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Abstract—Using an intrinsic feature of malicious domain name
queries prior to their registration (perhaps due to clock drift),
we devise a difference-based lightweight feature for malicious
domain name detection. Using NXDomain query and response of
a popular malware, we establish the effectiveness of our detector
with 99% accuracy, and as early as more than 48 hours before
they are registered. Our technique serves as a tool of detection
where other techniques relying on entropy or domain generating
algorithms reversing are impractical.

Index Terms—DNS, Machine Learning, Classification

I. INTRODUCTION

With a complex ecosystem around them, botnets are be-
coming increasingly one of the most prevalent threats on the
Internet [4], [12]–[14]. Botnets typically consist of various
infected hosts, command and control (C2) channels, and a bot-
master. The infected hosts (“zombies”), as shown in Figure 1,
are often massively distributed, whereas the command and
control are channels used by a mastermind (the “botmaster”)
to instruct bots to perform various forms of malice; e.g.,
launching distributed denial-of-service (DDoS) attacks [15].
To communicate with bots, there are several potential ways
utilized by botmasters, and domain names as a command and
control channel are one of the most common and preferred
methods—because they are easy to acquire and recycle [5]. To
generate such domain names, domain generation algorithms
(or DGAs) are widely used today by botmasters. Usually,
DGAs use time to dynamically and automatically generate
potentially pseudorandom domain names that are registered
by botmasters and used by bots for communication. One way
of mitigating botnets is to prevent them from registering their
C2 domains, or by taking such domain names down [6], [10].

To address DGAs by detection, there have been two schools
of thought that either: 1) rely on reverse engineering of the bot
software [8] or 2) using the intrinsic features of the generated
domains [16]. The first method, while powerful in generating
all domain names to be potentially used by a malware family
(even in the future and can thus be used to proactively block
those domains by pre-registering them), is very expensive. This
method requires obtaining samples of the malware family that
utilizes such DGAs. However, obtaining such malware is not
the biggest hurdle: many of today’s malware families employ
obfuscation techniques that make their analysis a difficult task.
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Fig. 1. An illustration of a botnet infrastructure.

The second school of thought uses pseudorandomness of
algorithmically generated domains and exploits the fact that
those domains have a high entropy for their detection [3].
Registered domain names that are queried by infected hosts
are evaluated, a measure of their pseudorandomness using their
entropy is calculated, and the likelihood of them being mali-
cious based on their entropy score is assigned. While shown to
identify malicious domains reasonably well, such techniques
suffer from various drawbacks. First, domain names need
to be registered in order for a monitor to be able measure
such entropy and determine if a domain is malicious or not.
Thus, such techniques cannot be used proactively to detect
malicious domains. Second, those techniques assume that
randomly generated domain names are only used in malicious
activities: it is not far-fetched to imagine that domain names
with high entropy are utilized for domain name parking, non-
public facing domains (e.g., content delivery network (CDN)
addressing), among others.
Key Idea. To this end, this paper addresses the problem of
proactive malicious domain name identification focusing on
DGAs. We aim to identify such domain names before they are
registered using domain name resolution side channels. Our
main source of inference is the domain name system (DNS)
query and resolution of domain names. We motivated for our
study by a large-scale analysis of domain names and their
queries. We find that, domains that are used for malicious ac-
tivities, and especially those generated algorithmically, tend to
have unique and distinguishing patterns. In particular, domain978-1-5386-2290-2/18/$31.00 c©2018 IEEE



names that are algorithmically generated tend to have a large
number of DNS queries even before their registration, typically
resulting in NXDomain (non-existent domain) responses. This
trend persists, and the number of queries increases and peaks
at the time of registration, then declines gradually–indicating
the ephemeral use of those domain names for their major
purpose. On the other hand, domain names that are being used
for benign applications tend to have significantly less queries
before registration, while their post-registration query volumes
(which may fluctuate over time) do not have a single declining
curve, thus highlighting a fundamentally different use model.

The contribution of this paper is as follows. First, we high-
light a fundamental difference between the query patterns for
domain names that are used by botnets, often generated using
DGAs, and benign ones. We use this insight to differentiate
between those domain names using a simple classification
algorithm for proactive detection of malicious domains.

The organization of the rest of this paper is as follows.
In section II we review our datasets and high-level characteris-
tics. In section III we present our online detector. In section IV
we evaluate our system. In section V, we provide concluding
remarks.

II. DATASET AND CHARACTERISTICS

Our dataset was originally used by Thomas and Mohaisen
in [12]. The dataset was collected during July of 2012 from
Verisign’s authoritative name servers for the COM, NET, TV
and CC top-level domain (TLD) authoritative name servers. As
the registry of large TLDs, Verisign has a global view of DNS
traffic, giving a unique observation of malware-associated
DNS traffic.
Malware Data. Conficker is one of the most well-known
malware samples that employed the use of DGAs [9]. The
family was originally discovered in 2008, and has been active
for the past several years by infecting many hosts world-wide
and by mutating into multiple variants, namely Conficker A, B,
C, D, and E [11]. The Conficker Working Group, a consortium
of researchers and security professionals, has successfully
reverse-engineered the DGA and pre-calculated domains to be
generated each day for variants A, B and C [1]. Table I shows
the various TLDs for variants A, B and C and the domains
to be generated on a daily basis. Variants A and B utilize
the COM, NET and CC TLDs allowing us to analyze the
DNS traffic for them. By April 2009, all domains generated by
variant A were successfully locked or preemptively registered
to mitigate the proliferation capabilities of the variant. Of the
15,500 domains to be generated by variants A and B in July of
2012 (corresponding to 500 domains per day over 31 days),
30 of the domains were registered in either COM or NET
with active name servers resulting in YXDomain (name exists
when it should not) traffic while the remaining DGA domains
resulted in NXDomain traffic.
NXDomain Data. NXDomain is the answer type for a domain
name that is unable to resolve because, among other reasons,
the domain name is not registered. The term was originally
used to represent DNS response code 3 in RFC 1035 [7] and

TABLE I
CONFICKER DGA BY VARIANT AND DOMAINS PER DAY

Variant Domains TLDs
A 250 biz, info, org, net, and com
B 250 biz, info, org, net, com, ..., cn
C 50k 110 ccTLDs not tv or cc

100

10-1

10-1

10-1

10-1

100

100 101 102 103 104 105

E
C

D
F

NXDomain Requests

CC
100

10-1

10-1

10-1

10-1

100

100 101 102 103 104 105

E
C

D
F

NXDomain Requests

TV

100

10-1

10-1

10-1

10-1

100

100 101 102 103 104 105

E
C

D
F

NXDomain Requests

COM
100

10-1

10-1

10-1

10-1

100

100 101 102 103 104 105

E
C

D
F

NXDomain Requests

NET

Fig. 2. NXDomain traffic volumes to major TLDs: .cc, .tv, .com, and .net,
respectively. Notice that the majority of domains receive small number of
queries, and a small percentage (∼3%) receive more than 10 queries.

RFC 2308 [2]. All of the data below corresponds to the state
of the DNS resolution system operated by Verisign in middle
of 2012. We note that while we are not able to use DNS traffic
for some of the TLDs listed in Table I, the ones using TLDs
operated by Verisign (CC, TV, NET and COM) were captured,
measured and analyzed [12].

In our dataset, a typical day in the COM zone has 2.5
billion NXDomain requests for more than 350 million unique
second-level domains while NET receives about 500 million
NXDomain requests for more than 60 million unique second-
level domains. Smaller zones such as TV and CC receive
several magnitudes less of NXDomain traffic than COM and
NET. While daily volumes of requests and unique domains are
extremely high, the vast majority of individual NXDomains
observed receive very few requests within a given epoch of
time. Figure 2 (subplot for each zone) shows a cumulative
distribution function of the number of requests a given NX-
Domain receives in 24 hours. As depicted, more than 95%
of the unique second-level NXDomains receive less than 10
requests within the 24 hour.
Conficker NXDomain DNS. The vast majority of the domains
generated by the Conficker DGA falls into the NXDomain
category. We analyzed various aspects of DNS traffic before,
during and after the domain’s generation date to understand
the lifecycle of a DGA domain with respect to DNS traffic.
Using the 2012 Conficker Domain list of pre-calculated DGA
domains, we were able to group domains by their generation
date and measure their DNS traffic [12]. Specifically, for a
given domain to be generated on day x, we measured the
domain’s DNS traffic on days x−5 to x+ 5. Figure 3 depicts
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Fig. 3. Conficker NXDomain DNS lookups [12].

the pre, during and post-DNS traffic patterns for Conficker B
with box plots to depict the range of DNS traffic observed on a
given day. It is evident that despite a specific generation date,
DGA domains receive significant volumes of traffic during its
pre and post-generation date.

III. ONLINE DETECTION ALGORITHM

Compared to the whole population of NXDomain traffic,
the volume and daily reoccurrence make DGA domains sta-
tistically abnormal. Significant traffic uptick for a given DGA
domain occurs both one day prior and post-generation date.
Traffic volumes on the exact generation date soar several
magnitudes higher than the ±5 days baseline to 42, 887
unique 24 recursive name servers consisting of 199, 097 total
NXDomain requests from 211 unique countries for an average
DGA domain.

A. Rationale of Feature

There are potentially various explanations for why domain
names get queried before their registration. First, domain
names intended for benign usage might get queried by inter-
ested registrants who want to acquire them, thus explaining
the small number of queries some of them receive before
registration. On the other hand, the large number of queries
that DGA domains receive might have to do with the fact that
those domain names are time-dependent. As highlighted in
Figure 4 for the DGA domain used initially by CryptoLocker,
a bot calculates a domain name using time features as the main
inputs. A large drift in the time or clock misconfiguration
would result in bots contacting the domain name before or
after its registration. We use such verified observation as the

1 def generate_domain(y, m, d):
2 domain = ""
3 for i in range(16):
4 y=((yˆ8*y)>>11)ˆ((y&0xFFFFFFF0)<<17)
5 m=((mˆ4*m)>>25)ˆ16*(m&0xFFFFFFF8)
6 d=((dˆ(d<<13))>>19)ˆ((d&0xFFFFFFFE)<<12)
7 dm+=chr(((yˆmˆd)%25)+97)
8 return domain

Fig. 4. An example of the algorithm used by CryptoLocker for initially
generating algorithmic domain names for command and control.

main feature for identifying malicious domain names. Using
this a priori knowledge captured in a training model, we devise
a method that can detect those domains even before they are
registered with a high accuracy rate. The proposed approach
based on this feature has various plausible benefits over the
state-of-the-art in the following aspects. Mainly, the proposed
technique is robust to behavior of the adversary.

B. Online Detection

To be able to tell whether a domain name is malicious
or not, we use the notion of the difference function. The
difference function provides an estimation of the derivative
of a function and is defined as follows:

∆f(x) =
f(x + a)− f(x− a)

2a
(1)

Building Feature Vectors. For a window of size 2a (a from
left and right of a point x; note that x here can be any
point in time), we calculate the difference as the change
in the number of NXDomain responses to a given domain,
normalized by the total time units corresponding to 2a. The
parameter a is used based on the desired performance, and x
is used for all values of the observed traffic. We highlight the
operation of the basic feature with an example. Let’s consider
an observation of [oj1, o

j
2 . . . , o

j
k] (for a domain j), where each

observation is the total number of NXDomain responses for
a domain j over a fixed period of time (e.g., hour). If we
are to consider a = 1, we calculate f(x) as |oji+1 − oji |/2
for all i (resulting in a vector of values, representing the use
of the given domain; [f j

i ]1×k). For a unified treatment of the
vector, we normalize each element in it by the sum of all of its
elements; this is f j − i/

∑
∀i f

j − i. Our detection algorithm
then uses the same idea as above, over a sliding window of
observations. As time goes, the window slides by forgetting
the oldest observations of NXDomain responses for the given
domain. Additionally, the detector updates the count vector of
the NXDomain responses for the domain, and calculates our
feature vector as the difference function.
Building a Model. For a set of domains d1, . . . , dt that are
known to be malicious, we create model M that is calculated
as a centroid feature vector corresponding to the average of
the feature values of the different domains. As such, we define

M = [m1, . . . ,mk] : mi = 1/t

t∑
j=1

f j
i (2)

As above, for a unified treatment, we normalize each element
in it by the sum of all of its elements; this is mi/

∑
∀i mi

Learning Labels of Domains. For a candidate domain x de-
fined by its difference function fx as above, we determine the
label of the domain by conducting the following. We calculate
the distance between M and fx. That is, we calculate:

D(M, fx) =
1

2

∑
∀i

|mi − fx
i | (3)

Then, we label the domain as malicious if D(M, fx) > ∆ and
as benign otherwise. ∆ is determined through measurements



TABLE II
STANDARD MEASUREMENTS OF PERFORMANCE: TRUE POSITIVE, TRUE

NEGATIVE, FALSE POSITIVE, FALSE NEGATIVE FOR DIFFERENT WINDOWS
SIZE (AVERAGE, OVER 24 SLIDES FOR THE GIVEN W SIZE).

W TP TN FP FN P R A F1

8 91.3 89.4 10.6 8.7 0.89 0.91 0.90 0.90
16 97.4 92.7 7.3 2.6 0.93 0.97 0.95 0.95
24 98.1 94.5 5.5 1.9 0.95 0.98 0.96 0.96
36 99.3 95.5 4.5 0.7 0.96 0.99 0.97 0.98
48 99.4 98.3 1.7 0.6 0.98 0.99 0.99 0.99

and tuning, based on the learning of the underlying distribution
of the NXDomain queries and their difference functions of
malicious domains. We call this approach the 1-class learning.
2-class learning. Alternatively, we create a model for a set
of known benign domains, namely B, where B = [b1, . . . , bk]
and assign the label of a sample x based on the following:

Label =

{
Malicious : D(B, fx) > D(M, fx)

Benign : D(B, fx) ≤ D(M, fx)
(4)

We note that our scheme is less aggressive, since it prioritizes
benign over malicious, as shown above. Depending on the de-
tector objective, he might also be more aggressive by assigning
a malicious label to a domain when D(B, fx) = D(M, fx).

IV. EVALUATION

To evaluate the performance of our scheme, we use the
dataset described in section II, with the head of the distribution
of the dataset corresponding to malicious domains, and the
rest of the distribution corresponding to benign domains. With
labels known in advance, we proceed to evaluate the labeling
capability of our scheme. For 1-class learning, and based on
the distribution of the various malicious domains, we set ∆ =
0.08, which corresponds to 99% of detection accuracy of all
the domain name samples considered and included for building
the baseline modelM. To build the modelM, and to simulate
a real-world scenario, we use 1,000 domains. For the unit a,
we calculate the number of queries every hour, and consider
a sliding window size W as 8, 16, 24, 36, and 48 hours (thus,
a window of size 24 would move a step of 1 hour at a time
to simulate lazy learning of a new difference vector). We start
“observing” responses for each 5 days (as highlighted in our
dataset) before the registration of a domain. For our evaluation,
we consider a variety of evaluation metrics:
• Standard metrics: (i) True positives (Tp): domains cor-

rectly identified as malicious. (ii) False positives (Fp):
domains incorrectly marked as malicious. (iii) True neg-
ative: (Tn) domains marked correctly an not malicious.
(iv) False negative (Fn): domains incorrectly marked as
not malicious. Using those outcomes, precision, recall,
accuracy, and F1 score are P =

Tp

Tp+Fp
, R =

Tp

Tp+Fn
, A =

Tp+Tn

Tp+Tn+Fp+Fn
, and F1 = 2× P×R

P+R .

• Time: we use how much in advance (before registration)
a domain can be detected as a measure of “proactiveness”.

The results for 2-class learning is shown in Table II across
multiple evaluation metrics. We notice that the performance

of our scheme is quite promising, especially with a limited
amount of knowledge (expressed in a small window size). As
for time as an evaluation metric, we notice that our scheme
can learn with an accuracy of more than 0.90 (on average) for
more than 88 hours in advance (= 24× 5− 8− 24) and can
achieve an accuracy of more than 0.99 (on average) for more
than 48 hours in advance (= 24× 5− 48− 24).

V. CONCLUSION

In this paper, we presented a technique for the proac-
tive detection of algorithmically generated malicious domain
names typically employed by botnets. We highlighted the fact
that DGA domains tend to have a large number of DNS
queries prior to registration, resulting in NXDomain responses
which is then followed by a gradual overall decline. We
then devised a detection algorithm using the notion of the
difference function over the number of NXDomain responses
for a given domain with a sliding time window. Using DNS
traffic gathered from certain TLDs for the pre-calcuated list
of generated domains by the Conficker malware variants, our
detection algorithm was able to achieve 99% accuracy (on
average) as early as 48 hours prior to registration.
Acknowledgement. This work was supported in part by NSF
grant CNS-1643207, NRF grant NRF-2016K1A1A2912757. J.
Kim was supported by KEPCO grant R17XA05-41 (2017)

REFERENCES

[1] —. The conficker working group. http://bit.ly/1kAYsJA, Nov 2012.
[2] M. Andrews. Negative caching of DNS queries (DNS NCACHE). RFC

2308, 1998.
[3] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, S. Abu-Nimeh,

W. Lee, and D. Dagon. From throw-away traffic to bots: Detecting the
rise of dga-based malware. In USENIX Security, 2012.

[4] W. Chang, A. Mohaisen, A. Wang, and S. Chen. Measuring botnets in
the wild: Some new trends. In ACM ASIACCS, pages 645–650, 2015.

[5] A. Kountouras, P. Kintis, C. Lever, Y. Chen, Y. Nadji, D. Dagon,
M. Antonakakis, and R. Joffe. Enabling network security through active
DNS datasets. In RAID, pages 188–208, 2016.

[6] C. Lever, P. Kotzias, D. Balzarotti, J. Caballero, and M. Antonakakis.
A lustrum of malware network communication: Evolution and insights.
In IEEE Symposium on Security and Privacy, pages 788–804, 2017.

[7] P. Mockapetris. Domain names: implementation and specification
(november 1987). RFC 1035, 2004.

[8] A. Mohaisen and O. Alrawi. Unveiling zeus: automated classification
of malware samples. In WWW (Comp. Volume), pages 829–832, 2013.

[9] A. Mohaisen, O. Alrawi, and M. Mohaisen. AMAL: high-fidelity,
behavior-based automated malware analysis and classification. Com-
puters & Security, 52:251–266, 2015.

[10] Y. Nadji, M. Antonakakis, R. Perdisci, D. Dagon, and W. Lee. Beheading
hydras: performing effective botnet takedowns. In ACM CCS, pages
121–132, 2013.

[11] S. Shin and G. Gu. Conficker and beyond: a large-scale empirical study.
In ACSAC, 2010.

[12] M. Thomas and A. Mohaisen. Kindred domains: detecting and clustering
botnet domains using DNS traffic. In WWW (Companion Volume), pages
707–712, 2014.

[13] A. Wang, A. Mohaisen, W. Chang, and S. Chen. Delving into internet
ddos attacks by botnets: Characterization and analysis. In DSN, 2015.

[14] A. Wang, A. Mohaisen, W. Chang, and S. Chen. Revealing ddos attack
dynamics behind the scenes. In DIMVA, 2015.

[15] A. Wang, A. Mohaisen, and S. Chen. An adversary-centric behavior
modeling of ddos attacks. In IEEE ICDCS, pages 1126–1136, 2017.

[16] S. Yadav, A. K. K. Reddy, A. N. Reddy, and S. Ranjan. Detecting
algorithmically generated malicious domain names. In ACM IMC, pages
48–61, 2010.

http://bit.ly/1kAYsJA

	Introduction
	Dataset and Characteristics
	Online Detection Algorithm
	Rationale of Feature
	Online Detection

	Evaluation
	Conclusion
	References

