy-preserving set operations. In V. Shoup, editor, Advances in

Cryptology-Crypto, LNCS 3621, pages 241–257, 2005. 2, 4, 9, 11

15. A. Mohaisen, D. Hong, and D. Nyang. Privacy in location based services: Primitives toward

the solution. In NCM, 2008. 2

16. M. Naor and B. Pinkas. Oblivious transfer with adaptive queries. In M. Wiener, editor,

Advances in Cryptology-Crypto, LNCS 1666, pages 573–590, 1999. 4

17. C. Neff. A verifiable secret shuffle and its application to e-voting. In ACM Conference on

Computer and Communications Security, pages 116–125, 2001. 2

18. L. Nguyen, R. Safavi-Naini, and K. Kurosawa. Verifiable shuffles: A formal model and a

Paillier-based efficient construction with provable security. In M. Jakobsson, M. Yung, and

J. Zhou, editors, ACNS, LNCS 3089, pages 61–75, 2004. 2, 5

19. T. Nishide and K. Ohta. Multiparty computation for interval, equality, and comparison with-

out bit-decomposition protocol. In T. Okamoto and X. Wang, editors, Public Key Cryptog-

raphy, LNCS 4450, pages 343–360, 2007. 12

20. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In

J. Stern, editor, Advances in Cryptology-EuroCrypt, LNCS 1592, pages 223–238, 1999. 3

21. Y. Sang and H. Shen. Efficient and secure protocols for privacy-preserving set operations.

ACM Transactions on Information and System Security (TISSEC), 13(1):9:1–9:35, 2009. 2

22. J. Vaidya and C. Clifton. Privacy-preserving top-k queries. In ICDE, 2005. 2

23. L. Xiong, S. Chitti, and L. Liu. Topk queries across multiple private databases. In Interna-

tional Conference on Distributed Computing Systems (ICDCS), pages 145–154, 2005. 2

24. A. Yao. Protocols for secure computations. In FOCS, pages 160–164, 1982. 3

25. R. Zhang, J. Shi, Y. Liu, and Y. Zhang. Verifiable fine-grained top-k queries in tiered sensor

networks. In INFOCOM, pages 2633–2641, 2010. 2

26. R. Zhang, Y. Zhang, and C. Zhang. Secure top-k query processing via untrusted location-

based service providers. In INFOCOM, pages 1170–1178, 2012. 2

13

A Basic Definitions

We first give a formal definition of a public key cryptosystem and then its standard

security definition. We shall write

Pr[x1
$
←− X1, x2

$
←− X2(x1), . . . , xn

$
←− Xn(x1, . . . , xn−1) : ϕ(x1, . . . , xn)]

to denote the probability that when x1 is drawn from a certain distribution X1, and x2 is

drawn from a certain distribution X2(x1), possibly depending on the particular choice

of x1, and so on, all the way to xn, the predicate ϕ(x1, . . . , xn) is true.

Definition 4 A public-key cryptosystem E is a 3-tuple of PPT algorithms (KG,Enc,Dec)
such that

1. The key generation algorithm KG takes as input the security parameter λ and out-

puts a pair of keys (pk, sk). For given pk, the message space Mpk and the random-

ness space Rpk are uniquely determined.

2. The encryption algorithm Enc takes as input a public key pk and a message m ∈
Mpk, and outputs a ciphertext c ∈ Cpk where Cpk is a finite set of ciphertexts. We

write this as c ←− Encpk(m). We sometimes write Encpk(m) as Encpk(m, r) when

the randomness r ∈ Rpk used by Enc needs to be emphasized. .

3. The decryption algorithm Dec takes as input a private key sk and a ciphertext c,
and outputs a message m or a special symbol ⊥ which means failure.

We say that a public-key cryptosystem E is correct if, for any key-pair (pk, sk) ←−
KG(λ) and any m ∈Mpk, it is the case that: m← Decsk(Encpk(m)).

Definition 5 ([10]) A public-key cryptosystem E = (KG,Enc,Dec) with a security

parameter λ is called to be semantically secure (IND-CPA secure) if after the stan-

dard CPA game being played with any PPT adversary A = (A1,A2), the advantage

Adv
cpa
E,A(λ), formally defined as

∣

∣

∣

∣

∣

Pr
b,r

[

(pk, sk)←− KG(λ), (state,m0,m1)←− A1(pk),

c = Encpk(mb; r) : b←− A2(state,m0,m1, c)

]

−
1

2

∣

∣

∣

∣

∣

,

is negligible in λ for all sufficiently large λ.

In the experiment above, when we allowA1 to query the decryption oracle, if the advan-

tage Advcca2E,A(λ) is negligible, we say E is IND-CCA1 secure, in short, CCA1 secure.

14

	Private Over-threshold Aggregation Protocols

